
1/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Languages for Informatics
11 – Multi-Threading

Department of Computer Science
University of Pisa

Largo B. Pontecorvo 3
56127 Pisa

2/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Topics

Linux programming environment (2h)
Introduction to C programming (12h)
Basic system programming in Linux (10h)

1 Signals and Error Handling
2 Low-Level System Calls in C
3 Multi-Tasking in C
4 Multi-Threading in C
5 Machine-To-Machine Communication in C

3/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Overview

1 Shared Memory

2 PThread Management
Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

3 Mutex Synchronization
Creating and Destroying Mutexes
Locking and Unlocking Mutexes

4 Semaphore Synchronization

5 Synchronization by Condition Variables

4/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

1 Shared Memory

2 PThread Management
Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

3 Mutex Synchronization
Creating and Destroying Mutexes
Locking and Unlocking Mutexes

4 Semaphore Synchronization

5 Synchronization by Condition Variables

5/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Processes and Threads

Suppose
sewing needles are processors
and thread in a programs as thread fiber.

If you had two needles but only one thread, one needle is
idle (waste of time)
if you split the thread into two, one needle can continue
sewing even if the other is busy with one button (blocking
I/O)

6/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Processes and Threads (cont’d)

A computer program becomes a process when it is loaded
from some store into the computer’s memory and begins
execution.

A process can be executed by a processor or a set of
processors.

A thread is a sequence of instructions within a program
that can be executed independently of other code.

threads contain only necessary information, such as a
stack, a copy of the registers, program counter and
thread specific data to allow them to be scheduled
individually.
Other data, like address space, is shared within the
process among all threads.

7/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Real Operating Systems

One or many address spaces
One or many threads per address space

Multiple threads may run under multiple processes and
communicate within the process.

8/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

An illustrative example

Suppose we want to multiply a M × N-dim. matrix with a
N-dim. vector,

[x]m =
N∑

n=1

[A]m,n[b]n

For, M = 40 and N = 2e6 on
Intel Celeron J4105 with 4 threads/core:
Execution time: 0.660 s

9/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

An illustrative example (cont’d)

Suppose we want to multiply a M × N-dim. matrix with a
N-dim. vector,

[x]m =
N∑

n=1

[A]m,n[b]n

For, M = 40 and N = 2e6 on
Intel Celeron J4105 with 4 threads/core:
Execution time: 0.183 s

10/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

POSIX Threads

Before the POSIX standard, each computer vendor would
implement its own thread library and the resulting
programs were not portable across different computer
systems.
POSIX Threads (PThreads) are a standard for Unix-like
operating systems.
A library that can be linked with C programs.
Specifies an application programming interface (API) for
multi-threaded programming

11/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

The PThread API

The original Pthreads API was defined in the ANSI/IEEE
POSIX 1003.1 - 1995 standard. The POSIX standard has
continued to evolve and undergo revisions, including the
Pthreads specification.
Subroutines comprising the Pthreads API:

1 Thread management: routines that create, detach, join
threads. They also include functions to set/query thread
attributes.

2 Mutexes: routines for synchronization, i.e. ”mutual
exclusion”, to create, destroy, lock and unlock mutexes.

3 Condition variables: routines for Communications
between threads that share a mutex.

12/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

1 Shared Memory

2 PThread Management
Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

3 Mutex Synchronization
Creating and Destroying Mutexes
Locking and Unlocking Mutexes

4 Semaphore Synchronization

5 Synchronization by Condition Variables

13/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

1 Shared Memory

2 PThread Management
Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

3 Mutex Synchronization
Creating and Destroying Mutexes
Locking and Unlocking Mutexes

4 Semaphore Synchronization

5 Synchronization by Condition Variables

14/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

Creating and Terminating Threads

Routines
pthread create (&thread,&attr,start routine,arg)
pthread exit (status)
pthread cancel (thread)
pthread attr init (attr)
pthread attr destroy (attr)

15/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

Creating Threads

Initially, your main() program comprises a single, default
thread.

More threads can be created by the programmer
pthread create() creates a new thread and makes it
executable

can be called any number of times from anywhere within
your code.
Once created, threads are peers, and may create other
threads.
The maximum number of threads that may be created by a
process is implementation dependent.

