
1/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Languages for Informatics
10 – Multi-Tasking

Department of Computer Science
University of Pisa

Largo B. Pontecorvo 3
56127 Pisa

2/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Topics

Linux programming environment (2h)
Introduction to C programming (12h)
Basic system programming in Linux (10h)

1 Signals and Error Handling
2 Low-Level System Calls in C
3 Multi-Tasking in C
4 Multi-Threading in C
5 Machine-To-Machine Communication in C

3/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Overview

1 Spawning child process

2 Synchronization among Processes
Wait
Zombies
Orphans

3 Start a program within a program

4 Daemons

5 Message Passing
Pipes
Pipe and Fork

4/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

1 Spawning child process

2 Synchronization among Processes
Wait
Zombies
Orphans

3 Start a program within a program

4 Daemons

5 Message Passing
Pipes
Pipe and Fork

5/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Creating New Processes?

Q1 Why we want that?
A1 to run multiple tasks (concurrently when cores are

available) independently of one another.
Web server receives request; creates additional instance
of itself to handle the request; original instance continues
listening for more requests. This will prevent client-side
code on one page from bringing your whole browser down.
Daemon runs in the background on a multi-tasking
operating system. This means that it is detached from a
terminal and runs continuously in a non-interactive mode
such as SMTP daemon for sending mail, inetd daemon for
network connection requests, sshd, ...

Q2 How to do that?
A2 A ”parent” process forks a ”child” process.

6/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Create new Process

fork() system call creates a new process, called child
process
Prototype

inc lude <sys / types . h>
inc lude <un is td . h>

p i d t f o r k (vo id) ;

Return value
On success, process ID (parent) or 0 (child)
On error, -1 and sets errno.

7/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

fork() and Process State

Immediately after fork(), parent and child have
identical but distinct process states

Contents of registers on the stack
Contents of memory in the address space
File descriptor tables
pending signals
etc.

Any process has a unique non-negative ID
Parent process and child processes have different process
IDs
pid t getpid(void) returns the process ID (PID) of the
calling process.
pid t getppid(void) returns the process ID (PID) of
the parent of the calling process.

8/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Example

inc lude<s t d i o . h>
inc lude<un is td . h>

i n t main (vo id) {
i n t p id ;
p r i n t f (” S t a r t \n ”) ;
p id = f o r k () ;
i f (p id == 0)

p r i n t f (” c h i l d : I rece ived %d ; my pid i s %d and t h a t
o f my parent i s %d\n ” , pid , ge tp id () , getpp id ()) ;

e lse
p r i n t f (” parent : I rece ived %d ; my pid i s %d and t h a t
o f my parent i s %d\n ” , pid , ge tp id () , getpp id ()) ;

r e t u r n 0 ;
}

9/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Example

shell
Start
parent: I received 11257; my pid is 11256 and
that of my parent is 11146
child: I received 0; my pid is 11257 and that
of my parent is 11256
bash˜$ echo $$
11146

Note
The current bash shell has PID 11146

~

10/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Example - revisited

shell
bash˜$./forkpid > out
bash˜$ more out
Start
parent: I received 11324; my pid is 11323 and
that of my parent is 11146
Start
child: I received 0; my pid is 11324 and that
of my parent is 11323

Note
Why does Start appear twice ???

~
~

11/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Example - revisited

Note
Why does Start appear twice ???

inc lude<s t d i o . h>
inc lude<un is td . h>

i n t main (vo id) {
i n t p id ;
p r i n t f (” S t a r t \n ”) ;
/∗ s tdou t i n the parent process conta ins ” S t a r t ” ∗ /
p id = f o r k () ;
i f (p id == 0)

/∗ s tdou t i n the parent process conta ins ” S t a r t ” ∗ /
/∗ s tdou t i n the c h i l d process conta ins ” S t a r t ” ∗ /

e lse
/∗ s tdou t i n the parent process conta ins ” S t a r t ” ∗ /

r e t u r n 0 ; /∗ With r e t u r n statement a l l b u f f e r s are f lushed and ”
S t a r t ” i s saved tw ice ∗ /

