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The electrical system, monopolistic version

Come era organizzato

import

 self-producers

 production

 distribution

 sales

 coordination
 users

 state-owned

monopolistic

producer

export
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The electrical system, free-market version
Come sarà organizzato

 import

 (self)producer1

 producer2

distribution network

 large user1

market management

 producerk

 dealer1

 dealer2

 dealerh

 user pool1

 large userp

residential users

 export
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Why the electrical system is complex

Two simple reasons:

electricity cannot be stored ⇒ must be produced exactly when needed

+

electricity does not go where you say, it goes where Kirchoff says

⇓
The electrical system must be

constantly managed in real time to satisfy the demand while
respecting the complex technical constraints of
generating units and of the distribution network
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Generating units

Generating units (circa 2004):
type no. net installed power (MW) avg. peak

producers self-producers total

hydro 1981 20.177 337 20.514 13.450

thermal 1818 50.069 4.545 54.614 34.750

geothermal 37 666 666 550

solar+wind 99+10 783 783 200

total 3945 71.695 4.881 76.576 48.950

A large variety:
thermal units: different technologies (turbogas, combined cycle, . . . )
and sizes (10 – 500+ MW)

hydro units: different types (flowing water, reservoirs, cascaeds, . . . )
and sizes (1 – 200+ MW)

self-producers, co-generation (refineries, foundries, sugar, . . . )

Too few: daily imports for 3 – 6.5 GW
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The electrical network

Electrical network (multi-level):

21.885 km VHV (9.880 km 380
kV + 12.005 km 220 kV)

44.800 km HV (150 – 120 kV)

21.700 km RTN + 23.100 km
others

?????? km MV + LV

Too little capacity ⇒ zonal prices
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The electrical market(s)

Three markets, to be solved in sequence and influencing each other:
day-ahead market (main), network constrained (zonal prices)

adjustment market (power swap between units)

auxiliary services market (1/2/3–ary active reserve, network security)

Plus bilateral contracts, misc stuff (CIP6, renewables, . . . )

To be cleared:

daily

in a few hours

with nontrivial
models
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The electrical market (cont.d)

Worth about 40 Me / day

. . . the market value, but how much a black-out day costs?

About 15 Ge/ year (that’s 1% of GNP)

About 5 times as much as the whole TLC sector

Importance and complexity can only increase:

energy costs increasing

CO2, emissions constraints

green/black certificates

small-scale, non-continuous production (solar, wind, hydrogen, . . . )

All sorts of thorny political/technical issues (hydrogen, nuclear, . . . )
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The Hydro-Thermal Unit Commitment problem

Given:

a discretized (short) time horizon T (day/week, 60/15 minutes)

a (forecasted) energy demand d̄t for t ∈ T

Elementi di complessità nella gestione: la curva di domanda

! Forte variabilità oraria e stagionale

la curva superiore è la domanda totale, quella inferiore la produzione nazionale; dati 2002 GRTN — www.grtn.it

! Dipendenza da fattori umani (economia, ...) e naturali (meteorologia, ...)

! Dipendenza da eventi sociopolitici diversi (santo patrono, scioperi, partite della nazionale, ...)
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The Hydro-Thermal Unit Commitment problem (2)

A set P of thermal units (coal, gas, oil, nuclear, . . . )

For each i ∈ P

nonlinear energy cost (typically quadratic), startup cost

maximum and minimum (if committed) power output

constraints on how often the unit can be brought on/off line

constraints on maximum increase/decrease of power output

others (valve points, must run/must-not run, . . . )

A set H of hydro (cascade) units

For each j ∈ H

no energy cost (long-term cost of water incorporated as bounds)

inflows, maximum and minimum basin levels, cascade topology

maximum power output

others (nonlinear effects of water head, nonzero technical minima,
cavitation points, pumping, . . . )
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The Hydro-Thermal Unit Commitment problem (3)

Transmission constraints

simplest form: bus

actual topology: Direct Current (linear), Alternating Current
(nonlinear)

Reliability constraints

rotating reserve constraints

other (stochastic demand, . . . )

Operate the available units over T to satisfy demand at minimal cost

Typical of monopolistic regime

Useful in free markets

actual scheduling after market(s) clears

optimal bidding strategy
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A MIQP Formulation

Main variables:

ui
t ∈ {0, 1}: ON/OFF state of thermal unit i ∈ P

pi
t ∈ R+: power level of thermal unit i ∈ P

qj
t ∈ R+: water discharge for hydro unit j ∈ H(h) for cascade h ∈ H

Objective function:

f (p, u) =
∑
i∈P

c i (pi , ui )=
∑
i∈P

(
s i (ui ) +

∑
t∈T

(
f i
t (pi

t) + c i
tu

i
t

))
(1)

convex energy cost, usually quadratic (f i
t (pi

t) = ai
t(pi

t)2 + bi
tp

i
t , ai

t > 0)

time-dependent start-up costs s i (ui ) (only some extra constraints with
nifty formulation1)

1
M.P. Nowak and W. Römisch “Stochastic Lagrangian Relaxation Applied to Power Scheduling in a Hydro-thermal System

Under Uncertainty”, Annals of Operations Research, 2000
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A MIQP Formulation (2)

Thermal units:

Maximum and minimum power output:

p̄i
minu

i
t ≤ pi

t ≤ p̄i
maxu

i
t t ∈ T (2)

Ramp-up constraints (∆i
+ = ramp-up threshold):

pi
t ≤ pi

t−1 + ui
t−1∆i

+ + (1− ui
t−1)̄l i t ∈ T (3)

Ramp-down constraints (∆i
− = ramp-down threshold):

pi
t−1 ≤ pi

t + ui
t∆i
− + (1− ui

t)ūi t ∈ T (4)

Min up-time constraints (τ i
+ = min up-time):

ui
t ≤ 1− ui

r−1 + ui
r t ∈ T , r ∈ [t − τ i

+, t − 1] (5)

Min down-time constraints (τ i
− = min down-time):

ui
t ≥ 1− ui

r−1 − ui
r t ∈ T , r ∈ [t − τ i

−, t − 1] (6)
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A MIQP Formulation (3)

Hydro units:

Maximum discharge:

0 ≤ qj
t ≤ q̄j

max t ∈ T (7)

Maximum and minimum reservoir volume:

v̄ j
min ≤ v j

t ≤ v̄ j
max t ∈ T (8)

Water conservation (w̄ j
t = inflow, w j

t = spillage, tkj = time delay):

v j
t − v j

t−1 = w̄ j
t − w j

t − qj
t +

∑
k∈S(j)

(
qk
t−tkj

+ wk
t−tkj

)
t ∈ T (9)

System-wide constraints:

Demand satisfaction (αj = constant power-to-discharged water):∑
i∈P

pi
t +

∑
h∈H

∑
j∈H(h)

αjqj
t = d̄t t ∈ T (10)
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Results of the MIQP Formulation

Can you solve (1)—(10) (as it is) with Cplex? . . .