16/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

Creating Threads
Arguments

pthread create() arguments
thread: A unique identifier for the new thread returned by
the subroutine.
attr: An opaque attribute object to specify a thread
attributes object, or NULL for the default values.
start routine: the C function that the thread will
execute once it is created.
arg: A single argument that may be passed to
start routine, passed by reference as a pointer cast of
type void or NULL

17/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

Creating Threads
Attributes

Set attributes for a newly created thread through special
bit-variable of the type pthread attr t.
Define variable
pthread attr t attr;

See also
pthread attr init(&attr);

Default values available at
https://man7.org/linux/man-pages, Section 3.

https://man7.org/linux/man-pages

18/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

Creating Threads
Attributes - Default Values

pthread attr Default POSIX Comment
getscope PTHREAD SCOPE SYSTEM Thread will compete for resources

with all other threads in all processes.
getdetachstate PTHREAD CREATE JOINABLE Thread is joinable by other threads.
getstackaddr NULL (turned-off) Stack used by the thread is allocated

by the OS.
getstacksize PTHREAD STACK MIN Sets e.g. 8 MB (8192 kB) stack size

for a new thread on Linux 64-bit.
getschedparam 0 Max. priority of the thread.
getschedpolicy SCHED OTHER The scheduling policy is given by OS.
getinheritsched PTHREAD INHERIT SCHED Scheduling policy and parameters are

inherited from the creating thread.
getguardsize PAGESIZE (4096 B) Size of guard area for a thread’s cre-

ated stack equal system page size.

There is no need to change MOST of the default values.

19/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

Terminating Threads

void pthread exit() causes the current thread to exit
and free any thread-specific resources it is taking.
Thread can terminate in several ways :

The thread returns normally from its starting routine. Its
work is done.
The thread makes a call to the pthread exit subroutine -
whether its work is done or not.
The thread is canceled by another thread via the
pthread cancel routine.
If main() finishes first, without calling pthread exit
explicitly itself

20/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

Pthread Creation and Termination
Example

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM_THREADS 5

void *PrintHello(void *threadid) {
long tid;
tid = (long)threadid;
printf("Hello World! It’s me, thread #%ld!\ n", tid);
pthread exit(NULL);

}

int main(int argc, char *argv[]) {
pthread t threads[NUM THREADS];
int rc;
long t;
for(t=0;t<NUM THREADS;t++) {

printf("In main: creating thread %ld\ n", t);
rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);
if (rc) {

printf("ERROR; return code from pthread create() is %d\ n", rc);
exit(-1);
}
}

pthread exit(NULL); /* finally, just exit w/o return value */
}

21/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

Pthread Creation and Termination
Example (cont’d)

Compile and Run

bash˜$ gcc helloworld5.c -Wall -lpthread
bash˜$./a.out

Trace 1

In main: creating thread 0
In main: creating thread 1
In main: creating thread 2
In main: creating thread 3
Hello World! It’s me, thread #0!
In main: creating thread 4
Hello World! It’s me, thread #4!
Hello World! It’s me, thread #1!
Hello World! It’s me, thread #2!
Hello World! It’s me, thread #3!

Trace 2

In main: creating thread 0
In main: creating thread 1
Hello World! It’s me, thread #0!
In main: creating thread 2
In main: creating thread 3
Hello World! It’s me, thread #1!
In main: creating thread 4
Hello World! It’s me, thread #3!
Hello World! It’s me, thread #2!
Hello World! It’s me, thread #4!

~
~

22/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

1 Shared Memory

2 PThread Management
Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

3 Mutex Synchronization
Creating and Destroying Mutexes
Locking and Unlocking Mutexes

4 Semaphore Synchronization

5 Synchronization by Condition Variables

23/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

Passing Arguments to Threads

The pthread create() routine permits the programmer
to pass one argument to the thread start routine.
For cases where multiple arguments must be passed,
this limitation is easily overcome by creating a structure
containing the arguments, and then passing a pointer to
that structure in the pthread create() routine.
All arguments must be passed by reference and cast to
(void *).

Note
Make sure that all passed data is thread safe, i.e. can not be
changed by other threads.

