Inexact Oracles in NonDifferentiable Optimization: Deflected Conditional Subgradient Methods and Generalized Bundle Methods

Antonio Frangioni

Dipartimento di Informatica, Università di Pisa

48th Workshop on Nonsmooth Analysis Optimization and Applications
Dedicated to V.F. Demyanov
Erice, May 14, 2008

Introduction, Motivation

- Introduction, Motivation
- 2 Subgradient methods: introduction

- Introduction, Motivation
- 2 Subgradient methods: introduction
- 3 Polyak-type stepsize: the abstract case

- Introduction, Motivation
- Subgradient methods: introduction
- 3 Polyak-type stepsize: the abstract case
- 4 Polyak-type stepsize: the implementable case

- 1 Introduction, Motivation
- Subgradient methods: introduction
- 3 Polyak-type stepsize: the abstract case
- Polyak-type stepsize: the implementable case
- 5 Deflection-restricted rules

- 1 Introduction, Motivation
- 2 Subgradient methods: introduction
- 3 Polyak-type stepsize: the abstract case
- 4 Polyak-type stepsize: the implementable case
- Deflection-restricted rules
- 6 Bundle methods

- 1 Introduction, Motivation
- 2 Subgradient methods: introduction
- 3 Polyak-type stepsize: the abstract case
- 4 Polyak-type stepsize: the implementable case
- Deflection-restricted rules
- 6 Bundle methods
- Conclusions

Difficult structured problem

$$z(P) = \sup_{u} \{ c(u) : h(u) \le 0, u \in U \}$$
 (1)

with complicating constraints $h(u) \leq 0$ over easy set U

Lemaréchal, Renaud "A geometric study of duality gaps, with applications", Math. Prog., 2001

Difficult structured problem

$$z(P) = \sup_{u} \{ c(u) : h(u) \le 0, u \in U \}$$
 (1) with complicating constraints $h(u) \le 0$ over easy set U

Assume Lagrangian relaxation of complicating constraints easy

$$f(x) = \sup_{u} \{ c(u) + xh(u) : u \in U \}$$
 (2)

¹ Lemaréchal. Renaud "A geometric study of duality gaps, with applications", Math. Prog., 2001

Difficult structured problem

$$z(P) = \sup_{u} \{ c(u) : \frac{h(u)}{2} \le 0, u \in U \}$$
 (1)

with complicating constraints $h(u) \leq 0$ over easy set U

Assume Lagrangian relaxation of complicating constraints easy

$$f(x) = \sup_{u} \{ c(u) + xh(u) : u \in U \}$$
 (2)

• f convex \Rightarrow corresponding Lagrangian dual easy

$$z(\Pi) = \inf_{x} \{ f(x) : x \ge 0 \}$$

¹Lemaréchal, Renaud "A geometric study of duality gaps, with applications", Math. Prog., 2001

Difficult structured problem

$$z(P) = \sup_{u} \{ c(u) : h(u) \le 0, u \in U \}$$
 (1)

with complicating constraints $h(u) \leq 0$ over easy set U

Assume Lagrangian relaxation of complicating constraints easy

$$f(x) = \sup_{u} \{ c(u) + xh(u) : u \in U \}$$
 (2)

• f convex \Rightarrow corresponding Lagrangian dual easy

$$z(\Pi) = \inf_{x} \{ f(x) : x \ge 0 \}$$

Equivalent to primal relaxation

$$\sup \{ v : (u, v, 0) \in \mathcal{U}^{**} \}$$
 (3)

where $\mathcal{U} = \{ (u, v, r) : u \in U, v \leq c(u), r \geq h(u) \}$ (a more palatable object if problem "affine enough")¹

 $^{^{}m I}$ Lemaréchal, Renaud "A geometric study of duality gaps, with applications", Math. Prog., 2001

• Oracle to (efficiently) perform the maximization (structure inside)

- Oracle to (efficiently) perform the maximization (structure inside)
- Solving exactly (2) provides both function value and subgradient

1 Primal "continuous" solutions useful to drive heuristics for $(1)^2$

 $^{^2}$ F., Gentile, Lacalandra "Solving Unit Commitment Problems with General Ramp Contraints", IJEPES, 2008

 $^{^3\}mathrm{F.}$ "About Lagrangian Methods in Integer Optimization", Ann. O.R., 2005

- **1** Primal "continuous" solutions useful to drive heuristics for $(1)^2$
- Mainly upper bounding: $z(\Pi) \ge z(P)$, "near" if (2) "not too easy" \Rightarrow safe (and effective) stopping criterion

²F., Gentile, Lacalandra "Solving Unit Commitment Problems with General Ramp Contraints", IJEPES, 2008

³F. "About Lagrangian Methods in Integer Optimization", Ann. O.R., 2005

- **1** Primal "continuous" solutions useful to drive heuristics for $(1)^2$
- Mainly upper bounding: $z(\Pi) \ge z(P)$, "near" if (2) "not too easy" \Rightarrow safe (and effective) stopping criterion
 - Trade off: "difficult" (2) \Rightarrow "good bound"³

²F., Gentile, Lacalandra "Solving Unit Commitment Problems with General Ramp Contraints", IJEPES, 2008

³F. "About Lagrangian Methods in Integer Optimization", Ann. O.R., 2005

- **1** Primal "continuous" solutions useful to drive heuristics for $(1)^2$
- Mainly upper bounding: $z(\Pi) \ge z(P)$, "near" if (2) "not too easy" \Rightarrow safe (and effective) stopping criterion
 - Trade off: "difficult" (2) \Rightarrow "good bound"³
 - Enumerative approaches: do this at each of very many nodes

²F., Gentile, Lacalandra "Solving Unit Commitment Problems with General Ramp Contraints", IJEPES, 2008

³F. "About Lagrangian Methods in Integer Optimization", Ann. O.R., 2005

- **1** Primal "continuous" solutions useful to drive heuristics for $(1)^2$
- Mainly upper bounding: $z(\Pi) \ge z(P)$, "near" if (2) "not too easy" \Rightarrow safe (and effective) stopping criterion
 - Trade off: "difficult" (2) \Rightarrow "good bound"³
 - Enumerative approaches: do this at each of very many nodes
 - (Π) has to be (approximately) solved very efficiently = fast convergence + low iteration cost

²F., Gentile, Lacalandra "Solving Unit Commitment Problems with General Ramp Contraints", IJEPES, 2008

³F. "About Lagrangian Methods in Integer Optimization", Ann. O.R., 2005

- **1** Primal "continuous" solutions useful to drive heuristics for $(1)^2$
- ② Mainly upper bounding: $z(\Pi) \ge z(P)$, "near" if (2) "not too easy" ⇒ safe (and effective) stopping criterion
 - Trade off: "difficult" (2) \Rightarrow "good bound"³
 - Enumerative approaches: do this at each of very many nodes
 - (Π) has to be (approximately) solved very efficiently = fast convergence + low iteration cost
- It thus makes sense to solve (2) approximately

²F., Gentile, Lacalandra "Solving Unit Commitment Problems with General Ramp Contraints", IJEPES, 2008

³F. "About Lagrangian Methods in Integer Optimization", Ann. O.R., 2005

- **1** Primal "continuous" solutions useful to drive heuristics for $(1)^2$
- Mainly upper bounding: $z(\Pi) \ge z(P)$, "near" if (2) "not too easy" \Rightarrow safe (and effective) stopping criterion
 - Trade off: "difficult" (2) \Rightarrow "good bound"³
 - Enumerative approaches: do this at each of very many nodes
 - (Π) has to be (approximately) solved very efficiently = fast convergence + low iteration cost
- It thus makes sense to solve (2) approximately
- Which may mean different things

 $^{^2}$ F., Gentile, Lacalandra "Solving Unit Commitment Problems with General Ramp Contraints", IJEPES, 2008