}

12/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Another Example

inc lude <sys / wa i t . h>
inc lude <un is td . h>
inc lude <s t d i o . h>

vo id ch a r a t a t i me (const char ∗ s t r) {
whi le (∗ s t r != ’ \0 ’) {
putchar (∗ s t r ++) ; / / Wr i te a char and increment the p o i n t e r
f f l u s h (s tdou t) ; / / P r i n t now
usleep (10000) ; / / 100 ms
}

}

i n t main () {
i f (f o r k () == 0) / / c h i l d

c ha r a t a t im e (” ∗∗∗∗∗∗∗∗∗∗∗∗∗ ”) ;
e lse { / / parent

c ha r a t a t im e (” | | | | | | | | | | | | | ”) ;
}

r e t u r n 0 ;
}

13/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

What is going wrong?
Example

Result
bash˜$ gcc myfork.c -Wall -o myfork
./myfork
|*|*|*|**||**||**||**|*|*|

Concurrency leads to unpredictable process execution
order.
Synchronization between the streams is needed.
The parent process should wait for a child process to finish
its computations at a particular execution point where it
needs the output of the child process.
Suppose, we wish to obtain

*************|||||||||||||

~

14/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Wait
Zombies
Orphans

1 Spawning child process

2 Synchronization among Processes
Wait
Zombies
Orphans

3 Start a program within a program

4 Daemons

5 Message Passing
Pipes
Pipe and Fork

15/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Wait
Zombies
Orphans

1 Spawning child process

2 Synchronization among Processes
Wait
Zombies
Orphans

3 Start a program within a program

4 Daemons

5 Message Passing
Pipes
Pipe and Fork

16/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Wait
Zombies
Orphans

Synchronization among Processes (1)

To control execution order, parent is blocked until its
child that has changed state
(suspended,stopped,continued)
Prototype for the system call wait():

inc lude <sys / types . h>
inc lude <sys / wa i t . h>
i n t wa i t (i n t ∗ s t a t u s p t r)

Suspends execution of the calling process until one of its
children terminates.

17/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Wait
Zombies
Orphans

Synchronization among Processes (2)

Prototype for the system call wait():

inc lude <sys / types . h>
inc lude <sys / wa i t . h>
i n t wa i t (i n t ∗ s t a t u s p t r)

If status is not NULL, wait() stores status information in
the int to which it points.

WIFEXITED(status) becomes true if the child terminated
normally by calling exit() or exit().
WEXITSTATUS(status) becomes the exit status of the
child.
WIFSIGNALED(status) becomes true if the child process
was terminated by a signal.
WTERMSIG(status) returns the number of the signal that
caused the child process to terminate.

18/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Wait
Zombies
Orphans

Synchronization among Processes (3)

Prototype for the system call wait():

inc lude <sys / types . h>
inc lude <sys / wa i t . h>
i n t wa i t (i n t ∗ s t a t u s p t r)

Return value
On success, returns pid of the terminated child process
On failure, -1

19/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Wait
Zombies
Orphans

Synchronization among Processes (4)

To wait for a particular child
Prototype for the system call waitpid():

i n t wa i t p i d (
p i d t pid , /∗ p id or proces group i d ∗ /
i n t ∗ s t a t u s p t r , /∗ s ta tus p o i n t e r or NULL ∗ /
i n t opt ions ,

)

Options: one ore more flags combinable by OR (—):
WSTOPPED - Wait for children that have been stopped by
delivery of a signal.
WCONTINUED - Wait for (previously stopped) children that
have been resumed by delivery of SIGCONT.
WNOHANG -when the status is not available, the fct. returns
0 rather than blocking.