24/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

Passing Arguments to Threads
Example

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM_THREADS 5

struct thread_data {
int thread_id;
char * message;
};

void *PrintHello(void *threadarg) {
int tid;
char *hello_msg;
struct thread_data *my_data;
my_data = (struct thread_data *) threadarg;
tid = my_data->thread_id;
hello_msg = my_data->message;
printf("Thread %d: %s \n", tid, hello_msg);
pthread_exit(NULL);

}

25/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

Passing Arguments to Threads
Example

int main(int argc, char *argv[]) {
char *messages[NUM_THREADS];
struct thread_data thread_data_array[NUM_THREADS]; //array of struct
messages[0] = "English: Hello World!";
...
pthread_t threads[NUM_THREADS];
int rc; long t;

for(t=0;t<NUM_THREADS;t++) {
printf("In main: creating thread %ld\n", t);
thread_data_array[t].thread_id = t;
thread_data_array[t].message = messages[t];
rc = pthread_create(&threads[t], NULL, PrintHello, (void *) &thread_data_array[t]);
if (rc) {

printf("ERROR; return code from pthread_create() is %d\n", rc);
exit(-1);
}
}

pthread_exit(NULL);
}

26/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

1 Shared Memory

2 PThread Management
Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

3 Mutex Synchronization
Creating and Destroying Mutexes
Locking and Unlocking Mutexes

4 Semaphore Synchronization

5 Synchronization by Condition Variables

27/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

Joining and Detaching Threads

Routines
inc lude <pthread . h>
i n t p t h r e a d j o i n (p th read t thread , vo id ∗∗ v a l u e p t r) ;
i n t p thread detach (p th read t thread) ;
i n t p t h r e a d a t t r s e t d e t a c h s t a t e (p t h r e a d a t t r t ∗ a t t r , i n t

de tachs ta te) ;
i n t p t h r e a d a t t r g e t d e t a c h s t a t e (const p t h r e a d a t t r t ∗ a t t r , i n t

∗detachs ta te) ;

Joining is one way to accomplish synchronization
between threads.
Two other synchronization methods, mutexes and
condition variables, come later.

28/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

Joining Threads

pthread create

Worker
Thread

pthread join

pthread exit

Worker
Thread

Master
Thread

pthread exit

pthread exit

DO WORK

DO WORK

...

The pthread join() subroutine blocks the calling thread
until the specified threadID thread terminates.
When the target is terminated by pthread exit(void

*rval ptr), the return value in the argument is
accessible by pthread join().

29/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

Joining Threads (cont’d)

POSIX standard specifies that threads should be created
as joinable.
Consider explicitly creating it as joinable. This provides
portability as not all implementations may create threads
as joinable by default.
Procedure:

1 Declare a pthread attribute variable of the
pthread attr t data type

2 Initialize the attribute variable with pthread attr init()
3 Set the attribute detached status with

pthread attr setdetachstate()
4 When done, free library resources used by the attribute with

pthread attr destroy()

30/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

Example
Matrix-Vector Multiplication revisited

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <sys/time.h>

/* Global variables */
int MAX_THREAD;
int M, N;
double** A;
double* b;
double* x;

void *matvec_mlt(void* junk) { //assign rows to threads
long my_junk = (long) junk;
int i, j;
int local_m = M/MAX_THREAD;
int my_first_row = my_junk*local_m;
int my_last_row = my_first_row + local_m - 1;

for (i = my_first_row; i <= my_last_row; i++) {
x[i] = 0.0;
for (j = 0; j < N; j++)

x[i] += A[i][j]*b[j];
}
pthread_exit(NULL);

