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Lagrangian Relaxation

o Difficult structured problem
z(P) = sup, {c(u) : h(u) <0, uec U} (1)

with complicating constraints h(u) < 0 over easy set U

lLemaréchaI, Renaud “A geometric study of duality gaps, with applications”, Math. Prog., 2001
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o Difficult structured problem
z(P) = sup, {c(u) : h(u) <0, uec U} (1)
with complicating constraints h(u) < 0 over easy set U
@ Assume Lagrangian relaxation of complicating constraints easy
f(x) = sup, { c(v) +xh(u) : ue U} (2)
@ f convex = corresponding Lagrangian dual easy
z(M) = infy { f(x) : x>0}
@ Equivalent to primal relaxation
sup{v : (u,v,0) U™} (3)

where U = {(u,v,r) : ue U, v<c(u), r>h(u)}

(a more palatable object if problem “affine enough”)*

lLemaréchaI, Renaud “A geometric study of duality gaps, with applications”, Math. Prog., 2001
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@ Oracle to (efficiently) perform the maximization (structure inside)

@ Solving exactly (2) provides both function value and subgradient
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Lagrangian Relaxation: What For?

@ Primal “continuous” solutions useful to drive heuristics for (1)2

2F., Gentile, Lacalandra “Solving Unit Commitment Problems with General Ramp Contraints”, IJEPES, 2008
3F. “About Lagrangian Methods in Integer Optimization”, Ann. O.R., 2005
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Lagrangian Relaxation: What For?

@ Primal “continuous” solutions useful to drive heuristics for (1)2

© Mainly upper bounding: z(M) > z(P), “near” if (2) “not too easy”

= safe (and effective) stopping criterion
e Trade off: “difficult” (2) = “good bound"3
@ Enumerative approaches: do this at each of very many nodes

@ (M) has to be (approximately) solved very efficiently =
fast convergence + low iteration cost

@ It thus makes sense to solve (2) approximately

@ Which may mean different things

2F., Gentile, Lacalandra “Solving Unit Commitment Problems with General Ramp Contraints”, IJEPES, 2008
3F. “About Lagrangian Methods in Integer Optimization”, Ann. O.R., 2005
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Approximate Lagrangian Relaxation | (graphically)
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@ Approximate solution = o-subgradient, ¢ > 0

@ Heuristics = no measure of ¢ = useless for bounding purposes
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Iterative process where c(@) 4 xh(@) — f(x) « f(x)

@ (2) “as difficult” as (1) in theory (but largely less so in practice*)

The gap o = f(x) — c(@) — xh(@) > 0 may decrease rather slowly
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Different approach: an exact algorithm for solving (2)

@ Three main components:
@ a heuristic producing & € U = ¢(&) + xh(0) < f(x)
o an upper bound f(x) > f(x) (further relaxation)
@ enumeration to squeeze the two together (branching)

(]

Iterative process where c(@) 4 xh(@) — f(x) « f(x)
@ (2) “as difficult” as (1) in theory (but largely less so in practice*)
o The gap o = f(x) — c(@) — xh(&) > 0 may decrease rather slowly

@ For bounding purposes, ?(x) “is” f(x)

4Be|tran, Tadonki, Vial “Solving the p-Median Problem with a Semi-Lagrangian Relaxation”, COAP, 2006
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@ The upper bound f(x) "is” the function value

o o decreases if either f(x) decreases or c(@1) + xh(T) increases
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A Somewhat Different (but related) Case

@ The decomposable case:
u=(ut,...,uf)e U x...x Uk
c(u) = ct(ut) + ...+ ck(u¥)
h(u) = h*(ub) + ... + h*(u¥)

@ Computing f(x) decomposes into k independent subproblems

5Ned|'c, Bertsekas “Incremental subgradient methods for nondifferentiable optimization”, SIOPT, 2001
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u=(ut,...,uf)e U x...x Uk

c(u) = ct(ut) + ...+ ck(u¥)

h(u) = At (ut) + ... + WK (u¥)
@ Computing f(x) decomposes into k independent subproblems
@ In some cases, the problems are “easy” but they are “many”

@ Avoid computing them all for each x, at least at some iterations °

@ Something like: lower bound always available, upper bound only
available if all k problems are solved

o Alternatively: f(x) is either +o0 or f(x)

@ Then, of course, each subproblem can be solved approximately

5Ned|'c, Bertsekas “Incremental subgradient methods for nondifferentiable optimization”, SIOPT, 2001
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The Issue

@ Minimizing f using a approximated subgradient (= oracle) possible °

6Correa, Lemaréchal “Convergence of Some Algorithms for Convex Minimization” Math. Prog., 1993

7Kiwiel “Convergence of approximate and incremental subgradient methods for convex minimization”, SIOPT, 2004
8Kiwiel “A proximal bundle method with approximate subgradient linearizations”, SIOPT, 2006

9

Kiwiel, Lemaréchal "An inexact bundle variant suited to column generation”, Math. Prog., 2007
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o Lately, the standard has been “nothing is known about ¢ 7 8 9
@ But in practice, o is known (if we accept that f(x) “is” f(x))

@ The issue:

Does knowing o help in (approximately) minimizing f?‘

o Of course, it depends on what approach is used

6Correa, Lemaréchal “Convergence of Some Algorithms for Convex Minimization” Math. Prog., 1993

7Kiwiel “Convergence of approximate and incremental subgradient methods for convex minimization”, SIOPT, 2004
8Kiwiel “A proximal bundle method with approximate subgradient linearizations”, SIOPT, 2006
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Subgradient Methods

(with Giacomo d'Antonio)
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(approximate) Subgradient Methods

@ General problem:
infy { f(x) : xe X}

f :R" — R convex = approximated oracle, X C R" closed convex
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(approximate) Subgradient Methods

@ General problem:
infy { f(x) : xe X}
f :R" — R convex = approximated oracle, X C R" closed convex
@ Basic approximate subgradient method:
8k € 0p, F(Xk) » Xkt1 =Xk —Vk8k , Xk+1 = Px(Xk+1)
Px = orthogonal projection on X (assumed “cheap”), vy stepsize

@ Very simple, almost no overhead w.r.t. f(x) computation

@ Many variants (dilation methods, Bregman projections, . ..)