20/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Wait
Zombies
Orphans

Synchronization among Processes (5)

Prototype for the system call waitpid():

i n t wa i t p i d (
p i d t pid , /∗ p id or proces group i d ∗ /
i n t ∗ s t a t u s p t r , /∗ s ta tus p o i n t e r or NULL ∗ /
i n t opt ions ,

)

pid. The value can be
< −1 wait for any child process whose process group ID is equal

to the absolute value of pid.
−1 wait for any child process.

0 wait for any child process in the process group ID.
> 0 wait for the child with process ID equal pid

Note
waitpid(-1, &status, 0) = wait(&status);.

21/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Wait
Zombies
Orphans

Synchronization among Processes (6)

Prototype for the system call waitpid():

i n t wa i t p i d (
p i d t pid , /∗ p id or proces group i d ∗ /
i n t ∗ s t a t u s p t r , /∗ s ta tus p o i n t e r or NULL ∗ /
i n t opt ions ,

)

Return value

On success, returns pid of the terminated child process

On failure, -1

22/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Wait
Zombies
Orphans

What is going wrong?
Example (cont’d)

inc lude <sys / wa i t . h>
inc lude <un is td . h>
inc lude <s t d i o . h>

vo id ch a r a t a t i me (const char ∗ s t r) {
whi le (∗ s t r != ’ \0 ’) {
putchar (∗ s t r ++) ; / / Wr i te a char and increment the p o i n t e r
f f l u s h (s tdou t) ; / / P r i n t now
usleep (10000) ; / / 100 ms
}

}

i n t main () {
i f (f o r k () == 0) / / c h i l d

c ha r a t a t im e (” ∗∗∗∗∗∗∗∗∗∗∗∗∗ ”) ;
e lse { wai t (NULL) ; / / synchronize w i th c h i l d

c ha r a t a t im e (” | | | | | | | | | | | | | ”) ;
}

r e t u r n 0 ;
}

23/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Wait
Zombies
Orphans

Example
Status flags

inc lude <sys / types . h>
inc lude <sys / wa i t . h>
inc lude <un is td . h>
inc lude <s t d i o . h>
inc lude <s t d l i b . h>
inc lude <t ime . h>

i n t main () {
p i d t p id ;
t i m e t t ;
i n t s ta tus ;

i f ((p id = f o r k ()) < 0) {
pe r ro r (” f o r k () e r r o r ”) ; e x i t (EXIT FAILURE) ; }

else i f (p id == 0) { /∗ c h i l d ∗ /
s leep (5) ; / / s leeps 5sec and e x i t s
e x i t (1) ;

}

24/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Wait
Zombies
Orphans

Example (cont’d)
Status flags

else do { /∗ parent ∗ /
i f ((p id = wa i t p i d (pid , &sta tus , WNOHANG)) == −1)

pe r ro r (” wa i t () e r r o r ”) ; /∗ checls c h i l d w i thou t c a l l e r
being suspended ∗ /
e lse i f (p id == 0) { /∗ c h i l d p r i n t s to s tdou t 1 / sec ∗ /

t ime (& t) ;
p r i n t f (” c h i l d i s s t i l l running a t %s ” , ct ime (& t)) ;
s leep (1) ;

}
else {

else { /∗ meanwhile , parent observes s ta tus ∗ /
p r i n t f (” c h i l d ex i t ed wi th s ta tus o f %d\n ” , WEXITSTATUS(

s ta tus)) ;
e lse puts (” c h i l d d id not e x i t s ucces s fu l l y ”) ;

}
} whi le (p id == 0) ; /∗ as long as c h i l d e x i s t ∗ /

r e t u r n 0 ;
}

25/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Wait
Zombies
Orphans

Example (cont’d)
Status flags

Shell
child is still running at Thu Nov 19 12:34:03 2020
child is still running at Thu Nov 19 12:34:04 2020
child is still running at Thu Nov 19 12:34:05 2020
child is still running at Thu Nov 19 12:34:06 2020
child is still running at Thu Nov 19 12:34:07 2020
child exited with status of 1

