
1/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Languages for Informatics
2 – Getting Started with C Programming

Department of Computer Science
University of Pisa

Largo B. Pontecorvo 3
56127 Pisa

2/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Topics

Linux programming environment (2h)
Introduction to C programming (12h)

1 Getting started with C Progamming
2 Variables, Data-types, Operators and Control Flow
3 Functions and Libraries
4 Arrays and Pointers
5 Structures
6 Input and Output

Basic system programming in Linux (10h)

3/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Overview

1 Introduction
Background
My first program

2 Programming in C
Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

3 GNU debugger gdb
4 Detect memory leaks with valgrind

4/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Background
My first program

Motivation for/against C

+
Most common programming language before Java and
Python (TIOBE 9/2020)
C is a middle-level and procedural language, closing the
gap between machine- and high-level languages.
C works efficiently in embedded applications with very
limited time and memory resources.

-
Limited data abstraction capabilities.
Code has to be written carefully to maintain portability to
other environments. Caution with data-types, byte
ordering, size of pointers, etc.

4/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Background
My first program

Motivation for/against C

+
Most common programming language before Java and
Python (TIOBE 9/2020)
C is a middle-level and procedural language, closing the
gap between machine- and high-level languages.
C works efficiently in embedded applications with very
limited time and memory resources.

-
Limited data abstraction capabilities.
Code has to be written carefully to maintain portability to
other environments. Caution with data-types, byte
ordering, size of pointers, etc.

5/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Background
My first program

History of C

developed at Bell Labs by Dennis Ritchie (1941-2011) in
1972/1973, to reimplement the Kernel of UNIX.
same syntax as B but, supports user-defined types, lets
manipulate bits in memory, suitable for cross-platform
programming.
Initial standard was defined by Brian Kernighan and
Dennis Ritchie, The C Programming Language, 1978.
Standards

ANSI-C by the American National Standards Institute in
1989 (=ISO C90). This is the most widely used and
supported version.
C95: major improvement such as digraph support.
C99: several new library headers and data types, but still
not support by all compilers.
C18 Is the current standard.

6/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Background
My first program

Typical Applications

Systems programming
in Operating Systems (Linux, MAC OS)
in embedded microcontrollers: Typical
’computer-on-achip applications are in consumer
electronics products,instrumentation and process control,
medical instruments, office equipment, multimedia
applications, automobiles, etc....
in embedded (real-time) DSPs: digital audio, TV, flight
control in airplanes,

7/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Background
My first program

Reference book

Brian W. Kernighan, Dennis M. Ritchie, The C Programming
Language, Prentice Hall, 2nd edition.

9/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Background
My first program

Getting Started

GNU Compiler Collection (GCC) is a collection of
compilers and libraries for C, C++, Objective-C, Fortran,
Ada, Go, and D programming languages.
Many open-source projects, including the GNU tools and
the Linux kernel, are compiled with GCC.
Installation instructions

$ sudo apt install build-essential
$ gcc --version
gcc (Ubuntu 9.2.1˜17ubuntu1) 9.2.1 20191102

10/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Background
My first program

My first program

Use any text editor to create a file with .c extension

$ nano helloworld.c

inc lude <s t d i o . h> / * C standard l i b r a r y * /

i n t main () / * mandatory f u n c t i o n * /
{

p r i n t f (” He l lo wor ld !\n ”) ;
r e t u r n 0 ;

}

CTRL O, CTRL X

11/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Background
My first program

Compile and Run

$ gcc -o helloworld helloworld.c

Creates an executable called helloworld.

$ ls -l helloworld
-rwxrwxr-x 1 NyName MyGroup 8608 set 29 19:41
helloworld

Run program with ./helloworld.
Here you go –

Hello World!