³F. "About Lagrangian Methods in Integer Optimization", Ann. O.R., 2005

• Approximate solution $\Rightarrow \sigma$ -subgradient, $\sigma \ge 0$

- Approximate solution $\Rightarrow \sigma$ -subgradient, $\sigma \ge 0$
- Heuristics \Rightarrow no measure of $\sigma \Rightarrow$ useless for bounding purposes

- Heuristics have no (or too weak in practice) performance guarantee
- Different approach: an exact algorithm for solving (2)

⁴Beltran, Tadonki, Vial "Solving the p-Median Problem with a Semi-Lagrangian Relaxation", COAP, 2006

- Heuristics have no (or too weak in practice) performance guarantee
- Different approach: an exact algorithm for solving (2)
- Three main components:
 - a heuristic producing $\bar{u} \in U \Rightarrow c(\bar{u}) + xh(\bar{u}) \leq f(x)$
 - an upper bound $\overline{f}(x) \ge f(x)$ (further relaxation)
 - enumeration to squeeze the two together (branching)
- Iterative process where $c(\bar{u}) + xh(\bar{u}) \rightarrow f(x) \leftarrow \bar{f}(x)$

⁴ Beltran. Tadonki, Vial "Solving the p-Median Problem with a Semi-Lagrangian Relaxation", COAP, 2006

- Heuristics have no (or too weak in practice) performance guarantee
- Different approach: an exact algorithm for solving (2)
- Three main components:
 - a heuristic producing $\bar{u} \in U \Rightarrow c(\bar{u}) + xh(\bar{u}) \leq f(x)$
 - an upper bound $\overline{f}(x) \ge f(x)$ (further relaxation)
 - enumeration to squeeze the two together (branching)
- Iterative process where $c(\bar{u}) + xh(\bar{u}) \to f(x) \leftarrow \bar{f}(x)$
- (2) "as difficult" as (1) in theory (but largely less so in practice⁴)
- The gap $\sigma = \bar{f}(x) c(\bar{u}) xh(\bar{u}) \ge 0$ may decrease rather slowly

⁴ Beltran, Tadonki, Vial "Solving the p-Median Problem with a Semi-Lagrangian Relaxation", COAP, 2006

- Heuristics have no (or too weak in practice) performance guarantee
- Different approach: an exact algorithm for solving (2)
- Three main components:
 - a heuristic producing $\bar{u} \in U \Rightarrow c(\bar{u}) + xh(\bar{u}) \leq f(x)$
 - an upper bound $\overline{f}(x) \ge f(x)$ (further relaxation)
 - enumeration to squeeze the two together (branching)
- Iterative process where $c(\bar{u}) + xh(\bar{u}) \to f(x) \leftarrow \bar{f}(x)$
- (2) "as difficult" as (1) in theory (but largely less so in practice⁴)
- The gap $\sigma = \bar{f}(x) c(\bar{u}) xh(\bar{u}) \ge 0$ may decrease rather slowly
- For bounding purposes, $\bar{f}(x)$ "is" f(x)

 $^{^4}$ Beltran, Tadonki, Vial "Solving the p-Median Problem with a Semi-Lagrangian Relaxation", COAP, 2006

ullet The upper bound $ar{f}(x)$ "is" the function value

- The upper bound $\bar{f}(x)$ "is" the function value
- σ decreases if either $\bar{f}(x)$ decreases or $c(\bar{u}) + xh(\bar{u})$ increases

A Somewhat Different (but related) Case

• The decomposable case:

$$u = (u^{1}, ..., u^{k}) \in U^{1} \times ... \times U^{k}$$

$$c(u) = c^{1}(u^{1}) + ... + c^{k}(u^{k})$$

$$h(u) = h^{1}(u^{1}) + ... + h^{k}(u^{k})$$

• Computing f(x) decomposes into k independent subproblems

⁵Nedíc, Bertsekas "Incremental subgradient methods for nondifferentiable optimization", SIOPT, 2001

$$u = (u^{1}, ..., u^{k}) \in U^{1} \times ... \times U^{k}$$

 $c(u) = c^{1}(u^{1}) + ... + c^{k}(u^{k})$
 $h(u) = h^{1}(u^{1}) + ... + h^{k}(u^{k})$

- Computing f(x) decomposes into k independent subproblems
- In some cases, the problems are "easy" but they are "many"
- Avoid computing them all for each x, at least at some iterations ⁵

Nedíc. Bertsekas "Incremental subgradient methods for nondifferentiable optimization", SIOPT, 2001

$$u = (u^{1}, ..., u^{k}) \in U^{1} \times ... \times U^{k}$$

$$c(u) = c^{1}(u^{1}) + ... + c^{k}(u^{k})$$

$$h(u) = h^{1}(u^{1}) + ... + h^{k}(u^{k})$$

- Computing f(x) decomposes into k independent subproblems
- In some cases, the problems are "easy" but they are "many"
- Avoid computing them all for each x, at least at some iterations ⁵
- Something like: lower bound always available, upper bound only available if all k problems are solved

 $^{^{5}}$ Nedíc, Bertsekas "Incremental subgradient methods for nondifferentiable optimization", SIOPT, 2001

$$u = (u^{1}, ..., u^{k}) \in U^{1} \times ... \times U^{k}$$

$$c(u) = c^{1}(u^{1}) + ... + c^{k}(u^{k})$$

$$h(u) = h^{1}(u^{1}) + ... + h^{k}(u^{k})$$

- Computing f(x) decomposes into k independent subproblems
- In some cases, the problems are "easy" but they are "many"
- Avoid computing them all for each x, at least at some iterations ⁵
- Something like: lower bound always available, upper bound only available if all k problems are solved
- Alternatively: $\bar{f}(x)$ is either $+\infty$ or f(x)

 $^{^{5}}$ Nedíc, Bertsekas "Incremental subgradient methods for nondifferentiable optimization", SIOPT, 2001

$$u = (u^{1}, ..., u^{k}) \in U^{1} \times ... \times U^{k}$$

$$c(u) = c^{1}(u^{1}) + ... + c^{k}(u^{k})$$

$$h(u) = h^{1}(u^{1}) + ... + h^{k}(u^{k})$$

- Computing f(x) decomposes into k independent subproblems
- In some cases, the problems are "easy" but they are "many"
- Avoid computing them all for each x, at least at some iterations ⁵
- Something like: lower bound always available, upper bound only available if all k problems are solved
- Alternatively: $\bar{f}(x)$ is either $+\infty$ or f(x)
- Then, of course, each subproblem can be solved approximately

[.] Nedíc, Bertsekas "Incremental subgradient methods for nondifferentiable optimization", SIOPT, 2001

• Minimizing f using a approximated subgradient (= oracle) possible ⁶

 6 Correa, Lemaréchal "Convergence of Some Algorithms for Convex Minimization" Math. Prog., 1993

⁷Kiwiel "Convergence of approximate and incremental subgradient methods for convex minimization", SIOPT, 2004

⁸Kiwiel "A proximal bundle method with approximate subgradient linearizations", SIOPT, 2006

⁹Kiwiel, Lemaréchal "An inexact bundle variant suited to column generation", Math. Prog., 2007

- Minimizing f using a approximated subgradient (= oracle) possible 6
- ullet Lately, the standard has been "nothing is known about σ " ^{7 8 9}

 $^{^6}$ Correa, Lemaréchal "Convergence of Some Algorithms for Convex Minimization" Math. Prog., 1993

⁷Kiwiel "Convergence of approximate and incremental subgradient methods for convex minimization", SIOPT, 2004

 $[\]frac{8}{8}$ Kiwiel "A proximal bundle method with approximate subgradient linearizations", SIOPT, 2006

⁹Kiwiel, Lemaréchal "An inexact bundle variant suited to column generation", Math. Prog., 2007

- Minimizing f using a approximated subgradient (= oracle) possible 6
- ullet Lately, the standard has been "nothing is known about σ " ^{7 8 9}
- But in practice, σ is known (if we accept that $\bar{f}(x)$ "is" f(x))

 $^{^6}$ Correa, Lemaréchal "Convergence of Some Algorithms for Convex Minimization" Math. Prog., 1993

⁷Kiwiel "Convergence of approximate and incremental subgradient methods for convex minimization", SIOPT, 2004

 $^{^{8}}$ Kiwiel "A proximal bundle method with approximate subgradient linearizations", SIOPT, 2006

⁹Kiwiel, Lemaréchal "An inexact bundle variant suited to column generation", Math. Prog., 2007

- Minimizing f using a approximated subgradient (= oracle) possible 6
- ullet Lately, the standard has been "nothing is known about σ " $^{7~8~9}$
- But in practice, σ is known (if we accept that $\bar{f}(x)$ "is" f(x))
- The issue:

Does knowing σ help in (approximately) minimizing f?