26/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Wait
Zombies
Orphans

1 Spawning child process

2 Synchronization among Processes
Wait
Zombies
Orphans

3 Start a program within a program

4 Daemons

5 Message Passing
Pipes
Pipe and Fork

27/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Wait
Zombies
Orphans

Zombie Processes

Suppose a process that forks a child process.
The Process Table in the kernel memory records
accounting and scheduling information of the child.
The child process completes its work and exits.
Note: Info on the child keeps in the Process Table until the
parent process reads its exit code (”reaping” the child).
In the period between exit of child and reaping, the child
process is called a Zombie

28/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Wait
Zombies
Orphans

Example
Zombie

inc lude <s t d l i b . h>
inc lude <sys / types . h>
inc lude <un is td . h>
inc lude <s t d i o . h>
i n t main () {

p i d t p id ;
p id = f o r k () ;
i f (p id > 0) {
p r i n t f (” parent %d : Gonna sleep\n ” , ge tp id ()) ;
s leep (60) ; /∗ Parent goes to sleep ∗ /
}
else { /∗ Chi ld e x i t s i n the meantime ∗ /
p r i n t f (” c h i l d %d : E x i t i n g \n ” , ge tp id ()) ;
e x i t (0) ;
}

r e t u r n 0 ;
}

29/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Wait
Zombies
Orphans

Example (cont’d)
Zombie

Shell 1
bash˜$ gcc zombie.c -Wall -o zombie
bash˜$./zombie parent 17407: Gonna sleep
child 17408: Exiting

Shell 2
bash˜$ ps axo stat,ppid,pid,comm | grep -w
defunct
Z+ 17407 17408 zombie <defunct>

~
~
~

30/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Wait
Zombies
Orphans

Reaping Zombies (1)

Note
Zombies take no memory or CPU. However, the process table
is a finite resource, and excessive zombies can fill it so that no
more processes can launch.

Possible Solutions
1 Use wait(NULL) system call in the parent process.
2 Ignore SIGCHLD signal by the child process.
3 Implement a signal handler.

31/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Wait
Zombies
Orphans

Reaping Zombies (2)

1 Use wait(NULL) system call in the parent process.
Parent wait for the child to complete and it will reap the exit
status of the child.
The execution order has been serialized.

2 Ignore SIGCHLD signal by the kernel due to child process.
When a child is terminated, a corresponding SIGCHLD
signal is delivered to the parent.
By ignoring the SIGCHLD signal, the child process entry is
deleted from the process table.
The parent process continues working in parallel.

3 Use a signal handler.
The signal handler calls wait(NULL) system call within it.
On receipt of SIGCHLD, the corresponding handler is
activated,notifying the parent almost immediately, and the
child entry in the process table is cleared.

32/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Wait
Zombies
Orphans

Example (Demo)
Prevent Zombie by signal handler

inc lude <sys / wa i t . h>
inc lude <un is td . h> / / s leep
inc lude <s t d i o . h>
inc lude <s t d l i b . h>
inc lude <s i g n a l . h>
inc lude <errno . h>

vo id hand le s igch ld (i n t s ig) {
i n t saved errno = errno ; / / save errno
p i d t p id ;
i n t s t a t ;
p id = wa i t (& s t a t) ; / / wa i t f o r c h i l d and

cleanup process tab le
p r i n t f (” c h i l d %d : terminated \n ” , p id) ;
er rno = saved errno ; / / r es to re errno

}

33/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Wait
Zombies
Orphans

Example (Demo)
Prevent Zombie by signal handler

i n t main () {
s t r u c t s i g a c t i o n sAct ion ; / / r e g i s t e r the handler
sAct ion . sa handler = &hand le s igch ld ;
s igemptyset (& sAct ion . sa mask) ;
sAct ion . s a f l a g s = SA RESTART | SA NOCLDSTOP;
i f (s i g a c t i o n (SIGCHLD, &sAct ion , 0) == −1) {

pe r ro r (0) ; e x i t (1) ;
}
i n t iRe t ; p i d t p id ; p id = f o r k () ;
i f (p id > 0) {

iRe t = s i g a c t i o n (SIGCHLD, &sAct ion , NULL) ; / / catch SIGCHLD
∗ /

i f (iRe t != 0) { /∗ Something went wrong ∗ /
e x i t (EXIT FAILURE) ;