}

31/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

Example
Matrix-Vector Multiplication revisited

int main(int argc, char* argv[]) {
if(argc != 4) {

fprintf(stderr, "Usage: %s <rows> <cols> <threads>\n", argv[0]); return 1;
}

M = atoi(argv[1]); N = atoi(argv[2]);
int i,j,rc; long t; //thread index
void *status; // return status obtained by thread join
pthread_t* thread_handles;
pthread_attr_t attr;
MAX_THREAD = atoi(argv[3]); //variable number of threads
thread_handles = malloc(MAX_THREAD*sizeof(pthread_t));
pthread_attr_init(&attr); //reset to default.
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
... /* allocate memory dynamically to A,b,x + assign values */
for (t = 0; t < MAX_THREAD; t++) {
rc = pthread_create(&thread_handles[t], &attr, matvec_mlt, (void *) t);
if (rc) perror("thread_create");
}
pthread_attr_destroy(&attr); /* Free attribute and wait for the other threads */
for (t = 0; t < MAX_THREAD; t++) {

rc = pthread_join(thread_handles[t], &status);
if (rc) perror("thread_join");
printf("Main: completed join with thread %ld having a status of %ld\n",t,(long)status);
}
... /* print result */
free(A); free(b); free(x);
free(thread_handles); pthread_exit(NULL); return 0;
}

32/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

Example
Matrix-Vector Multiplication revisited

shell

bash˜$ gcc mv mlt thread.c -Wall -lpthread
bash˜$./a.out 2 2 2
Main: completed join with t 0 having a status of 0
Main: completed join with t 1 having a status of 0
A[0][0] = 33.00
A[0][1] = 36.00
A[1][0] = 27.00
A[1][1] = 15.00
b[0] = 43.00
b[1] = 35.00
x[0] = 2679.00
x[1] = 1686.00

~
~

33/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

Example
Threads with return value

int ret[MAX_NUMBER_THREAD];

void *matvec_mlt(void* junk) {
...
ret[my_junk] = <some_value_to_be_returned> ;
pthread_exit(&ret[my_junk]);
return NULL;

}

int main(int argc, char* argv[]) {
int *ptr[MAX_THREAD];
...
for (t = 0; t < MAX_THREAD; t++)
pthread_join(thread_handles[t], (void**)&ptr[thread]);

for (t = 0; t < MAX_THREAD; t++)
printf("\n return value from thread = %d\n", *ptr[thread]);

}
...

34/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

Detaching Threads

The pthread detach() routine can be used to explicitly
detach a thread even though it was created as joinable.

pthread create

Worker
Thread

pthread exit

pthread exit

Worker
Thread

Master
Thread

pthread exit

pthread exit

DO WORK

DO WORK

...

35/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

Example
Demo

inc lude <pthread . h>
inc lude <s t d i o . h>
inc lude <un is td . h> / / s leep

void ∗ func (vo id ∗data) {
whi le (1) {

p r i n t f (” Speaking from the detached thread . . . \ n ”) ;
s leep (5) ; }

p t h r e a d e x i t (NULL) ; }

i n t main () {
p th read t handle ;
i f (! p th read crea te (& handle , NULL, func , NULL)) {

p r i n t f (” Thread create succ ess f u l l y ! ! ! \ n ”) ;
i f (! p thread detach (handle))

p r i n t f (” Thread detached succ ess f u l l y ! ! ! \ n ”) ;
}
p r i n t f (” Main thread dying . . . \ n ”) ;
p t h r e a d e x i t (NULL) ;
r e t u r n 0 ; }

36/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Destroying Mutexes
Locking and Unlocking Mutexes

1 Shared Memory

2 PThread Management
Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

3 Mutex Synchronization
Creating and Destroying Mutexes
Locking and Unlocking Mutexes

4 Semaphore Synchronization

5 Synchronization by Condition Variables

37/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Destroying Mutexes
Locking and Unlocking Mutexes

An illustrative example

inc lude <s t d i o . h>
inc lude <pthread . h>
def ine THREAD MAX 2
v o l a t i l e i n t counter = 0 ; / / read from memory every t ime

void ∗ t e s t i n g (vo id ∗param) {
i n t i ;
f o r (i = 0 ; i < 5; i ++) {

counter ++;
p r i n t f (” thread %d counter = %d\n ” , (i n t) param , counter) ;

}
p t h r e a d e x i t (NULL) ;

}

i n t main () {
i n t a r r [] = {1 ,2};
p t h read t thread [THREAD MAX] ;

f o r (i n t t =0; t<THREAD MAX; t ++)
p th read crea te (& thread [t] , 0 , t es t i ng , (vo id∗) a r r [t]) ;

f o r (i n t t =0; t<THREAD MAX; t ++)
p t h r e a d j o i n (thread [t] , 0) ;

p t h r e a d e x i t (NULL) ;
r e t u r n 0 ;

}

38/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Destroying Mutexes
Locking and Unlocking Mutexes

An illustrative example

Compile and run

thread 1 counter = 1
thread 1 counter = 3
thread 1 counter = 4
thread 2 counter = 2
thread 2 counter = 6
thread 2 counter = 7
thread 2 counter = 8
thread 2 counter = 9
thread 1 counter = 5
thread 1 counter = 10

What has occured ?