 $^{{}^6}$ Correa, Lemaréchal "Convergence of Some Algorithms for Convex Minimization" Math. Prog., 1993

⁷Kiwiel "Convergence of approximate and incremental subgradient methods for convex minimization", SIOPT, 2004

 $^{^{8}}$ Kiwiel "A proximal bundle method with approximate subgradient linearizations", SIOPT, 2006

⁹ Kiwiel, Lemaréchal "An inexact bundle variant suited to column generation", Math. Prog., 2007

- Minimizing f using a approximated subgradient (= oracle) possible 6
- ullet Lately, the standard has been "nothing is known about σ " ^{7 8 9}
- But in practice, σ is known (if we accept that $\bar{f}(x)$ "is" f(x))
- The issue:

Does knowing σ help in (approximately) minimizing f?

Of course, it depends on what approach is used

 $^{{\}color{red}^6}$ Correa, Lemaréchal "Convergence of Some Algorithms for Convex Minimization" Math. Prog., 1993

 $[\]frac{7}{1}$ Kiwiel "Convergence of approximate and incremental subgradient methods for convex minimization", SIOPT, 2004

 $^{^{8}}$ Kiwiel "A proximal bundle method with approximate subgradient linearizations", SIOPT, 2006

Kiwiel, Lemaréchal "An inexact bundle variant suited to column generation", Math. Prog., 2007

Subgradient Methods

(with Giacomo d'Antonio)

• General problem:

$$\inf_{x} \{ f(x) : x \in X \}$$

 $f: \mathbb{R}^n \to \mathbb{R}$ convex = approximated oracle, $X \subseteq \mathbb{R}^n$ closed convex

• General problem:

$$\inf_{x} \{ f(x) : x \in X \}$$

 $f: \mathbb{R}^n \to \mathbb{R}$ convex = approximated oracle, $X \subseteq \mathbb{R}^n$ closed convex

Basic approximate subgradient method:

$$g_k \in \partial_{\sigma_k} f(x_k)$$
 , $\widehat{x}_{k+1} = x_k - \nu_k g_k$, $x_{k+1} = P_X(\widehat{x}_{k+1})$

 $P_X = \text{orthogonal projection on } X \text{ (assumed "cheap")}, \ v_k \text{ stepsize}$

• General problem:

$$\inf_{x} \{ f(x) : x \in X \}$$

 $f: \mathbb{R}^n \to \mathbb{R}$ convex = approximated oracle, $X \subseteq \mathbb{R}^n$ closed convex

Basic approximate subgradient method:

$$g_k \in \partial_{\sigma_k} f(x_k)$$
 , $\widehat{x}_{k+1} = x_k - \nu_k g_k$, $x_{k+1} = P_X(\widehat{x}_{k+1})$

 $P_X = \text{orthogonal projection on } X \text{ (assumed "cheap")}, v_k \text{ stepsize}$

- Very simple, almost no overhead w.r.t. f(x) computation
- Many variants (dilation methods, Bregman projections, ...)

• General problem:

$$\inf_{x} \{ f(x) : x \in X \}$$

 $f: \mathbb{R}^n \to \mathbb{R}$ convex = approximated oracle, $X \subseteq \mathbb{R}^n$ closed convex

Basic approximate subgradient method:

$$g_k \in \partial_{\sigma_k} f(x_k)$$
 , $\widehat{x}_{k+1} = x_k - \nu_k g_k$, $x_{k+1} = P_X(\widehat{x}_{k+1})$

 P_X = orthogonal projection on X (assumed "cheap"), ν_k stepsize

- Very simple, almost no overhead w.r.t. f(x) computation
- Many variants (dilation methods, Bregman projections, ...)
- Typically rather slow, because:
 - ullet a (1-arepsilon)th-order method, cannot be fast
 - zig-zagging I: in "deep and narrow valleys", successive subgradients almost orthogonal to each other
 - zig-zagging II: at ∂X , subgradients almost orthogonal to ∂X

• Two long steps . . .

 $^{^{10}\}mathsf{Camerini,\ Fratta,\ Maffioli\ "On\ Improving\ Relaxation\ Methods\ by\ Modified\ Gradie \underline{\mathsf{nt}\ \mathsf{Techniques}",\ \mathsf{Math.\ Prog.,\ 1975}}$

Two long steps . . . are one short step

 $^{^{10}\}mathsf{Camerini,\ Fratta,\ Maffioli\ "On\ Improving\ Relaxation\ Methods\ by\ Modified\ Gradie \underline{\mathsf{nt}\ \mathsf{Techniques}",\ \mathsf{Math.\ Prog.,\ 1975}}$

- Two long steps . . . are one short step
- Solution: use previous direction

 $^{^{10}\}mathsf{Camerini,\ Fratta,\ Maffioli\ "On\ Improving\ Relaxation\ Methods\ by\ Modified\ Gradie \underline{\mathsf{nt}\ \mathsf{Techniques}",\ \mathsf{Math.\ Prog.,\ 1975}}$

- Two long steps . . . are one short step
- Solution: use previous direction to deflect g_k (e.g. $\rightarrow d_k d_{k-1} \ge 0$)¹⁰

 $^{10}\mathsf{Camerini},\,\mathsf{Fratta},\,\mathsf{Maffioli}\,\,\text{``On Improving Relaxation Methods by Modified Gradient Techniques''},\,\mathsf{Math}.\,\,\mathsf{Prog.},\,1975$

- Two long steps . . . are one short step
- Solution: use previous direction to deflect g_k (e.g. $\rightarrow d_k d_{k-1} \ge 0$)¹⁰

 $^{10}\mathsf{Camerini},\,\mathsf{Fratta},\,\mathsf{Maffioli}\,\,\text{``On Improving Relaxation Methods by Modified Gradient Techniques''},\,\mathsf{Math}.\,\,\mathsf{Prog.},\,1975$

• Projecting a long step ...