} /∗ parent does sthg . ∗ /
}
else { e x i t (0) ; / / c h i l d leaves ∗ /
}

r e t u r n 0 ;
}

34/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Wait
Zombies
Orphans

1 Spawning child process

2 Synchronization among Processes
Wait
Zombies
Orphans

3 Start a program within a program

4 Daemons

5 Message Passing
Pipes
Pipe and Fork

35/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Wait
Zombies
Orphans

Orphans

A process becomes orphan when its parent process does
no more exist

either finished or terminated without waiting for its child
process to terminate.

Orphaned children are immediately ”adopted” by the first
process init.

Hence, no zombies.

Init reaps the orphan by wait()ing on the child when it
receives SIGCHLD.

36/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Wait
Zombies
Orphans

Example
i n t main () {

i n t p id = f o r k () ;
i f (p id > 0)
{
p r i n t f (” Parent : %d \n ” , ge tp id ()) ;
s leep (1) ;
p r i n t f (” Parent i s leav ing \n ”) ;
e x i t (0) ;
}

else i f (p id == 0)
{
p r i n t f (” \nChi ld : %d \n ” , ge tp id ()) ;
p r i n t f (” Parent : %d\n\n ” , getpp id ()) ;

s leep (10) ; / / parent i s su re l y gone

p r i n t f (” \nChi ld : %d \n ” , ge tp id ()) ;
p r i n t f (” Parent : %d\n ” , getpp id ()) ;
}

r e t u r n 0 ;
}

37/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Wait
Zombies
Orphans

Example (cont’d)

Result
bash˜$ gcc orphan.c -Wall -o orphan
bash˜$./orphan
Parent: 21740

Child: 21741
Parent: 21740

Parent is leaving
bash˜$
Child: 21741
Parent: 1

~
~
~

38/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

1 Spawning child process

2 Synchronization among Processes
Wait
Zombies
Orphans

3 Start a program within a program

4 Daemons

5 Message Passing
Pipes
Pipe and Fork

39/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Run a Separate Program (1)

We have seen that forked process simply do different
work concurrently.
Approach can be used to launch completely separate
program while

maintaining control over the program
being able to send data to the program through stdin
capturing the output of the program through its stdout.

The exec() family of functions replace the current process
image with a new one coming from loading a new program

all code (text) and data in the current process is replaced
with the executable of the new program
all open file descriptors remains open.

40/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Run a Separate Program (2)

Prototypes
inc lude <un is td . h>
i n t exec l (const char ∗path , const char ∗arg , (char∗) NULL) ;
i n t execlp (const char ∗ f i l e , const char ∗arg , (char∗) NULL) ;
i n t execle (const char ∗path , const char ∗arg , (char ∗) NULL, char ∗const envp []) ;
i n t execv (const char ∗path , char ∗const argv []) ;
i n t execvp (const char ∗ f i l e , char ∗const argv []) ;
i n t execvpe (const char ∗ f i l e , char ∗const argv [] , char ∗const envp []) ;

All the functions take the executable path as first argument
l functions accept variable amount of null-terminated char *
v functions accept the executable path and an array of

null-terminated char *
Both forward arguments to the executable (arg0 must be
set to executable name)

p functions access PATH environment variable to find exec.
e functions accept also an array of null-terminated char *

storing environment variables

41/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Example - Demo

inc lude <s t d i o . h>
inc lude <s t d l i b . h>
inc lude <sys / wa i t . h>
inc lude <un is td . h>
i n t spawn (const char ∗ program , char ∗∗ a r g l i s t) {

p i d t c h i l d p i d = f o r k () ;
i f (c h i l d p i d != 0)

r e t u r n c h i l d p i d ; /∗ This i s the parent process . ∗ /
e lse {

execvp (program , a r g l i s t) ; /∗ exec . prog . i n c h i l d proc . ∗ /
pe r ro r (” spawn ”) ; e x i t (1) ; }