12/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

Structure of C Program

Pre-Processor directives
#include <stdio.h>
#define MYCONSTANT 0.1

Global Declarations
int count = 0;
int fun2(int a, int b);

Functions
int fun1(int a) { ... }
int fun2(int a,int b) { ... }
int main(void) { ... } /* obligatory */

13/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

From Source to Executable

Before it can be executed on a processor, the program needs to
pass four stages of processing

1 Preprocessing. This first pass prepossess include-files,
conditional compilation instructions and macros.

2 Compilation is the second pass. From output of the
preprocessor + source code, an assembler source code .s
is generated.

3 Assembly. In this third stage, an assembly listing with
offsets is generated and stored in an object file .o.

4 Linking. One or more object files or libraries are used to
produce a single executable by resolving references to
external symbols and assigning final addresses to
procedures/functions and variables. Code is relocated in
memory.

14/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

Preprocessing

happens before compilation
It replaces symbolic information (text) in the source code
with a content specified by the program using directives for
the pre-processor
Directives for the pre-processor are specified at the
beginning of a C file and are identified by the character #

Inclusion of a file: #include
Macro: #define
Conditional compilation: #ifdef...

Don’t be scared! It is just a complex Search and Replace

15/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

Include directive

#include PATH TO FILE

Instructs the pre-processor to insert the content of the file
specified by PATH TO FILE in the C program at that particular
line of code

Two ways to specify the file path:
#include <file> - The file is looked-up in the C
standard library path, e.g., /usr/include on Linux
#include "file" - The file is looked up in the current
directory

Example
#include <stdio.h>
#include "mylibrary.h"

16/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

Macro

#define NAME (<arg>) <expansion>

Replaces each occurrence of NAME with arguments arg with
the text/function in expansion

Example 1: Defining a constant
define MAX INT 32767

It is even possible to specify parametric text

Example 2: Stringify a macro-expanded constant
define BEER(z) "There are " str(z) " bottles
of beer on the shelf"
define str(z) #z

Hence, BEER(MAX INT) will be?

16/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

Macro

#define NAME (<arg>) <expansion>

Replaces each occurrence of NAME with arguments arg with
the text/function in expansion

Example 1: Defining a constant
define MAX INT 32767

It is even possible to specify parametric text

Example 2: Stringify a macro-expanded constant
define BEER(z) "There are " str(z) " bottles
of beer on the shelf"
define str(z) #z

Hence, BEER(MAX INT) will be?

16/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

Macro

#define NAME (<arg>) <expansion>

Replaces each occurrence of NAME with arguments arg with
the text/function in expansion

Example 1: Defining a constant
define MAX INT 32767

It is even possible to specify parametric text

Example 2: Stringify a macro-expanded constant
define BEER(z) "There are " str(z) " bottles
of beer on the shelf"
define str(z) #z

Hence, BEER(MAX INT) will be?

17/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

Macro (2)

inc lude <s t d i o . h>

def ine BEER(z) ” There are ” s t r (z) ” b o t t l e s o f beer on
the s h e l f ”

de f ine s t r (z) #z
de f ine MAX INT 32767

i n t main () {
p r i n t f (”%s \n ” ,BEER(MAX INT)) ;
r e t u r n 0 ;

}

Shell
gcc -o mymacro mymacro.c
$./mymacro
There are 32767 bottles of beer on the shelf

18/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

Macro (3)

Macros can also contain functions.

Example
#define div(x,y) x/y

Let us call this macro from the main-function by

i n t main () {
p r i n t f (” %.2 f \n ” , d i v (2 . 0 , 3 . 0)) ;
r e t u r n 0 ;

}

The result is

Shell
0.67

18/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

Macro (3)

Macros can also contain functions.

Example
#define div(x,y) x/y

Let us call this macro from the main-function by

i n t main () {
p r i n t f (” %.2 f \n ” , d i v (2 . 0 , 3 . 0)) ;
r e t u r n 0 ;

}

The result is

Shell
0.67

18/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

Macro (3)

Macros can also contain functions.