• Projecting a long step ... may result in a short step

- Projecting a long step ... may result in a short step
- Solution: project g^k onto the tangent cone at x^k

- Projecting a long step ... may result in a short step
- Solution: project g^k onto the tangent cone at x^k ... or, equivalently, deflect using $-z^k \in \partial I_X(x^k) \to d_k \in \partial f_X(x^k)$ $(f_X = f + I_X)$

- Projecting a long step ... may result in a short step
- Solution: project g^k onto the tangent cone at x^k ... or, equivalently, deflect using $-z^k \in \partial I_X(x^k) \to d_k \in \partial f_X(x^k)$ $(f_X = f + I_X)$

• Conditional subgradient: $d_k = -P_{T_X(x_k)}(-g_k)^{11} \in \partial f_X(x^k)$

A. Frangioni (DI — UniPi)

¹¹ Larsson, Patriksson, Strömberg "Conditional Subgradient Optimization - Theory and Applications", EJOR, 1996

 $^{^{12}}$ Sherali, Lim "On Embedding the Volume Algorithm in a Variable Target Value Method", ORL, 2004

¹³ Guta "Subgradient Optimization Methods ...with an Application to a Radiation Therapy Problem", Ph.D., 2003

¹⁴ Crainic, F., Gendron "Bundle-based Relaxation Methods for Multicommodity . . . Network Design", DAM, 2001

 $^{^{15}}$ F., Lodi, Rinaldi "New Approaches for Optimizing over the Semimetric Polytope", Math. Prog., 2005

- Conditional subgradient: $d_k = -P_{T_X(x_k)}(-g_k)^{11} \in \partial f_X(x^k)$
- Deflected subgradient: $d_k = g_k + \eta_k d_{k-1}$

A. Frangioni (DI - UniPi)

 $^{^{11}}$ Larsson. Patriksson. Strömberg "Conditional Subgradient Optimization - Theory and Applications", EJOR, 1996

 $^{^{12}}$ Sherali, Lim "On Embedding the Volume Algorithm in a Variable Target Value Method", ORL, 2004

 $^{^{13}}$ Guta "Subgradient Optimization Methods . . . with an Application to a Radiation Therapy Problem", Ph.D., 2003

 $^{^{14}}$ Crainic, F., Gendron "Bundle-based Relaxation Methods for Multicommodity ...Network Design", DAM, 2001

 $^{^{15}\}mathrm{F.,\,Lodi,\,Rinaldi\,\,"New\,Approaches}$ for Optimizing over the Semimetric Polytope", Math. Prog., 2005

- Conditional subgradient: $d_k = -P_{T_X(x_k)}(-g_k)^{11} \in \partial f_X(x^k)$
- Deflected subgradient: $d_k = g_k + \eta_k d_{k-1} \dots$ better, w.l.o.g.

$$d_k = \alpha_k g_k + (1 - \alpha_k) d_{k-1} \quad , \quad \alpha_k \in [0, 1]$$

(the missing scaling factor can always be attached to ν_k) ¹²

15 / 44

 $^{^{11}}$ l arsson. Patriksson, Strömberg "Conditional Subgradient Optimization - Theory and Applications", EJOR, 1996

 $^{^{12}}$ Sherali, Lim "On Embedding the Volume Algorithm in a Variable Target Value Method", ORL, 2004

 $^{^{13}}$ Guta "Subgradient Optimization Methods . . . with an Application to a Radiation Therapy Problem", Ph.D., 2003

 $^{^{14}}$ Crainic, F., Gendron "Bundle-based Relaxation Methods for Multicommodity \dots Network Design", DAM, 2001

 $^{^{15}\}mathrm{F.,\,Lodi,\,Rinaldi\,\,"New\,Approaches}$ for Optimizing over the Semimetric Polytope", Math. Prog., 2005 Inexact Subgradient & Bundle

- Conditional subgradient: $d_k = -P_{T_X(x_k)}(-g_k)^{11} \in \partial f_X(x^k)$
- Deflected subgradient: $d_k = g_k + \eta_k d_{k-1} \dots$ better, w.l.o.g.

$$d_k = \alpha_k g_k + (1 - \alpha_k) d_{k-1} \quad , \quad \alpha_k \in [0, 1]$$

(the missing scaling factor can always be attached to ν_k) ¹²

• Funnily enough, (almost) no conditional deflected subgradient ¹³

A. Frangioni (DI - UniPi)

¹¹ Larsson, Patriksson, Strömberg "Conditional Subgradient Optimization - Theory and Applications", EJOR, 1996

 $^{^{12}}$ Sherali, Lim "On Embedding the Volume Algorithm in a Variable Target Value Method", ORL, 2004

¹³ Guta "Subgradient Optimization Methods ...with an Application to a Radiation Therapy Problem", Ph.D., 2003

¹⁴ Crainic, F., Gendron "Bundle-based Relaxation Methods for Multicommodity ... Network Design", DAM, 2001

 $^{^{15}\}mathrm{F.,\,Lodi,\,Rinaldi\,\,"New\,Approaches}$ for Optimizing over the Semimetric Polytope", Math. Prog., 2005

- Conditional subgradient: $d_k = -P_{T_X(x_k)}(-g_k)^{11} \in \partial f_X(x^k)$
- Deflected subgradient: $d_k = g_k + \eta_k d_{k-1} \dots$ better, w.l.o.g.

$$d_k = \alpha_k g_k + (1 - \alpha_k) d_{k-1}$$
 , $\alpha_k \in [0, 1]$

(the missing scaling factor can always be attached to ν_k) ¹²

- Funnily enough, (almost) no conditional deflected subgradient ¹³
- Besides: conditional approximate subgradient, yes⁷

A. Frangioni (DI — UniPi)

 $^{^{11}}$ Larsson, Patriksson, Strömberg "Conditional Subgradient Optimization - Theory and Applications", EJOR, 1996

 $^{^{12}}$ Sherali, Lim "On Embedding the Volume Algorithm in a Variable Target Value Method", ORL, 2004

 $^{^{13}}$ Guta "Subgradient Optimization Methods . . . with an Application to a Radiation Therapy Problem", Ph.D., 2003

¹⁴ Crainic, F., Gendron "Bundle-based Relaxation Methods for Multicommodity . . . Network Design", DAM, 2001

 $^{^{15}\}mathrm{F.,}$ Lodi, Rinaldi "New Approaches for Optimizing over the Semimetric Polytope", Math. Prog., 2005

- Conditional subgradient: $d_k = -P_{T_X(x_k)}(-g_k)^{11} \in \partial f_X(x^k)$
- Deflected subgradient: $d_k = g_k + \eta_k d_{k-1} \dots$ better, w.l.o.g.

$$d_k = \alpha_k g_k + (1 - \alpha_k) d_{k-1} \quad , \quad \alpha_k \in [0, 1]$$

(the missing scaling factor can always be attached to ν_k) ¹²

- Funnily enough, (almost) no conditional deflected subgradient ¹³
- Besides: conditional approximate subgradient, yes⁷ ... but deflected approximate subgradient, no.

A. Frangioni (DI - UniPi)

 $^{^{11}}$ Larsson. Patriksson. Strömberg "Conditional Subgradient Optimization - Theory and Applications", EJOR, 1996

 $^{^{12}}$ Sherali, Lim "On Embedding the Volume Algorithm in a Variable Target Value Method", ORL, 2004

 $^{^{13}}$ Guta "Subgradient Optimization Methods . . . with an Application to a Radiation Therapy Problem", Ph.D., 2003

 $^{^{14}\}mathsf{Crainic},\,\mathsf{F.},\,\mathsf{Gendron}\,\,\text{``Bundle-based Relaxation Methods for Multicommodity}\,\ldots\,\mathsf{Network}\,\,\mathsf{Design''},\,\mathsf{DAM},\,\mathsf{2001}$

 $^{^{15}\}mathrm{F.,\,Lodi,\,Rinaldi\,\,"New\,Approaches}$ for Optimizing over the Semimetric Polytope", Math. Prog., 2005

- Conditional subgradient: $d_k = -P_{T_X(x_k)}(-g_k)^{11} \in \partial f_X(x^k)$
- Deflected subgradient: $d_k = g_k + \eta_k d_{k-1} \dots$ better, w.l.o.g.

$$d_k = \alpha_k g_k + (1 - \alpha_k) d_{k-1} \quad , \quad \alpha_k \in [0, 1]$$

(the missing scaling factor can always be attached to ν_k) ¹²

- Funnily enough, (almost) no conditional deflected subgradient ¹³
- Besides: conditional approximate subgradient, yes⁷
 ... but deflected approximate subgradient, no.
- ullet Still there is need for good subgradient methods 14 15

¹¹ Larsson, Patriksson, Strömberg "Conditional Subgradient Optimization - Theory and Applications", EJOR, 1996

 $^{^{12}}$ Sherali, Lim "On Embedding the Volume Algorithm in a Variable Target Value Method", ORL, 2004

 $^{^{13}}$ Guta "Subgradient Optimization Methods . . . with an Application to a Radiation Therapy Problem", Ph.D., 2003

¹⁴ Crainic, F., Gendron "Bundle-based Relaxation Methods for Multicommodity ... Network Design", DAM, 2001

 $^{^{15}}$ F., Lodi, Rinaldi "New Approaches for Optimizing over the Semimetric Polytope", Math. Prog., 2005

Projecting . . .