}
i n t main () { / / open xterm , p r i n t sthg . , sleep , e x i t

char ∗ a r g l i s t [] = { ” / usr / b in / xterm ” , ”−fn ” , ” 10x20 ” , ”−e ” , ”
cowsay Big b ro the r i s watching you ; s leep 3; e x i t ” , NULL } ;

spawn (” / usr / b in / xterm ” , a r g l i s t) ;
wa i t (NULL) ; / / wa i t u n t i l c h i l d has f i n i s h e d
p r i n t f (” Thanks f o r t e l l i n g me. Bye \ n ”) ;
r e t u r n 0 ; / / parent e x i t s

}

42/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

The system Function

Common combination of operations
fork() to create a new child process
execvp() to execute new program in child process
wait() in the parent process for the child to complete

Single call that combines all three int system(const
char *cmd);
Example - revisited

inc lude <s t d i o . h>
inc lude <s t d l i b . h> / / system
i n t main () {

system (” / usr / b in / xterm −fn 10x20 −e ’ cowsay Big
b ro the r i s watching you ; s leep 3; e x i t ’ ”) ;

p r i n t f (” Thanks f o r t e l l i n g me. Bye \ n ”) ;
r e t u r n 0 ;

}

43/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

1 Spawning child process

2 Synchronization among Processes
Wait
Zombies
Orphans

3 Start a program within a program

4 Daemons

5 Message Passing
Pipes
Pipe and Fork

44/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Daemons

A daemon1is a program that continuously runs as a
background process rather than being under the direct
control of an interactive user.
Does not belong to a TTY.
For handling periodic service requests that a computer
system expects to receive.
Traditionally, the process names of a daemon end with the
letter d (crond,inetd,sshd,...).

1from demon, a spiritual being that constantly works in the background.

45/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Prolog: Creating a new UNIX session (1)

setsid creates a session and sets the process group ID
Prototype

inc lude <un is td . h>
p i d t s e t s i d (vo id) ;

Return Value
On success, the session ID of the calling process.
On error, -1 is returned, and errno is set.

46/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Prolog: Creating a new UNIX session (2)

Prototype

inc lude <un is td . h>
p i d t s e t s i d (vo id) ;

Description:
The calling process is the leader of the new session, the
process group leader of the new process group, and has no
controlling terminal.
The process group ID and session ID of the calling process
are set to the PID of the calling process.
The calling process will be the only process in this new
process group and in this new session.

Note
The calling process is now detached from its TTY. It will not be
killed by closing the terminal without the comand exit.

47/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Spawning Daemons

1 fork the parent process and let it terminate. The child
process now runs in the background.

2 setsid - Create a new session.
3 catch signals - Ignore and/or handle signals.
4 fork again and let the parent process terminate. The child

process is an orphan and the OS cleans up after
termination of the grandchild (as the parent process is
already dead), to prevent resource consumption.

5 chdir - Change the working directory of the daemon.
6 umask - Change the file mode mask according to the

needs of the daemon.
7 close - Close all open file descriptors that may be

inherited from the parent process.

48/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Daemon skeleton

s t a t i c vo id mydaemon () {
p i d t p id ;
p id = f o r k () ; / / f o r k parent
i f (p id < 0)

e x i t (EXIT FAILURE) ;
e l s e i f (p id > 0)

e x i t (EXIT SUCCESS) ; / / parent te rmina tes
umask (0) ; / / no p r i v i l e g e s
i f (s e t s i d () < 0) /∗ c h i l d becomes session leader ∗ /

e x i t (EXIT FAILURE) ;
/∗ Catch , ignore or handle s igna l s ∗ /
s i g n a l (SIGCHLD, SIG IGN) ;
s i g n a l (SIGHUP, SIG IGN) ;
p id = f o r k () ; / / f o r k again , to prevent orphans
i f (p id < 0)

e x i t (EXIT FAILURE) ;
e lse i f (p id > 0) e x i t (EXIT SUCCESS) ; /∗ parent e x i t s ∗ /
chd i r (” / ”) ;
f o r (i n t x = sysconf (SC OPEN MAX) ; x>=0; x−−) { c lose (x) ;}

