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The electrical system, monopolistic version

self-producers

state-owned
monopolistic

sales
producer

Y
#

production i AN
g

distribution

coordination

A. Frangioni (DI — UniPi) Solving Unit-Commitment problems ROADEF 2008 3/77



The electrical system, free-market version
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Why the electrical system is complex

Two simple reasons:

@ electricity cannot be stored = must be produced exactly when needed

_I_
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Why the electrical system is complex

Two simple reasons:

@ electricity cannot be stored = must be produced exactly when needed

_I_

@ electricity does not go where you say, it goes where Kirchoff says

4

The electrical system must be
constantly managed in real time to satisfy the demand while
respecting the complex technical constraints of
generating units and of the distribution network
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Generating units

o Generating units (circa 2004):

type no. net installed power (MW) avg. peak
producers | self-producers | total
hydro 1981 20.177 337 20.514 13.450
thermal 1818 50.069 4.545 54.614 34.750
geothermal 37 666 666 550
solar+wind | 99410 783 783 200
total 3945 71.695 4.881 76.576 48.950
A large variety:
o thermal units: different technologies (turbogas, combined cycle, ...)
and sizes (10 — 500+ MW)
e hydro units: different types (flowing water, reservoirs, cascaeds, ...)

and sizes (1 — 200+ MW)

o self-producers, co-generation (refineries, foundries, sugar, ...)

@ Too few: daily imports for 3 — 6.5 GW
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The electrical network

@ Electrical network (multi-level):
e 21.885 km VHV (9.880 km 380
kV 4 12.005 km 220 kV)

e 44.800 km HV (150 — 120 kV)

e 21.700 km RTN + 23.100 km
others

@ Too little capacity = zonal prices
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The electrical market(s)

@ Three markets, to be solved in sequence and influencing each other:
o day-ahead market (main), network constrained (zonal prices)

o adjustment market (power swap between units)

o auxiliary services market (1/2/3-ary active reserve, network security)
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The electrical market (cont.d)

e Worth about 40 M€ / day
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The electrical market (cont.d)

e Worth about 40 M€ / day

... the market value, but how much a black-out day costs?
e About 15 GE€/ year (that's 1% of GNP)

@ About 5 times as much as the whole TLC sector

@ Importance and complexity can only increase:
@ energy costs increasing
o CO,, emissions constraints
o green/black certificates

o small-scale, non-continuous production (solar, wind, hydrogen, ...)

@ All sorts of thorny political /technical issues (hydrogen, nuclear, ...)
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© The Hydro-Thermal Unit Commitment problem
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The Hydro-Thermal Unit Commitment problem

Given:
@ a discretized (short) time horizon 7 (day/week, 60/15 minutes)
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The Hydro-Thermal Unit Commitment problem

Given:
@ a discretized (short) time horizon 7 (day/week, 60/15 minutes)

o a (forecasted) energy demand d; for t € T

0
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The Hydro-Thermal Unit Commitment problem (2)

@ A set P of thermal units (coal, gas, oil, nuclear, ...)
@ Foreachic P
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hermal Unit Commitment problem (2)

)

@ A set P of thermal units (coal, gas, oil, nuclear, ..

@ Foreachie P

e nonlinear energy cost (typically quadratic), startup cost

e maximum and minimum (if committed) power output

e constraints on how often the unit can be brought on/off line

e constraints on maximum increase/decrease of power output

o others (valve points, must run/must-not run, ..

A. Frangioni (DI — UniPi)

Solving Unit-Commitment problems

)

ROADEF 2008

12 /77



The Hydro-Thermal Unit Commitment problem (2)
)

@ A set P of thermal units (coal, gas, oil, nuclear, ..

@ Foreachie P

e nonlinear energy cost (typically quadratic), startup cost

e maximum and minimum (if committed) power output

e constraints on how often the unit can be brought on/off line

others (valve points, must run/must-not run, ..

@ A set H of hydro (cascade) units

@ Foreachje H
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ermal Unit Commitment problem (2)

@ A set P of thermal units (coal, gas, oil, nuclear, ...)
o Foreachie P
e nonlinear energy cost (typically quadratic), startup cost
e maximum and minimum (if committed) power output
e constraints on how often the unit can be brought on/off line
e constraints on maximum increase/decrease of power output

o others (valve points, must run/must-not run, ...)

@ A set H of hydro (cascade) units

@ Foreachje H
e no energy cost (long-term cost of water incorporated as bounds)
e inflows, maximum and minimum basin levels, cascade topology
@ maximum power output

o others (nonlinear effects of water head, nonzero technical minima,
cavitation points, pumping, ...)
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The Hydro-Thermal Unit Commitment problem

@ Transmission constraints

e simplest form: bus

o actual topology: Direct Current (linear), Alternating Current
(nonlinear)
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The Hydro-Thermal Unit Commitment problem

@ Transmission constraints

e simplest form: bus

o actual topology: Direct Current (linear), Alternating Current
(nonlinear)

@ Reliability constraints

e rotating reserve constraints

o other (stochastic demand, ...)
Operate the available units over 7 to satisfy demand at minimal cost
@ Typical of monopolistic regime

@ Useful in free markets

o actual scheduling after market(s) clears

e optimal bidding strategy
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© A MIQP Formulation

A. Frangioni (DI — UniPi) Solving Unit-Commitment problems ROADEF 2008 14 )77



A MIQP Formulation

@ Main variables:
o ul €{0,1}: ON/OFF state of thermal unit i € P
o pi € R,: power level of thermal unit i € P

° qé € R, : water discharge for hydro unit j € H(h) for cascade h € H

1M.P. Nowak and W. Rémisch “Stochastic Lagrangian Relaxation Applied to Power Scheduling in a Hydro-thermal System
Under Uncertainty”, Annals of Operations Research, 2000
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A MIQP Formulation

@ Main variables:
o ul €{0,1}: ON/OFF state of thermal unit i € P
o pi € R,: power level of thermal unit i € P

° qé € R, : water discharge for hydro unit j € H(h) for cascade h € H

@ Objective function:

fp,u) =Y c(p,u) =3 (s () + 3 (F(pl) + clud)) (1)

ieP ieP teT

o convex energy cost, usually quadratic (£/(pl) = a}(p})? + bipi, ai > 0)

o time-dependent start-up costs s’(u’) (only some extra constraints with
nifty formulation?)

1M.P. Nowak and W. Rémisch “Stochastic Lagrangian Relaxation Applied to Power Scheduling in a Hydro-thermal System
Under Uncertainty”, Annals of Operations Research, 2000
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A MIQP Formulation (2)

Thermal units:

@ Maximum and minimum power output:

b;ninué < pé < I_);naxué teT (2)
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A MIQP Formulation (2)

Thermal units:

@ Maximum and minimum power output:
b;ninué < pé < :E’;naxué teT (2)
@ Ramp-up constraints (A’Jr = ramp-up threshold):

pi < piy 4+ ul AL+ (1 —ul_)T teT  (3)
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o Ramp-up constraints (A’ = ramp-up threshold):
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A MIQP Formulation (2)

Thermal units:

@ Maximum and minimum power output:

Printi < Pp < PraxUs teT (2)
@ Ramp-up constraints (A’Jr = ramp-up threshold):
Pt < iy + g A + (1= up_g)l teT  (3)
o Ramp-down constraints (A" = ramp-down threshold):
Py < pi4 ulAT +(1— ul)d’ teT (4)

o Min up-time constraints (7} = min up-time):

U£§1*U£_1+U;: th’rE[t*T_’;_,t*].] (5)
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A MIQP Formulation (2)

Thermal units:

@ Maximum and minimum power output:

Printi < Pp < PraxUs teT (2)
@ Ramp-up constraints (A’Jr = ramp-up threshold):
Pt < iy + g A + (1= up_g)l teT  (3)
o Ramp-down constraints (A" = ramp-down threshold):
Py < pi4 ulAT +(1— ul)d’ teT (4)
o Min up-time constraints (7} = min up-time):
vl <1—u ;4 teT, reft—7i,t—1 (5)
e Min down-time constraints (77 = min down-time):
T ey — teT, reft—7,t—1 (6)
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A MIQP Formulation (3)

Hydro units:
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A MIQP Formulation (3)
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A MIQP Formulation (3)

Hydro units:
@ Maximum discharge:
0< ¢} < Fhan teT (7)
@ Maximum and minimum reservoir volume:
Vi S V< Ve teT (8)

o Water conservation (W{ = inflow, w/ = spillage, ty; = time delay):

vi-vi =w—wl—q+ Z (qf,tqutwtk,%) teT (9)
keS(j)

A. Frangioni (DI — UniPi) Solving Unit-Commitment problems ROADEF 2008 17 /77



A MIQP Formulation (3)

Hydro units:
@ Maximum discharge:
0< ¢} < Fhan teT (7)
@ Maximum and minimum reservoir volume:
Viin < VL < Vo teT (8)

@ Water conservation (W{ = inflow, W{ = spillage, tx; = time delay):
Vt]._Vé_]_:Wé—Wé—q{.‘i‘ Z (qfftkj_f—wtkftkj) teT (9)
keS(Jj)

System-wide constraints:

e Demand satisfaction (o/ = constant power-to-discharged water):

Spi+d > del=4d, teT (10)

ieP heH jeH(h)
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Results of the MIQP Formulation

Can you solve (1)—(10) (as it is) with Cplex? ...
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Results of the MIQP Formulation