Not really

p first best gap unsolved

20 24 2229 0.29
50 249 1491 0.22
75 447 1514 0.10

100 940 2327 0.13
150 2348 2483 0.24 1
200 3600 3600 * 5

For larger problems, no feasible solutions found in 1h

Gap w.r.t. tight Lagrangian bound, inherent gap vastly worse

Randomly-generated, realistic ramp-constrained UC instances

http://www.di.unipi.it/optimize/Data
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Lagrangian Relaxation

Denote (2)—(6) as U i , (7)—(9) as Hh

Lagrangian Relaxation of demand constraints (10), multipliers λ

The problem decomposes by unit:

φ(λ) =
∑
i∈P

φ1
i (λ) +

∑
h∈H

φ2
h(λ) +

∑
t∈T

λt d̄t

φ1
i (λ) = min

{
c i (pi , ui )− λpi : (pi , ui ) ∈ U i

}
(11)

φ2
h(λ) = min

{
− λ

∑
j∈H(h) α

jqj : [qj ]j∈H(h) ∈ Hh
}

(12)

Lagrangian Dual:
max { φ(λ) : λ ∈ Rn } (13)

(n = |T |) efficiently solvable e.g. by Bundle methods2 . . .
provided φ(λ) is efficiently computable

2
F. “Generalized Bundle Methods” SIAM Journal on Optimization, 2002
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Solving the subproblems

Hydro Single-Unit Subproblems (12): Network Flows algorithms

Thermal Single-Unit Subproblems (11): Dynamic Programming . . .
if there are no ramping constraints (3)–(4)

Trick: optimal power level (if unit on) computable a-priori:

p̃i
t = argmin { f i

t (p)− λtp : pmin
i ≤ p ≤ pmax

i }

Algorithmic Approaches (2)

The Single-Unit Subproblem can be solved by dynamic programming

! fixed start-up costs: state-space graph G V A

OFF

0

ON1

3 4 5 d1 2

" start-up costs on tOFF tON arcs

7

State-space graph G = (V ,A) for fixed start-up costs (A = O(n)):
start-up costs on (tOFF, tON) arcs

cost zit(λt) = f i
t (p̃i

t)− λt p̃
i
t on tON nodes

set of initial arcs depending on initial conditions
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Solving the (thermal) subproblems
Algorithmic Approaches (3)

! history-dependent start-up costs:

ON1

0

OFF!2

OFF!4

OFF!3

3 52 41 d6 7

8

State-space graph for Time-dependent start-up costs:

Nodes OFF−h: unit is off, and has been for the last h hours

Time-dependent start-up costs on (tOFF−h, tON) arcs

Cost zit(λt) on tON nodes as before

Complexity O(nk), where k is maximum cooling time
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Lagrangian Heuristic

Solving (13) provides a lower bound on the original problem . . .

but not only; also valuable primal information is generated 3

At every iteration:

Lagrangian multipliers λ̄

primal solution [p̄, ū, q̄] of (11)–(12), ū integer

“convexified” primal solution [p̃, ũ, q̃], almost feasible to (10)

For fixed u, (2)—(10) is an easy convex quadratic program
(called the Economic Dispatch (ED) problem)

One can fix u = ū and solve (ED); if it is feasible, a solution is
obtained . . . however, almost always ū is undercommitted

3
F. “About Lagrangian Methods in Integer Optimization” Annals of Operations Research, 2005
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Lagrangian Heuristic (cont.d)

Fix q = q̃, reduce demand d̃t = d̄t −
∑

h∈H

∑
j∈H(h) α

j q̃j
t

Greedy heuristic to find ût feasible for residual demand d̃t :

initialize û = ū

for all time instants t, in increasing order

compute ū−t =
∑

i∈P pi
minû

i
t ū+

t =
∑

i∈P pi
max û

i
t

if d̃t > ū+
t then turn on some units

if d̃t < ū−t then turn off some units
(check min up- and down-constraints from partial solution)

Fix u = û, solve (ED) to find p̂, q̂

Lagrangian information used:

q̃ to scale demand (modifying hydro schedule difficult)

ū as the “backbone” of the feasible solution

ũ and λ̄ to define the order for turning on/off units
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Results (no ramp constraints)
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Good dual convergence, good primal solution = small gap (<< 1%)4

Fast computing time (few minutes, AMPL code, 100+ units)

All pieces need to fit together (dual convergence, primal solutions)

4
A. Borghetti, F., F. Lacalandra, C.A. Nucci “Lagrangian Heuristics Based on Disaggregated Bundle Methods for

Hydrothermal Unit Commitment”, IEEE Transactions on Power Systems, 2003
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Results (ramp constraints)

The approach can be used even in presence of ramp constraints
(lower bound valid, ramp constraints easily inserted in the (ED))

Is it effective?

Not really

p h time iter sol gap
20 0 6 202 1 11.30(3)
50 0 16 247 1 5.25 (3)
75 0 22 278 1 9.25

100 0 29 285 1 8.69
150 0 54 341 1 7.66
200 0 78 369 1 8.53

20 10 7 206 3 3.80
50 20 16 231 6 0.63
75 35 28 274 5 1.73

100 50 38 301 1 1.86
150 75 71 318 1 4.10 (1)
200 100 90 305 2 4.38
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Extension to the Ramp-Constrained Case

With ramp constraints, the basic trick just don’t work any longer:

ramp rate limits link pi
t variables for different t together

Several attempts have been made to extend the original approach5:

discretizing the power space + using the standard DP procedure

huge state-space graph ⇒ costly, approximate solution, invalid bound

“Lagrangianize” ramp rate constraints (possibly two-level methods)

many multipliers ⇒ slow, weak bound, no feasible solutions

using an off-the-shelf (MIQP) solver (works for general models)

impractical for large n (as we will see)

Piecewise-linearizing the objective function6

approximate solution, cost growing as approximation improves

The problem still looks easy, should be solvable . . . but how?