@ Typically rather slow, because:
o a (1 — e)th-order method, cannot be fast
@ zig-zagging |: in “deep and narrow valleys”, successive subgradients
almost orthogonal to each other
e zig-zagging Il: at 90X, subgradients almost orthogonal to 90X
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@ Two long steps .. .are one short step

@ Solution: use previous direction

IOCamerini, Fratta, Maffioli “On Improving Relaxation Methods by Modified Gradient Techniques”, Math. Prog., 1975
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@ Projecting a long step ...may result in a short step

@ Solution: project g onto the tangent cone at x*
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Zk

Xk

@ Projecting a long step ...may result in a short step

@ Solution: project g¥ onto the tangent cone at x* ... or, equivalently,
deflect using —z* € dlx(x¥) — dy € Ofx(x¥) (fx = f + Ix)
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Two Classes of Subgradient Methods

o Conditional subgradient: di = —Pr, (x,)(—8k)'" € 0fx(x¥)

uLarsson, Patriksson, Stromberg “Conditional Subgradient Optimization - Theory and Applications”, EJOR, 1996
leheraIi, Lim “On Embedding the Volume Algorithm in a Variable Target Value Method”, ORL, 2004

13Guta “Subgradient Optimization Methods .. .with an Application to a Radiation Therapy Problem”, Ph.D., 2003
14Crainic, F., Gendron “Bundle-based Relaxation Methods for Multicommodity ... Network Design”, DAM, 2001
5 F., Lodi, Rinaldi “New Approaches for Optimizing over the Semimetric Polytope”, Math. Prog., 2005
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Two Classes of Subgradient Methods

o Conditional subgradient: di = —Pr, (x,)(—8k)'" € 0fx(x¥)

@ Deflected subgradient: dyx = gk + 1k dk_1 ... better, w.l.o.g.

di = akgr + (1 — ak)dk_l , Qi € [0, 1]

(the missing scaling factor can always be attached to v ) 12
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@ Deflected subgradient: dyx = gk + 1k dk_1 ... better, w.l.o.g.
di = akgr + (1 — ak)dk_l , Qi € [0, 1]

(the missing scaling factor can always be attached to v ) 12

@ Funnily enough, (almost) no conditional deflected subgradient 3

@ Besides: conditional approximate subgradient, yes’
... but deflected approximate subgradient, no.

@ Still there is need for good subgradient methods 4 1°
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Why Conditional + Deflected is Not (entirely) Obvious

@ Projecting ...
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Conditional Deflected (Approximate) Subgradient

di = Bk + (1—ok)dk—1 di = _PTX(xk)(_ak)
Zi = either gy or gk, dy = either dj or Ek

@ Four different schemes, but unified treatment (< two projections)
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Conditional Deflected (Approximate) Subgradient

de = g + (1 — ag)diy di = _PTX(xk)(_ak)
Zi = either gy or gk, dy = either dj or Ek
@ Four different schemes, but unified treatment (< two projections)
@ Whatever the choice, gix € 0, fx(xk)

@ Allows to unify some technical results, like
C_fk(X — Xk) < dk(X — Xk)
(trivial if de = Ek, but not otherwise), and

di(xk — xk+1) < v di|?
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Conditional Deflected (Approximate) Subgradient

de = g + (1 — ag)diy di = _PTX(xk)(_ak)
Zi = either gy or gk, dy = either dj or Ek
@ Four different schemes, but unified treatment (< two projections)
@ Whatever the choice, gix € 0, fx(xk)

@ Allows to unify some technical results, like
C_fk(X — Xk) < dk(X — Xk)
(trivial if de = Ek, but not otherwise), and

di(xk — xk+1) < v di|?

o Crucial result (relying on ay € [0,1]): dk € O, fx(xk) with
e = (1 — ) ( fie — fer — di1 (O — Xk—1) + €1 ) + akor (4)
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9 Polyak-type stepsize: the abstract case
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(standard) Polyak Stepsize

@ Standard Polyak stepsize (assuming * = inf, fx(x)> —o0)
fi — F*

5, 0< B <[ <2
[ di |2

Vi = B
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@ Technical (but somewhat conceptual) issue: di can be 0
@ Not an issue if o, constant (e.g. ox = 0) and no deflection

@ “Technical” solution vi||dk||?> < BrkAk (Ak = f — f*), not enough

Observation

o = limsup,_,., ok < +00 (asymptotic maximum error of the oracle);
no subgradient method can attain error < o* (if f* > —00)
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(standard) Polyak Stepsize

@ Standard Polyak stepsize (assuming * = inf, fx(x)> —o0)
fi — F*

Ve = PG

0< B " <pr<2

@ Abstract rule, as f* unknown in general
@ Technical (but somewhat conceptual) issue: di can be 0
@ Not an issue if o, constant (e.g. ox = 0) and no deflection

@ “Technical” solution vi||dk||?> < BrkAk (Ak = f — f*), not enough

Observation

o = limsup,_,., ok < +00 (asymptotic maximum error of the oracle);
no subgradient method can attain error < o* (if f* > —00)

ok > 0" and f(xg) = f* + 0* = gx can be 0 = dx = 0: never moves!

A. Frangioni (DI — UniPi) Inexact Subgradient & Bundle

O

Erice 2008 19 / 44



Polyak Stepsize (cont.d)

@ Further requirement: [ < oy (< 1)
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Polyak Stepsize (cont.d)

@ Further requirement: [ < oy (< 1)
@ Main technical result (using (4)):
ek <(1—ap)(fx — ") +axk  where (5)
0k = (1 — ak)0k—1 + akok (6)

(o1 =1 for "unreliability of past information™)
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Polyak Stepsize (cont.d)

@ Further requirement: [ < oy (< 1)
@ Main technical result (using (4)):
ek <(1—ap)(fx — ") +axk  where (5)
ok = (1 — ak)0k—1 + akok (6)
(a1 = 1 for "unreliability of past information”)

@ Technical corollary: for each x € X

dk()_< — Xk) < Oék(f* — fk) + [f()_() —f* + 5‘/(] (7)
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Polyak Stepsize (cont.d)