• Projecting ... and then deflecting gives $d_{k+1} \notin T_X(x_k)$

- Projecting ... and then deflecting gives $d_{k+1} \notin T_X(x_k)$
- Solution: first deflect,

- Projecting ... and then deflecting gives $d_{k+1} \notin T_X(x_k)$
- Solution: first deflect, then project; now $d_{k+1} \in T_X(x_k)$

- Projecting ... and then deflecting gives $d_{k+1} \notin T_X(x_k)$
- Solution: first deflect, then project; now $d_{k+1} \in T_X(x_k)$

Conditional Deflected (Approximate) Subgradient

$$\widehat{d}_k = \alpha_k \overline{g}_k + (1 - \alpha_k) \overline{d}_{k-1}$$
 $d_k = -P_{T_X(x_k)}(-\widehat{d}_k)$

$$\overline{g}_k = \text{either } g_k \text{ or } \widehat{g}_k , \quad \overline{d}_k = \text{either } d_k \text{ or } \widehat{d}_k$$

• Four different schemes, but unified treatment (\le two projections)

Conditional Deflected (Approximate) Subgradient

$$\widehat{d}_k = \alpha_k \overline{g}_k + (1 - \alpha_k) \overline{d}_{k-1}$$
 $d_k = -P_{T_X(x_k)}(-\widehat{d}_k)$
 $\overline{g}_k = \text{either } g_k \text{ or } \widehat{g}_k$, $\overline{d}_k = \text{either } d_k \text{ or } \widehat{d}_k$

- Four different schemes, but unified treatment (≤ two projections)
- Whatever the choice, $\bar{g}_k \in \partial_{\sigma_k} f_X(x_k)$
- Allows to unify some technical results, like

$$\bar{d}_k(x-x_k) \leq \hat{d}_k(x-x_k)$$

(trivial if $\bar{d}_k = \hat{d}_k$, but not otherwise), and

$$\bar{d}_k(x_k - x_{k+1}) \le \nu_k \|d_k\|^2$$

Conditional Deflected (Approximate) Subgradient

$$egin{aligned} \widehat{d}_k &= lpha_k ar{g}_k + (1 - lpha_k) ar{d}_{k-1} & d_k &= -P_{T_X(x_k)}(-\widehat{d}_k) \ ar{g}_k &= ext{either } g_k ext{ or } \widehat{g}_k \ , & ar{d}_k &= ext{either } d_k ext{ or } \widehat{d}_k \end{aligned}$$

- Four different schemes, but unified treatment (≤ two projections)
- Whatever the choice, $\bar{g}_k \in \partial_{\sigma_k} f_X(x_k)$
- Allows to unify some technical results, like

$$\bar{d}_k(x-x_k) \leq \hat{d}_k(x-x_k)$$

(trivial if $\bar{d}_k = \hat{d}_k$, but not otherwise), and

$$\bar{d}_k(x_k-x_{k+1})\leq \nu_k \|d_k\|^2$$

• Crucial result (relying on $\alpha_k \in [0,1]$): $\bar{d}_k \in \partial_{\varepsilon_k} f_X(x_k)$ with

$$\varepsilon_k = (1 - \alpha_k) (f_k - f_{k-1} - \bar{d}_{k-1} (x_k - x_{k-1}) + \varepsilon_{k-1}) + \alpha_k \sigma_k$$
 (4)

- Introduction, Motivation
- 2 Subgradient methods: introduction
- 3 Polyak-type stepsize: the abstract case
- 4 Polyak-type stepsize: the implementable case
- 5 Deflection-restricted rules
- 6 Bundle methods
- Conclusions

$$\nu_k = \beta_k \frac{f_k - f^*}{\|d_k\|^2} , \quad 0 < \beta^* \le \beta_k \le 2$$

• Standard Polyak stepsize (assuming $f^* = \inf_x f_X(x) > -\infty$)

$$\nu_k = \beta_k \frac{f_k - f^*}{\|d_k\|^2} , \quad 0 < \beta^* \le \beta_k \le 2$$

• Abstract rule, as f* unknown in general

$$\nu_k = \beta_k \frac{f_k - f^*}{\|d_k\|^2} , \quad 0 < \beta^* \le \beta_k \le 2$$

- Abstract rule, as f^* unknown in general
- Technical (but somewhat conceptual) issue: d_k can be 0

$$u_k = \beta_k \frac{f_k - f^*}{\|d_k\|^2} , \quad 0 < \beta^* \le \beta_k \le 2$$

- Abstract rule, as f^* unknown in general
- Technical (but somewhat conceptual) issue: d_k can be 0
- Not an issue if σ_k constant (e.g. $\sigma_k \equiv 0$) and no deflection

$$u_k = \beta_k \frac{f_k - f^*}{\|d_k\|^2} , \quad 0 < \beta^* \le \beta_k \le 2$$

- Abstract rule, as f^* unknown in general
- Technical (but somewhat conceptual) issue: d_k can be 0
- Not an issue if σ_k constant (e.g. $\sigma_k \equiv 0$) and no deflection
- "Technical" solution $\nu_k \|d_k\|^2 \le \beta_k \lambda_k \ (\lambda_k = f_k f^*)$, not enough

• Standard Polyak stepsize (assuming $f^* = \inf_x f_X(x) > -\infty$)

$$u_k = \beta_k \frac{f_k - f^*}{\|d_k\|^2} , \quad 0 < \beta^* \le \beta_k \le 2$$

- Abstract rule, as f* unknown in general
- Technical (but somewhat conceptual) issue: d_k can be 0
- Not an issue if σ_k constant (e.g. $\sigma_k \equiv 0$) and no deflection
- "Technical" solution $\nu_k \|d_k\|^2 \le \beta_k \lambda_k \ (\lambda_k = f_k f^*)$, not enough

Observation

 $\sigma^* = \limsup_{k \to \infty} \sigma_k < +\infty$ (asymptotic maximum error of the oracle); no subgradient method can attain error $< \sigma^*$ (if $f^* > -\infty$)

• Standard Polyak stepsize (assuming $f^* = \inf_x f_X(x) > -\infty$)

$$\nu_k = \beta_k \frac{f_k - f^*}{\|d_k\|^2} , \quad 0 < \beta^* \le \beta_k \le 2$$

- Abstract rule, as f^* unknown in general
- Technical (but somewhat conceptual) issue: d_k can be 0
- Not an issue if σ_k constant (e.g. $\sigma_k \equiv 0$) and no deflection
- "Technical" solution $\nu_k ||d_k||^2 \le \beta_k \lambda_k \ (\lambda_k = f_k f^*)$, not enough

Observation

 $\sigma^* = \limsup_{k \to \infty} \sigma_k < +\infty$ (asymptotic maximum error of the oracle); no subgradient method can attain error $< \sigma^*$ (if $f^* > -\infty$)

Proof.

 $\sigma_k \geq \sigma^*$ and $f(x_0) = f^* + \sigma^* \Rightarrow g_k$ can be $0 \Rightarrow d_k = 0$: never moves!