Can you solve (1)—(10) (as it is) with Cplex? ...Not really

p | first best gap unsolved
20 24 2229 0.29
50 | 249 1491 0.22
75 | 447 1514 0.10
100 | 940 2327 0.13
150 | 2348 2483 0.24 1
200 | 3600 3600  *

(6]
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Results of the MIQP Formulation

Can you solve (1)—(10) (as it is) with Cplex? ...Not really

p | first best gap unsolved
20 24 2229 0.29
50 | 249 1491 0.22
75 | 447 1514 0.10
100 | 940 2327 0.13
150 | 2348 2483 0.24 1
200 | 3600 3600  *

(6]

@ For larger problems, no feasible solutions found in 1h
o Gap w.r.t. tight Lagrangian bound, inherent gap vastly worse

@ Randomly-generated, realistic ramp-constrained UC instances

http://www.di.unipi.it/optimize/Data
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e Lagrangian Relaxation
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Lagrangian Relaxation

o Denote (2)—(6) as U', (7)—(9) as H"
e Lagrangian Relaxation of demand constraints (10), multipliers A

@ The problem decomposes by unit:

o) =S )+ ) + 3 Al

icP heH teT
¢r(A) = min { (o) =AD" (P u) eu’ ) (11)

) = min { =2\ ald  [@lenn €1} (12)

2
F. “Generalized Bundle Methods” SIAM Journal on Optimization, 2002
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Lagrangian Relaxation

o Denote (2)—(6) as U', (7)—(9) as H"
e Lagrangian Relaxation of demand constraints (10), multipliers A

@ The problem decomposes by unit:

o) =S )+ ) + 3 Al

icP heH teT
¢r(A) = min { (o) =AD" (P u) eu’ ) (11)

O = min { ~ATjeun @ [@lienn €1} (12)

@ Lagrangian Dual:
max{ ¢(A) : AeR"} (13)

(n = |T) efficiently solvable e.g. by Bundle methods? . ..

2
F. “Generalized Bundle Methods” SIAM Journal on Optimization, 2002
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Lagrangian Relaxation

o Denote (2)—(6) as U', (7)—(9) as H"
e Lagrangian Relaxation of demand constraints (10), multipliers A

@ The problem decomposes by unit:
¢(A) =D TN + D dh(A\) + Y Aedh
ieP heH teT
t(\) = min {c'(p",u)y =" ¢ (PLu) el } (11)

O = min { ~ATjeun @ [@lienn €1} (12)
@ Lagrangian Dual:
max{ ¢(A) : AeR"} (13)

(n = |T) efficiently solvable e.g. by Bundle methods? . ..
provided ¢(\) is efficiently computable

2
F. “Generalized Bundle Methods” SIAM Journal on Optimization, 2002
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Solving the subproblems

@ Hydro Single-Unit Subproblems (12): Network Flows algorithms
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Solving the subproblems

@ Hydro Single-Unit Subproblems (12): Network Flows algorithms

@ Thermal Single-Unit Subproblems (11): Dynamic Programming ...
if there are no ramping constraints (3)—(4)
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Solving the subproblems

@ Hydro Single-Unit Subproblems (12): Network Flows algorithms

@ Thermal Single-Unit Subproblems (11): Dynamic Programming ...
if there are no ramping constraints (3)—(4)

@ Trick: optimal power level (if unit on) computable a-priori:

pr = argmin { f/(p) = Aep = p" < p < p"}
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Solving the subproblems

@ Hydro Single-Unit Subproblems (12): Network Flows algorithms

@ Thermal Single-Unit Subproblems (11): Dynamic Programming ...
if there are no ramping constraints (3)—(4)

@ Trick: optimal power level (if unit on) computable a-priori:

pi=argmin { fi(p) = A\ep : p™" < p < p™>}

OFF

0 d
@ State-space graph G = (V/, A) for fixed start-up costs (A = O(n)):
o start-up costs on (torr, ton) arcs
o cost zix(\¢) = F(P}) — AeP! on toy nodes

e set of initial arcs depending on initial conditions
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Solving the (thermal) subproblems

ON e o —_ o —

OFF-2 . .
OFF-3 . .
OFF—4 . .

@ State-space graph for Time-dependent start-up costs:

o Nodes OFF—h: unit is off, and has been for the last h hours

o Time-dependent start-up costs on (torr—p, ton) arcs

Cost z;;(At) on ton nodes as before

Complexity O(nk), where k is maximum cooling time
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Lagrangian Heuristic

@ Solving (13) provides a lower bound on the original problem ...

3F. “About Lagrangian Methods in Integer Optimization” Annals of Operations Research, 2005
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Lagrangian Heuristic

@ Solving (13) provides a lower bound on the original problem ...
but not only; also valuable primal information is generated 3

o At every iteration:
o Lagrangian multipliers A
e primal solution [p, &, g] of (11)—(12), T integer
e ‘“convexified” primal solution [P, &I, §], almost feasible to (10)

@ For fixed u, (2)—(10) is an easy convex quadratic program
(called the Economic Dispatch (ED) problem)

@ One can fix u = & and solve (ED); if it is feasible, a solution is
obtained ...

3

F. “About Lagrangian Methods in Integer Optimization” Annals of Operations Research, 2005
A. Frangioni (DI — UniPi)
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Lagrangian Heuristic

@ Solving (13) provides a lower bound on the original problem ...
but not only; also valuable primal information is generated 3

o At every iteration:
o Lagrangian multipliers A
e primal solution [p, &, g] of (11)—(12), T integer
e ‘“convexified” primal solution [P, &I, §], almost feasible to (10)

@ For fixed u, (2)—(10) is an easy convex quadratic program
(called the Economic Dispatch (ED) problem)

@ One can fix u = & and solve (ED); if it is feasible, a solution is
obtained ... however, almost always @ is undercommitted

3

F. “About Lagrangian Methods in Integer Optimization” Annals of Operations Research, 2005
A. Frangioni (DI — UniPi)
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Lagrangian Heuristic (cont.d)

o Fix g = g, reduce demand d; = d; — "y > jeH(h) ol gl
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Lagrangian Heuristic (cont.d)

o Fix g = g, reduce demand d; = d; — "y > jeH(h) ol gl

@ Greedy heuristic to find @I; feasible for residual demand at:
e initialize U =1
e for all time instants t, in increasing order
° compute U; = > icp Prinllt O = D icp Pmax Ui
if di > ;" then turn on some units

if di < Uy then turn off some units
(check min up- and down-constraints from partial solution)
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o Fix g = g, reduce demand d; = d; — "y > jeH(h) ol gl

@ Greedy heuristic to find @I; feasible for residual demand at:
e initialize U =1
e for all time instants t, in increasing order
° compute U; = > icp Prinllt O = D icp Pmax Ui
if di > ;" then turn on some units

if di < Uy then turn off some units
(check min up- and down-constraints from partial solution)

e Fix u= 10, solve (ED) to find p, §
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Lagrangian Heuristic (cont.d)

o Fix g = g, reduce demand d; = d; — "y > jeH(h) ol gl

@ Greedy heuristic to find @I; feasible for residual demand at:
e initialize U =1
e for all time instants t, in increasing order
° compute U; = > icp Prinllt O = D icp Pmax Ui
if di > ;" then turn on some units

if di < Uy then turn off some units
(check min up- and down-constraints from partial solution)

e Fix u= 10, solve (ED) to find p, §

@ Lagrangian information used:
o § to scale demand (modifying hydro schedule difficult)
e U as the “backbone” of the feasible solution

o @i and ) to define the order for turning on/off units
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Results (no ramp constraints)
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e Good dual convergence, good primal solution = small gap (<< 1%)*
e Fast computing time (few minutes, AMPL code, 100+ units)

@ All pieces need to fit together (dual convergence, primal solutions)

4
A. Borghetti, F., F. Lacalandra, C.A. Nucci “Lagrangian Heuristics Based on Disaggregated Bundle Methods for
Hydrothermal Unit Commitment”, IEEE Transactions on Power Systems, 2003
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Results (ramp constraints)

@ The approach can be used even in presence of ramp constraints
(lower bound valid, ramp constraints easily inserted in the (ED))

o Is it effective?
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Results (ramp constraints)

@ The approach can be used even in presence of ramp constraints
(lower bound valid, ramp constraints easily inserted in the (ED))

o Is it effective? Not really

p h | time iter sol gap
20 0 6 202 1 11.30(3)
50 0 16 247 1 5.25(3)
75 0 22 278 1 9.25
100 0 29 285 1 8.69
150 0 54 341 1 7.66
200 0 78 369 1 853

20 | 10 7 206 3 3380

50 | 20 16 231 6 0.63

75| 35 28 274 5 173
100 | 50 38 301 1 1.86
150 | 75 71 318 1 410(1)
200 | 100 90 305 2 438

A. Frangioni (DI — UniPi)
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© Handling Ramp Constraints
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Extension to the Ramp-Constrained Case

@ With ramp constraints, the basic trick just don't work any longer:
ramp rate limits link p! variables for different t together

F. Zhuang, F.D. Galiana “Towards a more rigorous and practical unit commitment by Lagrangian relaxation” IEEE
Transactions on Power Systems, 1988

W. Fan, X. Guan, Q. Zhai “A new method for unit commitment with ramping constraints” Electric Power Systems
Research, 2002
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@ With ramp constraints, the basic trick just don't work any longer:
ramp rate limits link p! variables for different t together

@ Several attempts have been made to extend the original approach®:

e discretizing the power space + using the standard DP procedure
huge state-space graph = costly, approximate solution, invalid bound

e “Lagrangianize” ramp rate constraints (possibly two-level methods)
many multipliers = slow, weak bound, no feasible solutions

o using an off-the-shelf (MIQP) solver (works for general models)
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e “Lagrangianize” ramp rate constraints (possibly two-level methods)
many multipliers = slow, weak bound, no feasible solutions
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Extension e Ramp-Constrained Case

@ With ramp constraints, the basic trick just don't work any longer:
ramp rate limits link p! variables for different t together

@ Several attempts have been made to extend the original approach®:

e discretizing the power space + using the standard DP procedure
huge state-space graph = costly, approximate solution, invalid bound

e “Lagrangianize” ramp rate constraints (possibly two-level methods)
many multipliers = slow, weak bound, no feasible solutions

o using an off-the-shelf (MIQP) solver (works for general models)
impractical for large n (as we will see)

o Piecewise-linearizing the objective function®

approximate solution, cost growing as approximation improves

@ The problem still looks easy, should be solvable ... but how?