@ Further requirement: [ < oy (< 1)
@ Main technical result (using (4)):
ek <(1—ap)(fx — ") +axk  where (5)
ok = (1 — ak)0k—1 + akok (6)
(a1 = 1 for "unreliability of past information”)

@ Technical corollary: for each x € X
di(% — xi) < au(F* — ) + [F(x) — F* + 54| (7)
@ “Exact” convergence result at hand’: o) =0 =
A €[0,1) ex<&2—0)(fk —F")/2

= liminfy_ fr = F*° < f*
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Polyak Stepsize: the Approximate Case

@ What about the approximate case?
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Polyak Stepsize: the Approximate Case

@ What about the approximate case?
@ “Asymptotic error’: limsup,_,,, 0k =0" < o*

@ For “Asymptotically non-deflected” method (limg_, oo ax = 1)7
e < f*420%/(2 —supy Pk)

@ Error twice as large than “optimal”, basically no deflection
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@ What about the approximate case?
@ “Asymptotic error’: limsup,_,,, 0k =0" < o*

@ For “Asymptotically non-deflected” method (limg_, oo ax = 1)7
o < f*4+20%/(2 —sup, (k)

@ Error twice as large than “optimal”, basically no deflection

Without any assumption on deflection

fo < f*+20"/T where T =infy 20y — Bk > (*

@ Deflecting is possible, but does not look a good idea
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Polyak Stepsize: the Approximate Case

@ What about the approximate case?
@ “Asymptotic error’: limsup,_,,, 0k =0" < o*

@ For “Asymptotically non-deflected” method (limg_, oo ax = 1)7
o < f*4+20%/(2 —sup, (k)

@ Error twice as large than “optimal”, basically no deflection

Without any assumption on deflection

fo < f*+20"/T where T =infy 20y — Bk > (*

@ Deflecting is possible, but does not look a good idea

@ However, knowing o, we can do better than that
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Corrected Polyak Stepsize

@ Corrected Polyak stepsize: A\ = fx — f*—oy

A *
k:ﬁkm’ 0<fB" <fk<ar<l (8)
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Corrected Polyak Stepsize

@ Corrected Polyak stepsize: A\ = fx — f*—oy
A
Vg = ﬁk—HdkkHQ ; 0<f <fr<ap<1 (8)

o Issue: o > f — F* = A\, < 0. Solution:

0<lldill® < Bk s 0<fBr<ax<1

which implies Ay <0 = [x =0 = v, =0 (loops!)
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@ In plain words: if the error is too large, stop until it decreases enough
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Corrected Polyak Stepsize

@ Corrected Polyak stepsize: A\ = fx — f*—oy
Ak

7Vk:ﬁkw’ 0<f <fr<ap<1 (8)
o Issue: o > f — F* = A\, < 0. Solution:
0<uwilldkl®> < Bk , 0<Bk<ax<1

which implies Ay <0 = [x =0 = v, =0 (loops!)
@ In plain words: if the error is too large, stop until it decreases enough

@ Actually, a slightly stronger form is required:

M>0 = (ax )6k > >0,
A <0 = ak:0(:>ﬂk:O)
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Corrected Polyak Stepsize

@ Corrected Polyak stepsize: A\ = fx — f*—oy

A
Jk:ﬁkm, 0<p <Pe<ar<l 8)
o Issue: o > f — F* = A\, < 0. Solution:
0<uwilldkl®> < Bk , 0<Bk<ax<1

which implies Ay <0 = [x =0 = v, =0 (loops!)
@ In plain words: if the error is too large, stop until it decreases enough

@ Actually, a slightly stronger form is required:

M>0 = (ax )6k > >0,
A <0 = ak:0(:>ﬂk:O)

@ (8) = (5) + (7) with 5 = akoy;
good deflecting “shaves away” a part of the error
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Corrected Polyak Stepsize

@ Without any assumption on deflection: (8) =
o fO<f 4o
o X* #£ () = I subsequence {xi,} — x> € X s.t. f(x>®)=f>
o X* #0 & o* =0 = the whole {x} — x* € X*
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o X* #0 & o* =0 = the whole {x} — x* € X*

@ Better result than the available ones’:
o Optimal error attained even in inexact case
o Convergence of the iterates (in the exact case)

o Deflection does not worsen results
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Corrected Polyak Stepsize

@ Without any assumption on deflection: (8) =
o fO<f 4o
o X* #£ () = I subsequence {xi,} — x> € X s.t. f(x>®)=f>
o X* #0 & o* =0 = the whole {x} — x* € X*

@ Better result than the available ones’:
o Optimal error attained even in inexact case
o Convergence of the iterates (in the exact case)

o Deflection does not worsen results

@ Interesting detail of the proof:
some things only hold if Ay > 0 for infinitely many k,
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Corrected Polyak Stepsize

@ Without any assumption on deflection: (8) =
o fO<f 4o
o X* #£ () = I subsequence {xi,} — x> € X s.t. f(x>®)=f>
o X* #0 & o* =0 = the whole {x} — x* € X*

@ Better result than the available ones’:
o Optimal error attained even in inexact case
o Convergence of the iterates (in the exact case)

o Deflection does not worsen results

@ Interesting detail of the proof:
some things only hold if Ay > 0 for infinitely many k,
which does not necessarily happen
but if not, a o*-optimal solution is finitely attained

@ Potential issue: exact knowledge of o required
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Generalized Corrected Polyak Stepsize

@ The general form: A\ = fr — F*—,

A
vk = Bk 0< B <fx<ax<l (9)
| |2
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Generalized Corrected Polyak Stepsize

@ The general form: A\ = fr — F*—,
A

Vk:ﬁkm’ 0<f <fr<ap<1 (9)

® (9) = (5) + (7) with 5 = (1 — k) (Fr—1 — k—17k-1) + Ok
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Generalized Corrected Polyak Stepsize

@ The general form: A\ = f — F*—y
A
Vk:ﬁkm’ 0< B <fx<ax<l (9)
© (9) = (5) + (7) with Gi = (1 — o )(Fk—1 — k—17k—1) + KOk
@ General convergence:
F° < F* 4+ 20T
A = 0*+3( (1 — §*)/5* +supy ak/2)
¥y = — min{'y* =liminfx_o Yk, O }
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Generalized Corrected Polyak Stepsize