• Further requirement: $\beta_k \leq \alpha_k \ (\leq 1)$

- Further requirement: $\beta_k \leq \alpha_k \ (\leq 1)$
- Main technical result (using (4)):

$$\varepsilon_k \le (1 - \alpha_k)(f_k - f^*) + \bar{\sigma}_k \quad \text{where}$$
 (5)

$$\bar{\sigma}_k = (1 - \alpha_k)\bar{\sigma}_{k-1} + \alpha_k \sigma_k \tag{6}$$

 $(\alpha_1 = 1 \text{ for "unreliability of past information"})$

- Further requirement: $\beta_k \leq \alpha_k \ (\leq 1)$
- Main technical result (using (4)):

$$\varepsilon_k \le (1 - \alpha_k)(f_k - f^*) + \bar{\sigma}_k \quad \text{where}$$
 (5)

$$\bar{\sigma}_k = (1 - \alpha_k)\bar{\sigma}_{k-1} + \alpha_k \sigma_k \tag{6}$$

 $(\alpha_1 = 1 \text{ for "unreliability of past information"})$

• Technical corollary: for each $\bar{x} \in X$

$$d_k(\bar{x} - x_k) \le \alpha_k(f^* - f_k) + \left[f(\bar{x}) - f^* + \bar{\sigma}_k\right] \tag{7}$$

- Further requirement: $\beta_k \leq \alpha_k \ (\leq 1)$
- Main technical result (using (4)):

$$\varepsilon_k \le (1 - \alpha_k)(f_k - f^*) + \bar{\sigma}_k \quad \text{where}$$
 (5)

$$\bar{\sigma}_k = (1 - \alpha_k)\bar{\sigma}_{k-1} + \alpha_k \sigma_k \tag{6}$$

 $(\alpha_1 = 1 \text{ for "unreliability of past information"})$

• Technical corollary: for each $\bar{x} \in X$

$$d_k(\bar{x} - x_k) \le \alpha_k(f^* - f_k) + \left[f(\bar{x}) - f^* + \bar{\sigma}_k\right] \tag{7}$$

• "Exact" convergence result at hand⁷: $\sigma_k \equiv 0 \Rightarrow$

$$\exists \xi \in [0,1)$$
 $\varepsilon_k \leq \xi(2-\beta_k)(f_k-f^*)/2$

 $\Rightarrow \liminf_{k \to \infty} f_k = f^{\infty} < f^*$

• What about the approximate case?

- What about the approximate case?
- "Asymptotic error": $\limsup_{k\to\infty} \bar{\sigma}_k = \bar{\sigma}^* \leq \sigma^*$

- What about the approximate case?
- "Asymptotic error": $\limsup_{k\to\infty} \bar{\sigma}_k = \bar{\sigma}^* \leq \sigma^*$
- For "Asymptotically non-deflected" method $(\lim_{k\to\infty} \alpha_k = 1)^7$

$$f^{\infty} \leq f^* + 2\sigma^*/(2 - \sup_k \beta_k)$$

• Error twice as large than "optimal", basically no deflection

- What about the approximate case?
- "Asymptotic error": $\limsup_{k\to\infty} \bar{\sigma}_k = \bar{\sigma}^* \leq \sigma^*$
- For "Asymptotically non-deflected" method $(\lim_{k\to\infty} \alpha_k = 1)^7$

$$f^{\infty} \leq f^* + 2\sigma^*/(2 - \sup_k \beta_k)$$

• Error twice as large than "optimal", basically no deflection

Theorem

Without any assumption on deflection

$$f^{\infty} \leq f^* + 2\sigma^*/\Gamma$$
 where $\Gamma = \inf_k 2\alpha_k - \beta_k \geq \beta^*$

• Deflecting is possible, but does not look a good idea

- What about the approximate case?
- "Asymptotic error": $\limsup_{k\to\infty} \bar{\sigma}_k = \bar{\sigma}^* \leq \sigma^*$
- For "Asymptotically non-deflected" method $(\lim_{k\to\infty} \alpha_k = 1)^7$

$$f^{\infty} \leq f^* + 2\sigma^*/(2 - \sup_k \beta_k)$$

• Error twice as large than "optimal", basically no deflection

Theorem

Without any assumption on deflection

$$f^{\infty} \leq f^* + \frac{2\sigma^*}{\Gamma}$$
 where $\Gamma = \inf_k 2\alpha_k - \beta_k \geq \frac{\beta^*}{\Gamma}$

- Deflecting is possible, but does not look a good idea
- However, knowing σ_k we can do better than that

• Corrected Polyak stepsize: $\lambda_k = f_k - f^* - \sigma_k$

$$0 \le \nu_k = \beta_k \frac{\lambda_k}{\|d_k\|^2} , \qquad 0 < \beta^* \le \beta_k \le \alpha_k \le 1$$
 (8)

• Corrected Polyak stepsize: $\lambda_k = f_k - f^* - \sigma_k$

$$0 \le \nu_k = \beta_k \frac{\lambda_k}{\|d_k\|^2} , \qquad 0 < \beta^* \le \beta_k \le \alpha_k \le 1$$
 (8)

• Issue: $\sigma_k > f_k - f^* \Rightarrow \lambda_k < 0$. Solution:

$$0 \le \nu_k ||d_k||^2 \le \beta_k \lambda_k \quad , \quad 0 \le \beta_k \le \alpha_k \le 1$$

which implies $\lambda_k < 0 \Rightarrow \beta_k = 0 \Rightarrow \nu_k = 0$ (loops!)

• Corrected Polyak stepsize: $\lambda_k = f_k - f^* - \sigma_k$

$$0 \le \nu_k = \beta_k \frac{\lambda_k}{\|d_k\|^2} , \qquad 0 < \beta^* \le \beta_k \le \alpha_k \le 1$$
 (8)

• Issue: $\sigma_k > f_k - f^* \Rightarrow \lambda_k < 0$. Solution:

$$0 \le \nu_k ||d_k||^2 \le \beta_k \lambda_k \quad , \quad 0 \le \beta_k \le \alpha_k \le 1$$

which implies $\lambda_k < 0 \Rightarrow \beta_k = 0 \Rightarrow \nu_k = 0$ (loops!)

• In plain words: if the error is too large, stop until it decreases enough

• Corrected Polyak stepsize: $\lambda_k = f_k - f^* - \sigma_k$

$$0 \le \nu_k = \beta_k \frac{\lambda_k}{\|d_k\|^2} , \qquad 0 < \beta^* \le \beta_k \le \alpha_k \le 1$$
 (8)

• Issue: $\sigma_k > f_k - f^* \Rightarrow \lambda_k < 0$. Solution:

$$0 \le \nu_k ||d_k||^2 \le \beta_k \lambda_k \quad , \quad 0 \le \beta_k \le \alpha_k \le 1$$

which implies $\lambda_k < 0 \Rightarrow \beta_k = 0 \Rightarrow \nu_k = 0$ (loops!)

- In plain words: if the error is too large, stop until it decreases enough
- Actually, a slightly stronger form is required:

$$\lambda_k \ge 0 \Rightarrow (\alpha_k \ge) \beta_k \ge \beta^* > 0 ,$$

 $\lambda_k < 0 \Rightarrow \alpha_k = 0 (\Rightarrow \beta_k = 0)$

• Corrected Polyak stepsize: $\lambda_k = f_k - f^* - \sigma_k$

$$0 \le \nu_k = \beta_k \frac{\lambda_k}{\|d_k\|^2} , \qquad 0 < \beta^* \le \beta_k \le \alpha_k \le 1$$
 (8)

• Issue: $\sigma_k > f_k - f^* \Rightarrow \lambda_k < 0$. Solution:

$$0 \le \nu_k ||d_k||^2 \le \beta_k \lambda_k \quad , \quad 0 \le \beta_k \le \alpha_k \le 1$$

which implies $\lambda_k < 0 \Rightarrow \beta_k = 0 \Rightarrow \nu_k = 0$ (loops!)