Example
#define div(x,y) x/y

Let us call this macro from the main-function by

i n t main () {
p r i n t f (” %.2 f \n ” , d i v (2 . 0 , 3 . 0)) ;
r e t u r n 0 ;

}

The result is

Shell
0.67

19/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

Conditional Compilation

#ifdef MACRO
TEXT1

#elif
TEXT2

#else
TEXT3

#endif

Check whether MACRO is defined: if
yes, it executes directives specified
in TEXT1; otherwise, it runs the
directives in TEXT2

For instance, it is useful to include a file only once (just the first
time when this include directive is executed)

There exist other conditional directives: #IF, #IFNDEF,...

20/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

Conditional Compilation (2)

Typical example for architecture dependent files.

#ifdef _WIN32 /* 32/64 bit, _WIN64 for 64bit only */
//do windows-specific stuff

#elif __linux__
//do LINUX-specific stuff

#elif __APPLE__
//do MAC-specific stuff

#else
//do something else

#endif

We have used predefined macros.

20/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

Conditional Compilation (2)

Typical example for architecture dependent files.

#ifdef _WIN32 /* 32/64 bit, _WIN64 for 64bit only */
//do windows-specific stuff

#elif __linux__
//do LINUX-specific stuff

#elif __APPLE__
//do MAC-specific stuff

#else
//do something else

#endif

We have used predefined macros.

21/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

gcc Preprocessor (1)

You can check the result of the pre-processor, and convince
yourself that is just a sophisticated search and replace tool.

helloworld
$ gcc -E helloworld.c

pre-processes helloworld.c and redirects the result to
standard-out.
To store the result in a file,

shell
gcc -E helloworld.c > helloworld.i

Note
cpp helloworld.c helloworld.i does the same.

22/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

gcc Preprocessor (2)

-> Live demonstration using ”helloworld.c”

The output is of the form

<linenum> <filename> <flags>.

These are called linemarkers, stating that the current line
originated in file filename at line linenum.
After the file name come zero or more flags.

’1’ start of a new file.
’2’ return to a file (after having included another file).
’3’ text comes from a system header file, warnings should be

suppressed (see Module 4).
’4’ treated as being wrapped in an implicit extern ”C” block

(see Module 4).

22/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

gcc Preprocessor (2)

-> Live demonstration using ”helloworld.c”

The output is of the form

<linenum> <filename> <flags>.

These are called linemarkers, stating that the current line
originated in file filename at line linenum.
After the file name come zero or more flags.

’1’ start of a new file.
’2’ return to a file (after having included another file).
’3’ text comes from a system header file, warnings should be

suppressed (see Module 4).
’4’ treated as being wrapped in an implicit extern ”C” block

(see Module 4).

23/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

gcc Compiler

The pre-processed file (without #include and #define)
is transformed into a assembly code.
The output is plain-text and (somewhat) human read-able
source code comprising direct machine instructions.
Can be used to optimize performance manually.

C compiler executes correctness checks
Syntax: e.g., termination of each statement with ”;”,
parenthesis balance, etc.
Coherence of data types: e.g., parameters of the functions,
...
Linear processing: a piece of code can only use variables
and functions defined before

23/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

gcc Compiler

The pre-processed file (without #include and #define)
is transformed into a assembly code.
The output is plain-text and (somewhat) human read-able
source code comprising direct machine instructions.
Can be used to optimize performance manually.
C compiler executes correctness checks

Syntax: e.g., termination of each statement with ”;”,
parenthesis balance, etc.
Coherence of data types: e.g., parameters of the functions,
...
Linear processing: a piece of code can only use variables
and functions defined before

24/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

gcc Compiler (2)

Note
The gcc produces AT&T assembly syntax by default. Intel
syntax can be produces, though, by option -masm=intel.