}

49/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Daemon skeleton
DEMO

i n t main ()
{

skeleton daemon () ;

/∗ Open the log f i l e ∗ /
openlog (” f i rs tdaemon ” , LOG PID , LOG DAEMON) ;

char command [] = ” / usr / b in / xterm −fn 10x20 −e ’ echo h i ! I
am your daemon ; sleep 3; e x i t ’ ” ;
wh i le (1) {

sys log (LOG NOTICE, ”My f i r s t daemon . ”) ;
system (command) ;
s leep (600) ; / / s leep 10 minutes

}

sys log (LOG NOTICE, ” F i r s t daemon terminated . ”) ;
c lose log () ;
r e t u r n EXIT SUCCESS ;

}

50/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Pipes
Pipe and Fork

1 Spawning child process

2 Synchronization among Processes
Wait
Zombies
Orphans

3 Start a program within a program

4 Daemons

5 Message Passing
Pipes
Pipe and Fork

51/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Pipes
Pipe and Fork

1 Spawning child process

2 Synchronization among Processes
Wait
Zombies
Orphans

3 Start a program within a program

4 Daemons

5 Message Passing
Pipes
Pipe and Fork

52/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Pipes
Pipe and Fork

The pipe() System Call (1)

Unnamed pipes
A producer writes and a consumer reads in a FIFO fashion

Process

write()

read()

In Linux, the OS guarantees that only one process at a
time can access the pipe.
Data written by the producer (write()) are stored into a
buffer by the OS (Ubuntu 64-bit: 16 pages, each 4096
Bytes) until a consumer (read()) reads it.

53/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Pipes
Pipe and Fork

The pipe() System Call (2)

Prototype

inc lude <un is td . h>
i n t p ipe (i n t p ipe fd [2]) ;

Parameters
pipefd[0] : the FD for the read end of pipe.
pipefd[1] : the FD for the write end of pipe.

Return value
0 : on success.

-1 : on error; errno is set appropriately, pipefd is left
unchanged.

54/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Pipes
Pipe and Fork

pipe() Example

inc lude <s t d i o . h>
inc lude <un is td . h>
inc lude <s t d l i b . h>
def ine MSGSIZE 16
char∗ msg = ” he l lo , wor ld ! ” ;

i n t main () {
char i nbu f [MSGSIZE] ;
i n t p [2] ;
i f (p ipe (p) < 0)

pe r ro r (” p ipe ”) ;

w r i t e (p [1] , msg , MSGSIZE) ; /∗ w r i t e pipe ∗ /
p r i n t f (” Message sent : %s\n ” , msg) ;

read (p [0] , inbuf , MSGSIZE) ; /∗ read pipe ∗ /
p r i n t f (” Message rece ived : %s\n ” , i nbu f) ;
r e t u r n 0 ;

}

55/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Pipes
Pipe and Fork

pipe() Example (cont’d)

Result
Message sent: hello, world!
Message received: hello, world!

56/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Pipes
Pipe and Fork

1 Spawning child process

2 Synchronization among Processes
Wait
Zombies
Orphans

3 Start a program within a program

4 Daemons

5 Message Passing
Pipes
Pipe and Fork

57/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Pipes
Pipe and Fork

Pipe based Message Passing

When we use fork in any process, the FDs remain open
across child process and also parent process.
When we call fork after creating a pipe, the parent and
child can communicate via the pipe.