- In plain words: if the error is too large, stop until it decreases enough
- Actually, a slightly stronger form is required:

$$\lambda_k \ge 0 \Rightarrow (\alpha_k \ge) \beta_k \ge \beta^* > 0 ,$$

 $\lambda_k < 0 \Rightarrow \alpha_k = 0 (\Rightarrow \beta_k = 0)$

• (8) \Rightarrow (5) + (7) with $\bar{\sigma}_k = \alpha_k \sigma_k$; good deflecting "shaves away" a part of the error

- Without any assumption on deflection: $(8) \Rightarrow$
 - $f^{\infty} < f^* + \sigma^*$
 - $X^* \neq \emptyset \Rightarrow \exists$ subsequence $\{x_{k_i}\} \rightarrow x^{\infty} \in X$ s.t. $f(x^{\infty}) = f^{\infty}$
 - $X^* \neq \emptyset$ & $\sigma^* = 0 \Rightarrow$ the whole $\{x_k\} \rightarrow x^* \in X^*$

- Without any assumption on deflection: $(8) \Rightarrow$
 - $f^{\infty} < f^* + \sigma^*$
 - $X^* \neq \emptyset \Rightarrow \exists$ subsequence $\{x_{k_i}\} \rightarrow x^{\infty} \in X$ s.t. $f(x^{\infty}) = f^{\infty}$
 - $X^* \neq \emptyset$ & $\sigma^* = 0 \Rightarrow$ the whole $\{x_k\} \rightarrow x^* \in X^*$
- Better result than the available ones⁷:
 - Optimal error attained even in inexact case
 - Convergence of the iterates (in the exact case)
 - Deflection does not worsen results

- Without any assumption on deflection: $(8) \Rightarrow$
 - $f^{\infty} < f^* + \sigma^*$
 - $X^* \neq \emptyset \Rightarrow \exists$ subsequence $\{x_{k_i}\} \rightarrow x^{\infty} \in X$ s.t. $f(x^{\infty}) = f^{\infty}$
 - $X^* \neq \emptyset$ & $\sigma^* = 0 \Rightarrow$ the whole $\{x_k\} \rightarrow x^* \in X^*$
- Better result than the available ones⁷:
 - Optimal error attained even in inexact case
 - Convergence of the iterates (in the exact case)
 - Deflection does not worsen results
- Interesting detail of the proof: some things only hold if $\lambda_k \geq 0$ for *infinitely many k*,

- Without any assumption on deflection: $(8) \Rightarrow$
 - $f^{\infty} < f^* + \sigma^*$
 - $X^* \neq \emptyset \Rightarrow \exists$ subsequence $\{x_{k_i}\} \rightarrow x^{\infty} \in X$ s.t. $f(x^{\infty}) = f^{\infty}$
 - $X^* \neq \emptyset \& \sigma^* = 0 \Rightarrow$ the whole $\{x_k\} \rightarrow x^* \in X^*$
- Better result than the available ones⁷:
 - Optimal error attained even in inexact case
 - Convergence of the iterates (in the exact case)
 - Deflection does not worsen results
- Interesting detail of the proof: some things only hold if $\lambda_k \geq 0$ for *infinitely many k*, which does not necessarily happen

- Without any assumption on deflection: (8) \Rightarrow
 - $f^{\infty} < f^* + \sigma^*$
 - $X^* \neq \emptyset \Rightarrow \exists$ subsequence $\{x_{k_i}\} \rightarrow x^{\infty} \in X$ s.t. $f(x^{\infty}) = f^{\infty}$
 - $X^* \neq \emptyset \& \sigma^* = 0 \Rightarrow$ the whole $\{x_k\} \rightarrow x^* \in X^*$
- Better result than the available ones⁷:
 - Optimal error attained even in inexact case
 - Convergence of the iterates (in the exact case)
 - Deflection does not worsen results
- Interesting detail of the proof: some things only hold if $\lambda_k \geq 0$ for infinitely many k, which does not necessarily happen but if not, a σ^* -optimal solution is finitely attained

- Without any assumption on deflection: $(8) \Rightarrow$
 - $f^{\infty} < f^* + \sigma^*$
 - $X^* \neq \emptyset \Rightarrow \exists$ subsequence $\{x_{k_i}\} \rightarrow x^{\infty} \in X$ s.t. $f(x^{\infty}) = f^{\infty}$
 - $X^* \neq \emptyset \& \sigma^* = 0 \Rightarrow$ the whole $\{x_k\} \rightarrow x^* \in X^*$
- Better result than the available ones⁷:
 - Optimal error attained even in inexact case
 - Convergence of the iterates (in the exact case)
 - Deflection does not worsen results
- Interesting detail of the proof: some things only hold if $\lambda_k \geq 0$ for infinitely many k, which does not necessarily happen but if not, a σ^* -optimal solution is finitely attained
- Potential issue: exact knowledge of σ_k required

• The general form: $\lambda_k = f_k - f^* - \gamma_k$

$$0 \le \nu_k = \beta_k \frac{\lambda_k}{\|d_k\|^2} , \qquad 0 < \beta^* \le \beta_k \le \alpha_k \le 1$$
 (9)

• The general form: $\lambda_k = f_k - f^* - \gamma_k$

$$0 \le \nu_k = \beta_k \frac{\lambda_k}{\|d_k\|^2} , \qquad 0 < \beta^* \le \beta_k \le \alpha_k \le 1$$
 (9)

• (9) \Rightarrow (5) + (7) with $\bar{\sigma}_k = (1 - \alpha_k)(\bar{\sigma}_{k-1} - \alpha_{k-1}\gamma_{k-1}) + \alpha_k\sigma_k$

• The general form: $\lambda_k = f_k - f^* - \gamma_k$

$$0 \le \nu_k = \beta_k \frac{\lambda_k}{\|d_k\|^2} , \qquad 0 < \beta^* \le \beta_k \le \alpha_k \le 1$$
 (9)

- (9) \Rightarrow (5) + (7) with $\bar{\sigma}_k = (1 \alpha_k)(\bar{\sigma}_{k-1} \alpha_{k-1}\gamma_{k-1}) + \alpha_k\sigma_k$
- General convergence:

$$f^{\infty} \leq f^* + 2\Delta/\Gamma$$

$$\Delta = \sigma^* + \bar{\gamma} ((1 - \beta^*)/\beta^* + \sup_k \alpha_k/2)$$

$$\bar{\gamma} = -\min \{ \gamma^* = \liminf_{k \to \infty} \gamma_k, 0 \}$$

• The general form: $\lambda_k = f_k - f^* - \gamma_k$

$$0 \le \nu_k = \beta_k \frac{\lambda_k}{\|d_k\|^2} , \qquad 0 < \beta^* \le \beta_k \le \alpha_k \le 1$$
 (9)

- (9) \Rightarrow (5) + (7) with $\bar{\sigma}_k = (1 \alpha_k)(\bar{\sigma}_{k-1} \alpha_{k-1}\gamma_{k-1}) + \alpha_k\sigma_k$
- General convergence:

$$f^{\infty} \leq f^* + 2\Delta/\Gamma$$

$$\Delta = \sigma^* + \overline{\gamma} ((1 - \beta^*)/\beta^* + \sup_k \alpha_k/2)$$

$$\overline{\gamma} = -\min \{ \gamma^* = \liminf_{k \to \infty} \gamma_k, 0 \}$$

• "aiming higher than f^{*} " $(\gamma_k > 0)$ good, "aiming lower than f^{*} " $(\gamma_k < 0)$ bad

• The general form: $\lambda_k = f_k - f^* - \gamma_k$

$$0 \le \nu_k = \beta_k \frac{\lambda_k}{\|d_k\|^2} , \qquad 0 < \beta^* \le \beta_k \le \alpha_k \le 1$$
 (9)

- (9) \Rightarrow (5) + (7) with $\bar{\sigma}_k = (1 \alpha_k)(\bar{\sigma}_{k-1} \alpha_{k-1}\gamma_{k-1}) + \alpha_k\sigma_k$
- General convergence:

$$f^{\infty} \leq f^* + 2\Delta/\Gamma$$

$$\Delta = \sigma^* + \bar{\gamma} ((1 - \beta^*)/\beta^* + \sup_k \alpha_k/2)$$

$$\bar{\gamma} = -\min \{ \gamma^* = \liminf_{k \to \infty} \gamma_k, 0 \}$$

- "aiming higher than f^{*} " $(\gamma_k > 0)$ good, "aiming lower than f^{*} " $(\gamma_k < 0)$ bad
- On the other hand: aiming too high $\Rightarrow \lambda_k < 0 \Rightarrow loop$