5
F. Zhuang, F.D. Galiana “Towards a more rigorous and practical unit commitment by Lagrangian relaxation” IEEE

Transactions on Power Systems, 1988
6

W. Fan, X. Guan, Q. Zhai “A new method for unit commitment with ramping constraints” Electric Power Systems
Research, 2002
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t variables for different t together

Several attempts have been made to extend the original approach5:

discretizing the power space + using the standard DP procedure

huge state-space graph ⇒ costly, approximate solution, invalid bound

“Lagrangianize” ramp rate constraints (possibly two-level methods)

many multipliers ⇒ slow, weak bound, no feasible solutions

using an off-the-shelf (MIQP) solver (works for general models)

impractical for large n (as we will see)

Piecewise-linearizing the objective function6

approximate solution, cost growing as approximation improves

The problem still looks easy, should be solvable . . . but how?
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A Dynamic Programming Algorithm for (1UC)

First step: redefine the state-space graph

Node (h, k) denotes unit ON from h to k (endpoints included)

Not all nodes exist (k − h + 1 ≥ τ+)

Arcs between nodes (h, k) and (r , q) with r ≥ k + τ− + 1

Arcs from s to (1, k) if unit ON at time 0

Arcs from s to (h, k) with h + τ0 − 1 ≥ τ− if unit OFF at time 0

Start-up cost on arcs, depending on the OFF time

On nodes (h, k), optimal dispatching cost z∗hk plus (h − k + 1)ci

Additional arcs with null cost from all nodes to d
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The new space-state graph

O(n4) arcs, but structured into levels Vk = { (h, k) : 1 ≤ h ≤ k }
All nodes in Vk have the same set of adjacent nodes

The cost of the arc between (h, k) and (r , q) only depends on k and r

Increasing k , select best node of Vk ⇒ O(n3) if z∗hk known
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The Restricted Economic Dispatch Problem (EDhk)

Convex problem with specially-structured linear constraints

z∗hk = min
∑k

t=h f t(pt) (14)

pmin ≤ pt ≤ pmax h ≤ t ≤ k (15)
ph ≤ l̄ (16)

pt+1 ≤ pt + ∆+ t = h, . . . , k − 1 (17)
pt ≤ pt+1 + ∆− t = h, . . . , k − 1 (18)

pk ≤ ū (19)

Solving it should be easy . . .

but how, exactly?

Simple idea: parametric problem on the power at time k

zhk(p̄) = min
{ ∑k

t=h f t(pt) : (15) , (16) , (17) , (18) , pk = p̄
}

Slightly simpler for h = k (base case)

zhk(p̄) = min{ f h(ph) : (15) , (16) , ph = p̄ }
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Solving (EDhk)

Well-known general result: zhk(p̄) convex (a value function)

Something more can be proven7: a compact representation exists

Proposition

∃v ≤ 2(k − h), lk ≤ m0 ≤ . . . ≤ mv+1 ≤ uk s.t. dom(zhk) = [m0,mv+1],

zhk(p) = z i (p) if p ∈ [mi ,mi+1]

where each z i is the sum of at most k − h + 1 functions f t for t ∈ [h, k].

Furthermore, zh(k+1) can be efficiently constructed given . . .

zhk and p∗hk = argmin{ zhk(p) : p ∈ [m0,mv+1] } solving (EDhk)

. . . solving (EDh(k+1)) (finding p∗h(k+1)) while you are at that

7
F., C. Gentile “Solving Nonlinear Single-Unit Commitment Problems with Ramping Constraints” Operations Research,

2006
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Constructive proof
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mv+1mvm2m1 ...

=
pk

m0

phk*pk(p)*
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!k-!k+
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_ mv+1

_
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(a)
mv+1mvm2m1 ...

pk
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_

p
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zhh(p̄) = f h(p̄)

zh,k+1(p̄) = f k+1(p̄) +
min zhk(p)
p ∈ [m0,mv+1]
p ∈ p̄ + [−∆k

+,∆
k
−]

p∗k(p̄) = Proj(p∗hk , p̄+[−∆k
+,∆

k
−])

zh,k+1(p̄) = f k+1(p̄)+zhk(p∗k(p̄))
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A Dynamic Programming Algorithm for (EDhk)

Actually a Dynamic Programming Algorithm for (EDhk)

Complexity depends on min{ zhk(p) : p ∈ [a, b] } (ultimately on f t)

O(1) if f t quadratic (sum of quadratic functions is quadratic)

O(k) to solve (EDhk) having solved (EDh(k−1))

O(k2) to solve all (EDhk) for h ≤ k

O(n3) for solving the overall (1UC) subproblem, after which

O(n) backward visit computes optimal dual solutions

Easily extended to more complex situations:

Any fancy startup cost formula depending on (h, k) and (r , q)

Unit data changing every time period (e.g., external temperature)

Power level clock faster than ON/OFF one (e.g., 15m vs. 1h)
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Results — (1UC) only

100 thermal units, 4 representative iterations of the Lagrangian

Our DP algorithm vs. Cplex to solve (1UC) (time limit to 300 sec.)

DP CPLEX
n iter. time st.dev. time st.dev. gap% fail
24 1 .001 3e-3 0.05 0.05 0

12 .002 4e-3 0.08 0.05 0
16 .002 4e-3 0.08 0.05 0
23 .002 4e-3 0.08 0.05 0

96 1 0.04 2e-3 10.74 41.99 1
12 0.04 3e-3 17.57 50.93 0.06 2
16 0.04 2e-3 32.64 76.87 0.02 6
23 0.04 3e-3 32.21 76.12 0.03 6

168 1 0.20 6e-3 47.73 103.68 1.09 13
12 0.20 6e-3 117.94 142.61 1.20 35
16 0.20 5e-3 117.49 142.11 0.50 35
23 0.20 6e-3 117.46 141.87 1.23 35
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Results — the whole Lagrangian Heuristic

RCDP UDP
p h time iter sol gap time iter sol gap ∆lb

20 0 8 189 34 0.44 6 202 1 11.30(3) 2.49
50 0 17 195 33 0.26 16 247 1 5.25 (3) 1.48
75 0 30 206 33 0.38 22 278 1 9.25 2.38

100 0 46 213 21 0.48 29 285 1 8.69 2.21
150 0 72 277 23 0.20 54 341 1 7.66 2.31
200 0 134 317 67 0.06 78 369 1 8.53 2.46

20 10 16 162 159 0.22 7 206 3 3.80 1.50
50 20 41 165 146 0.07 16 231 6 0.63 1.19
75 35 89 209 166 0.02 28 274 5 1.73 1.19

100 50 135 218 143 0.04 38 301 1 1.86 1.27
150 75 222 223 164 0.01 71 318 1 4.10 (1) 1.20
200 100 353 244 192 0.05 90 305 2 4.38 1.25

Actually quite good8 (modern PC, C++ code)

Can be improved with more sophisticated logic for greedy choice9

8
F., C. Gentile, F. Lacalandra “Solving Unit Commitment Problems with General Ramp Contraints”, IJEPES, 2008

9
F., C. Gentile, F. Lacalandra “New Lagrangian Heuristics for Ramp-Constrained Unit Commitment Problems”

Proceedings ORMMES 2006
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The Day-ahead market

Organized by the Market Operator (MO)

Revolves around bids = (price, quantity) pairs

Day-ahead market: for each of the 24 hours of tomorrow:

each generator submits to the MO selling bids (spj , sqj), j ∈ S

each buyer submits to the MO buying bids (bpi , bqi ), i ∈ B

the MO solves the Market Clearing Problem

max
∑
i∈B

bpibi −
∑
j∈S

spjsj (20)

0 ≤ bi ≤ bqi i ∈ B (21)

0 ≤ sj ≤ sqj j ∈ S (22)∑
i∈B

bi =
∑
j∈S

sj (23)
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The (dual) Market Clearing Problem

. . . or equivalently its dual

min
∑
i∈B

bqiµi +
∑
j∈S

sqjηj (24)