Child Process

write() read()

Parent Process

write() read()

Pipe

58/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Pipes
Pipe and Fork

Two-way Communication using Pipes

Algorithm

1 Create pipe1 for the parent process to write and the child
process to read.

2 Create pipe2 for the child process to write and the parent
process to read.

3 Close the unwanted ends of the pipe from the parent and
child side.

4 Parent process to write a message and child process to
read and display on the screen.

5 Child process to write a message and parent process
to read and display on the screen.

59/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Pipes
Pipe and Fork

Two-way Communication using Pipes
Example

inc lude<s t d i o . h>
inc lude<un is td . h>

i n t main () {
i n t p ipefds1 [2] , p ipefds2 [2] ;
i n t s ta t1 , s t a t2 ;
i n t p id ;
char pipe1msg [] = ” Hi baby ” ;
char pipe2msg [] = ” Hi dad ” ;
char readmessage [2 0] ;
s t a t 1 = pipe (p ipefds1) ;

i f (s t a t 1 == −1) {
pe r ro r (” Pipe 1 ”) ;
}

s ta t2 = pipe (p ipefds2) ;

i f (s t a t 2 == −1) {
pe r ro r (” Pipe 2 ”) ;

}
p id = f o r k () ;

60/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Pipes
Pipe and Fork

Two-way Communication using Pipes
Example (cont’d)

i f (p id != 0) / / Parent process
{

c lose (p ipefds1 [0]) ; / / Close the unwanted pipe1 read s ide
c lose (p ipefds2 [1]) ; / / Close the unwanted pipe2 w r i t e s ide
p r i n t f (” In Parent : Wr i t i ng to pipe 1 − %s\n ” , pipe1msg) ;
w r i t e (p ipefds1 [1] , pipe1msg , s i z e o f (pipe1msg)) ;
read (p ipefds2 [0] , readmessage , s i z e o f (readmessage)) ;
p r i n t f (” In Parent : Reading from pipe 2 − %s\n ” ,

readmessage) ;
} else { / / c h i l d process

c lose (p ipefds1 [1]) ; / / Close the unwanted pipe1 w r i t e s ide
c lose (p ipefds2 [0]) ; / / Close the unwanted pipe2 read s ide
read (p ipefds1 [0] , readmessage , s i z e o f (readmessage)) ;
p r i n t f (” In Ch i ld : Reading from pipe 1 − %s\n ” , readmessage

) ;
p r i n t f (” In Ch i ld : Wr i t i ng to pipe 2 − %s\n ” , pipe2msg) ;
w r i t e (p ipefds2 [1] , pipe2msg , s i z e o f (pipe2msg)) ;

}
r e t u r n 0 ;

}

61/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Pipes
Pipe and Fork

Two-way Communication using Pipes
Example (cont’d)

Result
bash˜$ gcc pipeandfork.c -Wall -o pipeandfork
bash˜$./pipeandfork
In Parent: Writing to pipe 1 - Hi baby
In Child: Reading from pipe 1 - Hi baby
In Child: Writing to pipe 2 - Hi dad
In Parent: Reading from pipe 2 - Hi dad

~
~

62/62

Spawning child process
Synchronization among Processes

Start a program within a program
Daemons

Message Passing

Pipes
Pipe and Fork

Quiz

inc lude <s t d i o . h>
inc lude <un is td . h>
i n t main (i n t argc , char ∗argv []) {

p r i n t f (”A\n ”) ;
f o r k () ;
p r i n t f (”B\n ”) ;
f o r k () ;
p r i n t f (”C\n ”) ;
r e t u r n 0 ;

}

How many A, B and C will be printed?
1 A: 1 time, B: 2 times, C: 2 times
2 A: 1 time, B: 2 times, C: 4 times
3 A: 1 time, B: 1 times, C: 2 times
4 A: 1 time, B: 2 times, C: 3 times

	Spawning child process
	Synchronization among Processes
	Wait
	Zombies
	Orphans

	Start a program within a program
	Daemons
	Message Passing
	Pipes
	Pipe and Fork

