# Delay-constrained IP routing problems MINLP meets computer networks

A. Frangioni

with L. Galli M.G. Scutellà G. Stea

Dipartimento di Informatica, Università di Pisa Dipartimento di Ingegneria dell'Informazione, Università di Pisa

7<sup>th</sup> International Network Optimization Conference INOC 2015 Warsaw, May 20, 2015

#### Outline

- Motivation: There Can Be Too Much of a Good Thing
- System Model
- 3 Delay Constrained Routing
  - Combinatorial Approaches
  - MI-SOCP Models To The Rescue
  - A Small Detour: Perspective Reformulation
  - Computational tests
  - Simulations
- 4 Other Delay Formulæ and Access Control
  - MI-SOCP Models
  - Computational tests
  - Simulations
- Conclusions

# Sometimes Things Just Don't Go as Planned (but Better)

- The Internet was built around a set of assumptions:
  - Integrity of information is crucial: lost packets are retransmitted
  - Timeliness does not matter: the sooner the better, but no deadline
  - Application adapt to the available rate (higher rate ≡ higher user satisfaction, but no QoS agreements)

# Sometimes Things Just Don't Go as Planned (but Better)

- The Internet was built around a set of assumptions:
  - Integrity of information is crucial: lost packets are retransmitted
  - Timeliness does not matter: the sooner the better, but no deadline
  - Application adapt to the available rate (higher rate ≡ higher user satisfaction, but no QoS agreements)
- $\implies$  Packets don't count, can be: delayed (arbitrarily long), dropped, duplicated, displaced (N+1) arrives before N)

# Sometimes Things Just Don't Go as Planned (but Better)

- The Internet was built around a set of assumptions:
  - Integrity of information is crucial: lost packets are retransmitted
  - Timeliness does not matter: the sooner the better, but no deadline
  - Application adapt to the available rate (higher rate ≡ higher user satisfaction, but no QoS agreements)
- $\implies$  Packets don't count, can be: delayed (arbitrarily long), dropped, duplicated, displaced (N+1 arrives before N)
  - Internet is built upon the "Best Effort" Service Model: routers do their best to relay packets to destination, but no guarantee that a given packet will arrive at all
  - Traditional Internet applications play by these rules









#### It Is Possible to Succumb to One's Success

- Despite this, Internet has became a huge splash hit (doh!)
- This has made some technologies (TCP-IP, Ethernet) dominant, economy of scale dictates convergence of everything:
  - traditional internet applications (+ social stuff)
  - IP Telephony
  - live Internet Protocol Television
  - online gaming/MMORPGs
  - industrial control systems
  - remote sensing and surveillance systems
  - M2M communication, IoT/IoE (pick your favorite buzzword)

irrespectively of the access medium (fixed, cellular, WiFi, BLE,  $\dots$ )

• Issue: many of these completely unsuitable for best effort

#### How to Avoid Succumbing to One's Success

- Now what? Introduce QoS guarantees
- What is QoS? "The ability of a network to offer different levels of service, in order to support different types of applications"















# How to Avoid Succumbing to One's Success

- Now what? Introduce QoS guarantees
- What is QoS? "The ability of a network to offer different levels of service, in order to support different types of applications"















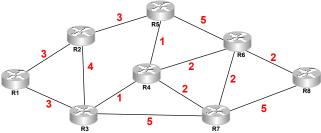
- Prime example: controlled end-to-end delay
- Critical in embedded systems (automative, avionics, ...)
- Much easier said than done, the provisions simply weren't there
- Introducing QoS is a complex, multi-faceted effort

#### Introducing QoS

- Requires adding ad hoc algorithms, hw/sw components, protocols:
  - simple, scalable and cost-effective (10<sup>6</sup> routers, 10<sup>9</sup> devices)
  - effective ≡ guarantee that QoS objectives are met (money involved)
  - distributed and cooperating (no central control & management)
- Some building blocks have been designed, a few standardized
- Big issue: cooperation at the various timescales (vertical)
  - years/months: network design/expansion
  - weeks/days: resource provisioning (traffic engineering, routing)
  - hours/seconds: flow lifetime (resource reservation, admission control)
  - sub-millisecond: transmission (packet scheduling)
- Horizontal cooperation is also needed
- All this within a distributed decision model

# QoS Requires Optimization (doh!)

• Example: setting OSPF weights in a domain

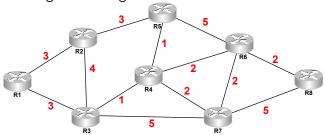


...a heinously complex problem for wanting too simple a system

Select the "best" path for a flow (can be many, horrible in practice)

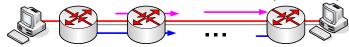
# QoS Requires Optimization (doh!)

• Example: setting OSPF weights in a domain



...a heinously complex problem for wanting too simple a system

- Select the "best" path for a flow (can be many, horrible in practice)
- Packets, not circuits: how will the packets behave?
- Can't say unless you reserve capacity for the flow ( $\approx$  circuits)



How to do that optimally? It depends on many things Frangioni et al. (DI + DII, UniPI)

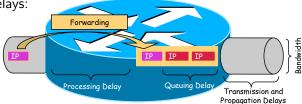
#### Outline

- Motivation: There Can Be Too Much of a Good Thing
- System Model
- 3 Delay Constrained Routing
  - Combinatorial Approaches
  - MI-SOCP Models To The Rescue
  - A Small Detour: Perspective Reformulation
  - Computational tests
  - Simulations
- 4 Other Delay Formulæ and Access Control
  - MI-SOCP Models
  - Computational tests
  - Simulations
- 5 Conclusions

#### Flows, routers, links

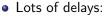
• Flow: "distinguishable directed stream of packets with the same QoS requirements traveling from a source to one or more destinations"

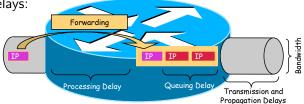
Lots of delays:



#### Flows, routers, links

 Flow: "distinguishable directed stream of packets with the same QoS requirements traveling from a source to one or more destinations"





- Slowly creeping closer to our mathspeak:
  - IP Network  $\equiv$  directed graph G = (N, A) (n = |N|, m = |A|)
  - set of flows K: origin/destination  $(s^k, d^k)$ , arrival curve  $\mathcal{A}^k$  (???)
  - packet transmission cannot be preempted ⇒ packets size matters: maximum transfer unit L (MTU, max. packet length)
  - $(i,j) \in A$ : link speed (bandwidth)  $w_{ij} \Longrightarrow \text{link delay } l_{ij} (\geq L/w_{ij})$
  - $i \in N$ : node processing delay  $n_i$ , assumed constant (!)
- Queuing delay a relevant factor, depends on packet schedulers

#### A (very brief) Intro To Packet Schedulers

• It all starts with a classifier

FIFO queues

Classifier

Classifier

Classifier

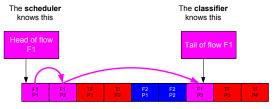
Classifier

Classifier

FIFO queues

Multi-queue scheduler

Multiple logical lists in a single memory buffer space



• The crucial part is the scheduler

#### The Ideal Packet Scheduler

- What we would want from a packet scheduler:
  - simplicity (low complexity)
  - isolation of flows
  - controllability (parameters to alter the behavior)
  - fairness
  - guarantees

#### The Ideal Packet Scheduler

- What we would want from a packet scheduler:
  - simplicity (low complexity)
  - isolation of flows
  - controllability (parameters to alter the behavior)
  - fairness
  - guarantees
- Not at all easy
- Example: FIFO scheduler
  - simple: *O*(1) ✓
  - no isolation of flows: a burst of a new flow can starve yours forever X
  - not controllable: can't change how it behaves X
  - no fairness: the first flow arriving takes it all X
  - no guarantees: can't prove anything on anything (e.g. max delay) X
- Strict priority list not much better

# The Ideal Packet Scheduler: Generalized Processor Sharing

• What is the perfect formula of a scheduler?

# The Ideal Packet Scheduler: Generalized Processor Sharing

- What is the perfect formula of a scheduler?
- Control: reserved rate  $r_{ij}^k$  such that  $\bar{r}_{ij} = \sum_{k \in K} r_{ij}^k \leq w_{ij}$
- Schedule packets so that flow k achieves effective rate

$$r_{ij}^{\mathrm{eff},k} = \left( \left. w_{ij} / \bar{r}_{ij} \right) r_{ij}^k \ge r_{ij}^k \qquad \equiv \qquad \mathrm{delay} \ = L / r_{ij}^{\mathrm{eff},k} \qquad (1)$$

 $\equiv r_{ij}^k$  if the arc loaded, more if spare bandwidth available

Provable perfect fairness (with appropriate definition)

# The Ideal Packet Scheduler: Generalized Processor Sharing

- What is the perfect formula of a scheduler?
- Control: reserved rate  $r_{ij}^k$  such that  $\bar{r}_{ij} = \sum_{k \in K} r_{ij}^k \leq w_{ij}$
- Schedule packets so that flow k achieves effective rate

$$r_{ij}^{\text{eff},k} = \left(w_{ij}/\bar{r}_{ij}\right)r_{ij}^{k} \geq r_{ij}^{k} \qquad \equiv \qquad \text{delay } = L/r_{ij}^{\text{eff},k} \qquad (1)$$

 $\equiv r_{ij}^k$  if the arc loaded, more if spare bandwidth available

- Provable perfect fairness (with appropriate definition)
- Can this be achieved? Almost, but not quite
- For once, GPS defined for idealized fluid model but we have packets
- Furthermore, it cannot be done in less than  $O(\log |K|)$  (no O(1))
- Yet,  $O(\log |K|)$  good approximations exist (e.g. Worst-case Fair Weighted Fair Queuing WF<sup>2</sup>Q)

# A Good Approximation To The Ideal Packet Scheduler

- Notation:  $r_{ij}^k > 0 \Longrightarrow \text{flow } k \text{ passes through } (i,j) \Longrightarrow k \in P(i,j)$  $r_{ij}^{min} = \min\{r_{ij}^k : k \in P(i,j)\}$
- Strictly Rate-Proportional scheduler:

$$\theta_{ij}^{k} = \frac{L}{w_{ij}} + \begin{cases} L/r_{ij}^{eff,k} & \text{if } P(i,j) \setminus \{k\} \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$$
 (2)

 $L/w_{ij}$ : a packet has to be entirely received before anything happens

• Worst-worst case:  $r_{ij}^{eff} = r_{ij}$ ,  $P(i,j) \neq \emptyset \Longrightarrow$  coarser (but valid) estimate of the delay, somewhat simplified formula:

$$\theta_{ij}^k = \frac{L}{r_{ii}^k} + \frac{L}{w_{ij}} \tag{3}$$

• Best possible, but is  $O(\log |K|)$  (cheaper versions exist)

# Putting It All Together

- Given all individual pieces, compute the end-to-end delay (e2ed)
- Could use queuing theory, but it would be very complex; plus: do your really know the arrival distribution?
- Alternative: worst case analysis, using network calculus
- ullet Last crucial ingredient: the arrival function  $\mathcal{A}^k$
- Not trivial to determine, but a nice trick: traffic shaper



# Putting It All Together

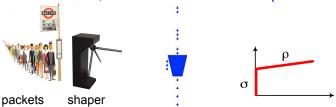
- Given all individual pieces, compute the end-to-end delay (e2ed)
- Could use queuing theory, but it would be very complex; plus: do your really know the arrival distribution?
- Alternative: worst case analysis, using network calculus
- ullet Last crucial ingredient: the arrival function  $\mathcal{A}^k$
- Not trivial to determine, but a nice trick: traffic shaper



ullet In particular, leaky-bucket traffic shaper with burst  $\sigma^k$  and rate  $ho^k$ 

# Putting It All Together

- Given all individual pieces, compute the end-to-end delay (e2ed)
- Could use queuing theory, but it would be very complex; plus: do your really know the arrival distribution?
- Alternative: worst case analysis, using network calculus
- Last crucial ingredient: the arrival function  $\mathcal{A}^k$
- Not trivial to determine, but a nice trick: traffic shaper



• In particular, leaky-bucket traffic shaper with burst  $\sigma^k$  and rate  $\rho^k$  makes for a very simple arrival function

# The Worst-case End-To-End Delay Formula (at last!)

- Worst-case e2ed (WCD) of flow k with  $\sigma^k$ ,  $\rho^k$  depends on:
  - 1 the selected  $s^k d^k$  path  $P^k$  in G;
  - ② the reserved rates  $r_{ij}^k \in (0, w_{ij}]$  for each  $(i, j) \in P^k$
  - the specific packet scheduler

# The Worst-case End-To-End Delay Formula (at last!)

- Worst-case e2ed (WCD) of flow k with  $\sigma^k$ ,  $\rho^k$  depends on:
  - 1 the selected  $s^k d^k$  path  $P^k$  in G;
  - 2 the reserved rates  $r_{ii}^k \in (0, w_{ij}]$  for each  $(i, j) \in P^k$
  - the specific packet scheduler
- Necessary assumption for finite WCD:

```
r_{ij}^k \ge \rho^k for each (i,j) \in P^k \equiv r_{min}^k = \min\{r_{ij}^k : (i,j) \in P^k\} \ge \rho^k (rate \rho^k \equiv "steady-state" flow demand in usual flow models)
```

# The Worst-case End-To-End Delay Formula (at last!)

- Worst-case e2ed (WCD) of flow k with  $\sigma^k$ ,  $\rho^k$  depends on:
  - 1 the selected  $s^k d^k$  path  $P^k$  in G;
  - ② the reserved rates  $r_{ij}^k \in (0, w_{ij}]$  for each  $(i, j) \in P^k$
  - the specific packet scheduler
- Necessary assumption for finite WCD:  $r_{ij}^k \geq \rho^k$  for each  $(i,j) \in P^k \equiv r_{min}^k = \min\{r_{ij}^k : (i,j) \in P^k\} \geq \rho^k$  (rate  $\rho^k \equiv$  "steady-state" flow demand in usual flow models)
- General WCD formula (nonlinear!):

$$\frac{\sigma^k}{r_{min}^k} + \sum_{(i,j)\in P^k} \left(\frac{\theta_{ij}^k}{i} + I_{ij} + n_i\right) \tag{4}$$

where  $\theta_{ii}^k$  is the protocol-specific arc delay (also nonlinear!)