@ The general form: A\ = f — F*—y
A
ve=figm s 0<F <h<ar<t (9)
) (9) = (5) + (7) with O = (1 — Oék)(5k—1 — Oék—l'}/k—l) + ook
@ General convergence:
o< 4+2A/T

A= o"+5( (1 - 3)/B" + supy ak/2)

¥y = - min{'y* =liminfx_o Yk, O }
@ “aiming higher than f*" (yx > 0) good,

“aiming lower than f*" (4 < 0) bad
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Generalized Corrected Polyak Stepsize

@ The general form: A\ = f — F*—y
A
Vk:ﬁkm’ 0< B <fx<ax<l (9)
© (9) = (5) + (7) with Gi = (1 — o )(Fk—1 — k—17k—1) + KOk
@ General convergence:
F° < F* 4+ 20T
A = 0*+3( (1 — §*)/5* +supy ak/2)
¥y = — min{'y* =liminfx_o Yk, O }

@ “aiming higher than f*" (yx > 0) good,
“aiming lower than f*" (4 < 0) bad

@ On the other hand: aiming too high = A\ < 0 = loop
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Generalized Corrected Polyak Stepsize

@ The general form: A\ = f — F*—y
A
Vk:ﬁk—k ) 0< B <Br<ar<l1 (9)
k||

(9) = (5) + (7) with 5k = (1 — Oék)(5k—1 - Oék—l'}/k—l) + Qo

General convergence:

< +2A)T
A= o"+5( (1 - 3)/B" + supy ak/2)
¥y = - min{'y* =liminfx_o Yk, O }

(]

“aiming higher than f*" (v, > 0) good,
“aiming lower than f*" (4 < 0) bad

(]

On the other hand: aiming too high = Ax < 0 = loop

The highest safe value: oy (surprised?)
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Generalized Corrected Polyak Stepsize

@ The general form: A\ = fr — F*—,
A

Vk:ﬁkm’ 0<f <fr<ap<1 (9)

(9) = (5) + (7) with 5k = (1 — Oék)(5k—1 - Olk—l'Yk—l) + Qo

General convergence:

< +2A)T
A= o"+5( (1 - 3)/B" + supy ak/2)
¥y = - min{'y* =liminfx_o Yk, O }

(]

“aiming higher than f*" (v, > 0) good,
“aiming lower than f*" (4 < 0) bad

(]

On the other hand: aiming too high = Ax < 0 = loop

The highest safe value: oy (surprised?)

What if | do not know o exactly?
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Generalized (approximately) Corrected Polyak Stepsize

@ Reminder: 74 = 0 = 04 = (1 — ax)dk_1 + axok
Tk = Ok = Ok = Q0
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Generalized (approximately) Corrected Polyak Stepsize

@ Reminder: 74 = 0 = 04 = (1 — ax)dk_1 + axok
Tk = Ok = Ok = Q0

@ What if v, > 0 and “not too far" from o7
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Generalized (approximately) Corrected Polyak Stepsize

@ Reminder: 74 = 0 = 04 = (1 — ax)dk_1 + axok
Tk = Ok = Ok = Q0

@ What if v, > 0 and “not too far" from o7

@ Abstract condition (= 5 = 0):
Iikminf V=7 > & ¢ €10,1] (10)
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Generalized (approximately) Corrected Polyak Stepsize

@ Reminder: 74 = 0 = 04 = (1 — ax)dk_1 + axok
Tk = Ok = Ok = Q0

@ What if v, > 0 and “not too far" from o7
@ Abstract condition (= 5 = 0):
Iikminf =" > & £e[0,1] (10)

@ (10) = gk ~ ok(1— (1 —ak)f) (technical form really ugly)
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Generalized (approximately) Corrected Polyak Stepsize

@ Reminder: 74 = 0 = 04 = (1 — ax)dk_1 + axok
Tk = Ok = Ok = Q0

@ What if v, > 0 and “not too far" from o7
@ Abstract condition (= 5 = 0):

iminf 7 =7 > ¢o° £epo (10)
@ (10) = gk ~ ok(1— (1 —ak)f) (technical form really ugly)

o Convergence: (10) = f>* < f*+o*(£+2(1—¢)/I)
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Generalized (approximately) Corrected Polyak Stepsize

@ Reminder: 74 = 0 = 04 = (1 — ax)dk_1 + axok
Tk = Ok = Ok = Q0

@ What if v, > 0 and “not too far" from o7
@ Abstract condition (= 5 = 0):
iminf k=7 > &o* £c[o1] (10)
@ (10) = gk ~ ok(1— (1 —ak)f) (technical form really ugly)
o Convergence: (10) = f* < f*+o*(¢+2(1—¢)/IN)

9o ¢ =1 = “optimal” error
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Generalized (approximately) Corrected Polyak Stepsize

@ Reminder: 74 = 0 = 04 = (1 — ax)dk_1 + axok
Tk = Ok = Ok = Q0

(]

What if 7, > 0 and “not too far" from o7

Abstract condition (= 5 = 0):
Iikminf =" > & £e[0,1] (10)

(10) = gk =~ ok(1— (1 —ak)§) (technical form really ugly)

Convergence: (10) = > < f*4+o*({+2(1—¢)/T)

(]

¢ =1= "optimal” error

(]

Again, asymptotic results require A > 0 for infinitely many k,
if not a solution with prescribed accuracy finitely attained
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Generalized (approximately) Corrected Polyak Stepsize

@ Reminder: 74 = 0 = 04 = (1 — ax)dk_1 + axok
Tk = Ok = Ok = Q0

(]

What if 7, > 0 and “not too far" from o7

Abstract condition (= 5 = 0):
Iikminf =" > & £e[0,1] (10)

(10) = gk =~ ok(1— (1 —ak)§) (technical form really ugly)

Convergence: (10) = > < f*4+o*({+2(1—¢)/T)

(]

¢ =1= "optimal” error

(]

Again, asymptotic results require A > 0 for infinitely many k,
if not a solution with prescribed accuracy finitely attained