µi + π ≥ bpi µi ≥ 0 i ∈ B (25)

ηj − π ≥ −spj ηj ≥ 0 j ∈ S (26)

which reads

min
π

∑
i∈B

bqi max{bpi − π, 0} +
∑
j∈S

sqj max{π − spj , 0} (27)

π∗ = market clearing price

Complementary slackness ⇒

spj > π∗ ⇒ sj = sqj

bpi < π∗ ⇒ bi = bqi
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Graphical interpretation

!

buying
selling

!

p

*

The “X” marks the spot . . .
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Complications in the Electrical Market

Minor complications:
anelastic demand: just a fixed RHS in (23)

b̄ +
∑

i∈B bi =
∑

j∈S sj

but this may cause π∗ = +∞ (need a price cap)

network constraints (DC version): K zones, L link between zones

ml ≤
∑

k∈K Sk
l

(∑
i∈I (k) bi −

∑
j∈J(k) sj

)
≤ Ml l ∈ L

ml and Ml : maximum and minimum current on link l

I (k)/J(k): buying/selling bids on zone k

Sk
l : sensitivity of link l to injection in zone k

⇒ zonal prices π∗k

Major complications:

AC network constraints (highly nonlinear, nonconvex)

PUN: unique buying price for all zones (an ugly mess)
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I (k)/J(k): buying/selling bids on zone k

Sk
l : sensitivity of link l to injection in zone k

⇒ zonal prices π∗k

Major complications:

AC network constraints (highly nonlinear, nonconvex)

PUN: unique buying price for all zones (an ugly mess)
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Unit Commitment in the Electrical Market

Major simplifying assumptions:

1 all demand is anelastic

2 no network constraints

3 competitors’ supply curve known
(estimate from past data works)

VUCETIC et al.: DISCOVERING PRICE-LOAD RELATIONSHIPS IN CALIFORNIA’S ELECTRICITY MARKET 283

TABLE II
COEFFICIENT OF DETERMINATION OF GLOBAL LINEAR MODEL AND NEURAL

NETWORK MODEL FOR DIFFERENT VARIABLES SETS

Fig. 2. Mean errors one standard deviation for (a) 24 hours of price
prediction, (b) 7 days of price prediction, (c) 24 hours of load forecasting,
(d) 7 days of load forecasting.

as a measure of predictive capabilities of different regression

models.

As can be seen, information of load modeled as a third order

polynomial and yesterday’s MCP is adequate for successful

MCP prediction. The large influence of yesterday’s MCP on

today’s MCP is a good indicator that market behavior can be

considered as relatively stable over shorter periods of time;

however, it does not provide insight into the reasons for periods

of extremely unusual prices.

2) Hidden Nonlinearities: Hidden nonlinearities not cap-

tured by linear functional form (3) are sought in the following

experiment. Since neural networks [10] are known to be able

to represent highly nonlinear relationships in the data, neural

networks with five hidden nodes have been trained to predict

the hourly MCP for 3 different sets of input variables, as shown

in Table II. As can be seen, no significant improvement is

achieved by using neural networks over the simpler linear

functional form. Further, the third order polynomial appears

to be sufficient to capture the relationships between MCP and

forecasted load.

3) Influence of Hour and Day on Price Prediction: In load

forecasting, there are relatively well-understood load patterns

(peak and off-peak hours, weekdays vs. holidays and week-

ends, unusually hot weather, and so on). This knowledge is

critical for successful load forecasting. In the following exper-

iments, the existence of price patterns with respect to hour or

Fig. 3. An example of the sample supply–demand curve of California’s
electricity market for Jan. 25, 1999, 6 P.M.

TABLE III
EVOLUTION OF PREDICTION ACCURACY BY INTRODUCING NEW

COMPETING MODELS

day is examined, and the results are compared to load fore-

casting. The prediction model (3) is estimated with input vari-

ables on the complete available data set.

Fig. 2(a) and (b) show mean errors and one standard deviation

away from of the 24 hour and 7 day predictions, respectively.

It is obvious that the obtained prediction model does not show

significant bias for any particular hour or day, which indicates

that such information is not useful for price prediction. To il-

lustrate day and hour influence on load forecasting, a prediction

model of , where is load

at time , is also constructed. The model achieves ,

with errors and deviations shown in Fig. 2(c) and (d). Signifi-

cant bias of the prediction exists both for particular hours and

days, indicating that proper modeling must include information

on hour and day. This highlights a difference between price fore-

casting and load forecasting and can be explained by the shape

of supply–demand curve of the electricity market (Fig. 3).

For the current implementation of the deregulated market,

many consumers are not aware of the high volatility of elec-

tricity price on the market (indeed are not even charged hourly

prices) and so are not motivated to change their consumption

behavior with price. As a consequence, electricity consumption

is influenced more by the patterns of consumer’s behavior, and

very little by the current market price. Time of the day and day

of the week are therefore very useful in modeling and prediction

of load in power systems. On the other hand, the shape of the

supply curve indicates stiff competition among generators for

the right to supply electricity. That is, the competition among

generators almost fully determines the MCP. Influences, such

Optimal bidding strategy10: modify model as

max
∑

t∈T It(pot)(d̄t − pot)−
∑

i∈P c i (pi , ui )

...
...∑

i∈P pi
t +

∑
h∈H

∑
j∈H(h) α

jqj
t+pot = d̄t t ∈ T (28)

where It = inverse of (estimate) competitors’ supply function

10
A. Borghetti, F., F. Lacalandra, C.A. Nucci, P. Pelacchi “Using of a Cost-based Unit Commitment Algorithm to Assist

Bidding Strategy Decisions” Proceedings IEEE 2003 Powerteck Bologna Conference, 2003
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Lagrangian Approach to Optimal Bidding Problem

Relax (28) ⇒ (UC) + one “competitors’ problem” for each t ∈ T
highly nonconvex but univariate

It(pot) piecewise-linear, increasing ⇒
It(pot)(d̄t − pot) piecewise-quadratic, concave ⇒ easy in practice

No problem with lower bound, no problem with UC heuristic . . .
but dire problems with (ED) (large-scale, highly nonconvex)

Trick: (ED) easy if pot kept in the neighborhood of p̃ot where

It(pot)(d̄t − pot) quadratic, concave

As fast as (UC), good gaps (≈ 0.5%) despite higher nonconvexity

Relaxing (1) possible (non entirely trivial, work in progress)

Relaxing (2) hard: strategic bidding with zones (work in progress)

Some artificial (but realistic) results:
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Results (producer has 35% of power)
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If you are large, you can game the market
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Results (producer has 15% of power)
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If you are small, the market rules

A. Frangioni (DI – UniPi) Solving Unit-Commitment problems ROADEF 2008 45 / 77



Lagrangian Approaches: the Good and the Bad

The Good:

efficient, effective, elegant

allow to incorporate fancy constraints, even difficult to model

decomposition + specialized algorithms = scale to very large size

The Bad:

heuristics need be changed whenever the model changes (not so bad11)

subproblems need be changed whenever the model changes (bad,
especially if it takes 20 years)

in general, requires continuous work from OR specialists

⇓
The Ugly: very hard to sell in a real-world environment

What are the alternatives?