- $\sigma^k/r_{min}^k$ : the burst can happen just before the worst-case packet, all of it has to go through the bottleneck arc
- Good news: (4) convex and SOCP-representable if  $\theta_{ii}^k$  is

#### Outline

- Motivation: There Can Be Too Much of a Good Thing
- System Model
- 3 Delay Constrained Routing
  - Combinatorial Approaches
  - MI-SOCP Models To The Rescue
  - A Small Detour: Perspective Reformulation
  - Computational tests
  - Simulations
- 4 Other Delay Formulæ and Access Control
  - MI-SOCP Models
  - Computational tests
  - Simulations
- 5 Conclusions

# Delay Constrained Routing Problems

#### Delay Constrained Routing Problem (DCR)

Compute paths and reserve resources on arcs at minimum cost such that the maximum delay of each flow is < deadline

# Delay Constrained Routing Problems

#### Delay Constrained Routing Problem (DCR)

Compute paths and reserve resources on arcs at minimum cost such that the maximum delay of each flow is  $\leq$  deadline

- Single-Flow Single-Path (SFSP) DCR: one new unsplittable flow (just about to enter the network, has to be routed now)
  - drop superscripts,  $r_{ij}^k = \text{existing flows, fixed}$
  - P(i,j) = set of paths passing through (i,j) = set of paths paths (i,j) = set of paths (
  - $\bar{r}_{ij} = \sum_{k \in P(i,j)} r^k_{ij}$  ,  $r^{min}_{ij} = \min\{ r^k_{ij} : k \in P(i,j) \}$  exclude new flow
- $\bullet$  Fixed deadline  $\delta$  on the new flow
- Reservable capacity  $w_{ij} \geq w_{ij} \bar{r}_{ij} \geq c_{ij} \geq r_{ij}$
- Linear capacity reservation cost  $f_{ij}$  (often = 1  $\equiv$  Equal Cost (EC))
- All the other flows must remain feasible (access control): trivial for "bound" SRP (3), does not depend on other flows

#### Outline

- Motivation: There Can Be Too Much of a Good Thing
- System Model
- 3 Delay Constrained Routing
  - Combinatorial Approaches
  - MI-SOCP Models To The Rescue
  - A Small Detour: Perspective Reformulation
  - Computational tests
  - Simulations
- Other Delay Formulæ and Access Control
  - MI-SOCP Models
  - Computational tests
  - Simulations
- Conclusions

#### Combinatorial properties

- Only (bound-)SRP-SFSP-DCR studied in the literature before us
- $\sigma = L = 0 \Longrightarrow r_{ij} = \rho x_{ij} \Longrightarrow$  Constrained Shortest Path (CSP) (this gives more than one idea, and proves  $\mathcal{NP}$ -hardness)

#### Combinatorial properties

- Only (bound-)SRP-SFSP-DCR studied in the literature before us
- $\sigma = L = 0 \Longrightarrow r_{ij} = \rho x_{ij} \Longrightarrow$  Constrained Shortest Path (CSP) (this gives more than one idea, and proves  $\mathcal{NP}$ -hardness)
- Feasibility is easy: delay  $\searrow$  when  $r_{ij} \nearrow \Longrightarrow r_{ij} = c_{ij} \Longrightarrow$  modified arc costs  $\bar{l}_{ij} = L/c_{ij} + (l'_{ij} = L/w_{ij} + l_{ij} + n_i)$

#### Combinatorial properties

- Only (bound-)SRP-SFSP-DCR studied in the literature before us
- $\sigma = L = 0 \Longrightarrow r_{ij} = \rho x_{ij} \Longrightarrow$  Constrained Shortest Path (CSP) (this gives more than one idea, and proves  $\mathcal{NP}$ -hardness)
- Feasibility is easy: delay  $\searrow$  when  $r_{ij} \nearrow \Longrightarrow r_{ij} = c_{ij} \Longrightarrow$  modified arc costs  $\bar{l}_{ij} = L/c_{ij} + (l'_{ij} = L/w_{ij} + l_{ij} + n_i)$
- But using (i,j) with "low"  $c_{ij} \searrow r_{min} \Longrightarrow \nearrow$  the delay:  $G^r = (N, A^r)$  with  $A^r = \{(i,j) \in A : c_{ij} \ge r\} \Longrightarrow r_{min} \ge r$
- For each  $r \in C = \{ c_{ij} : (i,j) \in A \}$ :
  - solve s-d shortest path P on  $G^r$  w.r.t.  $\bar{I}$
  - if  $\overline{I}(P) \leq \delta \sigma/r$ , then P feasible: stop
  - if no feasible P found, then problem unfeasible
     (for fixed P, both LHS and RHS of (4) increase with r)
- Keep f-best solution found: ERA-I heuristic

#### Equal-Cost, Equal Rate Allocation

• Equal Rate Allocation:  $r_{ij} = r \ (\geq \rho)$  for all  $(i,j) \in P \ (\Longrightarrow r_{min} = r)$ 

#### Equal-Cost, Equal Rate Allocation

- Equal Rate Allocation:  $r_{ij} = r \ (\geq \rho)$  for all  $(i,j) \in P \ (\Longrightarrow r_{min} = r)$
- EC-ERA-SRP-SFSP-DCR ( $f_{ij} = 1$ ) is easy for fixed r:
  - run Bellman-Ford on  $G^r$  with costs  $I_{ij}^r = L/r + I_{ij}'$
  - at each round of BF, check path P entering d (if any)
  - if  $I^r(P) \leq \delta \sigma/r$  then stop: P optimal

# Equal-Cost, Equal Rate Allocation

- Equal Rate Allocation:  $r_{ij} = r \ (\geq \rho)$  for all  $(i,j) \in P \ (\Longrightarrow r_{min} = r)$
- EC-ERA-SRP-SFSP-DCR ( $f_{ij} = 1$ ) is easy for fixed r:
  - run Bellman-Ford on  $G^r$  with costs  $I_{ij}^r = L/r + I_{ij}'$
  - at each round of BF, check path P entering d (if any)
  - if  $I^r(P) \leq \delta \sigma/r$  then stop: P optimal
- Works because BF solves hop-constrained shortest path: find least-cost(= delay) path with that number of hops, but r fixed ⇒ true cost proportional to |P|
- Each round, cost(= delay) \( \square\) but hop count (= cost) \( \times\): first feasible path is optimal
- Repeating the above for all  $r \in C$  does not solve (...)DCR counterexample: returned path P with delay constraint not tight

$$\Delta(r, P) = \frac{\sigma + L|P|}{r} + \sum_{(i,j)\in P} l'_{ij} < \delta$$

### Equal-Cost, Equal Rate Allocation

Obvious solution: for each feasible P reduce r until constraint tight

$$\tilde{r}(P) = (\sigma + L|P|)/(\delta - l'(P))$$

 $\implies \tilde{r}(P) \le r$ ,  $\Delta(\tilde{r}(P), P) = \delta$  (keep feasibility, improve objective)

#### Theorem

For all  $r \in C$  run BF on  $G^r$ , for all P decrease r, keep best P (don't stop at first feasible): solves EC-ERA-SRP-SFSP-DCR in  $O(|C|nm) \le O(nm^2)$ 

- Standard Bellman-Ford is  $\Omega(mn)$ , slow in practice
- Alternative implementation: SPT.L.Queue with label pairs  $(I, d) \equiv$  shortest path on acyclic graph  $n \times G^r$ , not much better
- Heuristic alternative: SPT.L.Queue on original  $G^r$ , each time d extracted from Q check delay of that P
- Can miss the optimal path but rarely, much faster

# Extending ERA: Non-equal $f_{ij}$

 $\bullet$  Non-equal but integer  $f_{ij}$ : use dynamic programming instead of BF

#### Theorem

If  $f_{ij} \in \mathbb{N}$ , then the algorithm solves ERA-SRP-SFSP-DCR in  $O(|C|\overline{f}m) \leq O(nm^2 f_{max})$  (pseudo-polynomial)

- NE continuous fij: standard cost rounding approximation algorithm
- Standard idea: scaling factor  $f \in F = \{ f_{ij} : (i,j) \in A \} (|F| \le m)$ , scaled costs  $\tilde{f}_{ij} = \lceil f_{ij}/K \rceil$  where  $K = (\varepsilon f)/(n-1)$
- Algorithm: cycle over all scaling factors f, apply pseudo-poly algorithm to  $G_f$ , keep best f-solution of all these found

#### Theorem

The algorithm finds a  $\varepsilon$ -optimal solution for ERA-SFSP-SRP-DCR (with unscaled  $f_{ij}$ ) in  $O(|F|n^2m^2/\varepsilon)$  (Fully Poly-time Approximation Scheme)

• Yet, we don't really want to solve the ERA version

#### Instances

- Real-world IP network topologies (GARR, SNDlib, TopoZ00):
   10 65 nodes, 12 170 arcs, few 10s several 100s flows
- Realistic random topologies (Waxman model):  $\leq$  200 nodes, 1500 arcs
- Equal (reservation) Costs  $f_{ij} = 1$
- FNSS tool for realistic traffic matrices ( $\mu(T) = 0.8$  Gbps and  $\sigma^2(T) = 0.05$ ) and link-capacity assignment (1, 10, 40 Gbps)
- DCR-generator for the remaining network parameters  $(L=1500, n_i=l_{ij}=L/w_{ij}, \sigma=3L)$
- Distributed at http://www.di.unipi.it/optimize/Data/MMCF.html#UMMCF
- Experiments with "unloaded networks", but "loaded" case analogous

## **ERA-Based Heuristics: Experiments**

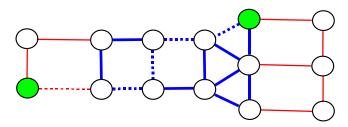
|             |    |     |      | ERA-I |      |       |       |      |
|-------------|----|-----|------|-------|------|-------|-------|------|
| instance    | n  | m   | k    | avg   | max  | avg   | max   | inf  |
| abilene     | 12 | 15  | 31   | 0.52  | 0.92 | 0.000 | 0.000 | 0.06 |
| atlanta     | 15 | 22  | 45   | 0.57  | 0.88 | 0.000 | 0.000 | 0.07 |
| cost266     | 37 | 57  | 120  | 0.48  | 0.95 | 0.000 | 0.000 | 0.17 |
| dfn-bwin    | 10 | 45  | 45   | 0.03  | 0.06 | 0.000 | 0.000 | 0.00 |
| dfn-gwin    | 11 | 47  | 53   | 0.16  | 0.86 | 0.000 | 0.000 | 0.02 |
| di-yuan     | 11 | 42  | 58   | 0.48  | 0.90 | 0.000 | 0.000 | 0.12 |
| france      | 25 | 45  | 66   | 0.44  | 0.90 | 0.000 | 0.000 | 0.02 |
| geant       | 22 | 36  | 63   | 0.46  | 0.89 | 0.000 | 0.001 | 0.06 |
| germany50   | 50 | 88  | 276  | 0.50  | 0.90 | 0.000 | 0.001 | 0.21 |
| giul39      | 39 | 172 | 1482 | 0.67  | 0.97 | 0.011 | 0.570 | 0.10 |
| india35     | 35 | 80  | 195  | 0.53  | 0.93 | 0.000 | 0.000 | 0.11 |
| janos-us    | 26 | 84  | 650  | 0.71  | 0.95 | 0.004 | 0.275 | 0.18 |
| janos-us-ca | 39 | 122 | 1482 | 0.68  | 0.95 | 0.010 | 0.289 | 0.23 |
| newyork     | 16 | 49  | 89   | 0.50  | 0.90 | 0.000 | 0.000 | 0.03 |
| nobel-eu    | 28 | 41  | 106  | 0.55  | 0.93 | 0.000 | 0.000 | 0.23 |
| nobel-ger   | 17 | 26  | 51   | 0.49  | 0.93 | 0.000 | 0.000 | 0.10 |