At this stage, the compiler generates an assembly code. For
our helloworld-example, we get

shell
gcc -S helloworld.c

generating the file helloworld.s. It has the form

25/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

gcc Compiler (3)
.file "helloworld.c"

.section .rodata ; read-only data, pre-init. constants
.LC0:

.string "Hello world!" ; init string

.text

.globl main ; declare externally visible

.type main, @function
main:
.LFB0:

.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
movl $.LC0, %edi
call puts ; put string
movl $0, %eax
popq %rbp
.cfi_def_cfa 7, 8
ret ; return from loop
.cfi_endproc

.LFE0:
.size main, .-main
.ident "GCC: (Ubuntu 5.4.0-6ubuntu1˜16.04.12) 5.4.0 20160609"
.section .note.GNU-stack,"",@progbits

26/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

gcc Assembler

The end result of the first three stages is an object code
that is understood by a computer at the lowest hardware
level.
The code is translated in corresponding machine language
(i.e. binary)
Extension is .o
syntax is gcc -c <source file> The source file can be
the source code (.c) or the assembly code (.s).
The underlying assembly code can be seen by the simple
utility
objdump -dS <object file>.o (Disassemble, display
Source code intermixed with disassembly)

27/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

gcc Linker

The link creates an executable file from
one or more object (.o) files,
standard or self-made static libraries (.a) [Lesson 4], and
dynamic libraries (.so) [Lesson 4].

Usage:

gcc <file>.o -o <exec>.out

runs the linker on the object file file.o and produces the
executable exec.out.

28/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

All together

Command

gcc <file>.c -o <exec>.out

starts the GCC pre-processing, the compilation and the linking
of code in file.c generating the executable exec.out.

gcc -Wall -pedantic <file>.c -o <exec>.out

-Wall -pedantic options to increase the number of
checks and displayed warning messages
Use gcc -v --help to get info on the available options
for GCC

28/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

All together

Command

gcc <file>.c -o <exec>.out

starts the GCC pre-processing, the compilation and the linking
of code in file.c generating the executable exec.out.

gcc -Wall -pedantic <file>.c -o <exec>.out

-Wall -pedantic options to increase the number of
checks and displayed warning messages
Use gcc -v --help to get info on the available options
for GCC

29/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

Typical compilation errors

file.c: In function ’main’:
file.c:9: warning: implicit declaration of
function ’max’
/tmp/ccp8kHh0.o: In function ‘main’:
file.c:(.text+0x26): undefined reference to ‘max’
collect2: error: ld returned 1 exit status

29/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

Typical compilation errors

file.c: In function ’main’:
file.c:9: warning: implicit declaration of
function ’max’
/tmp/ccp8kHh0.o: In function ‘main’:
file.c:(.text+0x26): undefined reference to ‘max’
collect2: error: ld returned 1 exit status

(Compiler) max function is unknown: assuming it will be defined later

29/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

Typical compilation errors

file.c: In function ’main’:
file.c:9: warning: implicit declaration of
function ’max’
/tmp/ccp8kHh0.o: In function ‘main’:
file.c:(.text+0x26): undefined reference to ‘max’
collect2: error: ld returned 1 exit status

(Linker) I searched all possible objects’ files, but I did not find max:
error!

30/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

Finally, let us execute the program ...

Once all compilation errors are gone ...

Segmentation fault (core dumped)

Possible reasons:
Overflow Numeric calculations not supported by type.
Divide by Zero Dividing a numeric value by zero.
Invalid Shift Shifting might lead to undefined result.
Memory Errors by accessing an array outside its bounds
or accessing heap-allocated memory after the memory has
been freed.
Uninitialized Data Access when data is used before the
memory has been initialized, ...

30/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

Finally, let us execute the program ...

Once all compilation errors are gone ...

Segmentation fault (core dumped)

Possible reasons:
Overflow Numeric calculations not supported by type.
Divide by Zero Dividing a numeric value by zero.
Invalid Shift Shifting might lead to undefined result.
Memory Errors by accessing an array outside its bounds
or accessing heap-allocated memory after the memory has
been freed.
Uninitialized Data Access when data is used before the
memory has been initialized, ...

30/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

Finally, let us execute the program ...