F. Zhuang, F.D. Galiana “Towards a more rigorous and practical unit commitment by Lagrangian relaxation” IEEE
Transactions on Power Systems, 1988

6W. Fan, X. Guan, Q. Zhai “A new method for unit commitment with ramping constraints” Electric Power Systems
Research, 2002

A. Frangioni (DI — UniPi) Solving Unit-Commitment problems ROADEF 2008 28 / 77



A Dynamic Programming Algorithm for (1UC)

o First step: redefine the state-space graph

o Node (h, k) denotes unit ON from h to k (endpoints included)

@ Not all nodes exist (k —h+1>7T)

o Arcs between nodes (h, k) and (r,q) with r > k+77 +1

@ Arcs from s to (1, k) if unit ON at time O

o Arcs from s to (h, k) with h+ 7% — 1 > 7= if unit OFF at time 0
@ Start-up cost on arcs, depending on the OFF time

@ On nodes (h, k), optimal dispatching cost z;, plus (h— k + 1)¢;

o Additional arcs with null cost from all nodes to d
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The new space-state graph

7
e O(n*) arcs, but structured into levels Vx = { (h,k) : 1< h<k}
@ All nodes in V) have the same set of adjacent nodes
@ The cost of the arc between (h, k) and (r, g) only depends on k and r

o Increasing k, select best node of Vi = O(n%) if z}, known
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The Restricted Economic Dispatch Problem (EDpy)

@ Convex problem with specially-structured linear constraints

Ziye=min (4 ¥ (pe) (14)

Pmin < Pt < Pmax h<t<k (15)
pr <1 (16)

Pr+1 < pr + A4 t=h,....,k—1 (17)
PtSPt—&-l‘i‘A— t:hy"'ak_]- (18)
Pk < u (19)

@ Solving it should be easy ...
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The Restricted Economic Dispatch Problem (EDpy)

@ Convex problem with specially-structured linear constraints

Ziye=min (4 ¥ (pe) (14)

Pmin < Pt < Pmax h<t<k (15)
pr <1 (16)

Pr+1 < pr + A4 t=h,....,k—1 (17)
PtSPt—&-l‘i‘A— t:hy"'ak_]- (18)
Pk < u (19)

@ Solving it should be easy ...but how, exactly?

@ Simple idea: parametric problem on the power at time k

z(P) = min{ =y fi(pe) + (15), (16), (17), (18) , p =P }
e Slightly simpler for h = k (base case)

zp(P) = min{ f"(py) : (15), (16) , ph =P}
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Solving (EDp)

o Well-known general result: zpx(p) convex (a value function)

7F., C. Gentile “Solving Nonlinear Single-Unit Commitment Problems with Ramping Constraints” Operations Research,

2006
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Solving (EDp)

o Well-known general result: zpx(p) convex (a value function)

@ Something more can be proven’:

dv < 2(k — h), IK<mg<...<myy1 <uFsit. dom(zpk) = [mo, my+1],

a compact representation exists

zmk(p) = Z'(p) if p € [mj, miy1]

where each z' is the sum of at most k — h + 1 functions f* for t € [h, k].

e Furthermore, zj(,41) can be efficiently constructed given ...

F., C. Gentile “Solving Nonlinear Single-Unit Commitment Problems with Ramping Constraints” Operations Research,

2006
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Solving (EDp)

o Well-known general result: zpx(p) convex (a value function)

@ Something more can be proven’: a compact representation exists

dv < 2(k — h), IK<mg<...<myy1 <uFsit. dom(zpk) = [mo, my+1],

zmk(p) = Z'(p) if p € [mj, miy1]

where each z' is the sum of at most k — h + 1 functions f* for t € [h, k].

e Furthermore, zj(,41) can be efficiently constructed given ...

zpk and ppy = argmin{ zp(p) : p € [mo, my41] } solving (EDp)

F., C. Gentile “Solving Nonlinear Single-Unit Commitment Problems with Ramping Constraints” Operations Research,

2006
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Solving (EDp)

o Well-known general result: zpx(p) convex (a value function)

@ Something more can be proven’:

dv < 2(k — h), IK<mg<...<myy1 <uFsit. dom(zpk) = [mo, my+1],

a compact representation exists

zmk(p) = Z'(p) if p € [mj, miy1]

where each z' is the sum of at most k — h + 1 functions f* for t € [h, k].

e Furthermore, zj(,41) can be efficiently constructed given ...
zpk and ppy = argmin{ zp(p) : p € [mo, my41] } solving (EDp)

... solving (EDp(x+1)) (finding p;;(k—i—l)) while you are at that

F., C. Gentile “Solving Nonlinear Single-Unit Commitment Problems with Ramping Constraints” Operations Research,

2006
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Constructive proof
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zpn(P) = £'(P)

zh+1(P) = F*T1(P) +
min zpk(p)
p € [mo, my 1]
pep+ [_Af(i-vAli]

plt(f_)) = Pl’O_/(p;k,k,[_)—l—[—Aﬁ_,Ali])

Zhk11(P) = £ (P)+zmk (pi(P))
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A Dynamic Programming Algorithm for (EDp)

@ Actually a Dynamic Programming Algorithm for (EDpk)
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A Dynamic Programming Algorithm for (EDp)

@ Actually a Dynamic Programming Algorithm for (EDpk)

o Complexity depends on min{ zyk(p) : p € [a, b] } (ultimately on 1)
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A Dynamic Programming Algorithm for (EDp)

@ Actually a Dynamic Programming Algorithm for (EDpk)

Complexity depends on min{ zpk(p) : p € [a, b] } (ultimately on f*)
e O(1

if £t quadratic (sum of quadratic functions is quadratic)

— =

o O(k) to solve (EDpk) having solved (EDp(x—_1))

(
(

o O(k?) to solve all (EDyy) for h < k

e O(n%) for solving the overall (1UC) subproblem, after which
(

O(n) backward visit computes optimal dual solutions
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A Dynamic Programming Algorithm for (EDp)

@ Actually a Dynamic Programming Algorithm for (EDpk)
o Complexity depends on min{ zyk(p) : p € [a, b] } (ultimately on 1)

e O(1

if £t quadratic (sum of quadratic functions is quadratic)

— =

o O(k) to solve (EDpk) having solved (EDp(x—_1))

(
(

o O(k?) to solve all (EDyy) for h < k

e O(n%) for solving the overall (1UC) subproblem, after which
(

O(n) backward visit computes optimal dual solutions

o Easily extended to more complex situations:
e Any fancy startup cost formula depending on (h, k) and (r, q)
e Unit data changing every time period (e.g., external temperature)

o Power level clock faster than ON/OFF one (e.g., 15m vs. 1h)
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Results — (1UC) only

@ 100 thermal units, 4 representative iterations of the Lagrangian

@ Our DP algorithm vs. Cplex to solve (1UC) (time limit to 300 sec.)