11
L. Dubost, R. Gonzalez, C. Lemaréchal “A Primal-proximal Heuristic Applied to the French Unit Commitment Problem”

Mathematical Programming, 2005
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A MILP Formulation

May the problem be the Quadratic part? If so, piecewise-linearize f 12

CARRIÓN AND ARROYO: COMPUTATIONALLY EFFICIENT MIXED-INTEGER LINEAR FORMULATION 1373

Fig. 1. Piecewise linear production cost.

The goal of the unit commitment problem is to minimize
the total operation cost, which is defined as the sum of the
production cost, the startup cost, and the shutdown cost (1). The
production cost is typically expressed as a quadratic function
of the power output, while the startup cost is usually modeled
as a nonlinear (exponential) function of the offline time prior
to the startup [1]. The block of constraints (2) represents power
balances in all periods. Constraints (3) provide spinning reserve
margins. The block of constraints (4) expresses in a compact
way the operating constraints, for every time period, of every
unit, e.g., generation limits, ramp rate limits, and minimum up
and down times. Note that binary variables are used to model
on/off decisions. Although network constraints and losses
can be incorporated in the above formulation, for the sake of
simplicity, we have opted to restrict our analysis to a one-bus
system. For unit consistency, it should be noted that hourly
time periods are considered.

Problem (1)–(4) is a mixed-integer and nonlinear optimiza-
tion problem that is difficult to solve by standard nonlinear pro-
gramming methods. Next, we describe an alternative mixed-in-
teger linear formulation, MILP-UC, suitable for available MILP
software [29]–[31].

A. Objective Function

The three components of the objective function (1) mentioned
above are explained in the following.

1) Production Cost: The quadratic production cost function
typically used in scheduling problems [1] can be formulated as

(5)

As shown in Fig. 1, the cost function in (5) can be accurately
approximated by a set of piecewise blocks [34]. For practical
purposes, the piecewise linear function of Fig. 1 is indistinguish-
able from the nonlinear model if enough segments are used.

Fig. 2. Exponential, discrete, and stairwise startup cost functions.

The analytic representation of this linear approximation is

(6)

(7)

(8)

(9)

(10)

(11)

where .
2) Startup Cost: The dashed line in Fig. 2 shows a typical

exponential startup cost function [1]. Since the time span has
been discretized into hourly periods, the startup cost is also a
discrete function, as shown in Fig. 2 with blackened circles. The
discrete startup cost can be asymptotically approximated by a
stairwise function (solid line in Fig. 2), which is more accurate
as the number of intervals increases.

A mixed-integer linear formulation for the stairwise startup
cost was proposed in [33]

(12)

(13)

Note that (12) and (13) only depend on the binary variables as-
sociated with the on/off state of generating units, .

3) Shutdown Cost: A constant shutdown cost is incurred
if unit j is brought offline due to the waste of fuel [1]. Previously
reported formulations made use of an extra binary variable as-
sociated with the shutdown state [10], [11].

Constraints (14) and (15), however, show an alternative
equivalent formulation for the shutdown cost using only binary
variables

(14)

(15)

k new variables (i , t fixed), redefine p

p =
∑k

l=1 δl + p̄minu

0 ≤ δl ≤ p̄l − p̄l−1 l = 1, . . . , k
(29)

cost coefficient of u set to f (p̄min)

cost coefficient of each δl set to

Fl =
f (p̄l)− f (p̄l−1)

p̄l − p̄l−1
= a(p̄l + p̄l−1) + b

Should this work? On the outset, I don’t see why . . .

12
M. Carrión, J.M. Arroyo “A Computationally Efficient Mixed-integer Linear Formulation for the Thermal Unit

Commitment Problem” IEEE Transactions on Power Systems, 2006
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(29)

cost coefficient of u set to f (p̄min)

cost coefficient of each δl set to

Fl =
f (p̄l)− f (p̄l−1)

p̄l − p̄l−1
= a(p̄l + p̄l−1) + b

Should this work? On the outset, I don’t see why . . .

12
M. Carrión, J.M. Arroyo “A Computationally Efficient Mixed-integer Linear Formulation for the Thermal Unit

Commitment Problem” IEEE Transactions on Power Systems, 2006
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Fig. 1. Piecewise linear production cost.
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Results of the MILP Formulation

. . . but it does, big times!

MIQP MILP
p first best gap time gap ftime fgap nodes

20 24 2229 0.29 3.72 0.36 1.00 0
50 249 1491 0.22 21.93 0.21 15.98 0.36 0
75 447 1514 0.10 56.31 0.20 47.08 1.62 10

100 940 2327 0.13 94.09 0.17 69.75 2.18 16
150 2348 2483 0.24(1) 218.69 0.12 177.35 6.58 16
200 3600 3600 * (5) 267.78 0.09 247.12 1.85 6

Stopping tolerance at 0.5% (and invalid lower bound)

Again, inherent gap vastly worse (and invalid anyway)

All the difference is in the heuristic
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Comparing MILP and LR

RCDP Cplex MILP
p h time gap iter time gap ftime fgap nodes LPs

10 0 0.75 0.99 187 0.95 0.33 1.18 0 23
20 0 1.83 0.46 189 3.72 0.36 1.00 0 23
50 0 4.84 0.28 195 21.93 0.21 15.98 0.36 0 25
75 0 9.41 0.34 206 56.31 0.20 47.08 1.62 10 59

100 0 14.74 0.33 213 94.09 0.17 69.75 2.18 16 76
150 0 21.20 0.17 277 218.69 0.12 177.35 6.58 16 115
200 0 34.80 0.09 317 267.78 0.09 247.12 1.85 6 87

20 10 1.76 0.39 170 93.53 0.21 0.59 140 258
50 20 6.36 0.06 160 17.98 0.06 17.98 0.06 0 60
75 35 15.01 0.04 198 96.86 0.11 96.86 0.11 170 300

100 50 24.74 0.04 209 130.86 0.06 130.86 0.06 180 266
150 75 37.41 0.02 189 467.62 0.06 467.62 0.06 300 554
200 100 50.91 0.01 175 427.71 0.05 427.71 0.05 205 321

Faster version of RDCP (better (ED) solver)

Overall, Cplex primal heuristic impressively effective
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Perspective Cuts

Convex function f , Mixed-Integer NonLinear Program fragment

min
{

f (p) + cu : Ap ≤ bu , u ∈ {0, 1}
}

(30)

p ∈ P = {p ∈ Rn : Ap ≤ b}, {p : Ap ≤ 0} = {0} (think (2))

Equivalently, minimize the nonconvex function

f (p, u) =


0 if u = 0 and p = 0
f (p) + c if u = 1 and Ap ≤ b
+∞ otherwise

(31)

Best possible convex relaxation of (30): use the convex envelope13

cof (p, u)=


0 if p = 0 and u = 0,
uf (p/u) + cu if Ap ≤ bu, u∈(0, 1],
+∞ otherwise.