@ Is (10) reasonable?
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e Polyak-type stepsize: the implementable case
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Target-level Approaches

@ In general, f* unknown (and it may be —o0)
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Target-level Approaches

@ In general, f* unknown (and it may be —o0)

@ Solution: replace it with a target f,’e‘v revise it appropriately

f— flle(v

0<pB"<B<an<l1
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Target-level Approaches

@ In general, f* unknown (and it may be —o0)

@ Solution: replace it with a target f,’e‘v revise it appropriately

fk

0<y = ﬁdf; L 0<F < B <<l

o Usually, fX = fk. (reference) —d (threshold)

lev

@ Typical choice: fX F= fk

o ec = Mminp<i f(xp) (record value)
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Target-level Approaches

@ In general, f* unknown (and it may be —o0)

@ Solution: replace it with a target f,’e‘v revise it appropriately

fk

0<y = ﬁdf; L 0<F < B <<l

o Usually, fX = fk. (reference) —d (threshold)

lev

o Typical choice: £k, = fk. = miny<x f(xp) (record value)

@ Looks uncorrected but it is not necessarily so:
Ao = fie — fis, = fio— £ — (f& — £ = 5%)

= fr’;f — f* — ) unknown
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Target-level Approaches

In general, f* unknown (and it may be —c0)

@ Solution: replace it with a target f,’e‘v revise it appropriately

fk—flév *
< vk = Bk 5> 5 0<B <Bk<ap<l
il
o Usually, fX = fk. (reference) —d (threshold)
o Typical choice: £k, = fk. = miny<x f(xp) (record value)

@ Looks uncorrected but it is not necessarily so:
Ao = fie — fis, = fio— £ — (f& — £ = 5%)

re

= fr’;f — f* — ) unknown

Small technical hurdle: all previous proofs require f* > —oo

(]

@ Solution: f22 = —oo = f* = —o0, otherwise

feasible target f > —oo, f > f*, f < X (= fy — f > 0)

rec
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Non-vanishing Threshold

@ Abstract property:

either £22

ref

I
|
8

or liminfd, =0 >0
k—o0
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Non-vanishing Threshold

@ Abstract property:
either fof = —00 or liminfd, =0 >0
k—o00

@ Implementation: p € [0, 1)

5[(16 [5*,00) iffkﬂgf,ifv
+ [0%, max{ 0%, udx }] if frp1 > ﬂifv
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Non-vanishing Threshold

@ Abstract property:

either frof = —00 or Iikm infé, =0">0
—00

@ Implementation: p € [0, 1)

5[(16 [5*,00) iffkﬂgf,ifv
+ [0%, max{ 0%, udx }] if frp1 > ﬂifv

@ Convergence: either f22 = —oc0 = f*, or 27 < f* +{o™ + 0" where
0<&=max{1—-0*T/20",0}<1
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Non-vanishing Threshold

@ Abstract property:

either frof = —00 or Iikm infé, =0">0
—00

@ Implementation: p € [0, 1)

5[(16 [5*,00) iffkﬂgf,ifv
+ [0%, max{ 0%, udx }] if frp1 > ﬂifv

@ Convergence: either f22 = —oc0 = f*, or 27 < f* +{o™ + 0" where
0<&=max{1—-0*T/20",0}<1

@ Proof: (almost) straightforward, v* > {o*
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Non-vanishing Threshold

@ Abstract property:

either frof = —00 or Iikm infé, =0">0
—00

@ Implementation: p € [0, 1)

5[(16 [5*,00) iffkﬂgf,ifv
+ [0%, max{ 0%, udx }] if frp1 > ﬂifv

@ Convergence: either f22 = —oc0 = f*, or 27 < f* +{o™ + 0" where
0<&=max{1—-0*T/20",0}<1

@ Proof: (almost) straightforward, v* > {o*

o Compares favorably with 32 < f* + o* + 6* (without deflection)’

ref =
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Non-vanishing Threshold

@ Abstract property:

either fof = —00 or Iikriiorlf 0k =0">0
@ Implementation: p € [0,1)
ac{ ) st
[6%, max{ 0%, pox }]| if fiq1 > £,
@ Convergence: either f22 = —oc0 = f*, or 27 < f* +{o™ + 0" where

0<&=max{1—-0*T/20",0}<1

(]

Proof: (almost) straightforward, v* > £o*

(]

Compares favorably with £22 < f* + o* + §* (without deflection)’

ref =

@ Note: it may seem that “small £ is good”, but (o™ + 6% > o
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Vanishing Threshold

@ Abstract property:

o
either £% =f"=—oo , or liminfd, =0 and ;Ak/ndku = 0

16 Lim, Sherali “Convergence ... for Some Variable Target Value and Subgradient Deflection Methods”, COAP, 2006
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Vanishing Threshold

@ Abstract property:

o
either £% =f"=—oo , or liminfd, =0 and ;Ak/ndku = 0

@ Implementation: R >0 and p € [0,1)
o flo="f(x1), &1 € (0,00), n =0;
o if f < k. —6,/2 (sufficient descent condition) then £k, = fk

rec' Tk = O;
o else, if ry > R (target infeasibility condition) then 0y = pdx—_1, rc = 0;

. k _ k—1 _ _ ~
o otherwise, £, = fr 7, 0k = Ok—1, M = rk—1 + |[Xe1 — x|

16 Lim, Sherali “Convergence ... for Some Variable Target Value and Subgradient Deflection Methods”, COAP, 2006
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Vanishing Threshold

@ Abstract property:

k—o0

(e}
either f3¢ =f*=—0c0 , or liminfd, =0 and > /|l di|* = o0
k=1

@ Implementation: R >0 and p € [0,1)
fif = f(Xl), 51 c (0,00), n=0;

r

if f < k. —0x/2 (sufficient descent condition) then fX, = f%

rec?