• gap with optimum, inf = feasible wrongly declared unfeasible

## ERA-Based Heuristics: Experiments (cont.)

| nobel-us     | 14  | 21   | 24   | 0.35 | 0.90 | 0.000 | 0.001 | 0.00 |  |
|--------------|-----|------|------|------|------|-------|-------|------|--|
| norway       | 27  | 51   | 341  | 0.71 | 0.94 | 0.000 | 0.000 | 0.12 |  |
| pdh          | 11  | 34   | 54   | 0.64 | 0.90 | 0.000 | 0.001 | 0.04 |  |
| pioro40      | 40  | 89   | 204  | 0.40 | 0.89 | 0.000 | 0.000 | 0.25 |  |
| polska       | 12  | 18   | 24   | 0.59 | 0.90 | 0.000 | 0.000 | 0.00 |  |
| sun          | 27  | 102  | 702  | 0.76 | 0.95 | 0.008 | 0.431 | 0.06 |  |
| ta2          | 65  | 108  | 388  | 0.45 | 0.92 | 0.000 | 0.000 | 0.31 |  |
| garr 1999-01 | 16  | 36   | 240  | 0.65 | 0.88 | 0.000 | 0.001 | 0.02 |  |
| garr 1999-04 | 23  | 50   | 506  | 0.57 | 0.94 | 0.000 | 0.001 | 0.75 |  |
| garr 1999-05 | 23  | 50   | 506  | 0.55 | 0.94 | 0.000 | 0.000 | 0.75 |  |
| garr 2001-09 | 22  | 48   | 462  | 0.60 | 0.94 | 0.000 | 0.000 | 0.74 |  |
| garr 2001-12 | 24  | 52   | 552  | 0.59 | 0.94 | 0.000 | 0.000 | 0.75 |  |
| garr 2004-04 | 22  | 48   | 462  | 0.56 | 0.94 | 0.000 | 0.000 | 0.75 |  |
| garr 2009-08 | 54  | 136  | 2862 | 0.65 | 0.94 | 0.001 | 0.386 | 0.85 |  |
| garr 2009-09 | 55  | 138  | 2970 | 0.67 | 0.94 | 0.000 | 0.000 | 0.85 |  |
| garr 2009-12 | 54  | 136  | 2862 | 0.67 | 0.94 | 0.001 | 0.240 | 0.85 |  |
| garr 2010-01 | 54  | 136  | 2862 | 0.67 | 0.94 | 0.001 | 0.241 | 0.85 |  |
| w1-100-04    | 100 | 414  | 664  | 0.77 | 0.95 | 0.015 | 0.739 | 0.07 |  |
| w1-200-04    | 200 | 1550 | 1528 | 0.71 | 0.96 | 0.015 | 0.814 | 0.05 |  |
|              |     |      |      |      |      |       |       |      |  |

# Why does ERA fail so often?



- Hub-and-spoke-like network with well-connected core (40/100 Gb) but weaker links to the periphery (1 Gb)
- Path from a core node to a peripheral one has to cross a weak link
- ERA has to allocate the same rate to all links ⇒ no more than the weak link's (residual) capacity ⇒ cannot meet the deadline
- The deadline can be met by reserving more capacity on core links: how do we know that?

#### Outline

- f 0 Motivation: There Can Be Too Much of a Good Thing
- System Model
- 3 Delay Constrained Routing
  - Combinatorial Approaches
  - MI-SOCP Models To The Rescue
  - A Small Detour: Perspective Reformulation
  - Computational tests
  - Simulations
- 4 Other Delay Formulæ and Access Control
  - MI-SOCP Models
  - Computational tests
  - Simulations
- Conclusions

#### A MI-SOCP Model for SFSP-DCR

• Path binary variables  $x_{ij}$ , reserve continuous variables  $r_{ij}$ 

$$\min \sum_{(i,j)\in A} f_{ij} r_{ij} \tag{5}$$

$$\sum_{(j,i)\in BS(i)} x_{ji} - \sum_{(i,j)\in FS(i)} x_{ij} = \begin{cases} -1 & \text{if } i=s\\ 1 & \text{if } i=d\\ 0 & \text{otherwise} \end{cases}$$
  $i \in N$  (6)

$$0 \le r_{ij} \le c_{ij} x_{ij} \tag{i,j} \in A \tag{7}$$

$$\rho \le r_{\min} \le r_{ij} + c_{\max}(1 - x_{ij}) \tag{8}$$

$$t + \sum_{(i,j)\in A} \left(\frac{\theta_{ij}}{l} + \left(l_{ij} + n_i\right)x_{ij}\right) \le \delta$$
(9)

$$t r_{min} \ge \sigma$$
 ,  $t \ge 0$  (10)  
 $x_{ij} \in \{0, 1\}$  ,  $r_{ij} \in \mathbb{R}$ 

- (10) rotated SOCP constraint  $\equiv t \geq \sigma/r_{min}$  (since  $t \geq 0$ )
- $c_{max} = \max\{c_{ij} : (i,j) \in A\} = \text{big-M}$ , but cannot use  $c_{ij}$  (otherwise  $r_{min} \le c_{ij}$  even if  $(i,j) \notin P$ )

#### A big-M Formulation for SRP-SFSP-DCR

- $\theta_{ij} = L/r_{ij}$ , add  $L/w_{ij}$  to the coefficient of  $x_{ij}$  in (9)
- Issue: how to write " $x_{ij} = 1 \Longrightarrow \theta_{ij} = L/r_{ij}$ ,  $x_{ij} = 0 \Longrightarrow \theta_{ij} = 0$ "; can't use  $r_{ij} \theta_{ij} \ge L$  for that  $\Longrightarrow \theta_{ij} > 0$  always

#### A big-M Formulation for SRP-SFSP-DCR

- $\theta_{ij} = L/r_{ij}$ , add  $L/w_{ij}$  to the coefficient of  $x_{ij}$  in (9)
- Issue: how to write " $x_{ij} = 1 \Longrightarrow \theta_{ij} = L/r_{ij}$ ,  $x_{ij} = 0 \Longrightarrow \theta_{ij} = 0$ "; can't use  $r_{ij} \theta_{ij} \ge L$  for that  $\Longrightarrow \theta_{ij} > 0$  always
- Solution: two extra sets of variables  $s_{ij}$  and  $r'_{ij}$

$$0 \leq \theta_{ij} \leq Mx_{ij}$$
  

$$\theta_{ij} \geq s_{ij} - M(1 - x_{ij})$$
  

$$s_{ij} r'_{ij} \geq L , s_{ij} \geq 0$$
  

$$0 \leq r'_{ij} \leq r_{ij} + M(1 - x_{ij})$$

- $\theta_{ij} \geq s_{ij}$  if  $x_{ij} = 1$ , while  $\theta_{ij}$  and  $s_{ij}$  are "free" if  $x_{ij} = 0$
- $r'_{ij} \leq r_{ij}$  if  $x_{ij} = 1$ , while  $r'_{ij}$  and  $r_{ij}$  are "free" if  $x_{ij} = 0$
- $s_{ij} \ge L/r'_{ii} \Longrightarrow \theta_{ij} \ge s_{ij} \ge L/r'_{ii} \ge L/r_{ij}$  if  $x_{ij} = 1$
- $M = \max(\sqrt{L}, L/\rho)$  suffices, still it's big-M: can we do better?

#### Outline

- Motivation: There Can Be Too Much of a Good Thing
- System Model
- 3 Delay Constrained Routing
  - Combinatorial Approaches
  - MI-SOCP Models To The Rescue
  - A Small Detour: Perspective Reformulation
  - Computational tests
  - Simulations
- Other Delay Formulæ and Access Control
  - MI-SOCP Models
  - Computational tests
  - Simulations
- Conclusions

- Vector of n variables x, convex function f(x), one binary variable y
- Constraint  $f(x) \le 0$  "active"  $\iff y = 1$ , or more in general, constraint ...  $+ s + ... \le d$  with s = f(x) if y = 1, s = 0 otherwise

- Vector of n variables x, convex function f(x), one binary variable y
- Constraint  $f(x) \le 0$  "active"  $\iff y = 1$ , or more in general, constraint  $\ldots + s + \ldots \le d$  with s = f(x) if y = 1, s = 0 otherwise
- Union of  $\mathcal{P}_0 = \{ (x,0) \in \mathbb{R}^{n+1} : l_0 \le x \le u_0 \}$  $\mathcal{P}_1 = \{ (x,1) \in \mathbb{R}^{n+1} : l_1 \le x \le u_1, f(x) \le 0 \}$
- Special case:  $\mathcal{P}_0 = \{ (0,0) \}$ , i.e.,  $l_0 = u_0 = 0$

- Vector of n variables x, convex function f(x), one binary variable y
- Constraint  $f(x) \le 0$  "active"  $\iff y = 1$ , or more in general, constraint  $\ldots + s + \ldots \le d$  with s = f(x) if y = 1, s = 0 otherwise
- Union of  $\mathcal{P}_0 = \{ (x,0) \in \mathbb{R}^{n+1} : l_0 \le x \le u_0 \}$  $\mathcal{P}_1 = \{ (x,1) \in \mathbb{R}^{n+1} : l_1 \le x \le u_1, f(x) \le 0 \}$
- Special case:  $\mathcal{P}_0 = \{ (0,0) \}$ , i.e.,  $l_0 = u_0 = 0$
- Obvious MINLP formulations:  $yl_1 \le x \le yu_1$  plus

$$f(y) \le M(1-y)$$
 or  $s \ge 0$ ,  $s \ge f(x) - M(1-y)$ 

- Continuous relaxation can be very weak: M "large"
- What can we do to improve on this? If f is linear, nothing . . .

- Vector of n variables x, convex function f(x), one binary variable y
- Constraint  $f(x) \le 0$  "active"  $\iff y = 1$ , or more in general, constraint  $\ldots + s + \ldots \le d$  with s = f(x) if y = 1, s = 0 otherwise
- Union of  $\mathcal{P}_0 = \{ (x,0) \in \mathbb{R}^{n+1} : l_0 \le x \le u_0 \}$  $\mathcal{P}_1 = \{ (x,1) \in \mathbb{R}^{n+1} : l_1 \le x \le u_1, f(x) \le 0 \}$
- Special case:  $\mathcal{P}_0 = \{ (0,0) \}$ , i.e.,  $I_0 = u_0 = 0$
- Obvious MINLP formulations:  $yl_1 \le x \le yu_1$  plus

$$f(y) \le M(1-y)$$
 or  $s \ge 0$ ,  $s \ge f(x) - M(1-y)$ 

- Continuous relaxation can be very weak: M "large"
- What can we do to improve on this? If f is linear, nothing ...
   ... but if f is nonlinear, we can indeed do something

• General result:  $conv(\mathcal{P}_0 \cup \mathcal{P}_1) = pr_{(x,y)}(cl(\mathcal{P}^*))$ , where

$$\mathcal{P}^* = \left\{ \begin{array}{l} (x, x', y) \in \mathbb{R}^{2n+1} : \ y \ f(x'/y) \le 0 \ , \ y \in (0, 1] \\ yl_1 \le x' \le yu_1 \ , \ (1-y)l_0 \le x - x' \le (1-y)u_0 \end{array} \right.$$

the best possible convex approximation of their (nonconvex) union

• General result:  $conv(\mathcal{P}_0 \cup \mathcal{P}_1) = pr_{(x,y)}(cl(\mathcal{P}^*))$ , where

$$\mathcal{P}^* = \left\{ \begin{array}{l} (x, x', y) \in \mathbb{R}^{2n+1} \ : \ \textit{y} \ \textit{f}(\textit{x}'/\textit{y}) \leq 0 \ , \ \textit{y} \in (0, 1] \\ \textit{y} \textit{l}_1 \leq \textit{x}' \leq \textit{y} \textit{u}_1 \ , \ (1-\textit{y}) \textit{l}_0 \leq \textit{x} - \textit{x}' \leq (1-\textit{y}) \textit{u}_0 \end{array} \right.$$

the best possible convex approximation of their (nonconvex) union

• Simplifies somewhat for  $\mathcal{P}_0 = \{ (0,0) \}$  (and f "nice"):

$$\textit{conv}(\,\mathcal{P}_0 \cup \mathcal{P}_1\,) = \Big\{\,(x,y)\,:\, \textit{yl}_1 \leq x \leq \textit{yu}_1\,,\, \textit{y}\,\textit{f}(x/\textit{y}) \leq 0\,,\, y \in [0,1]\,\Big\}$$