(32)

(convex function minorizing f (p, u) with smallest possible epigraph)

13
F. and C. Gentile “Perspective Cuts for a Class of Convex 0-1 Mixed Integer Programs”, Mathematical Programming, 2006
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Perspective Cuts (2)

u

f

p

1

Related with well-known
perspective function of f

g(p, u) = u f (p/u)

despite the look, convex
for u > 0 if f is

Interesting examples:

linear: f (p) = bp ⇒ cof (p, u) = bp + cu (nothing happens!)

quadratic: f (p) = ap2 + bp ⇒ cof (p, u) = ap2/u + bp + cu

better than continuous relaxation ap2 + bp (u ≤ 1)

. . . but very nonlinear
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Perspective Cuts (3)

But every convex function is the supremum of its affine minorants

(v , p, u) ∈ epi cof ⇐⇒ Ap ≤ bu, u ∈ [0, 1], and ∀p̄ ∈ P

v ≥ f (p̄) + c + [s , c + f (p̄)− sp̄]

[
p − p̄
u − 1

]
∀s ∈ ∂f (p̄) (33)

(infinitely many inequalities, at least one for each p̄ ∈ P)

The quadratic case:

v ≥ (2ap̄ + b)p + (c − ap̄2)u (34)

Can implement a Branch & Cut with cuts on the objective function
(somewhat tricky)
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Alternative MILP (Approximated) formulation

Replace (1) with ∑
t∈T

∑
i∈P

v i
t

Add k cuts (34) for some p̄i ,h
t ∈ [p̄i

min, p̄
i
max ], h = 1, . . . , k

|P||T | more variables and k |P||T | more constraints, vs

k |P||T | more variables and (2k + 1)|P||T | more constraints

The objective function underestimates f (p, u)⇒ the LB is valid

Cuts can be easily be dynamically added, much less true for variables

All the rest equal (static version very easy to implement)
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Graphical comparison

u

p

1

0 pmin pmaxp0 pmin p

f(p,1) = ap2 + bp + c

f(p,0) = ap2 + bp

f(p,u) = ap2 + bp + cu

u

f(p) = ap2 + bp + c

p

1

0 pmin
pmax

h(p,u) = ap2/u + bp + cu

p
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Test setup

SPWF: MILP formulation with (29), k = 4 equidistant points

PCF: MILP formulation with (34), k = 4 equidistant points

PCFDk : initially, only two cuts (34) (p̄ = p̄min, and p̄ = p̄max);

then, dynamic generation up to a maximum of k |P||T |

Cplex 9.1, Opteron 246 (2 GHz), 2 Gb RAM

Two stopping tolerances: low (0.5%) and high (0.01%)

Gap w.r.t. tight Lagrangian LB, inherent one visibly worse

Randomly-generated, realistic, hydro-thermal instances

http://www.di.unipi.it/optimize/Data
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Gap w.r.t. tight Lagrangian LB, inherent one visibly worse

Randomly-generated, realistic, hydro-thermal instances

http://www.di.unipi.it/optimize/Data
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Comparing static formulations at lower accuracy

SPWF PCF
p h gap nd time rgap gap nd time rgap

10 0 0.31 0 0.95 1.61 0.28 0 0.76 1.50
20 0 0.34 0 3.72 1.34 0.36 8 3.56 1.25
50 0 0.21 0 21.93 1.38 0.21 0 12.09 1.26
75 0 0.20 10 56.31 1.43 0.18 14 45.88 1.30

100 0 0.17 16 94.09 1.39 0.15 0 43.55 1.27
150 0 0.12 16 218.69 1.32 0.11 2 146.80 1.20
200 0 0.09 6 267.78 1.37 0.08 0 234.97 1.25

20 10 0.21 140 93.53 0.82 0.20 0 3.71 0.69
50 20 0.06 0 17.98 0.70 0.10 0 18.93 0.63
75 35 0.11 170 96.86 0.57 0.07 70 64.52 0.52

100 50 0.06 180 130.86 0.58 0.07 35 81.41 0.53
150 75 0.06 300 467.62 0.58 0.05 90 293.50 0.52
200 100 0.05 205 427.71 0.56 0.03 35 314.00 0.51
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Static vs. dynamic formulations at lower accuracy

PCF PCFD4 PCFD∞
p h gap nd time gap nd time gap nd time

10 0 0.28 0 0.76 0.30 0 0.86 0.28 0 0.80
20 0 0.36 8 3.56 0.36 0 2.51 0.33 0 3.00
50 0 0.21 0 12.09 0.19 0 14.17 0.18 0 13.08
75 0 0.18 14 45.88 0.19 2 36.62 0.22 0 22.58

100 0 0.15 0 43.55 0.17 0 34.31 0.20 0 36.51
150 0 0.11 2 146.80 0.11 4 104.68 0.12 10 169.68
200 0 0.08 0 234.97 0.10 0 183.01 0.14 12 235.60

20 10 0.20 0 3.71 0.30 5 4.18 0.15 0 2.51
50 20 0.10 0 18.93 0.10 10 19.06 0.13 0 10.93
75 35 0.07 70 64.52 0.05 115 70.55 0.03 95 64.80

100 50 0.07 35 81.41 0.05 15 47.62 0.04 40 60.78
150 75 0.05 90 293.50 0.05 115 194.10 0.05 115 216.33
200 100 0.03 35 314.00 0.02 0 155.36 0.03 135 342.69
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Results with higher accuracy (0.01%)

SPWF PCF PCFD4 PCFD∞
p h gap time gap time gap time gap time

10 0 0.01 22 0.01 15 0.01 12 0.01 16
20 0 0.01 3480 0.02 2969 0.02 3614 0.01 3481
50 0 0.09 10000 0.09 10000 0.08 10000 0.09 10000
75 0 0.09 10000 0.09 10000 0.08 10000 0.08 10000

100 0 0.07 10000 0.06 10000 0.06 10000 0.06 10000
150 0 0.07 10000 0.05 10000 0.05 10000 0.05 10000
200 0 0.07 10000 0.06 10000 0.05 10000 0.05 10000

20 10 0.01 288 0.01 383 0.01 238 0.01 317
50 20 0.01 9613 0.00 6855 0.00 7772 0.01 8326
75 35 0.01 10000 0.01 10000 0.01 10000 0.01 8326

100 50 0.01 10000 0.01 10000 0.01 10000 0.01 10000
150 75 0.01 10000 0.01 10000 0.01 10000 0.01 10000
200 100 0.01 10000 0.01 10000 0.01 10000 0.01 10000
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Nonseparable problems

What happens if the problem if nonseparable?

min xTQx + qx + cy
Ax + By ≥ b
liyi ≤ xi ≤ uiyi , yi ∈ {0, 1} i = 1, . . . , n

(35)