Once all compilation errors are gone ...

Segmentation fault (core dumped)

Possible reasons:
Overflow Numeric calculations not supported by type.
Divide by Zero Dividing a numeric value by zero.
Invalid Shift Shifting might lead to undefined result.
Memory Errors by accessing an array outside its bounds
or accessing heap-allocated memory after the memory has
been freed.
Uninitialized Data Access when data is used before the
memory has been initialized, ...

31/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

Comment your code (I)

Programming nicely means also writing code that has useful
comments and that is readable

//Single line comment

/* You can also have
comments on more lines */

ALWAYS comment your code (with useful explanations)!!!

32/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

Comment your code (II)

Why?
Describe how to use your code
Describe how the routine works
Explain difficult passages in your code

For whom?
Anybody that will modify your code....
....including you after weeks, months or years

32/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

Comment your code (II)

Why?
Describe how to use your code
Describe how the routine works
Explain difficult passages in your code

For whom?
Anybody that will modify your code....
....including you after weeks, months or years

33/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Structure
Preprocessor
Compiler
Assembler
Linker
Why your code is not compiling ?

Helloworld revisited

inc lude <s t d i o . h> / * Standard C l i b r a r y f o r IO * /

/ / main def ines the s t a r t i n g po in t f o r our program .
/ / vo id −> no inpu t parameters (i n t h i s case)
/ / i n t −> r e tu rns an i n t e g e r * /
i n t main (vo id) {

/ * P r i n t s to standard output (screen) the s t r i n g
passed as argument * /

p r i n t f (” He l lo World !\n ”) ;

/ * Value re turned from main to OS (0 −> OK) * /
r e t u r n 0 ;

}

34/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

GNU Debugger gdb

GNU Project debugger,
allows you to see what is going on ‘inside’ another program
while it executes – or what another program was doing
before it crashed.

GDB not only for C language but also supports Ada,
Assembly, C++, D, Fortran, Go, Objective-C, OpenCL,
Modula-2, Pascal, and Rust
http://sourceware.org/gdb/onlinedocs/gdb -
online manual

http://sourceware.org/gdb/onlinedocs/gdb

34/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

GNU Debugger gdb

GNU Project debugger,
allows you to see what is going on ‘inside’ another program
while it executes – or what another program was doing
before it crashed.
GDB not only for C language but also supports Ada,
Assembly, C++, D, Fortran, Go, Objective-C, OpenCL,
Modula-2, Pascal, and Rust

http://sourceware.org/gdb/onlinedocs/gdb -
online manual

http://sourceware.org/gdb/onlinedocs/gdb

34/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

GNU Debugger gdb

GNU Project debugger,
allows you to see what is going on ‘inside’ another program
while it executes – or what another program was doing
before it crashed.
GDB not only for C language but also supports Ada,
Assembly, C++, D, Fortran, Go, Objective-C, OpenCL,
Modula-2, Pascal, and Rust
http://sourceware.org/gdb/onlinedocs/gdb -
online manual

http://sourceware.org/gdb/onlinedocs/gdb

35/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Adding debugging information

Let us compile our program one more time, but this time we
add the -g option,

gcc -Wall -pedantic -g <file>.c -o <exec>.out

The option -g adds built-in debugging support.

Example
gcc -Wall -pedantic -g myfile.c -o myfile

35/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Adding debugging information

Let us compile our program one more time, but this time we
add the -g option,

gcc -Wall -pedantic -g <file>.c -o <exec>.out

The option -g adds built-in debugging support.

Example
gcc -Wall -pedantic -g myfile.c -o myfile

36/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Launching gdb

To start up gdb, type gdb or gdb myfile in the shell. The
resulting prompt looks like this:

(gdb)

If you started gdb without arguments, you need to load the
program now.

(gdb) file myfile

In gdb-mode, the command file loads an executable file to
execute under debugger control.