Any of the two jobs adds +1 to the same counter variable in memory.

The job order depends on the (random) scheduler.

Synchronization between the jobs is missing.

39/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Destroying Mutexes
Locking and Unlocking Mutexes

Mutex

Source: keil.com

Mutex is a variable being owned by one and only one
thread.
Principle: When one thread owns the mutex variable, any
other thread is blocked until this thread unlocks the
mutex variable.

40/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Destroying Mutexes
Locking and Unlocking Mutexes

Mutex

Source: keil.com

Note
A deadlock occurs when one or more threads are blocked
waiting for being unlocked that will never occur.

41/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Destroying Mutexes
Locking and Unlocking Mutexes

Mutex Variables

A typical sequence in the use of a mutex is as follows:
Create and initialize a mutex variable
Several threads attempt to lock the mutex
Only one succeeds and that thread owns the mutex
The owner thread performs some set of actions
The owner unlocks the mutex
Another thread acquires the mutex and repeats the
process
Finally the mutex is destroyed

Note

Make sure every thread that needs to use a mutex does so!

For example, if 4 threads are updating the same data, but only
one uses a mutex, the data can still be corrupted.

42/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Destroying Mutexes
Locking and Unlocking Mutexes

1 Shared Memory

2 PThread Management
Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

3 Mutex Synchronization
Creating and Destroying Mutexes
Locking and Unlocking Mutexes

4 Semaphore Synchronization

5 Synchronization by Condition Variables

43/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Destroying Mutexes
Locking and Unlocking Mutexes

Creating and Destroying Mutexes

Routines
inc lude <pthread . h>
i n t p t h r e a d m u t e x i n i t (p thread mutex t ∗ r e s t r i c t mutex , const

p t h r e a d m u t e x a t t r t ∗ r e s t r i c t a t t r) ;
i n t p thread mutex dest roy (p thread mutex t ∗mutex) ;
i n t p t h r e a d m u t e x a t t r i n i t (p t h r e a d m u t e x a t t r t ∗ a t t r) ;
i n t p th read mutexa t t r des t roy (p t h r e a d m u t e x a t t r t ∗ a t t r) ;

1 Mutex variables must be declared with type
pthread mutex t, and initialized:

Statically, when it is declared. For example:
pthread mutex t mymutex =
PTHREAD MUTEX INITIALIZER;
Dynamically, with the pthread mutex init() routine.
This method permits setting mutex object attributes, attr.

2 The mutex is initially unlocked.

44/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Destroying Mutexes
Locking and Unlocking Mutexes

Creating and Destroying Mutexes (cont’d)

The attr object establishes properties for the mutex
object (of type pthread mutexattr t)
pthread mutexattr settype:

PTHREAD MUTEX NORMAL: This type of mutex does not
detect deadlock. A thread attempting to relock this mutex
without first unlocking it will deadlock.
PTHREAD MUTEX ERRORCHECK: A thread attempting to
relock this mutex without first unlocking it will return with an
error.
PTHREAD MUTEX RECURSIVE: Multiple locks of this mutex
require the same number of unlocks to release the mutex
before another thread can acquire the mutex, to prevent
deadlock scenario.

45/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Destroying Mutexes
Locking and Unlocking Mutexes

Creating and Destroying Mutexes (cont’d)

Routines
inc lude <pthread . h>
i n t p t h r e a d m u t e x i n i t (p thread mutex t ∗ r e s t r i c t mutex , const

p t h r e a d m u t e x a t t r t ∗ r e s t r i c t a t t r) ;
i n t p thread mutex dest roy (p thread mutex t ∗mutex) ;
i n t p t h r e a d m u t e x a t t r i n i t (p t h r e a d m u t e x a t t r t ∗ a t t r) ;
i n t p th read mutexa t t r des t roy (p t h r e a d m u t e x a t t r t ∗ a t t r) ;

3 The pthread mutexattr init() and
pthread mutexattr destroy() routines are used to
create and destroy mutex attribute objects respectively.