DP CPLEX
n iter. | time | st.dev. time | st.dev. | gap% | fail
24 1 .001 | 3e-3 0.05 0.05 0
12 | .002 | 4e-3 0.08 0.05 0
16 | .002 | 4e-3 0.08 0.05 0
23 | .002 | 4e-3 0.08 0.05 0
96 1 0.04 | 2e3 10.74 41.99 1
12 | 0.04 | 3e3 17.57 50.93 | 0.06 2
16 | 0.04 | 2e3 32.64 76.87 | 0.02 6
23 | 0.04 3e-3 32.21 76.12 | 0.03 6
168 1 0.20 6e-3 47.73 | 103.68 | 1.09 13
12 | 0.20 6e-3 117.94 | 142,61 | 1.20 35
16 | 0.20 5e-3 117.49 | 142.11 | 0.50 35
23 1 0.20 6e-3 117.46 | 141.87 | 1.23 35

A. Frangioni (DI — UniPi)
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Results — the whole Lagrangian Heuristic

RCDP UbP

p h | time iter sol gap | time iter sol gap Alb
20 0 8 189 34 044 6 202 1 11.30(3) 2.49
50 0 17 195 33 0.26 16 247 1 525(3) 148
75 0 30 206 33 0.38 22 278 1 925 2.38
100 0 46 213 21 0.48 29 285 1 8.69 2.21
150 0 72 277 23 0.20 54 341 1 7.66 2.31
200 0] 134 317 67 0.06 78 369 1 853 2.46
20| 10 16 162 159 0.22 7 206 3 3.80 1.50
50 | 20 41 165 146 0.07 16 231 6 0.63 1.19
7| 35 89 209 166 0.02 28 274 5 173 1.19
100 | 50 | 135 218 143 0.04 38 301 1 186 1.27
150 | 75| 222 223 164 0.01 71 318 1 410(1) 120
200 | 100 | 353 244 192 0.05 90 305 2 438 1.25

e Actually quite good® (modern PC, C++ code)

@ Can be improved with more sophisticated logic for greedy choice®

8F,, C. Gentile, F. Lacalandra “Solving Unit Commitment Problems with General Ramp Contraints”, [JEPES, 2008

gF., C. Gentile, F. Lacalandra “New Lagrangian Heuristics for Ramp-Constrained Unit Commitment Problems”
Proceedings ORMMES 2006
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@ Free Market versions
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The Day-ahead market

@ Organized by the Market Operator (MO)
@ Revolves around bids = (price, quantity) pairs

@ Day-ahead market: for each of the 24 hours of tomorrow:
o each generator submits to the MO selling bids (spj, sg;), j € S
o each buyer submits to the MO buying bids (bp;, bg;), i € B
e the MO solves the Market Clearing Problem

max pr,’bi — ZS,DJ'SJ' (20)

ieB JES
OSb,'qu,' ieB (21)
0 <55 < sq; jES (22)
Z b,' = ZSJ' (23)
ieB JES
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The (dual) Market Clearing Problem

..or equivalently its dual

min qu,-u,— + qujnj (24)

icB jes
Wi +m > bp; wi >0 ieB (25)
’r]j—T('Z—Spj ’I’]J'ZO _jGS (26)

ROADEF 2008 39 /77

Solving Unit-Commitment problems

A. Frangioni (DI — UniPi)



The (dual) Market Clearing Problem

...or equivalently its dual
min qu,-u,— + qujnj (24)
icB jes
Wi +m > bp; wi >0 ieB (25)
nj— T 2> —Sp; ’I’]J'ZO jes (26)
which reads

mTEn Z bg; max{bp; — 7,0} + Z sq; max{m — sp;,0} (27)
icB jes
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The (dual) Market Clearing Problem

...or equivalently its dual

min Y bgipi + Y sqn;
ieB jes
pi +m > bp; pi >0 ieB
’r]j—T('Z—Spj ’I’]J'ZO _jGS

which reads

mTEn Z bg; max{bp; — m,0} + Z sqj max{m — sp;, 0}
ieB j€s

o 7* = market clearing price
@ Complementary slackness =
sp; > T = 5 = 5qj

bp,'<7T*:>b;:bq,'

A. Frangioni (DI — UniPi) Solving Unit-Commitment problems ROADEF 2008
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Graphical interpretation

A

P buying

I—l selling
_l_q

\

The “X" marks the spot ...

A. Frangioni (DI — UniPi)
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Complications in the Electrical Market

@ Minor complications:
o anelastic demand: just a fixed RHS in (23)

b+ iepbi = Yicss

but this may cause 7" = 400 (need a price cap)
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Complications in the Electrical Market

@ Minor complications:
o anelastic demand: just a fixed RHS in (23)

b+ icgbi = Yjess
but this may cause 7" = 400 (need a price cap)

o network constraints (DC version): K zones, L link between zones

k
m <3 gerc Si (Ziel(k) bi = > e s 5j) <M lel
@ my and M;: maximum and minimum current on link /
o I(k)/J(k): buying/selling bids on zone k
e SF: sensitivity of link / to injection in zone k
= zonal prices 7}
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Complications in the Electrical Market

@ Minor complications:
o anelastic demand: just a fixed RHS in (23)

b+ icgbi = Yjess
but this may cause 7" = 400 (need a price cap)

o network constraints (DC version): K zones, L link between zones

k
m <3 gerc Si (Ziel(k) bi = > e s 5j) <M lel
@ my and M;: maximum and minimum current on link /
o I(k)/J(k): buying/selling bids on zone k
e SF: sensitivity of link / to injection in zone k
= zonal prices 7}

@ Major complications:

o AC network constraints (highly nonlinear, nonconvex)

o PUN: unique buying price for all zones (an ugly mess)
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Unit Commitment in the Electrical Market

o Major simplifying assumptions:
@ 2all demand is anelastic
@ no network constraints

© competitors’ supply curve known
(estimate from past data works)

50

30

1DJ—J

| E—

/

7

20 22 24

\

\

SUPPLY CURVE ___~—
T
a ‘DEMAND CURVE

T a0

1
OA. Borghetti, F., F. Lacalandra, C.A. Nucci, P. Pelacchi “Using of a Cost-based Unit Commitment Algorithm to Assist
Bidding Strategy Decisions” Proceedings IEEE 2003 Powerteck Bologna Conference, 2003
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Unit Commitment in the Electrical Market

. . - . )
o Major simplifying assumptions: 5 4 /
. . \ /
@ 2all demand is anelastic “ \ J
Ve
@ no network constraints * supPLYCURVEF//J‘
. 20 Yl IDEMAND CURVE
© competitors’ supply curve known /J |
(estimate from past data works) 1 L\M
% 2 22 72‘67L 8 a0

e Optimal bidding strategy!®: modify model as

max Y ,cr Ze(por)(de — por) — Y icp c'(p', u')

Diep Pt Yohen 2ojeH(h) ofgi+por=di teT (28)

where Z; = inverse of (estimate) competitors’ supply function

1
OA. Borghetti, F., F. Lacalandra, C.A. Nucci, P. Pelacchi “Using of a Cost-based Unit Commitment Algorithm to Assist
Bidding Strategy Decisions” Proceedings IEEE 2003 Powerteck Bologna Conference, 2003
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Lagrangian Approach to Optimal Bidding Problem

@ Relax (28) = (UC) + one “competitors’ problem” for each t € T
highly nonconvex but univariate

o Z:(po:) piecewise-linear, increasing =
T:(pot)(d; — po;) piecewise-quadratic, concave = easy in practice
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@ Relax (28) = (UC) + one “competitors’ problem” for each t € T
highly nonconvex but univariate

o Z:(po:) piecewise-linear, increasing =
T:(pot)(d; — po;) piecewise-quadratic, concave = easy in practice

@ No problem with lower bound, no problem with UC heuristic ...
but dire problems with (ED) (large-scale, highly nonconvex)

@ Trick: (ED) easy if po: kept in the neighborhood of po, where
Z:(po:)(d: — po;) quadratic, concave
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@ Relax (28) = (UC) + one “competitors’ problem” for each t € T
highly nonconvex but univariate

o Z:(po:) piecewise-linear, increasing =
T:(pot)(d; — po;) piecewise-quadratic, concave = easy in practice

@ No problem with lower bound, no problem with UC heuristic ...
but dire problems with (ED) (large-scale, highly nonconvex)

@ Trick: (ED) easy if po: kept in the neighborhood of po, where
Z:(po:)(d: — po;) quadratic, concave

@ As fast as (UC), good gaps (= 0.5%) despite higher nonconvexity
@ Relaxing (1) possible (non entirely trivial, work in progress)

@ Relaxing (2) hard: strategic bidding with zones (work in progress)
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Lagrangian Approach to Optimal Bidding Problem

@ Relax (28) = (UC) + one “competitors’ problem” for each t € T
highly nonconvex but univariate

o Z:(po:) piecewise-linear, increasing =
T:(pot)(d; — po;) piecewise-quadratic, concave = easy in practice

@ No problem with lower bound, no problem with UC heuristic ...
but dire problems with (ED) (large-scale, highly nonconvex)

@ Trick: (ED) easy if po: kept in the neighborhood of po, where
Z:(po:)(d: — po;) quadratic, concave

@ As fast as (UC), good gaps (= 0.5%) despite higher nonconvexity
@ Relaxing (1) possible (non entirely trivial, work in progress)
@ Relaxing (2) hard: strategic bidding with zones (work in progress)

e Some artificial (but realistic) results:
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Results (producer has 35% of power)

12000 T - 45
5 a T4
1
10000 T Al 1N
T 35
8000 T T 30
- o5 = | ® carico
6000 T E —— max profitto
20 =& UC tradizionale
4000 + + 15 ~-—4&-- prezzo di mercato
T 10
2000 T . A ( \1 X *
-5
o +H+—++—+++++t++t++t+t++++++++++ 0

If you are large, you can game the market
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Results (producer has 15% of power)

12000 T T 35
10000 + A Am A an T30
- 25
8000 A
r20 = |—®—carico
6000 A E —¢— max profitto
- 15 UC tradizionale
4000 -—A&--prezzo di mercato
- 10
2000 A L 5
0 +++++++t++++++++++++++++++ 0

If you are small, the market rules
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Lagrangian Approaches: the Good and the Bad

@ The Good:
o efficient, effective, elegant

e allow to incorporate fancy constraints, even difficult to model

e decomposition + specialized algorithms = scale to very large size

11L. Dubost, R. Gonzalez, C. Lemaréchal “A Primal-proximal Heuristic Applied to the French Unit Commitment Problem”