37/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

The Interactive Shell gdb

To recall history, use the arrow up/down keys
To auto-complete commands, use the TAB key
To get more information on any command or on a specific,
type

Hint
(gdb) help [comamand]
You can always ask GDB itself for information on its commands,
using the command help (abbreviated h).

38/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Running the program

To run the program in the debugger, type

(gdb) run <arg1> ... <argN>

If it is needed to supply any command-line arguments for
the execution of the program, simply include them after the
run command.
If the program contains only logical errors, no error
message will appear.
If the program produces a core dump, you (should) get
information on the line number in the source and
parameters of the function that caused the error.

39/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Core dump

Typical Core dump
Program received signal SIGSEGV, Segmentation
fault.
0x0000000000400545 in main () at myfile.c:10
10 temp[3]=’F’;

Strategy to investigate the cause of the crash:
Set breakpoints in your code, to stop the program;
Set watchpoints for a variable (in the current scope);
Set catchpoints for system calls;
Step through the code at a time, until you arrive upon the
error.

40/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Breakpoints (1)

Breakpoints can be used to stop your program at certain lines
of code. If the program reaches this breakpoint, you can poke
around in memory

Breakpoint in the current file
(gdb) break 9
Breakpoint 1 at 0x40053d: file myfile.c, line
9.

When more files are loaded, you must specify a filename as
well:

(gdb) break myfile.c:9

41/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Breakpoints (2)

Suppose you have the function call myfunc in the program,
determined by

i n t myfunc (i n t a , i n t b)

Then gdb can make a break point on that function by

(gdb) break myfunc
Breakpoint 2 at 0x4005f8: file myfile.c, line
14.

To break at a required condition in a particular thread and
condition, you can use

(gdb) break thread THREADNUM if CONDITION

Parallel processing using threads we will tackle later on.

41/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Breakpoints (2)

Suppose you have the function call myfunc in the program,
determined by

i n t myfunc (i n t a , i n t b)

Then gdb can make a break point on that function by

(gdb) break myfunc
Breakpoint 2 at 0x4005f8: file myfile.c, line
14.

To break at a required condition in a particular thread and
condition, you can use

(gdb) break thread THREADNUM if CONDITION

Parallel processing using threads we will tackle later on.

42/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Breakpoints (3)

Example
(gdb) break if i==2

will only interrupt the program if i is equal 2.

To get a list of breakpoints, use the command

(gdb) info breakpoints

Num Type Disp Enb Address What
1 breakpoint keep y 0x40053d in main at myfile.c:9
2 breakpoint keep y 0x4005f8 in myfunc at myfile.c:14

42/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Breakpoints (3)

Example
(gdb) break if i==2

will only interrupt the program if i is equal 2.

To get a list of breakpoints, use the command

(gdb) info breakpoints

Num Type Disp Enb Address What
1 breakpoint keep y 0x40053d in main at myfile.c:9
2 breakpoint keep y 0x4005f8 in myfunc at myfile.c:14

43/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Breakpoints (3)

When not needed anymore, any breakpoints can be disabled
by the number from above list of breakpoints.

(gdb) disable 1

Num Type Disp Enb Address What
1 breakpoint keep n 0x40053d in main at myfile.c:9
2 breakpoint keep y 0x4005f8 in myfunc at myfile.c:14

Breakpoints can also be ignored for a while to speed-up
iterations inside a loop.

(gdb) ignore 1 5

The ignore takes two arguments: the breakpoint number to
skip, and the number of times to skip it.

43/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Breakpoints (3)

When not needed anymore, any breakpoints can be disabled
by the number from above list of breakpoints.

(gdb) disable 1

Num Type Disp Enb Address What
1 breakpoint keep n 0x40053d in main at myfile.c:9
2 breakpoint keep y 0x4005f8 in myfunc at myfile.c:14

Breakpoints can also be ignored for a while to speed-up
iterations inside a loop.

(gdb) ignore 1 5

The ignore takes two arguments: the breakpoint number to
skip, and the number of times to skip it.