4 pthread mutex destroy() should be used to free a
mutex object which is no longer needed.

46/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Destroying Mutexes
Locking and Unlocking Mutexes

1 Shared Memory

2 PThread Management
Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

3 Mutex Synchronization
Creating and Destroying Mutexes
Locking and Unlocking Mutexes

4 Semaphore Synchronization

5 Synchronization by Condition Variables

47/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Destroying Mutexes
Locking and Unlocking Mutexes

Locking and Unlocking Mutex

Routines
inc lude <pthread . h>
i n t p thread mutex lock (p thread mutex t ∗mutex) ;
i n t p th read mutex t r y lock (p thread mutex t ∗mutex) ;
i n t pthread mutex unlock (p thread mutex t ∗mutex) ;

Usage:

1 pthread mutex lock() used by a thread to acquire a
lock on the specified mutex variable according to above
policy by attr.

2 pthread mutex trylock() will attempt to lock a mutex.
If mutex already locked, routine returns EBUSY errno
code.

48/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Destroying Mutexes
Locking and Unlocking Mutexes

Locking and Unlocking Mutex

Routines
inc lude <pthread . h>
i n t p thread mutex lock (p thread mutex t ∗mutex) ;
i n t p th read mutex t r y lock (p thread mutex t ∗mutex) ;
i n t pthread mutex unlock (p thread mutex t ∗mutex) ;

Usage:
3 pthread mutex unlock() will unlock a mutex if called

by the owning thread. Returns a non-zero value
when the mutex was already unlocked
when the mutex is owned by another thread

49/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Destroying Mutexes
Locking and Unlocking Mutexes

The illustrative example revisted
#include <stdio.h>
#include <pthread.h>
volatile int counter = 0; //read from memory every time
#define THREAD_MAX 2
pthread_mutex_t myMutex;

void *testing(void *param) {
for(int i = 0; i < 5; i++) {
pthread_mutex_lock(&myMutex); // any thread arriving here will be locked
counter++; //increases counter
printf("thread %lu counter = %d\n", (intptr_t) param, counter);
pthread_mutex_unlock(&myMutex); //thread will be unlocked
}
pthread_exit(NULL);
return 0;

}
int main() {
int arr[] = 1,2;
pthread_t thread[THREAD_MAX];
pthread_mutex_init(&myMutex,0);
for (int t=0;t<THREAD_MAX;t++)

pthread_create(&thread[t], 0, testing, (void*) (intptr_t) arr[t]);
for (int t=0;t<THREAD_MAX;t++)

pthread_join(thread[t], 0);
pthread_exit(NULL);
pthread_mutex_destroy(&myMutex);
return 0;
}

50/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Creating and Destroying Mutexes
Locking and Unlocking Mutexes

The illustrative example revisited

Compile and run

bash˜$ gcc mutex.c -o mutex -Wall -lpthread
bash˜$./mutex
thread 1 counter = 1
thread 1 counter = 2
thread 1 counter = 3
thread 2 counter = 4
thread 2 counter = 5
thread 2 counter = 6
thread 2 counter = 7
thread 2 counter = 8
thread 1 counter = 9
thread 1 counter = 10

Result

The Mutex lock has synchronized the threads.

The counter is correctly updated among threads.

~
~

51/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

1 Shared Memory

2 PThread Management
Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

3 Mutex Synchronization
Creating and Destroying Mutexes
Locking and Unlocking Mutexes

4 Semaphore Synchronization

5 Synchronization by Condition Variables

52/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Semaphore Synchronization

POSIX semaphores allow processes and threads to
synchronize their actions.

Semaphore is a signaling mechanism
Mutex is a locking mechanism

A semaphore is a positive integer variable s.
Starting from s = N (number of free resources),
Dijkstra’s1wait P(s) and signal V (s) operations are:

wait: Decrements the value of semaphore variable by 1.
The process is blocked and may continue execution, when
the new value of the semaphore variable is negative and
positive, respectively.
signal: Increments the value of semaphore variable by 1.
If the new value is zero, waiting process is awakened.