• General result:  $conv(\mathcal{P}_0 \cup \mathcal{P}_1) = pr_{(x,y)}(cl(\mathcal{P}^*))$ , where

$$\mathcal{P}^* = \left\{ \begin{array}{l} (x, x', y) \in \mathbb{R}^{2n+1} \ : \ \textit{y} \ \textit{f}(\textit{x}'/\textit{y}) \leq 0 \ , \ \textit{y} \in (0, 1] \\ \textit{y} \textit{l}_1 \leq \textit{x}' \leq \textit{y} \textit{u}_1 \ , \ (1-\textit{y}) \textit{l}_0 \leq \textit{x} - \textit{x}' \leq (1-\textit{y}) \textit{u}_0 \end{array} \right.$$

the best possible convex approximation of their (nonconvex) union

- Simplifies somewhat for  $\mathcal{P}_0 = \{ (0,0) \}$  (and f "nice"):  $conv(\mathcal{P}_0 \cup \mathcal{P}_1) = \{ (x,y) : yl_1 \le x \le yu_1, y f(x/y) \le 0, y \in [0,1] \}$
- Even simpler to see: nonlinear convex-cost semi-continuous variable

$$f(x,y) = \left\{ egin{array}{ll} 0 & ext{if } y = 0 ext{ and } x = 0 \\ f(x) + c & ext{if } y = 1 ext{ and } l_1 \leq x \leq u_1 \\ + \infty & ext{otherwise} \end{array} 
ight.$$

whose convex envelope (assuming 0f(0/0) = 0 and f nice) is

$$\overline{co}f(x,y) = \begin{cases} yf(x/y) + cy & \text{if } yl_1 \le x \le yu_1 \ , \ y \in [0,1] \\ +\infty & \text{otherwise} \end{cases}$$

• General result:  $conv(\mathcal{P}_0 \cup \mathcal{P}_1) = pr_{(x,y)}(cl(\mathcal{P}^*))$ , where

$$\mathcal{P}^* = \left\{ \begin{array}{l} (x, x', y) \in \mathbb{R}^{2n+1} : \ \textbf{y} \ f(\textbf{x}'/\textbf{y}) \le 0 \ , \ y \in (0, 1] \\ yl_1 \le \textbf{x}' \le yu_1 \ , \ (1-y)l_0 \le x - \textbf{x}' \le (1-y)u_0 \end{array} \right.$$

the best possible convex approximation of their (nonconvex) union

• Simplifies somewhat for  $\mathcal{P}_0 = \{ (0,0) \}$  (and f "nice"):  $conv(\mathcal{P}_0 \cup \mathcal{P}_1) = \{ (x,y) : yl_1 \le x \le yu_1, y f(x/y) \le 0, y \in [0,1] \}$ 

Even simpler to see: nonlinear convex-cost semi-continuous variable

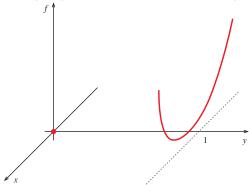
$$f(x,y) = \left\{ egin{array}{ll} 0 & ext{if } y = 0 ext{ and } x = 0 \\ f(x) + c & ext{if } y = 1 ext{ and } l_1 \leq x \leq u_1 \\ + \infty & ext{otherwise} \end{array} 
ight.$$

whose convex envelope (assuming 0f(0/0) = 0 and f nice) is

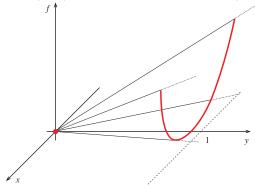
$$\overline{co}f(x,y) = \begin{cases} yf(x/y) + cy & \text{if } yl_1 \le x \le yu_1, y \in [0,1] \\ +\infty & \text{otherwise} \end{cases}$$

• f(x,y) = y f(x/y) is the perspective function of f

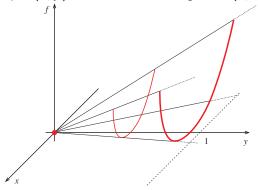
- f(x,y) = y f(x/y) is convex for y > 0 if f is
- epi f(x, y) is a cone emanating from (0, 0) with the "shape of f"



- f(x,y) = y f(x/y) is convex for y > 0 if f is
- epi f(x, y) is a cone emanating from (0, 0) with the "shape of f"



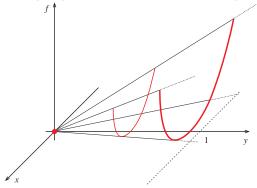
- f(x,y) = y f(x/y) is convex for y > 0 if f is
- epi f(x, y) is a cone emanating from (0, 0) with the "shape of f"



• f(x,y) "much more nonlinear" than f(x) + cy

example:  $f(x) = ax^2 + bx \implies f(x, y) = (a/y)x^2 + bx + cy$ 

- f(x,y) = y f(x/y) is convex for y > 0 if f is
- epi f(x, y) is a cone emanating from (0, 0) with the "shape of f"

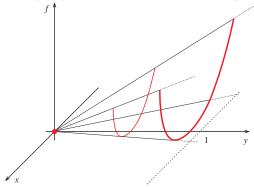


• f(x, y) "much more nonlinear" than f(x) + cy

example:  $f(x) = ax^2 + bx \implies f(x,y) = (a/y)x^2 + bx + cy$ 

notes: I) a/y > a for y < 1;

- f(x,y) = y f(x/y) is convex for y > 0 if f is
- epi f(x, y) is a cone emanating from (0, 0) with the "shape of f"



• f(x, y) "much more nonlinear" than f(x) + cy

example:  $f(x) = ax^2 + bx \implies f(x,y) = (a/y)x^2 + bx + cy$ 

notes: I) a/y > a for y < 1; II) for a = 0 nothing happens

#### The Perspective Reformulation (Relaxation)

• Slightly more general:  $Ax \le b$  compact  $(\equiv \{Ax \le 0\} = \{0\})$ , MINLP

$$\min \{ f(x) + cy : Ax \le by, y \in \{0,1\} \}$$
 (11)

• Its continuous relaxation: convex, but weak bound

$$\min \{ f(x) + cy : Ax \le by, y \in [0,1] \}$$
 (12)

# The Perspective Reformulation (Relaxation)

• Slightly more general:  $Ax \le b$  compact  $(\equiv \{Ax \le 0\} = \{0\})$ , MINLP

$$\min \{ f(x) + cy : Ax \le by, y \in \{0,1\} \}$$
 (11)

• Its continuous relaxation: convex, but weak bound

$$\min \{ f(x) + cy : Ax \le by, y \in [0,1] \}$$
 (12)

• Better relaxation (best possible convex one):

$$\min \left\{ yf(x/y) + cy : Ax \le by, y \in [0,1] \right\}$$
 (13)

better lower bound than (12), still convex, but "more nonlinear"

## The Perspective Reformulation (Relaxation)

• Slightly more general:  $Ax \le b$  compact  $(\equiv \{Ax \le 0\} = \{0\})$ , MINLP

$$\min \{ f(x) + cy : Ax \le by, y \in \{0,1\} \}$$
 (11)

• Its continuous relaxation: convex, but weak bound

$$\min \{ f(x) + cy : Ax \le by, y \in [0,1] \}$$
 (12)

Better relaxation (best possible convex one):

$$\min \left\{ yf(x/y) + cy : Ax \le by, y \in [0,1] \right\}$$
 (13)

better lower bound than (12), still convex, but "more nonlinear"

• Even better: (13) continuous relaxation of Perspective Reformulation

$$\min \left\{ y f(x/y) + cy : Ax \le by, y \in \{0,1\} \right\}$$
 (14)

 $\equiv$  (11) (requires assuming 0f(0/0) = 0, not really an issue)

• But how to solve (13) it efficiently?

- But how to solve (13) it efficiently?
- Good news: y f(x/y) is SOCP-representable if f is
- Example 1: for  $f(x) = ax^2 + bx$ , (14) becomes

$$\min \left\{ \ t + bx + cy \ : \ ax^2 \le ty \ , \ Ax \le by \ , \ y \in \{0,1\} \ \right\} \tag{15}$$

a Mixed-Integer (rotated) Second-Order Cone Program

- But how to solve (13) it efficiently?
- Good news: y f(x/y) is SOCP-representable if f is
- Example 1: for  $f(x) = ax^2 + bx$ , (14) becomes  $\min \{ t + bx + cy : ax^2 \le ty, Ax \le by, y \in \{0, 1\} \}$  (15)
  - a Mixed-Integer (rotated) Second-Order Cone Program
- Example 2:  $x = 1 \Longrightarrow f(\theta, r) = L/r \theta \le 0$  gives  $Lx^2/r \le \theta \equiv Lx^2 \le \theta r \quad \text{(another rotated SOCP)} \quad (16)$ 
  - if x=0 then  $\theta$  can be 0 whatever r, if x=1 then  $\theta \geq L/r$  (note: Lx/r would be even better, but it is not convex; in fact,  $L0/0 \neq 0$ , whereas  $L0^2/0 = 0$ )
- Linearize the cones in  $(15)/(16) \Longrightarrow$  a Semi-Infinite MILP; can be done automatically . . .

- But how to solve (13) it efficiently?
- Good news: y f(x/y) is SOCP-representable if f is
- Example 1: for  $f(x) = ax^2 + bx$ , (14) becomes

$$\min \left\{ \ t + bx + cy \ : \ ax^2 \le ty \ , \ Ax \le by \ , \ y \in \{0,1\} \right\}$$
 (15)

- a Mixed-Integer (rotated) Second-Order Cone Program
- Example 2:  $x = 1 \Longrightarrow f(\theta, r) = L/r \theta \le 0$  gives  $Lx^2/r \le \theta \equiv Lx^2 \le \theta r$  (another rotated SOCP) (16)
  - if x=0 then  $\theta$  can be 0 whatever r, if x=1 then  $\theta \geq L/r$  (note: Lx/r would be even better, but it is not convex; in fact,  $L0/0 \neq 0$ , whereas  $L0^2/0 = 0$ )
- Linearize the cones in (15)/(16) ⇒ a Semi-Infinite MILP; can be done automatically ... but better done by hand: "Perspective Cuts" (don't know why)

#### Application to SRP-SFSP-DCR

• "Perspectivized" formulation (first two not even strictly necessary):

$$\rho x_{ij} \le r_{ij} \le c_{ij} x_{ij}$$
 ,  $0 \le \theta_{ij} \le (L/\rho) x_{ij}$  ,  $\theta_{ij} r_{ij} \ge L x_{ij}^2$  original variables  $+$  a(nother rotated) SOCP constraint

#### Application to SRP-SFSP-DCR

"Perspectivized" formulation (first two not even strictly necessary):

$$\rho x_{ij} \le r_{ij} \le c_{ij} x_{ij}$$
 ,  $0 \le \theta_{ij} \le (L/\rho) x_{ij}$  ,  $\theta_{ij} r_{ij} \ge L x_{ij}^2$  original variables  $+$  a(nother rotated) SOCP constraint

Looks much better than

$$\begin{split} &0 \leq \theta_{ij} \leq \textit{M}x_{ij} \\ &\theta_{ij} \geq s_{ij} - \textit{M}(1 - x_{ij}) \\ &s_{ij} \ r'_{ij} \geq L \ , \ \ s_{ij} \geq 0 \\ &0 \leq r'_{ij} \leq r_{ij} + \textit{M}(1 - x_{ij}) \end{split}$$

not only better bound, but also fewer variables/constraints

- Is it? Time for computational tests
- Don't even bother with Perspective Cuts, just call a general-purpose MI-SOCP solver

#### Outline

- f 0 Motivation: There Can Be Too Much of a Good Thing
- System Model
- 3 Delay Constrained Routing
  - Combinatorial Approaches
  - MI-SOCP Models To The Rescue
  - A Small Detour: Perspective Reformulation
  - Computational tests
  - Simulations
- Other Delay Formulæ and Access Control
  - MI-SOCP Models
  - Computational tests
  - Simulations
- Conclusions