©

™ rno=0;
o else, if ry > R (target infeasibility condition) then 0y = pdx—_1, rc = 0;
* ]

. k _ k—1 _ _ ~
otherwise, f5r = for *, 0k = Ok—1, rk = M—1 + || X1 — X« ||
o Convergence: either op = —00 =1f"or 22 < "+ 0"

@ Proof: again (almost) straightforward, v* > ¢* (£ = 1), minor quirks

16 Lim, Sherali “Convergence ... for Some Variable Target Value and Subgradient Deflection Methods”, COAP, 2006
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Vanishing Threshold

@ Abstract property:
(e}
either £33 =f*=—0c0 , or liminfd, =0 and > /|| dil]* =
k—o0 -

@ Implementation: R >0 and p € [0,1)
féf = f(Xl) o € (0 OO) n=0;

©

o if fi < £k — 4, /2 (sufficient descent condition) then £k, = f%_, r. =0;
o else, if ry > R (target infeasibility condition) then 0y = pdx—_1, rc = 0;
@ otherwise, f,ef = f,’;f L Sk =0k_1, rk=r—1 + IIXk+1 — k|

@ Convergence: either f22 = —oc0 = f*, or £2; < f* + 0"

@ Proof: again (almost) straightforward, v* > ¢* (£ = 1), minor quirks

@ Optimal error, extends known results'® to projection and errors

16 Lim, Sherali “Convergence ... for Some Variable Target Value and Subgradient Deflection Methods”, COAP, 2006
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Vanishing Threshold

@ Abstract property:

k—o0

(e}
either f3¢ =f*=—0c0 , or liminfd, =0 and > /|l di|* = o0
k=1

@ Implementation: R >0 and p € [0,1)
o flo="f(x1), &1 € (0,00), n =0;
o if f < k. —6,/2 (sufficient descent condition) then X, = k., r. =0;
o else, if ry > R (target infeasibility condition) then 0y = pdx—_1, rc = 0;
o otherwise, £k, = f,’;;l, Ok = Ok—1, tk = rk—1 + |[Xk+1 — x|
o Convergence: either op = —00 =1f"or 22 < "+ 0"
@ Proof: again (almost) straightforward, v* > ¢* (£ = 1), minor quirks
@ Optimal error, extends known results'® to projection and errors

@ Weaker results than (8) (> — £,22, no convergence of {xi})

16 Lim, Sherali “Convergence ... for Some Variable Target Value and Subgradient Deflection Methods”, COAP, 2006
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© Deflection-restricted rules
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Diminishing /Square Summable Stepsize

@ Other main class of stepsize rules: diminishing/square summable

o0 o0
Zuk:oo , Zui<oo (11)
k=1 k=1
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Diminishing /Square Summable Stepsize

@ Other main class of stepsize rules: diminishing/square summable
o0 o0
Zuk:oo , Zui<oo (11)
k=1 k=1

@ Pros: do not need f*, not even any estimate
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Diminishing /Square Summable Stepsize

@ Other main class of stepsize rules: diminishing/square summable
o0 o0
Zuk:oo , Zui<oo (11)
k=1 k=1

@ Pros: do not need f*, not even any estimate
o Cons: no control over £, (cf. (5), (6))

@ All our results hinge over these estimates
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Diminishing /Square Summable Stepsize

@ Other main class of stepsize rules: diminishing/square summable
o0 o0
Zuk:oo , Zui<oo (11)
k=1 k=1

@ Pros: do not need f*, not even any estimate
o Cons: no control over £, (cf. (5), (6))

@ All our results hinge over these estimates

@ Solution: restrict the deflection instead of the stepsize

Vi—1||di—1]?
(fi = )+ vi—1lldk—1]?

0< ¢k = <ar<1
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Diminishing /Square Summable Stepsize

@ Other main class of stepsize rules: diminishing/square summable
o0 o0
Zuk:oo , Zui<oo (11)
k=1 k=1

@ Pros: do not need f*, not even any estimate
o Cons: no control over £, (cf. (5), (6))

@ All our results hinge over these estimates

@ Solution: restrict the deflection instead of the stepsize

Vi—1||di—1]?
(fi = )+ vi—1lldk—1]?

0< ¢k = <ar<1

@ Gives analogous to (5), (6)
e < fo— "+ a0y (12)

where G = akop + (1 — ax)ok—1
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Deflection Rule (geometrically)

Xk

@ Moving “towards x*" is a short enough step
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Deflection Rule (geometrically)

Xk

Xk+1

@ Moving “towards x*" is a short enough step and then any deflection
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Deflection Rule (geometrically)

T N Xk+l

d
gkt dk+1

@ Moving “towards x*" is a short enough step and then any deflection

@ ...or any step
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Deflection Rule (geometrically)

@ Moving “towards x*" is a short enough step and then any deflection

@ ...or any step and a proper deflection
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Corrected Deflection Rule

@ We learnt our lesson: corrected deflection rule

Vi—1/dk—1 ]|
Sak <1
(fe— F =k ) + vh—1]| dk—1]|?

0< ¢ =
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Corrected Deflection Rule

@ We learnt our lesson: corrected deflection rule
2
vi—tlldk—1]|

0<Ck=
> Ck ( fi — f*_')/k ) + Vk_1‘|dk—1||2

Sak <1

@ Avoid (k is undefined (Mg = fx — F* — x):
vi-tlldi1]? < ar(Ai + vl i) (13)
@ Avoid negative \x: makes (13) impossible

M >0 = ap>a*>0
A <0 = ak:0(2>Vk:0)
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Corrected Deflection Rule

@ We learnt our lesson: corrected deflection rule
2
vi—tlldk—1]|

0<Ck=
> Ck ( fi — f*_')/k ) + Vk_1‘|dk—1||2

Sak <1

@ Avoid (k is undefined (Mg = fx — F* — x):
vi-tlldi1]? < ar(Ai + vl i) (13)

@ Avoid negative \x: makes (13) impossible

M >0 = ap>a*>0

M <0 = ar=0(=r,=0)
@ Now ¢ is controlled: (12) holds with

Ok = ok(ok—7k) + (1 — ak)Fk-1
@ Yields the crucial technical relationship, similar to (7)

di(x — xi) < F(X) — F* + 5y
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Convergence Results

@ Relationships between ¢* and ¢*:
@ in general, 6* < o*+7
o vk > Eoy Vk large enough = * < (1 —¢&)o