1The semaphore concept was invented by Dutch computer scientist
Edsger Dijkstra in 1962/63

53/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Semaphore Synchronization (cont’d)

Note
OS guarantees that wait() and signal() are atomic
operations.

Only one P(s) or V (s) operation at a time can modify s
When loop in P(s) terminates, only that P(s) can
decrement s

54/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Unnamed Semaphores

Procedure:
Declare the semaphore global (outside of any funcion):
inc lude <semaphore . h>
sem t s ;

Initialize the unnamed semaphore in the main function:

inc lude <semaphore . h>
i n t s e m i n i t (sem t ∗s , i n t pshared , unsigned i n t

value) ;

s : address of the declared semaphore
pshared : should be 0 (not shared with threads in other processes)

value : the desired initial value of the semaphore
On success, the return value is 0.

55/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Unnamed Semaphores
Example

Thread 1 Thread 2 Data
sem wait(&s); — 0
— sem wait(&s); 0
count++; /* blocked */ 1
sem post(&s); /* blocked */ 1
/* blocked */ count++; 2
/* blocked */ sem post(&s); 2

When you can’t afford to wait for the lock, sem trywait()
locks immediately if s > 0 and sets EAGAIN error
otherwise.
Destroy the unnamed semaphore in the main function:

inc lude <semaphore . h>
i n t sem destroy (sem t ∗s) ;

Named Semaphores
can also be shared among processes. (Not covered)

56/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

The illustrative example revisted
#include <stdio.h>
#include <pthread.h>
#include <semaphore.h>
#include <unistd.h> //sleep
volatile int counter = 0;
int THREAD_MAX=2;
sem_t mySem;
void *sem_testing(void *param) {

int i;
for(i = 0; i < 5; i++) {
sem_wait(&mySem); //any thread may lock the semaphore
counter++; //does its job
printf("thread %lu counter = %d\n", (intptr_t) param, counter);
sem_post(&mySem); //and unlock the semaphore again
}
pthread_exit(NULL);
return NULL;
}
int main() {

int arr[] = 1,2;
pthread_t thread[THREAD_MAX];
sem_init(&mySem,0,1);
for (int t=0;t<THREAD_MAX;t++)
pthread_create(&thread[t], 0, sem_testing, (void*) (intptr_t) arr[t]);
for (int t=0;t<THREAD_MAX;t++)

pthread_join(thread[t], 0);
sem_destroy(&mySem);
pthread_exit(NULL);
return 0;
}

57/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

The illustrative example revisited

Compile and run

bash˜$ gcc semaphore.c -o semaphore -Wall -lpthread
bash˜$./semaphore
thread 1 counter = 1
thread 1 counter = 2
thread 1 counter = 3
thread 1 counter = 4
thread 2 counter = 5
thread 2 counter = 6
thread 2 counter = 7
thread 2 counter = 8
thread 2 counter = 9
thread 1 counter = 10

Result

POSIX Mutex allows the counter to be correctly updated among threads.

~
~

58/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

1 Shared Memory

2 PThread Management
Creating and Terminating Threads
Passing Arguments to Threads
Joining and Detaching Threads

3 Mutex Synchronization
Creating and Destroying Mutexes
Locking and Unlocking Mutexes

4 Semaphore Synchronization

5 Synchronization by Condition Variables

59/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Condition Variables

Condition variables2are like Mutexes ways for threads
synchronization.

Condition variables allow particular threads to be notified
once a particular data value occurs.
Mutex implements synchronization by controlling thread
access to data

A condition variable is always used in conjunction with a
mutex lock.
Birrel proposed the condition as condition variables
abstraction as well as three operations wait, signal and
broadcast.

2The concept of condition variables goes back to Birrel at Microsoft
Research in 2003

60/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Condition Variables (cont’d)

The designated variable type
pth read cond t aCond ;

To block the calling thread on the condition variable
aCond,
i n t p th read cond wai t (p th read cond t ∗ r e s t r i c t aCond

, p thread mutex t ∗ r e s t r i c t mutex) ;

The function takes two arguments, a condition variable and
a mutex.
The calling thread must have acquired the mutex lock.
Note that before blocking the mutex lock is internally
released. This allows other threads to also acquire the
mutex lock and wait on this condition variable.
When this function returns, the lock is still held by this
thread.