# MI-SOCP models - Cplex

|             |       | Cplex | Р    |    | Cplex bM |       |      |     |  |
|-------------|-------|-------|------|----|----------|-------|------|-----|--|
|             | av    | /g    | max  |    | a        | vg    | max  |     |  |
|             | t     | n     | t    | n  | t        | n     | t    | n   |  |
| abilene     | 0.011 | 0.000 | 0.03 | 0  | 0.02     | 0.03  | 0.09 | 1   |  |
| atlanta     | 0.015 | 0.044 | 0.18 | 1  | 0.03     | 0.07  | 0.17 | 1   |  |
| cost266     | 0.015 | 0.017 | 0.06 | 1  | 0.05     | 0.03  | 0.26 | 1   |  |
| dfn-bwin    | 0.012 | 0.000 | 0.03 | 0  | 0.05     | 0.02  | 0.11 | 1   |  |
| dfn-gwin    | 0.020 | 0.151 | 0.10 | 1  | 0.05     | 0.00  | 0.16 | 0   |  |
| di-yuan     | 0.051 | 1.190 | 0.34 | 18 | 0.11     | 1.36  | 0.62 | 31  |  |
| france      | 0.014 | 0.000 | 0.05 | 0  | 0.04     | 0.02  | 0.16 | 1   |  |
| geant       | 0.011 | 0.016 | 0.06 | 1  | 0.03     | 0.03  | 0.19 | 1   |  |
| germany50   | 0.024 | 0.025 | 0.10 | 1  | 0.09     | 0.06  | 0.70 | 1   |  |
| giul39      | 0.245 | 0.547 | 0.99 | 13 | 1.27     | 15.33 | 6.68 | 610 |  |
| india35     | 0.021 | 0.036 | 0.27 | 1  | 0.08     | 0.07  | 0.58 | 4   |  |
| janos-us    | 0.093 | 0.108 | 0.63 | 7  | 0.43     | 2.65  | 1.55 | 30  |  |
| janos-us-ca | 0.141 | 0.138 | 0.83 | 8  | 0.80     | 5.76  | 2.76 | 243 |  |
| newyork     | 0.018 | 0.034 | 0.14 | 1  | 0.07     | 0.05  | 0.28 | 1   |  |
| nobel-eu    | 0.016 | 0.009 | 0.08 | 1  | 0.04     | 0.05  | 0.26 | 1   |  |
| nobel-ger   | 0.011 | 0.020 | 0.04 | 1  | 0.04     | 0.08  | 0.24 | 3   |  |

# MI-SOCP models - Cplex (cont.)

| nobel-us     | 0.015  | 0.083  | 0.10   | 1    | 0.04   | 0.04    | 0.19    | 1      |  |
|--------------|--------|--------|--------|------|--------|---------|---------|--------|--|
| norway       | 0.035  | 0.079  | 0.32   | 8    | 0.11   | 0.36    | 0.96    | 8      |  |
| pdh          | 0.042  | 0.444  | 0.38   | 8    | 0.11   | 0.74    | 0.38    | 13     |  |
| pioro40      | 0.019  | 0.039  | 0.27   | 1    | 0.10   | 0.14    | 0.57    | 6      |  |
| polska       | 0.020  | 0.042  | 0.11   | 1    | 0.03   | 0.08    | 0.09    | 1      |  |
| sun          | 0.165  | 0.587  | 0.89   | 13   | 0.65   | 7.68    | 2.36    | 257    |  |
| ta2          | 0.020  | 0.015  | 0.13   | 1    | 0.12   | 0.08    | 0.89    | 4      |  |
| garr 1999-01 | 0.022  | 0.017  | 0.13   | 1    | 0.09   | 0.21    | 0.33    | 1      |  |
| garr 1999-04 | 0.029  | 0.000  | 0.07   | 0    | 0.10   | 0.07    | 0.45    | 3      |  |
| garr 1999-05 | 0.029  | 0.004  | 0.09   | 1    | 0.10   | 0.08    | 0.40    | 3      |  |
| garr 2001-09 | 0.030  | 0.000  | 0.10   | 0    | 0.11   | 0.10    | 0.44    | 3      |  |
| garr 2001-12 | 0.029  | 0.000  | 0.08   | 0    | 0.09   | 0.16    | 0.32    | 3      |  |
| garr 2004-04 | 0.028  | 0.000  | 0.18   | 0    | 0.09   | 0.05    | 0.31    | 3      |  |
| garr 2009-08 | 0.087  | 0.005  | 0.46   | 2    | 0.57   | 0.47    | 1.99    | 27     |  |
| garr 2009-09 | 0.089  | 0.011  | 0.62   | 4    | 0.60   | 0.61    | 2.19    | 36     |  |
| garr 2009-12 | 0.090  | 0.013  | 0.78   | 4    | 0.60   | 0.59    | 2.47    | 44     |  |
| garr 2010-01 | 0.093  | 0.013  | 0.50   | 4    | 0.61   | 0.57    | 2.32    | 32     |  |
| w1-100-04    | 1.854  | 3.176  | 43.14  | 85   | 8.88   | 164.49  | 43.87   | 2585   |  |
| w1-200-04    | 24.231 | 25.366 | 413.95 | 4075 | 231.09 | 2714.68 | 9088.54 | 127429 |  |

### MI-SOCP models - GUROBI

|             |         | GURO | BI P |      | GUROBI bM |       |       |      |  |  |
|-------------|---------|------|------|------|-----------|-------|-------|------|--|--|
|             | av      | g    | m    | ax   | a١        | /g    | ma    | ΙX   |  |  |
|             | t n t n |      | t    | n    | t         | n     |       |      |  |  |
| abilene     | 0.011   | 0.0  | 0.03 | 0    | 0.032     | 0.1   | 0.06  | 3    |  |  |
| atlanta     | 0.012   | 0.5  | 0.03 | 8    | 0.044     | 1.6   | 0.08  | 15   |  |  |
| cost266     | 0.012   | 0.4  | 0.05 | 11   | 0.099     | 8.0   | 0.30  | 27   |  |  |
| dfn-bwin    | 0.007   | 0.0  | 0.01 | 0    | 0.068     | 0.0   | 0.08  | 0    |  |  |
| dfn-gwin    | 0.017   | 0.0  | 0.04 | 0    | 0.104     | 0.1   | 0.31  | 4    |  |  |
| di-yuan     | 0.028   | 2.0  | 0.21 | 46   | 0.116     | 4.9   | 0.46  | 74   |  |  |
| france      | 0.011   | 0.3  | 0.03 | 6    | 0.079     | 1.2   | 0.18  | 17   |  |  |
| geant       | 0.011   | 0.7  | 0.04 | 11   | 0.062     | 1.2   | 0.17  | 22   |  |  |
| germany50   | 0.016   | 1.1  | 0.26 | 34   | 0.166     | 2.5   | 0.93  | 52   |  |  |
| giul39      | 0.424   | 67.6 | 6.69 | 1308 | 1.795     | 138.5 | 30.02 | 2212 |  |  |
| india35     | 0.014   | 0.4  | 0.12 | 14   | 0.132     | 1.8   | 0.34  | 29   |  |  |
| janos-us    | 0.150   | 21.2 | 2.14 | 767  | 0.717     | 85.4  | 16.54 | 1168 |  |  |
| janos-us-ca | 0.285   | 47.1 | 7.87 | 916  | 1.741     | 158.4 | 25.93 | 1595 |  |  |
| newyork     | 0.013   | 0.8  | 0.04 | 14   | 0.091     | 2.2   | 0.22  | 22   |  |  |
| nobel-eu    | 0.013   | 0.2  | 0.09 | 9    | 0.080     | 0.4   | 0.25  | 31   |  |  |
| nobel-ger   | 0.012   | 0.4  | 0.04 | 11   | 0.056     | 1.4   | 0.33  | 38   |  |  |

# MI-SOCP models - GUROBI (cont.)

| nobel-us     | 0.012 | 0.8   | 0.05  | 11   | 0.047   | 0.9   | 0.15    | 11    |
|--------------|-------|-------|-------|------|---------|-------|---------|-------|
| norway       | 0.033 | 2.8   | 0.44  | 30   | 0.141   | 7.7   | 0.63    | 55    |
| pdh          | 0.023 | 4.6   | 0.09  | 47   | 0.081   | 7.1   | 0.23    | 45    |
| pioro40      | 0.015 | 0.6   | 0.09  | 13   | 0.160   | 2.6   | 0.57    | 44    |
| polska       | 0.010 | 0.5   | 0.03  | 7    | 0.038   | 1.2   | 0.06    | 9     |
| sun          | 0.189 | 39.6  | 0.76  | 282  | 0.961   | 126.9 | 5.68    | 583   |
| ta2          | 0.018 | 0.6   | 0.12  | 27   | 0.214   | 1.9   | 1.52    | 33    |
| garr 1999-01 | 0.034 | 0.5   | 0.09  | 9    | 0.096   | 6.6   | 0.38    | 17    |
| garr 1999-04 | 0.016 | 1.9   | 0.11  | 26   | 0.115   | 2.7   | 0.55    | 35    |
| garr 1999-05 | 0.018 | 2.0   | 0.08  | 25   | 0.139   | 3.5   | 0.79    | 36    |
| garr 2001-09 | 0.020 | 2.0   | 0.09  | 19   | 0.156   | 4.0   | 0.97    | 29    |
| garr 2001-12 | 0.015 | 0.0   | 0.04  | 0    | 0.116   | 0.1   | 0.31    | 17    |
| garr 2004-04 | 0.021 | 3.0   | 0.06  | 14   | 0.128   | 3.5   | 0.57    | 27    |
| garr 2009-08 | 0.070 | 7.6   | 0.72  | 124  | 0.776   | 18.8  | 5.39    | 164   |
| garr 2009-09 | 0.071 | 7.6   | 0.59  | 202  | 0.918   | 21.8  | 4.85    | 212   |
| garr 2009-12 | 0.071 | 7.6   | 0.55  | 123  | 0.920   | 22.7  | 6.21    | 352   |
| garr 2010-01 | 0.073 | 7.6   | 0.68  | 114  | 0.916   | 22.8  | 5.76    | 339   |
| w1-100-04    | 2.372 | 159.3 | 7.09  | 703  | 14.064  | 407.2 | 110.36  | 5339  |
| w1-200-04    | 9.575 | 241.4 | 63.37 | 1395 | 134.145 | 637.0 | 2384.84 | 10943 |

### 3-Pronged Approach

- MI-SOCP approach accurate but slow ERA-\* approaches fast but inaccurate
- Best of both worlds: 3-pronged approach
  - 1 run ERA-I, if instance unfeasible terminate
  - ② otherwise run ERA-H: if a solution found, report it and terminate
  - if all else fails, then run model P and report its solution
- So crude, does it really work?

## 3-Pronged Approach: Experiments

|       | Ср]    | Lex   |      |       | GUR  | OBI   |      |      |      |      |      |      |
|-------|--------|-------|------|-------|------|-------|------|------|------|------|------|------|
| S     | ЭCР    | 31    | )    | SO    | CP   | 3P    |      | Gaps |      | [    | 1    |      |
| av    | g max  | avg   | max  | avg   | max  | avg   | max  | avg  | max  | avg  | max  | inf  |
| 0.00  | 0.02   | 0.001 | 0.01 | 0.009 | 0.02 | 0.001 | 0.01 | 0.00 | 0.00 |      | 0.00 | 0.06 |
| 0.01  | 0.16   | 0.001 | 0.02 | 0.010 | 0.03 | 0.001 | 0.02 | 0.00 | 0.00 |      | 0.00 | 0.07 |
| 0.013 | 3 0.05 | 0.002 | 0.03 | 0.012 | 0.04 | 0.003 | 0.04 | 0.00 | 0.00 |      | 0.00 | 0.17 |
| 0.01  | 0.02   | 0.000 | 0.00 | 0.007 | 0.01 | 0.000 | 0.01 | 0.00 | 0.00 |      | 0.00 | 0.00 |
| 0.019 | 0.09   | 0.000 | 0.01 | 0.015 | 0.04 | 0.000 | 0.01 | 0.00 | 0.00 |      | 0.00 | 0.02 |
| 0.05  | 0.35   | 0.017 | 0.35 | 0.028 | 0.22 | 0.012 | 0.23 | 0.00 | 0.00 |      | 0.00 | 0.12 |
| 0.01  | 5 0.04 | 0.000 | 0.01 | 0.010 | 0.03 | 0.000 | 0.01 | 0.00 | 0.00 |      | 0.00 | 0.02 |
| 0.013 | 3 0.05 | 0.001 | 0.01 | 0.010 | 0.04 | 0.001 | 0.03 | 0.00 | 0.00 |      | 0.00 | 0.06 |
| 0.02  | 0.09   | 0.005 | 0.08 | 0.017 | 0.24 | 0.007 | 0.27 | 0.00 | 0.00 | 7e-5 | 0.01 | 0.21 |
| 0.25  | 1.01   | 0.019 | 0.66 | 0.449 | 7.57 | 0.087 | 6.52 | 0.01 | 0.57 | 3e-4 | 0.01 | 0.10 |
| 0.01  | 0.25   | 0.002 | 0.04 | 0.016 | 0.11 | 0.002 | 0.07 | 0.00 | 0.00 |      | 0.00 | 0.11 |
| 0.09  | 0.62   | 0.013 | 0.33 | 0.153 | 2.25 | 0.051 | 2.19 | 0.00 | 0.28 | 1e-4 | 0.01 | 0.18 |
| 0.14  | 1 0.84 | 0.026 | 0.49 | 0.298 | 9.59 | 0.118 | 7.70 | 0.01 | 0.29 | 2e-4 | 0.01 | 0.23 |
| 0.01  | 7 0.13 | 0.000 | 0.02 | 0.015 | 0.04 | 0.001 | 0.02 | 0.00 | 0.00 |      | 0.00 | 0.03 |
| 0.01  | 4 0.05 | 0.004 | 0.05 | 0.016 | 0.09 | 0.005 | 0.09 | 0.00 | 0.00 |      | 0.00 | 0.23 |
| 0.01  | 0.03   | 0.002 | 0.03 | 0.015 | 0.04 | 0.002 | 0.04 | 0.00 | 0.00 |      | 0.00 | 0.10 |