*
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Convergence Results

@ Relationships between ¢* and ¢*:
@ in general, 6* < o*+7
® vk > Eox Vk large enough = 5* < (1 —¢)o*

o Convergence: under sup, ||dx|| < oo
i) in general, f>° < f*+~%P 4 (o*+7)/a*
i) Yk>lok =<4+ (1+(1-&(1—-a")/a")
i) vk =0k = * <f*4o*
furthermore, X* # ) = {x} — x® € X s.t. f(x®) = >

Erice 2008 34/
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Convergence Results

@ Relationships between ¢* and ¢*:
@ in general, 6* < o*+7
o vk > Eoy Vk large enough = * < (1 —¢&)o

*

o Convergence: under sup, ||dx|| < oo
i) in general, f>° < f*+~%P 4 (o*+7)/a*
i) Yk>lok =<4+ (1+(1-&(1—-a")/a")
i) vk =0k = * <f*4o*
furthermore, X* # ) = {x} — x® € X s.t. f(x®) = >

@ Analogous to previous results, optimal error

@ Boundedness assumption easily attained (bounding strategies’)
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Convergence Results

@ Relationships between ¢* and ¢*:
@ in general, 6* < o*+7
® vk > Eox Vk large enough = 5* < (1 —¢)o*

o Convergence: under sup, ||dx|| < oo
i) in general, f>° < f*+~%P 4 (o*+7)/a*
i) Yk>lok =<4+ (1+(1-&(1—-a")/a")
i) vk =0k = * <f*4o*
furthermore, X* # ) = {x} — x® € X s.t. f(x®) = >

@ Analogous to previous results, optimal error
@ Boundedness assumption easily attained (bounding strategies’)

@ Technical notes: v, = 0 from (14) at odds with the very (11)
= finite case to be considered carefully
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Convergence Results

@ Relationships between ¢* and ¢*:
@ in general, 6* < o*+7
® vk > Eox Vk large enough = 5* < (1 —¢)o*

(]

Convergence: under sup, ||dx|| < oo
i) in general, f>° < f*+~%P 4 (o*+7)/a*
i) Yk>lok =<4+ (1+(1-&(1—-a")/a")
i) vk =0k = * <f*4o*
furthermore, X* # ) = {x} — x® € X s.t. f(x®) = >

@ Analogous to previous results, optimal error

Boundedness assumption easily attained (bounding strategies’)

@ Technical notes: v, = 0 from (14) at odds with the very (11)
= finite case to be considered carefully

@ As usual, f* not available (and may be —o0) = same trick
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Target Value Deflection

@ Target value deflection rule

d 2
Vik—1|ldk—1]| <ak<1
(15, ) + vi—illdial

(as before, looks uncorrected but it is not: «y, unknown)

0< Gk =
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Target Value Deflection

@ Target value deflection rule

d 2

0< (= Vi1 dk-1]| - <
(fifie, )+ Vil diea |

(as before, looks uncorrected but it is not: «y, unknown)

<ak<1

@ Abstract property:

either o =" = , or liminfd, =0 .
k—o0
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Target Value Deflection

@ Target value deflection rule

Vi1l dk—1] <ap<1

0< ¢k = <
(fi—fL, )+ vi-1lldi-1]?

(as before, looks uncorrected but it is not: «y, unknown)

@ Abstract property:

either of =" = , or liminfd, =0 .
k—o0

@ Implementation:

A o0 ) if f(Xk 1) < fk
5 c [ r(k)+1 ) ) + lev
ot { {Aks1} if f(xkr1) > i,

where r(k) = #h < k s.t. foi 1 < f’g" and

o0
A >0 liminf A = 0 _
k> : iminf Ay : kz_:
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Target Value Deflection (cont.d)

@ Similar technical hurdles (reference value, ...)

@ Convergence: either f2¢ = —oo = f*, or f22 < f* + 0"

@ Easy proof (all the dirty work done already)
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Target Value Deflection (cont.d)

@ Similar technical hurdles (reference value, ...)
. 1 oo __ P * [e.e] * *
o Convergence: either o = —00=f"orf2<f"+o

@ Easy proof (all the dirty work done already)

@ Same as stepsize-restricted (but it was not obvious beforehand)

A. Frangioni (DI — UniPi) Inexact Subgradient & Bundle Erice 2008

36 / 44



Target Value Deflection (cont.d)

@ Similar technical hurdles (reference value, ...)
. 1 oo __ P * [e.e] * *
o Convergence: either o = —00=f"orf2<f"+o

@ Easy proof (all the dirty work done already)

@ Same as stepsize-restricted (but it was not obvious beforehand)

Conclusions (for now)
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Target Value Deflection (cont.d)

@ Similar technical hurdles (reference value, ...)
. 1 oo __ P * [e.e] * *
o Convergence: either o = —00=f"orf2<f"+o

@ Easy proof (all the dirty work done already)

@ Same as stepsize-restricted (but it was not obvious beforehand)

Conclusions (for now)

@ If o* is your error, then f* + ¢* is your target
y g
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Target Value Deflection (cont.d)

@ Similar technical hurdles (reference value, ...)
. 1 oo __ P * [e.e] * *
o Convergence: either o = —00=f"orf2<f"+o

@ Easy proof (all the dirty work done already)

@ Same as stepsize-restricted (but it was not obvious beforehand)

Conclusions (for now)

@ If o* is your error, then f* + ¢* is your target
y g

© Knowing o, even approximately, is useful

A. Frangioni (DI — UniPi Inexact Subgradient & Bundle Erice 2008
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Bundle Methods

(with Giovanni Giallombardo)
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(exact) Bundle Methods: the Basic Ideas

@ Any iterative algorithm produces a sequence {xx} of tentative points
= the f-values sequence {fx} and the bundle B = {z, € Of(x«)}

17Jones, Lustig, Farwolden, Powell “Multicommodity Network Flows: The Impact of Formulation on Decomposition” Math.
Prog., 1993
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(exact) Bundle Methods: the Basic Ideas

@ Any iterative algorithm produces a sequence {xx} of tentative points
= the f-values sequence {fx} and the bundle B = {z, € Of(x«)}

@ Idea: use B to construct a model f[;f of f, eg.
Fi(x) =sup; { zx — f*(z) : ze B}