61/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Condition Variables (cont’d)

To unblock at least one of the threads that is blocked on
the specified condition variable aCond,
i n t p th read cond s igna l (p th read cond t ∗cond) ;

This function has no effect if no threads are blocked on the
condition variable aCond.
The unblocked thread re-acquires the associated mutex
lock before returning from pthread cond wait().

Moreover,
i n t p thread cond broadcast (p th read cond t ∗cond) ;

unblocks all the threads that are blocked on the specified
condition variable cond.

62/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Condition Variables (cont’d)

Initialization is pretty straight forward;
i n t p t h r e a d c o n d i n i t (p th read cond t ∗ r e s t r i c t cond ,

const p t h r e a d c o n d a t t r t ∗ r e s t r i c t a t t r) ;

This function initializes the condition variable aCond with
attributes specified by attr.
When attr is NULL, the default condition variable
attributes are used.

Just like threads, condition variables should be explicitly
freed,
i n t p thread cond dest roy (p th read cond t ∗cond) ;

63/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Ping-Pong Counter
Example

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
pthread_mutex_t mux[2];
pthread_cond_t cond[2];
volatile int count = 0;
#define THREAD_MAX 2
void *playerX(void *param) {

long id = (intptr_t) param;
if (id==0) { //THREAD 0

for (int i = 0; i < 5; i++) {
pthread_mutex_lock(&mux[0]);
pthread_cond_wait(&cond[0], &mux[0]);
count ++;
printf("thread %lu counter = %d\n", id, count);
pthread_cond_signal(&cond[1]);
pthread_mutex_unlock(&mux[0]); } }

else if(id==1) { //THREAD 1
for (int i = 0; i < 5; i++) {

pthread_mutex_lock(&mux[1]);
pthread_cond_wait(&cond[1], &mux[1]);
count ++;
printf("thread %lu counter = %d\n", id, count);
pthread_cond_signal(&cond[0]);
pthread_mutex_unlock(&mux[1]); } }

pthread_exit(NULL); return NULL; }

64/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Ping-Pong Counter
Example (cont’d)

int main() {
pthread_t thread[THREAD_MAX];

for (int t=0;t<THREAD_MAX;t++) {
pthread_mutex_init(&mux[0],0); //init mutex dynamically
pthread_cond_init(&cond[t],0); //init cond. dynamically
pthread_create(&thread[t], NULL, playerX, (void*) (intptr_t) t);
}

sleep(1); //give the first thread time, to get the lock
pthread_cond_signal(&cond[0]); // s=s+1

for (int t=0;t<THREAD_MAX;t++)
pthread_join(thread[t], 0);

for (int t=0;t<THREAD_MAX;t++) {
pthread_cond_destroy(&cond[t]);
pthread_mutex_destroy(&mux[t]);
}

pthread_exit(NULL);
return 0;

}

65/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Ping-Pong Counter
Example (cont’d)

Compile and run

bash˜$ gcc condition.c -o condition -Wall -lpthread
bash˜$./condition
thread 0 counter = 1
thread 1 counter = 2
thread 0 counter = 3
thread 1 counter = 4
thread 0 counter = 5
thread 1 counter = 6
thread 0 counter = 7
thread 1 counter = 8
thread 0 counter = 9
thread 1 counter = 10

Result

Condition Variables Signaling allows the counter to be correctly updated
among threads in a ping-pong fashion.

~
~

66/66

Shared Memory
PThread Management
Mutex Synchronization

Semaphore Synchronization
Synchronization by Condition Variables

Quiz

A thread life cycle consists of

1 2
2 3
3 4
4 5

states?

	Shared Memory
	PThread Management
	Creating and Terminating Threads
	Passing Arguments to Threads
	Joining and Detaching Threads

	Mutex Synchronization
	Creating and Destroying Mutexes
	Locking and Unlocking Mutexes

	Semaphore Synchronization
	Synchronization by Condition Variables