Mathematical Programming, 2005
ROADEF 2008 46 | 77
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@ The Good:
o efficient, effective, elegant

e allow to incorporate fancy constraints, even difficult to model

e decomposition + specialized algorithms = scale to very large size

@ The Bad:

o heuristics need be changed whenever the model changes (not so bad'?!)

o subproblems need be changed whenever the model changes (bad,
especially if it takes 20 years)

e in general, requires continuous work from OR specialists

11L. Dubost, R. Gonzalez, C. Lemaréchal “A Primal-proximal Heuristic Applied to the French Unit Commitment Problem”

Mathematical Programming, 2005
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o efficient, effective, elegant

e allow to incorporate fancy constraints, even difficult to model

e decomposition + specialized algorithms = scale to very large size

@ The Bad:

o heuristics need be changed whenever the model changes (not so bad'?!)

o subproblems need be changed whenever the model changes (bad,
especially if it takes 20 years)

e in general, requires continuous work from OR specialists

4

The Ugly: very hard to sell in a real-world environment

11L. Dubost, R. Gonzalez, C. Lemaréchal “A Primal-proximal Heuristic Applied to the French Unit Commitment Problem”

Mathematical Programming, 2005
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Lagrangian Approaches: the Good and the Bad

@ The Good:
o efficient, effective, elegant

e allow to incorporate fancy constraints, even difficult to model

e decomposition + specialized algorithms = scale to very large size

@ The Bad:

o heuristics need be changed whenever the model changes (not so bad'?!)

o subproblems need be changed whenever the model changes (bad,
especially if it takes 20 years)

e in general, requires continuous work from OR specialists

4

The Ugly: very hard to sell in a real-world environment

@ What are the alternatives?
1

1L. Dubost, R. Gonzalez, C. Lemaréchal “A Primal-proximal Heuristic Applied to the French Unit Commitment Problem”
Mathematical Programming, 2005
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@ MILP Formulations
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A MILP Formulation

@ May the problem be the Quadratic part? If so, piecewise-linearize f'?

12M. Carrién, J.M. Arroyo “A Computationally Efficient Mixed-integer Linear Formulation for the Thermal Unit

Commitment Problem” IEEE Transactions on Power Systems, 2006
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A MILP Formulation

@ May the problem be the Quadratic part? If so, piecewise-linearize f'?
/ @ k new variables (i, t fixed), redefine p

pP= Zle 01 + PminU
A (29)

0<é <p' —p~t I=1,... .k

A K

swn s a0 @ cost coefficient of u set to f(Pmin)

T, 7

0 P,

@ cost coefficient of each §; set to

f(p') - f(p'1) _

Fi = ————=
5 — pl-1

a(p'+p'"")+b

12M. Carrién, J.M. Arroyo “A Computationally Efficient Mixed-integer Linear Formulation for the Thermal Unit

Commitment Problem” IEEE Transactions on Power Systems, 2006
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A MILP Formulation

@ May the problem be the Quadratic part? If so, piecewise-linearize f'?

/ @ k new variables (i, t fixed), redefine p

pP= Zf:l 01 + PminU
A (29)

0<é <p' —p~t I=1,... .k

A K

swn s a0 @ cost coefficient of u set to f(Pmin)

T, 7

0 P,

@ cost coefficient of each §; set to

f(p') - f(p'1) _

Fi = ————=
5 — pl-1

a(p'+p'"")+b

@ Should this work? On the outset, | don't see why ...

12M. Carrién, J.M. Arroyo “A Computationally Efficient Mixed-integer Linear Formulation for the Thermal Unit

Commitment Problem” IEEE Transactions on Power Systems, 2006
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Results of the MILP Formulation

... but it does, big times!
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Results of the MILP Formulation

... but it does, big times!

MIQP MILP

p first best gap time gap ftime fgap nodes
20 24 2229 0.29 3.72 0.36 1.00 0
50 249 1491 0.22 2193 021 1598 0.36 0
75 447 1514 0.10 56.31 0.20 47.08 1.62 10
100 940 2327 0.13 94.09 0.17 69.75 2.18 16
150 | 2348 2483 0.24(1) | 218.69 0.12 177.35 6.58 16
200 | 3600 3600 * (5)|267.78 0.09 247.12 1.85 6
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... but it does, big times!

MIQP MILP

p first best gap time gap ftime fgap nodes
20 24 2229 0.29 3.72 0.36 1.00 0
50 249 1491 0.22 2193 021 1598 0.36 0
75 447 1514 0.10 56.31 0.20 47.08 1.62 10
100 940 2327 0.13 94.09 0.17 69.75 2.18 16
150 | 2348 2483 0.24(1) | 218.69 0.12 177.35 6.58 16
200 | 3600 3600 * (5)|267.78 0.09 247.12 1.85 6

@ Stopping tolerance at 0.5% (and invalid lower bound)
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75 447 1514 0.10 56.31 0.20 47.08 1.62 10
100 940 2327 0.13 94.09 0.17 69.75 2.18 16
150 | 2348 2483 0.24(1) | 218.69 0.12 177.35 6.58 16
200 | 3600 3600 * (5)|267.78 0.09 247.12 1.85 6

@ Stopping tolerance at 0.5% (and invalid lower bound)

@ Again, inherent gap vastly worse (and invalid anyway)
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Results of the MILP Formulation

... but it does, big times!

MIQP MILP

p first best gap time gap ftime fgap nodes
20 24 2229 0.29 3.72 0.36 1.00 0
50 249 1491 0.22 2193 021 1598 0.36 0
75 447 1514 0.10 56.31 0.20 47.08 1.62 10
100 940 2327 0.13 94.09 0.17 69.75 2.18 16
150 | 2348 2483 0.24(1) | 218.69 0.12 177.35 6.58 16
200 | 3600 3600 * (5)|267.78 0.09 247.12 1.85 6

@ Stopping tolerance at 0.5% (and invalid lower bound)
@ Again, inherent gap vastly worse (and invalid anyway)

@ All the difference is in the heuristic
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Comparing MILP and LR

RCDP Cplex MILP

p h | time gap iter time gap ftime fgap nodes LPs
10 0| 075 0.99 187 0.95 0.33 1.18 0 23
20 0| 183 046 189 372 0.36 1.00 0 23
50 0| 484 028 195| 2193 0.21 1598 0.36 0 25
75 0| 941 034 206 | 5631 0.20 47.08 1.62 10 59
100 0| 1474 033 213 | 9409 0.17 69.75 218 16 76
150 0| 2120 0.17 277 |218.69 0.12 17735 6.58 16 115
200 0| 3480 0.09 317 |267.78 0.09 247.12 1.85 6 87
20| 10| 176 039 170 | 9353 0.21 0.59 140 258
50| 20| 6.36 0.06 160 | 17.98 0.06 17.98 0.06 0 60
75| 35| 1501 0.04 198 | 96.86 0.11 96.86 0.11 170 300
100 | 50 | 2474 0.04 209 | 130.86 0.06 130.86 0.06 180 266
150 | 75| 37.41 0.02 189 | 467.62 0.06 467.62 0.06 300 554
200 | 100 | 50.91 0.01 175 | 427.71 0.05 427.71 0.05 205 321

o Faster version of RDCP (better (ED) solver)

@ Overall, Cplex primal heuristic impressively effective
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Perspective Cuts

@ Convex function f, Mixed-Integer NonLinear Program fragment
min{ f(p) +cu : Ap<bu, ue{0,1}} (30)
peP={peR": Ap < b}, {p: Ap < 0} = {0} (think (2))

1
3F. and C. Gentile “Perspective Cuts for a Class of Convex 0-1 Mixed Integer Programs”, Mathematical Programming, 2006
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@ Convex function f, Mixed-Integer NonLinear Program fragment
min{ f(p) +cu : Ap<bu, ue{0,1}} (30)
peP={peR": Ap < b}, {p: Ap < 0} = {0} (think (2))

o Equivalently, minimize the nonconvex function

0 ifu=0and p=0
f(p,uy=<¢ f(p)+c ifu=1land Ap<b (31)
+00 otherwise

1
3F. and C. Gentile “Perspective Cuts for a Class of Convex 0-1 Mixed Integer Programs”, Mathematical Programming, 2006
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Perspective Cuts

@ Convex function f, Mixed-Integer NonLinear Program fragment
min{ f(p) +cu : Ap<bu, ue{0,1}} (30)
peP={peR": Ap < b}, {p: Ap < 0} = {0} (think (2))

o Equivalently, minimize the nonconvex function

0 ifu=0and p=0
f(p,uy=<¢ f(p)+c ifu=1land Ap<b (31)
+00 otherwise

@ Best possible convex relaxation of (30): use the convex envelope!3

0 if p=0and u=0,
cof (p,u)=< uf(p/u)+cu if Ap < bu, ue(0,1], (32)
+00 otherwise.