44/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

The debugging cycle (1)

Now, try to run your program again. It will stop at the first
breakpoint (or sooner due to a signal e.g. crash).
To proceed to the next breakpoint, type

(gdb) continue

To step-in a subroutine n single instruction (if there is line
number information for the function), type

(gdb) step [n]

Skipping n, the default is n=1.

44/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

The debugging cycle (1)

Now, try to run your program again. It will stop at the first
breakpoint (or sooner due to a signal e.g. crash).
To proceed to the next breakpoint, type

(gdb) continue

To step-in a subroutine n single instruction (if there is line
number information for the function), type

(gdb) step [n]

Skipping n, the default is n=1.

45/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

The debugging cycle (2)

To complete the current stack frame, which will normally
complete the current subroutine and return to the caller, type

(gdb) finish

The next command continues n source lines, and
steps-over subroutines:

(gdb) next [n]

Skipping n, the default is n=1, as well.

45/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

The debugging cycle (2)

To complete the current stack frame, which will normally
complete the current subroutine and return to the caller, type

(gdb) finish

The next command continues n source lines, and
steps-over subroutines:

(gdb) next [n]

Skipping n, the default is n=1, as well.

46/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Watchpoints (1)

So far, you have seen how to interrupt and continue the
program flow at fixed, specified source lines.
Watchpoints, in contrast, can be used to interrupt the
program, when the value of a variable changes

(gdb) watch <variable>

Whenever the value of variable is modified, gdb prints
the old and the new values.
Active watchpoints show up in the breakpoint list.

Note
The variable you want to watch must be in the current scope
(i.e. accessible). Otherwise, the watchpoint will be deleted!

47/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Watchpoints (2)

At any time you may print the current value of a variable in
memory with

(gdb) print <variable>

and to track the variable at each breakpoint by

(gdb) display <variable>

Finally, we want to point out the possibility to assign a value to
some variable on the fly with

(gdb) set $<variable>=<value>

47/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Watchpoints (2)

At any time you may print the current value of a variable in
memory with

(gdb) print <variable>

and to track the variable at each breakpoint by

(gdb) display <variable>

Finally, we want to point out the possibility to assign a value to
some variable on the fly with

(gdb) set $<variable>=<value>

47/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Watchpoints (2)

At any time you may print the current value of a variable in
memory with

(gdb) print <variable>

and to track the variable at each breakpoint by

(gdb) display <variable>

Finally, we want to point out the possibility to assign a value to
some variable on the fly with

(gdb) set $<variable>=<value>

48/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Catchpoints

The third class of watchpoints, catchpoints can be used to
stop the debugger at certain kinds of program events such as
systemcalls. An entire module will be dedicated to system calls
later on.

(gdb) catch syscall <name>

If no argument is specified, calls to and returns from all
system calls will be caught.
You may also specify the system call numerically.

Example for checking the connection with clients
(gdb) catch syscall socket
(gdb) catch syscall 41

49/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

valgrind

What to do when the amount of available memory becomes
less and less over time i.e., there is memory leak?

The program incorrectly manages memory allocations in a
way that memory is not released when it is no longer
needed.
To check whether your program has memory leaks, type

Valgrind
valgrind --tool-memcheck --leak-check=yes
./myexecutable

The valgrind core runs your program on a synthetic CPU.

50/50

Introduction
Programming in C

GNU debugger gdb
Detect memory leaks with valgrind

Quiz

What is the output of the following program?

inc lude <s t d i o . h>

i n t main ()
{

p r i n t f (” He l lo World ! %d \n ” , z) ;
r e t u r n 0 ;

}

1 Hello World! z;
2 Hello World! followed by some junk value
3 Compile time error
4 Hello World!

	Introduction
	Background
	My first program

	Programming in C
	Structure
	Preprocessor
	Compiler
	Assembler
	Linker
	Why your code is not compiling ?

	GNU debugger gdb
	Detect memory leaks with valgrind