(cutting plane model)

17Jones, Lustig, Farwolden, Powell “Multicommodity Network Flows: The Impact of Formulation on Decomposition” Math.
Prog., 1993
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(exact) Bundle Methods: the Basic Ideas

@ Any iterative algorithm produces a sequence {xx} of tentative points
= the f-values sequence {fx} and the bundle B = {z, € Of(x«)}

@ Idea: use B to construct a model fg of f, eg.
Fi(x) =sup; { zx — f*(z) : ze B}
(cutting plane model)
@ Immediate consequence: cutting plane algorithm

Xs1 = argmin { F5(x) 1 x € X}

17Jones, Lustig, Farwolden, Powell “Multicommodity Network Flows: The Impact of Formulation on Decomposition” Math.
Prog., 1993
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(exact) Bundle Methods: the Basic Ideas

@ Any iterative algorithm produces a sequence {xx} of tentative points
= the f-values sequence {fx} and the bundle B = {z, € Of(x«)}

@ Idea: use B to construct a model fg of f, eg.
Fi(x) =sup; { zx — f*(z) : ze B}
(cutting plane model)
@ Immediate consequence: cutting plane algorithm

Xs1 = argmin { F5(x) 1 x € X}

@ Simple to implement, one linear program at each iteration

17Jones, Lustig, Farwolden, Powell “Multicommodity Network Flows: The Impact of Formulation on Decomposition” Math.
Prog., 1993
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@ Any iterative algorithm produces a sequence {xx} of tentative points
= the f-values sequence {fx} and the bundle B = {z, € Of(x«)}

(]

Idea: use B to construct a model fX of f, e.g.
Fi(x) =sup; { zx — f*(z) : ze B}
(cutting plane model)

Immediate consequence: cutting plane algorithm

Xs1 = argmin { F5(x) 1 x € X}

(]

Simple to implement, one linear program at each iteration

Unfortunately, often rather slow in practice (with exceptions)®’

(]

Problem: instability
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Instability and Stabilization

@ lIssue: xxy1 can be far from x
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@ lIssue: xix41 can be far from x, ...even infinitely far
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Primal View of (Generalized) Bundle Methods

@ Stabilization: stabilized primal problem (X = R" for simplicity)
(Mze)  ¢e(x) =infg { f(x+ d) + D(d) } (15)
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Primal View of (Generalized) Bundle Methods

@ Stabilization: stabilized primal problem (X = R" for simplicity)
(Mze)  ¢e(x) =infg { f(x+ d) + D(d) } (15)

@ current point X
o ¢ = (generalized) Moreau—Yosida regularization of f
@ D; = stabilizing term (&~ norm), t = proximity weight

@ With proper Dy, good properties (e.g. smooth)
@ But computing ¢; with an oracle for f is difficult = approximation

@ Stabilized primal master problem

(N55.t) ¢B,t(X) = infg { fa(X + d) + D¢(d) } (16)

® X1 = X+ d*, compute fy 1, B=BU{z1}
o if 1 < f()_<), then X = xx11
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Dual View of (Generalized) Bundle Methods

@ Dual of (M)8: (A) £5(0) = inf, { f*(z) : z=0}

18F. “Generalized Bundle Methods”, SIOPT, 2002
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@ Dual of (M)8: (A) £5(0) = inf, { f*(z) : z=0}
@ May look funny, but then every f is a Lagrangian function:
(Ax) f(x)=—inf, { f*(z) —zx }

@ Further, (15) has a non-weird (Fenchel’s) dual

(Axt) inf, { f*(z) — zx + D*:(—2) }
= (generalized) Augmented Lagrangian of (A) = so has (16)

(ABxt) inf, { f3(z) — zx + D} (—z) }

o lllustration: fz = f3, g(u)=Au—b, x>0

{ c(u) + xz — D} (—2z2)

Apx+) =su
( B7X7t) p z:b—i—w—AU,wZO’UECOBQU

u

= actually solving the weird convexification (3)

18F. “Generalized Bundle Methods”, SIOPT, 2002
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The Decomposable Case

o f(x) =3 hex F(x), computing each " produces z" € 9f"(x)

lgBacaud, Lemaréchal, Renaud, Sagastizdbal “Bundle methods in stochastic optimal power management: a disaggregated
approach using preconditioners” COAP, 2001
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The Decomposable Case

f(x) = pex F"(x), computing each £/ produces z" € 9f"(x)

[

(]

Can aggregate: Y, 2" = z € Of(x)

Better yet: use separate models fé’ for each component

(]

Disaggregated master problems (X = R” for simplicity)
(MBx,¢) infg { Ypex (X + d) + De(d) }
(Bixe) infe { Spec () (") — (Shex )% + D7 (= Sherc 2") }

Often more efficient in practicel” 19, for good reasons

(]

Master problem more costly to solve, but faster convergence

@ No incremental version as yet

lgBacaud, Lemaréchal, Renaud, Sagastizdbal “Bundle methods in stochastic optimal power management: a disaggregated
approach using preconditioners” COAP, 2001
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Approximate Bundle Methods

d89 20

@ Proposal exist only using lower boun or for finite min-max

@ Unify and extend these.

20Gaudioso, Giallombardo, Miglionico “An Incremental Method for Solving Convex Finite Minmax Problems” Math. of
O.R., 2006
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Incremental inexact oracle for f: inputs X € R", outputs:
o f<f(X),zeR"s.t. f+z(x—X) < f(x)Vx (lower linearization)
o f > f(x) (upper bound, may be +c0)

Can be called repeatedly on the same X.

o Different rules governing the produced sequences {f;}, {f;}
@ Bundle algorithm works in different “modes” (LB/UB following)

@ Results still preliminary, but knowing the gap helps
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Conclusions

@ Errors are a fact of life
@ You can pretend they don't exist, but you're better off not to
@ Knowing something about them helps

@ Errors may even be a good thing

@ Lots of work still to be done

@ incremental subgradient

o “dual” subgradient convergence?!

incremental bundle

<

©

software development/refinement, numerical testing

2 Nesterov “Primal-dual subgradient methods for convex problems” Math. Prog., 2008
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