Even assuming Q � 0 ⇒ o.f. convex, (33) cannot be used

However, a dirty trick was proposed in our 13

min xTDx + zT (Q − D)z + qx + cy
Ax + By ≥ b , z = x
liyi ≤ xi ≤ uiyi , yi ∈ {0, 1} i = 1, . . . , n

(36)

for non-negative diagonal D ∈ Rn×n such that Q − D � 0

Move nonseparability to new variables z , let D “as large as possible”

D can be chosen e.g. as λmin(Q)I
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Nonseparable applications

Mean-Variance problem with min and max buy-in thresholds

min

{
xTQx

∣∣∣∣ ex = 1 , µx ≥ ρ ,
liyi ≤ xi ≤ uiyi , yi ∈ {0, 1} i = 1, . . . , n

}
µ = expected return, Q = covariance matrix, ρ = desired return
l , u = min, max buy-in thresholds

Real-world requirement, almost no structure = good for testing

Dirty trick + (33) improve lower bounds a lot

. . . but not enough for routinely solving large instances

. . . although a lot better than Cplex

Maybe due to a wrong choice of D?
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Choosing D via SDP

Assuming tr(D) the relevant metric, the “largest” D solves14

max
{ ∑n

i=1 di : Q −
∑n

i=1 di (eie
T
i ) � 0 , d ≥ 0

}
min

{
tr(QX ) : diag(X ) ≥ e , X � 0

} (37)

dual pair of SemiDefinite (= convex = easy) Problems

Several, efficient, open-source SDP codes

Interesting relaxation: removing d ≥ 0 in the primal gives

min
{

tr(QX ) : diag(X ) = e , X � 0
}

(38)

d∗ > 0 anyway in all our tests

most often faster to solve in practice by all codes

constant trace = max eigenvalue problem, specialized approaches
(SBundle)

14
F., C. Gentile “SDP Diagonalizations and Perspective Cuts for a Class of Nonseparable MIQP”, Operations Research

Letters, 2007
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Choosing D via SDP (cont.d)

Simple idea: compare min-eigenvalue with (37)/(38)

Trade-off: improvement in “size” of D versus running time

Different SDP solvers, different instances

Improving tr(D) ⇒ better cuts ⇒ better bounds?

Notes:

new approach works even if λmin(Q) = 0

could use weighted objective function wd

(but how to choose weights w?)

funny coincidence: (38) is the SDP relaxation of Max-Cut

(maximizing, i.e., with “−Q”)
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The instances

30 randomly-generated instances for each n ∈ {200, 300, 400}

µi ∈ [0.002, 0.01], li ∈ [0.075, 0.125], ui ∈ [0.375, 0.425] (uniformly)

Q = well-known random generator15

Parameters of the generator heavily impact dominance index

S = average

{
Qii −

∑
j 6=i |Qij |

Qii
: i = 1, . . . , n

}
which in turn heavily impacts effectiveness of perspective cuts

For each n, three classes of instances (10 each):

“+” instances, S ≈ 0.6 (diagonally dominant)

“0” instances, S ≈ 0 (diagonally quasi-dominant)

“−” instances, S ≈ −0.5 (not diagonally dominant)

15
P.M. Pardalos, G.P. Rodgers “Computing Aspects of a Branch and Bound Algorithm for Quadratic Zero-One

Programming” Computing, 1990
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SDP codes

Five open-source standalone (no Matlab) SDP codes:
CSDP 4.9, DSDP 5.6, SBmethod 1.1.3, SDPA 6.0, SDPLR 1.02
http://www-user.tu-chemnitz.de/ helmberg/semidef.html
(C. Helmberg’s SDP page)

Min-Eigenvalue solved by eig() of octave 2.1 (+ sorting)

dmax , dmin, davg = ratio w.r.t. λmin(Q)

“≥” full version (37), “=” relaxation (38)
(except SBundle which can only solve “=”)

Running times on a bi-Opteron 246 processor, 2Gb RAM, Linux, gcc.
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Comparison of SDP codes (only three)

ME CSDP DSDP SB

dmax dmin davg ≥ = ≥ = =

200+ 1.96 0.97 1.47 0.13 3.12 2.98 1.86 0.10 23.77
2000 1.93 0.90 1.41 0.13 3.03 2.99 1.87 0.10 16.39
200− 1.86 0.87 1.37 0.13 3.00 2.95 1.86 0.10 16.58

300+ 1.97 0.97 1.47 0.23 10.54 9.84 4.92 0.26 69.13
3000 1.93 0.91 1.42 0.23 10.91 9.55 4.99 0.26 46.01
300− 1.69 0.89 1.29 0.23 10.91 9.62 5.10 0.26 41.82

400+ 1.98 0.97 1.47 0.39 31.03 29.28 10.56 0.52 146.07
4000 1.93 0.93 1.43 0.39 37.24 31.27 10.86 0.52 94.62
400− 1.87 0.89 1.38 0.39 36.77 31.61 10.75 0.52 90.07

On average 50% better than λmin, worst case ≈ few % worse

Results getting worse as Q less diagonally dominant

Times not much worse using right code and model

Is it worth?
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3000 1.93 0.91 1.42 0.23 10.91 9.55 4.99 0.26 46.01
300− 1.69 0.89 1.29 0.23 10.91 9.62 5.10 0.26 41.82

400+ 1.98 0.97 1.47 0.39 31.03 29.28 10.56 0.52 146.07
4000 1.93 0.93 1.43 0.39 37.24 31.27 10.86 0.52 94.62
400− 1.87 0.89 1.38 0.39 36.77 31.61 10.75 0.52 90.07

On average 50% better than λmin, worst case ≈ few % worse

Results getting worse as Q less diagonally dominant

Times not much worse using right code and model

Is it worth?
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Impact on the B&C approach

SDP ME Cplex

time d.gap r.gap time d.gap r.gap p.gap d.gap r.gap

200+ 164 1.14 904 6.48 0.14 45.33 85.63
2000 161 2.14 320 6.10 0.38 51.27 84.47
200− 1902 3.65 3306 0.02 6.69 0.24 42.09 78.88

300+ 818 4.54 2061 5.62 0.41 64.68 92.01
3000 856 1.97 1715 6.28 0.43 59.91 87.87
300− 1709 2.68 2797 0.05 7.04 0.53 45.11 78.77

400+ 2264 4.79 4756 0.10 6.15 1.03 61.47 89.06
4000 4378 0.10 2.29 7421 0.16 6.53 1.18 68.68 90.03
400− 6311 0.23 3.06 6901 0.36 6.49 1.60 65.88 88.47

root node gap halved+ w.r.t. ME, ≈ 1% w.r.t. ≈ 80% for Cplex

All instances up to n = 300 solved to optimality within 10000s,
Cplex solves none, ME does not solve some

Effectiveness worsens as Q less dominant,
could not solve a few 400− instances
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A Hybrid Approach

Lagrangian approach provides very good lower bounds, quickly

but heuristic not so effective and efficient (many (ED), costly)

MILP approach provides very good feasible solutions, quickly

but lower bounds loose, no termination for tight tolerance

⇓
Why not using both?