(convex function minorizing f(p, u) with smallest possible epigraph)

1
3F. and C. Gentile “Perspective Cuts for a Class of Convex 0-1 Mixed Integer Programs”, Mathematical Programming, 2006
ROADEF 2008 51 /77
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Perspective Cuts (2)

7

o Related with well-known
perspective function of f

o g(p,u)=uf(p/u)

@ despite the look, convex

/ u foru>0if fis
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Perspective Cuts (2)

7

o Related with well-known
perspective function of f

o g(p,u)=uf(p/u)

@ despite the look, convex

/ u foru>0if fis

@ Interesting examples:

e linear: f(p) = bp = Tof (p, u) = bp + cu (nothing happens!)
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Perspective Cuts (2)

7

o Related with well-known
perspective function of f

o g(p,u)=uf(p/u)

@ despite the look, convex

/ u foru>0if fis

@ Interesting examples:

e linear: f(p) = bp = Tof (p, u) = bp + cu (nothing happens!)
e quadratic: f(p) = ap?® + bp = cof (p,u) = ap?/u + bp + cu
better than continuous relaxation ap? + bp (u < 1)
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Perspective Cuts (2)

7

o Related with well-known
perspective function of f

o g(p,u)=uf(p/u)

@ despite the look, convex

/ u foru>0if fis

@ Interesting examples:

e linear: f(p) = bp = Tof (p, u) = bp + cu (nothing happens!)
e quadratic: f(p) = ap?® + bp = cof (p,u) = ap?/u + bp + cu
better than continuous relaxation ap? + bp (u < 1)

e ...but very nonlinear

A. Frangioni (DI — UniPi) Solving Unit-Commitment problems ROADEF 2008 52 /77



Perspective Cuts (3)

@ But every convex function is the supremum of its affine minorants
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Perspective Cuts (3)

@ But every convex function is the supremum of its affine minorants

o (v,p,u) € epi cof < Ap < bu, uc|0,1],and Vp € P

v>F(p)+c+ls, c+ f(p) — spl [ 5:';’] Vs € 9f(p) (33)

(infinitely many inequalities, at least one for each p € P)
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o (v,p,u) € epi cof < Ap < bu, uc|0,1],and Vp € P

v>F(p)+c+ls, c+ f(p) — spl [ 5:';’] Vs € 9f(p) (33)

(infinitely many inequalities, at least one for each p € P)

@ The quadratic case:

v > (2ap + b)p + (c — ap?)u (34)
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Perspective Cuts (3)

@ But every convex function is the supremum of its affine minorants

o (v,p,u) € epi cof < Ap < bu, uc|0,1],and Vp € P

o2 f@)+etls e rp) -5l [ AP | vseorm) (39
(infinitely many inequalities, at least one for each p € P)

@ The quadratic case:

v > (2ap + b)p + (c — ap?)u (34)

@ Can implement a Branch & Cut with cuts on the objective function
(somewhat tricky)
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Alternative MILP (Approximated) formulation

@ Replace (1) with

20w

teT ieP
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Alternative MILP (Approximated) formulation

@ Replace (1) with

20w

teT ieP

o Add k cuts (34) for some py" € [p! . Bl h=1,...,k
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Alternative MILP (Approximated) formulation

@ Replace (1) with

i
2.2
te7 icP

o Add k cuts (34) for some py" € [p! . Bl h=1,...,k

@ |P||T| more variables and k|P||7| more constraints, vs
k|P||T| more variables and (2k + 1)|P||7| more constraints
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@ Replace (1) with
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o Add k cuts (34) for some py" € [p! . Bl h=1,...,k

@ |P||T| more variables and k|P||7| more constraints, vs
k|P||T| more variables and (2k + 1)|P||7| more constraints

@ The objective function underestimates f(p, u) = the LB is valid
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Alternative MILP (Approximated) formulation

@ Replace (1) with

20w

teT ieP

o Add k cuts (34) for some py" € [p! . Bl h=1,...,k

|P||7| more variables and k|P||7’| more constraints, vs
k|P||T| more variables and (2k + 1)|P||7| more constraints

@ The objective function underestimates f(p, u) = the LB is valid

Cuts can be easily be dynamically added, much less true for variables
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Alternative MILP (Approximated) formulation

@ Replace (1) with

20w

teT ieP

o Add k cuts (34) for some py" € [p! . Bl h=1,...,k

|P||7| more variables and k|P||7’| more constraints, vs
k|P||T| more variables and (2k + 1)|P||7| more constraints

@ The objective function underestimates f(p, u) = the LB is valid

Cuts can be easily be dynamically added, much less true for variables

@ All the rest equal (static version very easy to implement)
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Graphical comparison

fipu) =ap? + bp + cu W) =ap?+bp +c

Pmin

L

Prmax

p

fp.0)=ap? + bp

—ap? .
h(p,u) =ap?/,, + bp + cu L fp) = ap + bp + ¢

Pumin

I
ST
K
2

A. Frangioni (DI — UniPi)
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Test setup

e SPWF: MILP formulation with (29), k = 4 equidistant points
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e PCF: MILP formulation with (34), k = 4 equidistant points
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Test setup

e SPWF: MILP formulation with (29), k = 4 equidistant points
e PCF: MILP formulation with (34), k = 4 equidistant points

@ PCFDy: initially, only two cuts (34) (P = Pmin, and p = Pmax);

then, dynamic generation up to a maximum of k|P||7|
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e PCF: MILP formulation with (34), k = 4 equidistant points

@ PCFDy: initially, only two cuts (34) (P = Pmin, and p = Pmax);

then, dynamic generation up to a maximum of k|P||7|
e Cplex 9.1, Opteron 246 (2 GHz), 2 Gb RAM

e Two stopping tolerances: low (0.5%) and high (0.01%)
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Test setup

e SPWF: MILP formulation with (29), k = 4 equidistant points

PCF: MILP formulation with (34), k = 4 equidistant points

PCFDy: initially, only two cuts (34) (P = Pmin, and p = Pmax);

then, dynamic generation up to a maximum of k|P||7|

Cplex 9.1, Opteron 246 (2 GHz), 2 Gb RAM

e Two stopping tolerances: low (0.5%) and high (0.01%)

Gap w.r.t. tight Lagrangian LB, inherent one visibly worse
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Test setup

e SPWF: MILP formulation with (29), k = 4 equidistant points
e PCF: MILP formulation with (34), k = 4 equidistant points

@ PCFDy: initially, only two cuts (34) (P = Pmin, and p = Pmax);

then, dynamic generation up to a maximum of k|P||7|
e Cplex 9.1, Opteron 246 (2 GHz), 2 Gb RAM
e Two stopping tolerances: low (0.5%) and high (0.01%)
@ Gap w.r.t. tight Lagrangian LB, inherent one visibly worse

@ Randomly-generated, realistic, hydro-thermal instances
http://www.di.unipi.it/optimize/Data
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Comparing static formulations at lower accuracy

SPWF PCF

p h| gap nd time rgap | gap nd time rgap
10 0]031 0 095 161|028 O 0.76 1.50
20 01034 0 372 1341036 8 356 1.25
50 0]021 0 2193 138|021 0 1209 1.26
75 0[020 10 5631 143|018 14 4588 1.30

100 0017 16 94.09 139 0.15 43.55 1.27
150 0012 16 218.69 1.32]0.11 146.80 1.20

20| 10| 0.21 140 93,53 0.82|0.20 3.71 0.69
50 | 20 | 0.06 0 1798 0.70 | 0.10 18.93 0.63
75| 35|011 170 96.86 057|007 70 6452 0.52
100 | 50 | 0.06 180 130.86 0.58 | 0.07 35 81.41 0.53
150 | 75| 0.06 300 467.62 058 |0.05 90 293.50 0.52
200 | 100 | 0.05 205 427.71 0.56 | 0.03 35 314.00 0.51

0
2
200 01 0.09 6 267.78 137|008 0 23497 1.25
0
0
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Static vs. dynamic formulations at lower accuracy

PCF PCFD, PCFD& \

p h| gap nd time | gap nd time | gap nd time
10 0/028 0 0.76 | 0.30 0 0.86 | 0.28 0 0.80
20 0/03 38 3.56 | 0.36 0 2511 0.33 0 3.00
50 0021 0 12.09]0.19 0 1417 0.18 0 13.08
75 0018 14 4588 | 0.19 2  36.62 | 0.22 0 2258
100 0015 0 4355]0.17 0 3431020 0 3651
150 01011 2 146.80 ] 0.11 4 10468 | 0.12 10 169.68
200 0]0.08 0 23497 0.10 0 183.01 |0.14 12 235.60
20| 110|020 O 3.71 | 0.30 5 4.18 | 0.15 0 2.51
50| 20010 O 1893|0.10 10 19.06 | 0.13 0 10.93
75| 35|0.07 70 6452 |0.06 115 70.55|0.03 95 64.80
100 | 50| 0.07 35 81.41|0.05 15 47.62|0.04 40 60.78
150 | 75| 0.05 90 29350 | 0.05 115 194.10 | 0.05 115 216.33
200 | 100 | 0.03 35 314.00 | 0.02 0 155.36 | 0.03 135 342.69
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Results with higher accuracy (0.01%)

SPWF PCF PCFD,4 PCFD&

p h| gap time | gap time | gap time | gap time
10 0| 0.01 22 | 0.01 15| 0.01 12 | 0.01 16
20 0] 001 3480 | 0.02 2969 | 0.02 3614 | 0.01 3481
50 0| 0.09 10000 | 0.09 10000 | 0.08 10000 | 0.09 10000
75 0| 0.09 10000 | 0.09 10000 | 0.08 10000 | 0.08 10000

100 0| 0.07 10000 | 0.06 10000 | 0.06 10000 | 0.06 10000
150 0| 0.07 10000 | 0.05 10000 | 0.05 10000 | 0.05 10000
200 0| 0.07 10000 | 0.06 10000 | 0.05 10000 | 0.05 10000
20| 10 0.01 288 | 0.01 383 | 0.01 238 | 0.01 317
50| 20| 0.01 9613 | 0.00 6855 | 0.00 7772 | 0.01 8326
75| 35| 0.01 10000 | 0.01 10000 | 0.01 10000 | 0.01 8326
100 | 50 | 0.01 10000 | 0.01 10000 | 0.01 10000 | 0.01 10000
150 | 75| 0.01 10000 | 0.01 10000 | 0.01 10000 | 0.01 10000
200 | 100 | 0.01 10000 | 0.01 10000 | 0.01 10000 | 0.01 10000
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© Small Detour: Portfolio Problems
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Nonseparable problems

@ What happens if the problem if nonseparable?
min  xT Qx + gx + ¢y
Ax+ By > b (35)
/i}/iSXiSUiYi’ )/ie{O’l} izl""?”
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min  x" Qx + gx + cy
Ax+ By > b (35)
/i}/iSXiSUiYi’ yi€{071} izl?"'?”