# 3-Pronged Approach: Experiments (cont.)

| 0.013  | 0.09  | 0.000 | 0.00  | 0.014 | 0.05  | 0.000 | 0.00  | 0.00 | 0.00 | 0.00 0.00      |
|--------|-------|-------|-------|-------|-------|-------|-------|------|------|----------------|
| 0.032  | 0.30  | 0.005 | 0.25  | 0.035 | 0.32  | 0.005 | 0.13  | 0.00 | 0.00 | 6e-5 0.01 0.12 |
| 0.034  | 0.30  | 0.001 | 0.02  | 0.026 | 0.10  | 0.002 | 0.10  | 0.00 | 0.00 | 0.00 0.04      |
| 0.019  | 0.27  | 0.007 | 0.25  | 0.018 | 0.09  | 0.007 | 0.09  | 0.00 | 0.00 | 5e-5 0.01 0.25 |
| 0.016  | 0.09  | 0.000 | 0.00  | 0.014 | 0.03  | 0.000 | 0.00  | 0.00 | 0.00 | 0.00 0.00      |
| 0.154  | 0.89  | 0.006 | 0.36  | 0.188 | 0.87  | 0.009 | 0.40  | 0.01 | 0.43 | 2e-4 0.01 0.06 |
| 0.019  | 0.12  | 800.0 | 0.05  | 0.020 | 0.13  | 0.009 | 0.13  | 0.00 | 0.00 | 8e-5 0.01 0.31 |
| 0.025  | 0.12  | 0.001 | 0.03  | 0.035 | 0.10  | 0.001 | 0.03  | 0.00 | 0.00 | 4e-5 0.01 0.02 |
| 0.030  | 0.08  | 0.022 | 0.06  | 0.017 | 0.12  | 0.016 | 0.10  | 0.00 | 0.00 | 4e-5 0.01 0.75 |
| 0.028  | 0.08  | 0.021 | 0.06  | 0.018 | 0.08  | 0.016 | 0.08  | 0.00 | 0.00 | 6e-5 0.01 0.75 |
| 0.026  | 0.09  | 0.021 | 0.08  | 0.022 | 0.09  | 0.018 | 0.09  | 0.00 | 0.00 | 4e-5 0.01 0.74 |
| 0.027  | 0.07  | 0.022 | 0.07  | 0.016 | 0.04  | 0.012 | 0.04  | 0.00 | 0.00 | 4e-5 0.01 0.75 |
| 0.026  | 0.17  | 0.020 | 0.05  | 0.022 | 0.06  | 0.019 | 0.06  | 0.00 | 0.00 | 4e-5 0.01 0.75 |
| 0.084  | 0.44  | 0.075 | 0.44  | 0.069 | 0.70  | 0.065 | 0.71  | 0.00 | 0.39 | 2e-4 0.01 0.85 |
| 0.086  | 0.62  | 0.078 | 0.62  | 0.069 | 0.56  | 0.063 | 0.57  | 0.00 | 0.00 | 2e-4 0.01 0.85 |
| 0.088  | 0.75  | 0.078 | 0.73  | 0.071 | 0.52  | 0.061 | 0.50  | 0.00 | 0.24 | 2e-4 0.01 0.85 |
| 0.087  | 0.46  | 0.076 | 0.45  | 0.074 | 0.61  | 0.066 | 0.59  | 0.00 | 0.24 | 2e-4 0.01 0.85 |
| 1.906  | 46.7  | 0.034 | 1.84  | 2.354 | 8.35  | 0.150 | 3.54  | 0.01 | 0.74 | 2e-3 0.01 0.07 |
| 23.660 | 357.7 | 0.247 | 54.29 | 9.033 | 63.19 | 0.399 | 12.36 | 0.01 | 0.81 | 1e-2 0.02 0.05 |

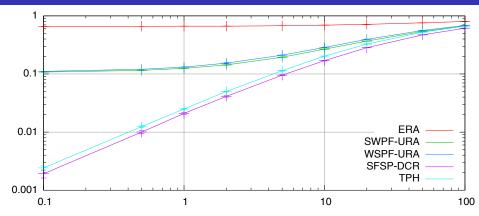
### Outline

- f 0 Motivation: There Can Be Too Much of a Good Thing
- System Model
- 3 Delay Constrained Routing
  - Combinatorial Approaches
  - MI-SOCP Models To The Rescue
  - A Small Detour: Perspective Reformulation
  - Computational tests
  - Simulations
- Other Delay Formulæ and Access Control
  - MI-SOCP Models
  - Computational tests
  - Simulations
- Conclusions

## Does it really matter in practice?

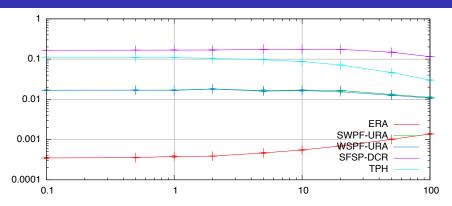
- Simulating the network behavior, large number of path computations
- ullet Exponential interarrival (avg  $=\lambda$ ), exponential duration (avg =1s)
- $\sigma=3$  MTU and  $\delta$  random in  $[d_{min}, d_{min}+\beta(d_{max}-d_{min})]$  $d_{min}=$  minimum feasible deadline,  $d_{max}=$  delay constraint inactive
- Average of five independent replicas, and 95% confidence intervals
- Comparing all practical approaches known so far (2 new):
  - ERA (equal rate allocation)
  - SWPF-URA: shortest-widest-path + optimal (unequal) rate allocation
  - WSPF-URA: widest-shortest-path + optimal (unequal) rate allocation
  - SFSP-DCR: MI-SOCP model (perspective version)
  - **5** TPH: 3-pronged heuristic
- Same real-world topologies, realistic capacities

# Simulation results: blocking probability



- ERA fails far too much (allocating the same rate a bad idea)
- both ERA and \*-URA perform considerably worse than SFSP-DCR
- TPH performs quite close to the optimum
- Similar on all topologies,  $\sigma \in \{1, 3, 10\}$ MTU,  $\beta \in \{0.2, 0.5, 1.0\}$

### Simulation results: time



- SFSP-DCR slower but still affordable
- TPH much faster and almost as good
- "large" networks: |N| = 70+, |A| = 230+
- Path Computation Element makes this technically feasible

### Outline

- Motivation: There Can Be Too Much of a Good Thing
- System Model
- 3 Delay Constrained Routing
  - Combinatorial Approaches
  - MI-SOCP Models To The Rescue
  - A Small Detour: Perspective Reformulation
  - Computational tests
  - Simulations
- Other Delay Formulæ and Access Control
  - MI-SOCP Models
  - Computational tests
  - Simulations
- Conclusions

#### Other Schedulers

Other practical scheduling protocols:

$$\theta_{ij} = \left(|P(i,j)| + 1\right) \frac{L}{w_{ij}} + \frac{L}{r_{ij}^{eff}}$$
 Weakly Rate-Proportional (17)

$$\theta_{ij} = \left( |P(i,j)| + \frac{\overline{r}_{ij}}{r_{ij}^{min}} \right) \frac{L}{w_{ij}} + \frac{L}{r_{ij}^{eff}}$$
 Frame-Based (18)

$$\theta_{ij} = 3 \frac{2^{\lceil \log_2 w_{ij} L/r_{ij} \rceil}}{w_{ij}} + 2 \frac{L}{w_{ij}}$$
 Group-Based (19)

- SRP  $\leq$  WRP  $\leq$  FB  $\lesssim$  GB (depends on "quantum"  $\geq$  L in FB)
- SRP and WRP  $O(\log |K|)$ , FB and GB O(1) ( $\neq$  in practice)

#### "Bound" Versions

"Bound" Versions of the Delay Formulæ:

$$\theta_{ij} = \frac{L}{r_{ij}} + |P(i,j)| \frac{L}{w_{ij}}$$
 WRP (21)

$$\theta_{ij} = \frac{L}{r_{ij}} + \left( |P(i,j)| + \frac{w_{ij} - r_{ij}}{\min\{r_{ij}, r_{ij}^{min}\}} \right) \frac{L}{w_{ij}}$$
 FB (22)

- (3) independent of other flows, convex, SOCP-representable
- $(21) \approx (3)$  but not flow-independent
- (22) (surprisingly) also convex but only for SFSP, less trivial
- No "worst-case" version of (19)/(20)
- All but (3) and (19) not flow-independent ⇒ need admission control

### Outline

- Motivation: There Can Be Too Much of a Good Thing
- System Model
- 3 Delay Constrained Routing
  - Combinatorial Approaches
  - MI-SOCP Models To The Rescue
  - A Small Detour: Perspective Reformulation
  - Computational tests
  - Simulations
- Other Delay Formulæ and Access Control
  - MI-SOCP Models
  - Computational tests
  - Simulations
- Conclusions

#### MI-SOCP Model for WRP-B

- $\theta_{ij} = L/r_{ij} + |P(i,j)|L/w_{ij} \approx (3) \Longrightarrow \text{(basically) same model}$
- But requires access control: not to make existing flows unfeasible

### MI-SOCP Model for WRP-B

- $\theta_{ij} = L/r_{ij} + |P(i,j)|L/w_{ij} \approx (3) \Longrightarrow$  (basically) same model
- But requires access control: not to make existing flows unfeasible
- Delay slack:

$$\overline{\delta}^k = \delta^k - \frac{\sigma^k}{r_{min}^k} - \sum_{(i,j) \in P^k} \left( \frac{L}{r_{ij}^k} + |P(i,j)| \frac{L}{w_{ij}} + l_{ij} + n_i \right)$$

• Access control constraint, one for each  $k \in K$ 

$$\sum_{(i,j)\in P^k} \frac{L}{w_{ij}} x_{ij} \le \bar{\delta}^k$$

|P(i,j)| increases by one in all (i,j) that the new path traverses

- Can be used to "preprocess away" some arcs
- The coefficients are the same for each flow, can use path (+ RHS) dominance to detect redundant ones
- Still, possibly many constraints ( $|K| \approx n^2$ )

## Modeling FB-B

• 
$$\theta_{ij} = L/r_{ij} + (|P(i,j)| + \phi(r_{ij}))L/w_{ij}$$
 ( $\approx$  WRP), where 
$$\phi(r) = (w_{ij} - r)/\min\{r, r_{ii}^{min}\}$$

## Modeling FB-B

•  $\theta_{ij} = L/r_{ij} + (|P(i,j)| + \phi(r_{ij}))L/w_{ij} \ (\approx \text{WRP})$ , where  $\phi(r) = (w_{ij} - r)/\min\{r, r_{ij}^{min}\}$ 

• Since  $r_{ij}^{min}$  is fixed, can be rewritten as

$$\phi(r) = \begin{cases} \phi_1(r) = w_{ij}/r - 1 & \text{if } 0 < r \le r_{ij}^{min} \\ \phi_2(r) = (w_{ij} - r)/r_{ij}^{min} & \text{if } r_{ij}^{min} \le r \le c_{ij} (\le w_{ij}) \end{cases}$$

• Convex!: both  $\phi_1$  and  $\phi_2$  are, and  $\phi_1'(r_{ij}^{min}) \leq \phi_2'(r_{ij}^{min})$ 

## Modeling FB-B

•  $\theta_{ij} = L/r_{ij} + (|P(i,j)| + \phi(r_{ij}))L/w_{ij}$  ( $\approx$  WRP), where  $\phi(r) = (w_{ij} - r)/\min\{r, r_{ij}^{min}\}$ 

• Since  $r_{ij}^{min}$  is fixed, can be rewritten as

$$\phi(r) = \begin{cases} \phi_1(r) = w_{ij}/r - 1 & \text{if } 0 < r \le r_{ij}^{min} \\ \phi_2(r) = (w_{ij} - r)/r_{ij}^{min} & \text{if } r_{ij}^{min} \le r \le c_{ij} (\le w_{ij}) \end{cases}$$

- Convex!: both  $\phi_1$  and  $\phi_2$  are, and  $\phi_1'(r_{ij}^{min}) \leq \phi_2'(r_{ij}^{min})$
- Could use the classical variable splitting reformulation

$$\phi(r) = \phi_1(r') + \phi_2(r'' + r_{ij}^{min}) - \phi(r_{ij}^{min}) \quad \text{s.t.}$$

$$0 \le r'_{ij} \le r_{ij}^{min}, \quad 0 \le r''_{ij} \le (c_{ij} - r_{ij}^{min}), \quad r = r' + r''$$

• But we can do better, because  $\phi(r) = \max\{\phi_1(r), \phi_2(r)\}$ 

### MI-SOCP Model for FB-B and GB

ullet Can use the "cutting planes" representation of  $\phi$ 

$$v \ge \phi_1(r) = w_{ij}/r - 1$$
 ,  $v \ge \phi_2(r) = (w_{ij} - r)/r_{ij}^{min}$ 

• Formulation (recall the  $L/w_{ii}$  factor):

$$\theta_{ij} = v_{ij} + v'_{ij} + \frac{L}{w_{ij}} (|P(i,j)| + 1) x_{ij}$$

$$v_{ij} r_{ij} \ge L x_{ij}^2 , \quad v_{ij} \ge 0$$

$$v'_{ij} \ge v_{ij} - L/w_{ij}$$

$$v'_{ij} \ge (L/r_{ij}^{min}) x_{ij} - Lr_{ij}/(w_{ij}r_{ij}^{min})$$

only one extra conic constraint, two extra variables

- Note the  $x_{ij} \cdot w_{ij}/r_{ij}^{min}$  in  $\phi_2$ : otherwise,  $v'_{ij} \geq L/r_{ij}^{min}$  even if  $x_{ij} = 0$
- GB: obvious from SRP using (20) (we use "optimistic" factor 3).