Lagrangian bound computed at root node (no heuristic = quick)

Used to stop search as soon as good enough feasible solution found

(admittedly very coarse)
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Results – 0.5%

PCFD4 PCFD∞
NoLB LB NoLB LB

p h gap time gap time gap time gap time
10 0 0.28 0.80 0.34 0.97 0.30 0.86 0.37 1.06
20 0 0.33 3.00 0.32 3.60 0.36 2.51 0.36 3.16
50 0 0.18 13.08 0.19 27.46 0.19 14.17 0.20 16.39
75 0 0.22 22.58 0.25 28.82 0.19 36.62 0.22 28.05

100 0 0.20 36.51 0.15 41.44 0.17 34.31 0.16 60.16
150 0 0.12 169.68 0.10 148.88 0.11 104.68 0.11 136.18
200 0 0.14 235.60 0.08 323.36 0.10 183.01 0.08 258.57

20 10 0.15 2.51 0.17 4.21 0.30 4.18 0.24 6.34
50 20 0.13 10.93 0.10 26.96 0.10 19.06 0.10 12.51
75 35 0.03 64.80 0.06 59.47 0.05 70.55 0.10 75.23

100 50 0.04 60.78 0.04 44.95 0.05 47.62 0.05 66.61
150 75 0.05 216.33 0.02 244.05 0.05 194.10 0.04 228.32
200 100 0.03 342.69 0.03 253.59 0.02 155.36 0.02 217.56

Sizable relative (although small absolute) increase for small instances

No clear positive effect
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Results – 0.1%

PCFD4 PCFD∞
NoLB LB NoLB LB

p h gap time gap time gap time gap time
10 0 0.10 12.45 0.10 12.70 0.10 9.77 0.10 9.97
20 0 0.10 1295.28 0.10 2201.87 0.10 1169.94 0.10 1157.22
50 0 0.09 8279.78 0.11 4084.79 0.10 10000.00 0.11 4014.01
75 0 0.07 10000.00 0.09 3974.94 0.07 10000.00 0.09 2286.03

100 0 0.07 10000.00 0.09 289.01 0.06 10000.00 0.09 94.56
150 0 0.05 10000.00 0.06 193.38 0.05 10000.00 0.08 207.86
200 0 0.05 10000.00 0.07 337.33 0.06 10000.00 0.07 315.88

20 10 0.07 31.38 0.09 14.31 0.07 41.08 0.08 30.01
50 20 0.02 41.86 0.05 27.22 0.02 47.62 0.04 12.92
75 35 0.03 64.45 0.06 57.95 0.04 81.77 0.06 71.03

100 50 0.03 40.61 0.04 41.42 0.04 60.20 0.05 62.85
150 75 0.02 232.99 0.02 235.04 0.04 191.52 0.04 203.18
200 100 0.03 240.38 0.03 231.35 0.02 198.25 0.02 206.66

Huge positive impact on large thermals, some effect on small hydro

Gap worsens somewhat (which is expected)
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Results – 0.05%

PCFD4 PCFD∞
NoLB LB NoLB LB

p h gap time gap time gap time gap time
10 0 0.06 15.42 0.06 15.72 0.06 11.63 0.06 11.85
20 0 0.06 2473.11 0.06 2440.86 0.06 2470.49 0.06 2499.97
50 0 0.09 10000.00 0.09 8113.35 0.09 10000.00 0.10 8489.08
75 0 0.09 10000.00 0.09 10002.22 0.08 8256.79 0.08 8259.00

100 0 0.07 10000.00 0.07 8018.89 0.06 10000.00 0.06 6538.84
150 0 0.05 10000.00 0.06 5151.71 0.05 10000.00 0.06 6151.20
200 0 0.05 10000.00 0.05 6255.99 0.06 10000.00 0.06 6271.77

20 10 0.06 73.26 0.06 73.00 0.06 71.19 0.06 68.40
50 20 0.01 623.95 0.02 34.44 0.01 269.34 0.03 44.53
75 35 0.02 177.50 0.03 59.37 0.02 124.85 0.03 100.47

100 50 0.02 438.39 0.04 39.45 0.02 665.37 0.05 60.00
150 75 0.02 1669.30 0.02 224.67 0.01 1144.10 0.04 201.31
200 100 0.02 1082.41 0.03 238.81 0.01 451.98 0.02 202.94

Diminishing but still positive on large thermals, especially PCFD∞

Huge positive impact on all but the smallest hydro
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Results – 0.01%

PCFD4 PCFD∞
NoLB LB NoLB LB

p h gap time gap time gap time gap time
10 0 0.02 16.66 0.02 16.84 0.02 12.49 0.02 12.80
20 0 0.02 3547.24 0.02 3699.26 0.02 3914.50 0.02 3946.51
50 0 0.09 10000.00 0.09 10001.25 0.09 10000.00 0.09 10001.25
75 0 0.09 10000.00 0.09 10002.22 0.08 10000.00 0.08 10002.22

100 0 0.07 10000.00 0.07 10003.68 0.06 10000.00 0.06 10003.68
150 0 0.05 10000.00 0.05 10006.14 0.05 10000.00 0.05 10006.14
200 0 0.05 10000.00 0.05 8248.37 0.06 10000.00 0.06 10008.52

20 10 0.02 268.49 0.02 263.40 0.02 248.75 0.02 255.95
50 20 0.00 7285.00 0.01 841.26 0.01 6495.96 0.01 121.86
75 35 0.01 10000.00 0.01 5033.34 0.01 10000.00 0.01 5045.42

100 50 0.01 10000.00 0.01 1198.73 0.01 10000.00 0.01 5789.69
150 75 0.01 10000.00 0.01 3376.87 0.01 10000.00 0.01 1145.61
200 100 0.01 10000.00 0.01 1182.27 0.01 10000.00 0.01 463.46

No longer any impact (thus, slightly negative) on thermals

Still huge positive impact on all but the smallest hydro
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Conclusions (general)

You get to meet all sorts, in this line of work

In this talk, you have seen algorithms for:

quadratic, convex, mixed-integer

convex, nondifferentiable

linear, network

shortest part (dynamic programming)

nonlinear, convex, (two different) special structure(s)

combinatorial, heuristic

linear, mixed-integer

semidefinite, convex

each one with a definite and useful role

Good methodologies bring good results to interesting problems

interesting problems motivate the development of good methodologies
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Conclusions (energy problems)

Lots of challenging problems in (electrical) energy production

Approximated MILP formulations or Lagrangian techniques?

why not both?

Some problems on the edge of being routinely solvable

Plenty more still extremely difficult:

short-long term (weekly)

market variants (zonal prices)

long term (water)

uncertainty (prices, weather, accidents, competitors, . . . )

. . .

Bring them on! :-)
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