@ Even assuming Q@ = 0 = o.f. convex, (33) cannot be used

e However, a dirty trick was proposed in our 13

min x"Dx+z"(Q — D)z + gx +cy
Ax+By>b , z=x (36)
Ii}/iéxiguiyia yi6{071} i:]-v"'an

for non-negative diagonal D € R"" such that Q — D = 0
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for non-negative diagonal D € R"" such that Q — D = 0

@ Move nonseparability to new variables z, let D “as large as possible”
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Nonseparable problems

@ What happens if the problem if nonseparable?

min  x" Qx + gx + cy
Ax+ By > b (35)
/i}/iSXiSUiYi’ yi€{071} izl?"'?”

@ Even assuming Q@ = 0 = o.f. convex, (33) cannot be used

e However, a dirty trick was proposed in our 13

min x"Dx+z"(Q — D)z + gx +cy
Ax+By>b , z=x (36)
Ii}/iéxiguiyia yi6{071} i:]-v"'an

for non-negative diagonal D € R"" such that Q — D = 0

@ Move nonseparability to new variables z, let D “as large as possible”

@ D can be chosen e.g. as \pin(Q)/
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Nonseparable applications

@ Mean-Variance problem with min and max buy-in thresholds

min {XTQX

ex=1, ux>p,
lyi <xi <uyi, yi€{0,1} i=1,...,n

1 = expected return, Q = covariance matrix, p = desired return
[, u = min, max buy-in thresholds

@ Real-world requirement, almost no structure = good for testing
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Nonseparable applications

@ Mean-Variance problem with min and max buy-in thresholds

min {XTQX

ex=1, ux>p,
lyi <xi <uyi, yi€{0,1} i=1,...,n

1 = expected return, Q = covariance matrix, p = desired return
[, u = min, max buy-in thresholds

@ Real-world requirement, almost no structure = good for testing

e Dirty trick + (33) improve lower bounds a lot
... but not enough for routinely solving large instances

...although a lot better than Cplex

@ Maybe due to a wrong choice of D?
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osing D via SDP

@ Assuming tr(D) the relevant metric, the “largest” D solves'*
max { S idic Q=" di(eie])=0,d>0 }

(37)

min { tr(QX) : diag(X)>e, X =0 }

dual pair of SemiDefinite (= convex = easy) Problems

14F., C. Gentile “SDP Diagonalizations and Perspective Cuts for a Class of Nonseparable MIQP", Operations Research
[ etters, 2007
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min { tr(QX) : diag(X)>e, X =0 }
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@ Several, efficient, open-source SDP codes
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Choosing D via SDP

@ Assuming tr(D) the relevant metric, the “largest” D solves'*

max { Sy dic @=Y7, di(eie])=0,d>0 }

(37)
min { tr(QX) : diag(X)>e, X =0 }
dual pair of SemiDefinite (= convex = easy) Problems
@ Several, efficient, open-source SDP codes
@ Interesting relaxation: removing d > 0 in the primal gives
min { tr(QX) : diag(X)=e, X =0 } (38)

e d* > 0 anyway in all our tests
e most often faster to solve in practice by all codes

e constant trace = max eigenvalue problem, specialized approaches
(SBundle)

14F., C. Gentile “SDP Diagonalizations and Perspective Cuts for a Class of Nonseparable MIQP”, Operations Research
L etters, 2007
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Choosing D via SDP (cont.d)

@ Simple idea: compare min-eigenvalue with (37)/(38)
o Trade-off: improvement in “size” of D versus running time
o Different SDP solvers, different instances

e Improving tr(D) = better cuts = better bounds?

@ Notes:

e new approach works even if \,;,(Q) =0

e could use weighted objective function wd

(but how to choose weights w?)

o funny coincidence: (38) is the SDP relaxation of Max-Cut

(maximizing, i.e., with “—Q")

A. Frangioni (DI — UniPi) Solving Unit-Commitment problems ROADEF 2008 64 / 77



@ 30 randomly-generated instances for each n € {200, 300, 400}
e u; € [0.002,0.01], /; € [0.075,0.125], u; € [0.375,0.425] (uniformly)

1
5P.M. Pardalos, G.P. Rodgers “Computing Aspects of a Branch and Bound Algorithm for Quadratic Zero-One

Programming” Computing, 1990
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@ 30 randomly-generated instances for each n € {200, 300, 400}
e u; € [0.002,0.01], /; € [0.075,0.125], u; € [0.375,0.425] (uniformly)
e Q = well-known random generator®®

@ Parameters of the generator heavily impact dominance index

Qi — > ii |Qj
S:average{ %ﬁé‘ il : izl,...,n}

which in turn heavily impacts effectiveness of perspective cuts

e For each n, three classes of instances (10 each):
e "+" instances, S &~ 0.6 (diagonally dominant)
e “0" instances, S & 0 (diagonally quasi-dominant)

e “—" instances, S &~ —0.5 (not diagonally dominant)

1
5P.M. Pardalos, G.P. Rodgers “Computing Aspects of a Branch and Bound Algorithm for Quadratic Zero-One
Programming” Computing, 1990
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SDP codes

o Five open-source standalone (no Matlab) SDP codes:
CSDP 4.9, DSDP 5.6, SBmethod 1.1.3, SDPA 6.0, SDPLR 1.02
http://www-user.tu-chemnitz.de/ helmberg/semidef.html
(C. Helmberg's SDP page)
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SDP codes

o Five open-source standalone (no Matlab) SDP codes:
CSDP 4.9, DSDP 5.6, SBmethod 1.1.3, SDPA 6.0, SDPLR 1.02
http://www-user.tu-chemnitz.de/ helmberg/semidef.html
(C. Helmberg's SDP page)

e Min-Eigenvalue solved by eig() of octave 2.1 (+ sorting)

® dmax, dmin, davg = ratio w.r.t. Apmin(Q)

e "“>" full version (37), “=" relaxation (38
(except SBundle which can only solve “=")

@ Running times on a bi-Opteron 246 processor, 2Gb RAM, Linux, gcc.
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Comparison of SDP codes (only three)

ME CSDP DSDP SB

dmax dmin davg > — > - —
200" | 1.96 0.97 1.47 | 0.13 3.12 2.98 1.86 0.10 23.77
200° | 1.93 0.90 1.41 | 0.13 3.03 2.99 1.87 0.10 16.39
200 [ 1.86 0.87 1.37 | 0.13 3.00 2.95 1.86 0.10 16.58
3007 | 1.97 0.97 147 | 0.23 | 10.54 9.84 492 0.26 69.13
300° | 1.93 091 1.42 | 0.23 | 1091 9.55 499 0.26 46.01
3000 | 1.69 0.89 1.29 | 0.23 | 10.91 9.62 5.10 0.26 41.82
4007 | 1.98 0.97 147 | 039 | 31.03 29.28 | 10.56 0.52 | 146.07
400° 193 093 143|039 | 3724 31.27 | 10.86 0.52 94.62
400~ | 1.87 089 138 | 039 | 36.77 31.61 | 10.75 0.52 90.07
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Comparison of SDP codes (only three)

ME CSDP DSDP SB

dmax dmin davg > — > - —
200" | 1.96 0.97 1.47 | 0.13 3.12 2.98 1.86 0.10 23.77
200° | 1.93 0.90 1.41 | 0.13 3.03 2.99 1.87 0.10 16.39
200 [ 1.86 0.87 1.37 | 0.13 3.00 2.95 1.86 0.10 16.58
3007 | 1.97 0.97 147 | 0.23 | 10.54 9.84 492 0.26 69.13
300° | 1.93 091 1.42 | 0.23 | 1091 9.55 499 0.26 46.01
3000 | 1.69 0.89 1.29 | 0.23 | 10.91 9.62 5.10 0.26 41.82
4007 | 1.98 0.97 147 | 039 | 31.03 29.28 | 10.56 0.52 | 146.07
400° 193 093 143|039 | 3724 31.27 | 10.86 0.52 94.62
400~ | 1.87 089 138 | 039 | 36.77 31.61 | 10.75 0.52 90.07

@ On average 50% better than \p,;,, worst case ~ few % worse
@ Results getting worse as @ less diagonally dominant
@ Times not much worse using right code and model

@ Is it worth?
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Impact on the B&C approach