#### Admission Control for FB-B

• "Abstract" admission control constraint for FB: same  $\bar{\delta}^k$  as WRP,

$$\sum_{(i,j)\in P^k} \frac{L}{w_{ij}} \left( x_{ij} + \frac{w_{ij} - r_{ij}^k}{\min\{r_{ij}, r_{ij}^{min}\}} \right) \le \overline{\delta}^k$$

$$|P(i,j)| += 1$$
, plus  $r_{ij}^{min}$  decreases  $\iff r_{ij} \le r_{ij}^{min}$ 

#### Admission Control for FB-B

• "Abstract" admission control constraint for FB: same  $\bar{\delta}^k$  as WRP,

$$\sum_{(i,j)\in P^k} \frac{L}{w_{ij}} \left( x_{ij} + \frac{w_{ij} - r_{ij}^k}{\min\{r_{ij}, r_{ij}^{min}\}} \right) \le \overline{\delta}^k$$

$$|P(i,j)| += 1$$
, plus  $r_{ij}^{min}$  decreases  $\iff r_{ij} \le r_{ij}^{min}$ 

• Extra term  $(w_{ij} - r_{ij}^k)/r_{ij}$ , but only if  $r_{ij} \le r_{ij}^{min}$ ; otherwise, constant term  $(w_{ij} - r_{ij}^k)/r_{ij}^{min} \implies$ 

$$\sum_{(i,j)\in P^k} \frac{L}{w_{ij}} \left( x_{ij} + (w_{ij} - r_{ij}^k) z_{ij} \right) \leq \bar{\delta}^k$$

$$s_{ij} \leq r_{ij} \ , \ s_{ij} \leq r_{ij}^{min} \ , \ s_{ij}z_{ij} \geq x_{ij}^2 \ , \ z_{ij} \geq 0$$

+2|A| variables, +|A| conic constraints but shared among flows

- Different coefficients (to share the  $z_{ij}$ ), dominance more difficult
- Arc-based preprocessing still possible (using  $r_{ij} = c_{ij}$ )

### MI-SOCP Model for SRP-W

- Distinguish the "empty" arcs:  $A'' = \{(i,j) : P(i,j) \neq \emptyset\}$
- To model (2), just use (1) to get

$$\theta_{ij} = \frac{L}{w_{ij}} + \begin{cases} \frac{L}{w_{ij}} \left( \frac{\bar{r}_{ij}}{r_{ij}} + 1 \right) & \text{if } (i,j) \in A'' \\ 0 & \text{otherwise} \end{cases}$$
 (23)

- The "empty" arcs have constant latency
- For the others: yet a different constant + same " $1/r_{ij}$ " form

$$t + \sum_{(i,j)\in A} \bar{l}_{ij} x_{ij} + \sum_{(i,j)\in A''} \left(\frac{\bar{r}_{ij}}{w_{ij}} v_{ij} + \frac{L}{w_{ij}} x_{ij}\right) \le \delta$$
 (24)

### Admission Control for SRP-W

- The arrival of the new flow does impact the delay formula
- $\bar{r}_{ij}^{-q} = \sum_{q \in P(i,j) \setminus \{p\}} r_{ij}^q = \text{rates of existing flows except } p$ : (23) reads

$$\theta_{ij}^p = \frac{L}{w_{ij}} \left( \frac{\overline{r}_{ij}^{-q} + r_{ij}}{r_{ij}^p} + 2 \right) ,$$

• New flow pass from  $(i,j) \Longrightarrow$  increase in latency

$$\Delta heta_{ij}^{p} = \left\{ egin{array}{ll} rac{L \, r_{ij}}{w_{ij} \, r_{ij}^{p}} & ext{if } |P(i,j) \setminus \{p\}| > 0 \ \\ rac{L}{w_{ij}} \left(rac{r_{ij}}{r_{ij}^{p}} + 1
ight) & ext{otherwise} \end{array} 
ight.$$

• Admission control constraint (linear)

$$\sum_{(i,j)\in p} \frac{L}{w_{ij}} \frac{L}{r_{ij}^{p}} r_{ij} + \sum_{(i,j)\in p'} \frac{L}{w_{ij}} x_{ij} \le \bar{\delta}^{p}$$
 (25)

for usual "delay slack"  $\bar{\delta}^p$  of flow p

### MI-SOCP Model for WRP-W

Delay formula for WRP-W

$$\theta_{ij} = |P(i,j)| \frac{L}{w_{ij}} + \frac{L}{w_{ij}} \left(\frac{\bar{r}_{ij}}{r_{ij}} + 1\right)$$
 (26)

which easily gives

$$t + \sum_{(i,j)\in A} \left[ \frac{\bar{r}_{ij}}{w_{ij}} v_{ij} + \left( |P(i,j)| \frac{L}{w_{ij}} + \bar{l}_{ij} \right) x_{ij} \right] \le \delta$$
 (27)

Increase in latency for an existing flow p

$$\Delta\theta_{ij}^{p} = \frac{L}{w_{ij}} \left( \frac{r_{ij}}{r_{ij}^{p}} + 1 \right) \tag{28}$$

• Properly defined  $\bar{\delta}^p$ , admission control constraint

$$\sum_{(i,j)\in p} \frac{L}{w_{ij}} \left( \frac{r_{ij}}{r_{ij}^p} + x_{ij} \right) \le \overline{\delta}^p \tag{29}$$

#### once again linear

#### MI-SOCP Model for FB-W

Worst-case FB formula is

$$\theta_{ij} = \frac{L}{w_{ij}} \left[ \frac{\bar{r}_{ij}}{\min\{r_{ij}, r_{ij}^{min}\}} + \frac{\bar{r}_{ij}}{r_{ij}} + |P(i, j)| + 1 \right] , \qquad (30)$$

i.e., the same as (26) plus the extra term

$$\frac{L}{w_{ij}} \frac{\bar{r}_{ij}}{\min\{r_{ij}, r_{ij}^{min}\}} . \tag{31}$$

Same tricks as above give

$$t + \sum_{(i,j)\in A} \left( |P(i,j)| \frac{L}{w_{ij}} + \bar{l}_{ij} \right) x_{ij} + \sum_{(i,j)\in A''} \frac{\bar{r}_{ij}}{w_{ij}} (s_{ij} + v_{ij}) \le \delta$$

$$s_{ij} \ge v_{ij} \ , \ s_{ij} \ge L/r_{ij}^{min} \ , \ (i,j) \in A''$$

### Admission Control for FB-W

- Latency increase = "WRP part" of the latency formula + (31)
- First leads to delay increase (28)
- Second is

$$\sum_{(i,j)\in\rho} \frac{L}{w_{ij}} \left( \frac{\bar{r}_{ij}^{-\rho} + r_{ij}}{\min\{r_{ij}, r_{ij}^{min}\}} + \frac{r_{ij}}{r_{ij}^{\rho}} + x_{ij} \right) \leq \bar{\delta}^{\rho}$$
(32)

All in all

$$\sum_{(i,j)\in p} \frac{L}{w_{ij}} \left( z_{ij} + \frac{r_{ij}}{r_{ij}^p} + x_{ij} \right) \le \bar{\delta}^p \tag{33}$$

$$z_{ij} \ge (\bar{r}_{ij} + r_{ij})/r_{ij}^{min}, \quad z_{ij} \ge \bar{r}_{ij}v_{ij}/L + 1 \qquad (i,j) \in p$$
 (34)

### Outline

- Motivation: There Can Be Too Much of a Good Thing
- System Model
- 3 Delay Constrained Routing
  - Combinatorial Approaches
  - MI-SOCP Models To The Rescue
  - A Small Detour: Perspective Reformulation
  - Computational tests
  - Simulations
- 4 Other Delay Formulæ and Access Control
  - MI-SOCP Models
  - Computational tests
  - Simulations
- Conclusions

## Computational results for all the models

|          |       |       | Ме    | ean Ti | me    |       |       |      |      | Ма   | ax Ti | me   |      |      |
|----------|-------|-------|-------|--------|-------|-------|-------|------|------|------|-------|------|------|------|
|          | S-B   | GRB   | W-B   | F-B    | S-W   | W-W   | F-W   | S-B  | GRB  | W-B  | F-B   | S-W  | W-W  | F-W  |
| abilene  | 0.002 | 0.002 | 0.002 | 0.001  | 0.002 | 0.002 | 0.002 | 0.01 | 0.01 | 0.01 | 0.01  | 0.01 | 0.01 | 0.01 |
| atlanta  | 0.004 | 0.003 | 0.004 | 0.003  | 0.002 | 0.002 | 0.002 | 0.03 | 0.01 | 0.02 | 0.02  | 0.01 | 0.01 | 0.01 |
| cost266  | 0.004 | 0.004 | 0.004 | 0.004  | 0.001 | 0.001 | 0.002 | 0.02 | 0.01 | 0.02 | 0.02  | 0.01 | 0.01 | 0.01 |
| Dfn-bwin | 0.003 | 0.003 | 0.007 | 0.003  | 0.002 | 0.002 | 0.002 | 0.01 | 0.01 | 0.03 | 0.02  | 0.01 | 0.01 | 0.01 |
| Dfn-gwin | 0.007 | 0.005 | 0.010 | 0.005  | 0.002 | 0.002 | 0.003 | 0.03 | 0.03 | 0.05 | 0.03  | 0.01 | 0.01 | 0.01 |
| Di-yuan  | 0.014 | 0.007 | 0.014 | 0.009  | 0.004 | 0.004 | 0.004 | 0.10 | 0.03 | 0.08 | 0.06  | 0.02 | 0.02 | 0.02 |
| france   | 0.005 | 0.005 | 0.006 | 0.004  | 0.002 | 0.002 | 0.002 | 0.02 | 0.01 | 0.03 | 0.02  | 0.01 | 0.01 | 0.01 |
| geant    | 0.004 | 0.004 | 0.004 | 0.003  | 0.002 | 0.002 | 0.002 | 0.02 | 0.01 | 0.02 | 0.02  | 0.01 | 0.01 | 0.01 |
| ger50    | 0.007 | 0.007 | 0.007 | 0.006  | 0.002 | 0.002 | 0.002 | 0.03 | 0.05 | 0.05 | 0.03  | 0.02 | 0.02 | 0.02 |
| giul39   | 0.097 | 0.075 | 0.132 | 0.051  | 0.077 | 0.078 | 0.068 | 0.49 | 0.35 | 1.51 | 0.35  | 0.72 | 0.74 | 0.50 |
| india35  | 0.007 | 0.007 | 0.009 | 0.006  | 0.002 | 0.002 | 0.003 | 0.11 | 0.03 | 0.06 | 0.04  | 0.02 | 0.02 | 0.02 |
| Janos-us | 0.038 | 0.033 | 0.050 | 0.033  | 0.025 | 0.026 | 0.023 | 0.23 | 0.14 | 0.28 | 0.22  | 0.36 | 0.37 | 0.19 |
| Janos-ca | 0.059 | 0.055 | 0.085 | 0.058  | 0.036 | 0.036 | 0.033 | 0.40 | 0.25 | 0.45 | 0.49  | 0.49 | 0.48 | 0.32 |
| newyork  | 0.006 | 0.005 | 0.007 | 0.004  | 0.002 | 0.002 | 0.003 | 0.04 | 0.02 | 0.03 | 0.02  | 0.02 | 0.02 | 0.01 |
| Nobel-eu | 0.005 | 0.004 | 0.005 | 0.004  | 0.002 | 0.002 | 0.002 | 0.02 | 0.01 | 0.03 | 0.03  | 0.01 | 0.01 | 0.01 |
| Nobel-ge | 0.003 | 0.003 | 0.003 | 0.002  | 0.002 | 0.002 | 0.002 | 0.01 | 0.01 | 0.01 | 0.01  | 0.01 | 0.01 | 0.01 |
| Nobel-us | 0.003 | 0.003 | 0.003 | 0.002  | 0.001 | 0.001 | 0.001 | 0.02 | 0.02 | 0.01 | 0.01  | 0.01 | 0.01 | 0.01 |
| norway   | 0.011 | 0.008 | 0.015 | 800.0  | 0.005 | 0.005 | 0.005 | 0.11 | 0.05 | 0.15 | 0.08  | 0.06 | 0.06 | 0.06 |
| pdh      | 0.009 | 0.006 | 0.012 | 800.0  | 0.004 | 0.004 | 0.005 | 0.06 | 0.06 | 0.06 | 0.05  | 0.02 | 0.02 | 0.03 |