SDP ME Cplex

time d.gap r.gap | time d.gap r.gap | p.gap d.gap r.gap
2007 164 1.14 904 6.48 | 0.14 4533 85.63
200° 161 2.14 320 6.10 | 0.38 51.27 84.47
200~ | 1902 3.65 | 3306 0.02 6.69 | 0.24 42.09 78.88
300" 818 4.54 | 2061 562 | 0.41 64.68 92.01
300° 856 1.97 | 1715 6.28 | 0.43 5991 87.87
300 | 1709 2.68 | 2797 0.05 7.04 | 053 4511 78.77
4007 | 2264 479 | 4756 0.10 6.15 1.03 61.47 89.06
400° | 4378 0.10 229 | 7421 0.16 6.53 1.18 68.68 90.03
400~ | 6311 0.23  3.06 | 6901 0.36 6.49 1.60 65.88 88.47
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Impact on the B&C approach

SDP ME Cplex

time d.gap r.gap | time d.gap r.gap | p.gap d.gap r.gap
2007 164 1.14 904 6.48 | 0.14 4533 85.63
200° 161 2.14 320 6.10 | 0.38 51.27 84.47
200~ | 1902 3.65 | 3306 0.02 6.69 | 0.24 42.09 78.88
300" 818 4.54 | 2061 562 | 0.41 64.68 92.01
300° 856 1.97 | 1715 6.28 | 0.43 5991 87.87
300 | 1709 2.68 | 2797 0.05 7.04 | 053 4511 78.77
4007 | 2264 479 | 4756 0.10 6.15 1.03 61.47 89.06
400° | 4378 0.10 229 | 7421 0.16 6.53 1.18 68.68 90.03
400~ | 6311 0.23  3.06 | 6901 0.36 6.49 1.60 65.88 88.47

@ root node gap halved+ w.r.t. ME, ~ 1% w.r.t. ~ 80% for Cplex

@ All instances up to n = 300 solved to optimality within 10000s,
Cplex solves none, ME does not solve some

@ Effectiveness worsens as @ less dominant,
could not solve a few 400~ instances
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© A Hybrid Lagrangian-MILP Approach
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A Hybrid Approach

Lagrangian approach provides very good lower bounds, quickly

but heuristic not so effective and efficient (many (ED), costly)

MILP approach provides very good feasible solutions, quickly

but lower bounds loose, no termination for tight tolerance

4

Why not using both?

Lagrangian bound computed at root node (no heuristic = quick)

Used to stop search as soon as good enough feasible solution found

(admittedly very coarse)
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Results — 0.5%

PCFD, PCFD
NolLB LB NolLB LB

p h gap time | gap time gap time | gap time
10 0 0.28 0.80 | 0.34 0.97 0.30 0.86 | 0.37 1.06
20 0 0.33 3.00 | 0.32 3.60 0.36 251 | 0.36 3.16
50 0 0.18 13.08 | 0.19  27.46 0.19 14.17 | 0.20 16.39
75 0 022 2258 | 0.25 28.82 0.19 36.62 | 0.22  28.05
100 0 020 36.51 | 0.15 41.44 0.17 3431 | 0.16 60.16
150 0 0.12 169.68 | 0.10 148.88 0.11 104.68 | 0.11 136.18

200 0 0.14 235.60 | 0.08 323.36 0.10 183.01 | 0.08 258.57
20 10 0.15 251 | 0.17 4.21 0.30 4.18 | 0.24 6.34
50 20 0.13 1093 | 0.10  26.96 0.10 19.06 | 0.10 1251
7 35 0.03 64.80 | 0.06 59.47 0.05 7055 | 0.10 75.23

100 50 0.04 60.78 | 0.04 4495 0.05 4762 | 0.05 66.61

150 75 0.05 216.33 | 0.02 244.05 0.05 194.10 | 0.04 228.32

200 100 0.03 342.69 | 0.03 253.59 0.02 155.36 | 0.02 217.56

e Sizable relative (although small absolute) increase for small instances

@ No clear positive effect
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Results — 0.1%

PCFD,4 PCFD
NolLB LB NolLB LB
p h gap time | gap time gap time | gap time
10 0 0.10 12.45 | 0.10 12.70 0.10 9.77 | 0.10 9.97
20 0 0.10 1295.28 | 0.10 2201.87 0.10 1169.94 | 0.10 1157.22
50 0 0.09 8279.78 | 0.11 4084.79 0.10 10000.00 | 0.11 4014.01
75 0 0.07 10000.00 | 0.09 3974.94 0.07 10000.00 | 0.09 2286.03
100 0 0.07 10000.00 | 0.09  289.01 0.06 10000.00 | 0.09 94.56
150 0 0.05 10000.00 | 0.06 193.38 0.05 10000.00 | 0.08  207.86

200 0 0.05 10000.00 | 0.07  337.33 0.06 10000.00 | 0.07  315.88
20 10 0.07 31.38 | 0.09 14.31 0.07 41.08 | 0.08 30.01
50 20 0.02 41.86 | 0.05 27.22 0.02 47.62 | 0.04 12.92
75 35 0.03 64.45 | 0.06 57.95 0.04 81.77 | 0.06 71.03

100 50 0.03 40.61 | 0.04 41.42 0.04 60.20 | 0.05 62.85

150 75 0.02 23299 | 0.02  235.04 0.04 19152 | 0.04  203.18

200 100 0.03 240.38 | 0.03  231.35 0.02 198.25 | 0.02  206.66

@ Huge positive impact on large thermals, some effect on small hydro

e Gap worsens somewhat (which is expected)
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Results — 0.05%

PCFD,4 PCFDo
NoLB LB NoLB LB

p h gap time | gap time gap time | gap time
10 0 0.06 15.42 | 0.06 15.72 0.06 11.63 | 0.06 11.85
20 0 0.06  2473.11 | 0.06  2440.86 0.06  2470.49 | 0.06 2499.97
50 0 0.09 10000.00 | 0.09  8113.35 0.09 10000.00 | 0.10 8489.08
75 0 0.09 10000.00 | 0.09 10002.22 0.08  8256.79 | 0.08 8259.00
100 0 0.07 10000.00 | 0.07  8018.89 0.06 10000.00 | 0.06 6538.84
150 0 0.05 10000.00 | 0.06  5151.71 0.05 10000.00 | 0.06 6151.20

200 0 0.05 10000.00 | 0.05  6255.99 0.06 10000.00 | 0.06 6271.77
20 10 0.06 73.26 | 0.06 73.00 0.06 71.19 | 0.06 68.40
50 20 0.01 623.95 | 0.02 34.44 0.01 269.34 | 0.03 44.53
7% 35 0.02 177.50 | 0.03 59.37 0.02 12485 | 0.03  100.47

100 50 0.02 438.39 | 0.04 39.45 0.02 665.37 | 0.05 60.00

150 75 0.02  1669.30 | 0.02 224.67 0.01 114410 | 0.04 201.31

200 100 0.02  1082.41 | 0.03 238.81 0.01 451.98 | 0.02  202.94

@ Diminishing but still positive on large thermals, especially PCFD

@ Huge positive impact on all but the smallest hydro
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Results — 0.01%

PCFD,4 PCFD o
NolLB LB NolLB LB

p h gap time | gap time gap time | gap time
10 0 0.02 16.66 | 0.02 16.84 0.02 12.49 | 0.02 12.80
20 0 0.02  3547.24 | 0.02  3699.26 0.02 391450 | 0.02  3946.51
50 0 0.09 10000.00 | 0.09 10001.25 0.09 10000.00 | 0.09 10001.25
75 0 0.09 10000.00 | 0.09 10002.22 0.08 10000.00 | 0.08 10002.22
100 0 0.07  10000.00 | 0.07 10003.68 0.06 10000.00 | 0.06 10003.68
150 0 0.05 10000.00 | 0.05 10006.14 0.05 10000.00 | 0.05 10006.14

200 0 0.05 10000.00 | 0.05  8248.37 0.06 10000.00 | 0.06 10008.52
20 10 0.02 268.49 | 0.02 263.40 0.02 248.75 | 0.02 255.95
50 20 0.00  7285.00 | 0.01 841.26 0.01  6495.96 | 0.01 121.86
7 35 0.01 10000.00 | 0.01  5033.34 0.01 10000.00 | 0.01  5045.42

100 50 0.01 10000.00 | 0.01  1198.73 0.01 10000.00 | 0.01  5789.69

150 75 0.01 10000.00 | 0.01  3376.87 0.01 10000.00 | 0.01  1145.61

200 100 0.01 10000.00 | 0.01  1182.27 0.01 10000.00 | 0.01 463.46

e No longer any impact (thus, slightly negative) on thermals

@ Still huge positive impact on all but the smallest hydro
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Conclusions (general)

You get to meet all sorts, in this line of work

@ In this talk, you have seen algorithms for:
e quadratic, convex, mixed-integer
e convex, nondifferentiable
o linear, network
o shortest part (dynamic programming)
e nonlinear, convex, (two different) special structure(s)
e combinatorial, heuristic
o linear, mixed-integer
o semidefinite, convex

each one with a definite and useful role

@ Good methodologies bring good results to interesting problems

interesting problems motivate the development of good methodologies
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Conclusions (energy problems)

@ Lots of challenging problems in (electrical) energy production

@ Approximated MILP formulations or Lagrangian techniques?

why not both?

@ Some problems on the edge of being routinely solvable

@ Plenty more still extremely difficult:

o short-long term (weekly)

market variants (zonal prices)

long term (water)

uncertainty (prices, weather, accidents, competitors, .. .)

Bring them on! :-)
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