## Computational results for all the models (cont.d)

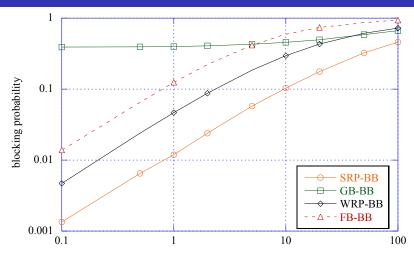
|          | Mean Time                               | Max Time                                 |
|----------|-----------------------------------------|------------------------------------------|
|          | S-B GRB W-B F-B S-W W-W F               | -W S-B GRB W-B F-B S-W W-W F-W           |
| garr9901 | 0.008 0.009 0.010 0.006 0.006 0.006 0.0 | 0.04 0.03 0.05 0.04 0.03 0.03 0.03       |
| garr9904 | 0.008 0.008 0.011 0.010 0.003 0.003 0.0 | 0.03 0.04 0.06 0.07 0.03 0.03 0.02       |
| garr9905 | 0.008 0.007 0.010 0.009 0.003 0.003 0.0 | 003 0.03 0.04 0.07 0.06 0.02 0.02 0.02   |
| garr0109 | 0.008 0.009 0.009 0.009 0.003 0.003 0.0 | 003 0.03 0.04 0.05 0.04 0.02 0.02 0.02   |
| garr0112 | 0.008 0.007 0.010 0.009 0.003 0.003 0.0 | 0.03 0.03 0.06 0.06 0.02 0.02 0.02       |
| garr0404 | 0.007 0.007 0.010 0.010 0.003 0.003 0.0 | 0.05 0.03 0.04 0.06 0.06 0.06 0.06       |
| garr0908 | 0.031 0.032 0.033 0.057 0.009 0.009 0.0 | 010 0.17 0.12 0.22 0.39 0.27 0.29 0.26   |
| garr0909 | 0.032 0.036 0.034 0.067 0.009 0.009 0.0 | 009 0.18 0.14 0.23 0.45 0.26 0.25 0.18   |
| garr0912 | 0.036 0.042 0.038 0.068 0.010 0.010 0.0 | 010 0.28 0.16 0.26 0.49 0.29 0.30 0.21   |
| garr1001 | 0.033 0.039 0.036 0.067 0.010 0.009 0.0 | 0.19 0.15 0.25 0.45 0.26 0.26 0.19       |
| w-100-L3 | 0.663 0.308 0.982 0.193 0.505 0.508 0.4 | 174 12.67 5.04 18.26 3.55 3.77 3.86 3.55 |
| w-100-L2 | 0.619 0.311 0.585 0.001 0.488 0.483 0.4 | 190 12.21 4.19 12.34 0.01 3.68 3.55 3.92 |

- In a nutshell: not significantly different (as running time goes)
- Sometimes funny things happen: more complex models but "worse" schedulers ⇒ more failures ≡ faster

### Outline

- Motivation: There Can Be Too Much of a Good Thing
- System Model
- 3 Delay Constrained Routing
  - Combinatorial Approaches
  - MI-SOCP Models To The Rescue
  - A Small Detour: Perspective Reformulation
  - Computational tests
  - Simulations
- Other Delay Formulæ and Access Control
  - MI-SOCP Models
  - Computational tests
  - Simulations
- Conclusions

#### Simulation results: bound versions



- GB fails far too much (that factor of 3 kills it)
- As expected, SRP (significantly) better than WRP better than FB
- One would expect the worst-case formulæ to further improve . . .

## The Mystery of Worst-Case Formulæ

- ... but does not happen: worst-case formulæ as bad as bound ones
- True also at low loads where  $r^{eff} \gg r$ : should not happen
- After some head-scratching the (obvious) reason surfaced:

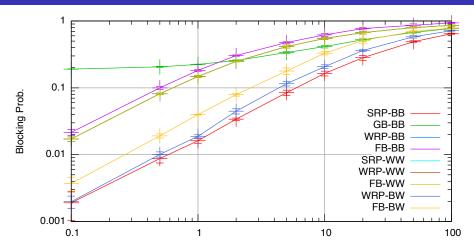
## The Mystery of Worst-Case Formulæ

- ... but does not happen: worst-case formulæ as bad as bound ones
- True also at low loads where  $r^{eff} \gg r$ : should not happen
- After some head-scratching the (obvious) reason surfaced:
   access control is killing most of the new flows
- Minimizing rates ⇒ delay constraint is tight
   ⇒ no new flow can cross any existing one!
- Low rate allocation not good proxy of future network performances!
   (tried some other "easy" one, like Kleinrock, with little success)
- A rough and clumsy solution that did work is the hybrid model:

## The Mystery of Worst-Case Formulæ

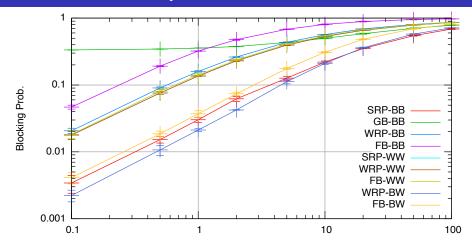
- ... but does not happen: worst-case formulæ as bad as bound ones
- True also at low loads where  $r^{eff} \gg r$ : should not happen
- After some head-scratching the (obvious) reason surfaced:
   access control is killing most of the new flows
- Minimizing rates ⇒ delay constraint is tight
   ⇒ no new flow can cross any existing one!
- Low rate allocation not good proxy of future network performances!
   (tried some other "easy" one, like Kleinrock, with little success)
- A rough and clumsy solution that did work is the hybrid model: bound delay formulæ but worst-case access control (BW)
- Bound formulæ over-provision a little, so that new flows can survive

# Simulation results: hybrid versions



- BW (much) better than WW, WW (slightly, if any) better than BB
- WRP-BW not much worse than SRP(-BB) (note: ∄ SRP-WB)

# Simulation results: hybrid versions better than SRP



- Actually, WRP-BW can be better than SRP(-BB)
- My take: still ways to improve on DCR
- Need a better proxy of future network performances!

## Outline

- Motivation: There Can Be Too Much of a Good Thing
- System Model
- Oelay Constrained Routing
  - Combinatorial Approaches
  - MI-SOCP Models To The Rescue
  - A Small Detour: Perspective Reformulation
  - Computational tests
  - Simulations
- 4 Other Delay Formulæ and Access Control
  - MI-SOCP Models
  - Computational tests
  - Simulations
- Conclusions

- This is an happy story for a number of reasons:
  - the domain experts are happy, the results are good
  - it was easy: "just write the model and solve it"
  - "everything is convex" because "a lot of things are fixed"
  - SDN is all the rage, a "fat" Path Computation Element is OK
  - it's good publicity for OR: when presented to practitioners, they don't believe we can really solve this in split seconds

- This is an happy story for a number of reasons:
  - the domain experts are happy, the results are good
  - it was easy: "just write the model and solve it"
  - "everything is convex" because "a lot of things are fixed"
  - SDN is all the rage, a "fat" Path Computation Element is OK
  - it's good publicity for OR: when presented to practitioners, they don't believe we can really solve this in split seconds
- It's mostly being at the right place in the right time:
  - we chanced into the right domain experts to mingle with
  - the size of real networks happens to be the one we can solve
  - the tools have just about now became available:
     10 years ago it would have been a different story
  - we just happened to know the right modeling trick(s)

- This is an happy story for a number of reasons:
  - the domain experts are happy, the results are good
  - it was easy: "just write the model and solve it"
  - "everything is convex" because "a lot of things are fixed"
  - SDN is all the rage, a "fat" Path Computation Element is OK
  - it's good publicity for OR: when presented to practitioners, they don't believe we can really solve this in split seconds
- It's mostly being at the right place in the right time:
  - we chanced into the right domain experts to mingle with
  - the size of real networks happens to be the one we can solve
  - the tools have just about now became available:
     10 years ago it would have been a different story
  - we just happened to know the right modeling trick(s)
- Our only merit: we fearlessly took the nonlinear bull by the horns

- The world is indeed nonlinear, but is can be nicely convex/SOCP
- DCR: interesting generalization of classical "steady state" flows
- MI-SOCP with substantial network structure = prototypical blend of nonlinear and combinatorial optimization
  - MINLP techniques useful (Perspective Reformulation, SOCP, ...)
  - combinatorial techniques useful (shortest paths, dynamic programming, approximation algorithms, Lagrange, Benders', ...)

- The world is indeed nonlinear, but is can be nicely convex/SOCP
- DCR: interesting generalization of classical "steady state" flows
- MI-SOCP with substantial network structure = prototypical blend of nonlinear and combinatorial optimization
  - MINLP techniques useful (Perspective Reformulation, SOCP, ...)
  - combinatorial techniques useful (shortest paths, dynamic programming, approximation algorithms, Lagrange, Benders', . . . )
  - both are needed

- The world is indeed nonlinear, but is can be nicely convex/SOCP
- DCR: interesting generalization of classical "steady state" flows
- MI-SOCP with substantial network structure = prototypical blend of nonlinear and combinatorial optimization
  - MINLP techniques useful (Perspective Reformulation, SOCP, ...)
  - combinatorial techniques useful (shortest paths, dynamic programming, approximation algorithms, Lagrange, Benders', . . . )
  - both are needed
- Still lots of work to do:
  - this "is Dijkstra", now multi-path and/or multi-flow (look pretty hard)
  - network design, robust, ...
  - find a decent proxy for future network performances!

- The world is indeed nonlinear, but is can be nicely convex/SOCP
- DCR: interesting generalization of classical "steady state" flows
- MI-SOCP with substantial network structure = prototypical blend of nonlinear and combinatorial optimization
  - MINLP techniques useful (Perspective Reformulation, SOCP, ...)
  - combinatorial techniques useful (shortest paths, dynamic programming, approximation algorithms, Lagrange, Benders', . . . )
  - both are needed
- Still lots of work to do:
  - this "is Dijkstra", now multi-path and/or multi-flow (look pretty hard)
  - network design, robust, . . .
  - find a decent proxy for future network performances!
- Lots of fun. Join in! :-)

### Commercial: AIRO 2015

Pisa, September 7-10, 2015

http://www.airo.org/conferences/airo2015



#### References

#### Scheduling Algorithms, Network Calculus

Cruz "A calculus for network delay" (part I/part II), IEEE Trans. on Information Theory, 1991

Zhang "Service Disciplines for Guaranteed Performance Service in Packet-Switching Networks", *Proceedings of the IEEE*, 1995

Shreedhar, Varghese "Efficient Fair Queueing Using Deficit Round Robin", *IEEE Trans. on Networking*, 1996.

Stiliadis, Varma "Latency-Rate Servers: A General Model for Analysis of Traffic Scheduling Algorithms", *IEEE Trans. on Networking*, 1998

#### Second-Order Cone Programs

Ben Tal "Lecture Notes of the Course on Conic and Robust Optimization", 2002

#### References

#### Perspective stuff

F., Gentile "Perspective Cuts for a Class of Convex 0-1 Mixed Integer Programs", *Math. Prog.*, 2006

Günlük, Linderoth "Perspective reformulations of MINLPs with indicator variables",  $Math.\ Prog.,\ 2010$ 

Hijazi, Bonami, Cornuejols, Ouorou "Mixed integer nonlinear programs featuring "On/Off" constraints: Convex analysis and applications" *Electronic Notes in Discrete Mathematics*, 2010

#### **DCR**

Orda "Routing with end-to-end QoS guarantees in broadband networks", *IEEE Trans. on Networking*, 1999

F., Galli, Scutellà "Delay-Constrained Shortest Paths: Approximation Algorithms and Second-Order Cone Models", *JOTA*, 2014

F., Galli, Stea "Optimal Joint Path Computation and Rate Allocation for Real-time Traffic", *The Computer Journal*, 2014