Generalized Corrected Polyak Stepsize

• The general form: $\lambda_k = f_k - f^* - \gamma_k$

$$0 \le \nu_k = \beta_k \frac{\lambda_k}{\|d_k\|^2} , \qquad 0 < \beta^* \le \beta_k \le \alpha_k \le 1$$
 (9)

- (9) \Rightarrow (5) + (7) with $\bar{\sigma}_k = (1 \alpha_k)(\bar{\sigma}_{k-1} \alpha_{k-1}\gamma_{k-1}) + \alpha_k\sigma_k$
- General convergence:

$$f^{\infty} \leq f^* + 2\Delta/\Gamma$$
 $\Delta = \sigma^* + \bar{\gamma}((1-\beta^*)/\beta^* + \sup_k \alpha_k/2)$

$$\bar{\gamma} = -\min \left\{ \gamma^* = \liminf_{k \to \infty} \gamma_k , 0 \right\}$$

- "aiming higher than $f^{*"}$ ($\gamma_k > 0$) good, "aiming lower than $f^{*"}$ ($\gamma_k < 0$) bad
- On the other hand: aiming too high $\Rightarrow \lambda_k < 0 \Rightarrow loop$
- The highest safe value: σ_k (surprised?)

Generalized Corrected Polyak Stepsize

• The general form: $\lambda_k = f_k - f^* - \gamma_k$

$$0 \le \nu_k = \beta_k \frac{\lambda_k}{\|d_k\|^2} , \qquad 0 < \beta^* \le \beta_k \le \alpha_k \le 1$$
 (9)

- (9) \Rightarrow (5) + (7) with $\bar{\sigma}_k = (1 \alpha_k)(\bar{\sigma}_{k-1} \alpha_{k-1}\gamma_{k-1}) + \alpha_k\sigma_k$
- General convergence:

$$f^{\infty} \le f^* + 2\Delta/\Gamma$$
$$\Delta = \sigma^* + \bar{\gamma}((1 - \beta^*)/\beta^* + \sup_{k} \alpha_k/2)$$

$$\bar{\gamma} = -\min\left\{ \gamma^* = \liminf_{k \to \infty} \gamma_k, 0 \right\}$$

- "aiming higher than $f^{*"}$ ($\gamma_k > 0$) good, "aiming lower than $f^{*"}$ ($\gamma_k < 0$) bad
- On the other hand: aiming too high $\Rightarrow \lambda_k < 0 \Rightarrow loop$
- The highest safe value: σ_k (surprised?)
- What if I do not know σ_k exactly?

• Reminder:
$$\gamma_k = 0 \Rightarrow \bar{\sigma}_k = (1 - \alpha_k)\bar{\sigma}_{k-1} + \alpha_k \sigma_k$$

 $\gamma_k = \sigma_k \Rightarrow \bar{\sigma}_k = \alpha_k \sigma_k$

- Reminder: $\gamma_k = 0 \Rightarrow \bar{\sigma}_k = (1 \alpha_k)\bar{\sigma}_{k-1} + \alpha_k \sigma_k$ $\gamma_k = \sigma_k \Rightarrow \bar{\sigma}_k = \alpha_k \sigma_k$
- What if $\gamma_k > 0$ and "not too far" from σ_k ?

- Reminder: $\gamma_k = 0 \Rightarrow \bar{\sigma}_k = (1 \alpha_k)\bar{\sigma}_{k-1} + \alpha_k \sigma_k$ $\gamma_k = \sigma_k \Rightarrow \bar{\sigma}_k = \alpha_k \sigma_k$
- What if $\gamma_k > 0$ and "not too far" from σ_k ?
- Abstract condition ($\Rightarrow \bar{\gamma} = 0$):

$$\liminf_{k \to \infty} \gamma_k = \gamma^* \ge \xi \sigma^* \qquad \xi \in [0, 1] \tag{10}$$

- Reminder: $\gamma_k = 0 \Rightarrow \bar{\sigma}_k = (1 \alpha_k)\bar{\sigma}_{k-1} + \alpha_k\sigma_k$ $\gamma_k = \sigma_k \Rightarrow \bar{\sigma}_k = \alpha_k\sigma_k$
- What if $\gamma_k > 0$ and "not too far" from σ_k ?
- Abstract condition ($\Rightarrow \bar{\gamma} = 0$):

$$\liminf_{k \to \infty} \gamma_k = \gamma^* \ge \xi \sigma^* \qquad \xi \in [0, 1] \tag{10}$$

• (10) $\Rightarrow \bar{\sigma}_k \approx \sigma_k (1 - (1 - \alpha_k)\xi)$ (technical form really ugly)

- Reminder: $\gamma_k = 0 \Rightarrow \bar{\sigma}_k = (1 \alpha_k)\bar{\sigma}_{k-1} + \alpha_k\sigma_k$ $\gamma_k = \sigma_k \Rightarrow \bar{\sigma}_k = \alpha_k\sigma_k$
- What if $\gamma_k > 0$ and "not too far" from σ_k ?
- Abstract condition ($\Rightarrow \bar{\gamma} = 0$):

$$\liminf_{k \to \infty} \gamma_k = \gamma^* \ge \xi \sigma^* \qquad \xi \in [0, 1] \tag{10}$$

- (10) $\Rightarrow \bar{\sigma}_k \approx \sigma_k (1 (1 \alpha_k)\xi)$ (technical form really ugly)
- Convergence: (10) $\Rightarrow f^{\infty} \leq f^* + \sigma^*(\xi + 2(1 \xi)/\Gamma)$

- Reminder: $\gamma_k = 0 \Rightarrow \bar{\sigma}_k = (1 \alpha_k)\bar{\sigma}_{k-1} + \alpha_k \sigma_k$ $\gamma_k = \sigma_k \Rightarrow \bar{\sigma}_k = \alpha_k \sigma_k$
- What if $\gamma_k > 0$ and "not too far" from σ_k ?
- Abstract condition ($\Rightarrow \bar{\gamma} = 0$):

$$\liminf_{k \to \infty} \gamma_k = \gamma^* \ge \xi \sigma^* \qquad \xi \in [0, 1] \tag{10}$$

- (10) $\Rightarrow \bar{\sigma}_k \approx \sigma_k (1 (1 \alpha_k)\xi)$ (technical form really ugly)
- Convergence: (10) $\Rightarrow f^{\infty} \leq f^* + \sigma^*(\xi + 2(1 \xi)/\Gamma)$
- \bullet $\xi = 1 \Rightarrow$ "optimal" error

- Reminder: $\gamma_k = 0 \Rightarrow \bar{\sigma}_k = (1 \alpha_k)\bar{\sigma}_{k-1} + \alpha_k\sigma_k$ $\gamma_k = \sigma_k \Rightarrow \bar{\sigma}_k = \alpha_k\sigma_k$
- What if $\gamma_k > 0$ and "not too far" from σ_k ?
- Abstract condition ($\Rightarrow \bar{\gamma} = 0$):

$$\liminf_{k \to \infty} \gamma_k = \gamma^* \ge \xi \sigma^* \qquad \xi \in [0, 1] \tag{10}$$

- (10) $\Rightarrow \bar{\sigma}_k \approx \sigma_k (1 (1 \alpha_k)\xi)$ (technical form really ugly)
- Convergence: (10) $\Rightarrow f^{\infty} \leq f^* + \sigma^*(\xi + 2(1 \xi)/\Gamma)$
- ullet $\xi=1\Rightarrow$ "optimal" error
- Again, asymptotic results require $\lambda_k \ge 0$ for infinitely many k, if not a solution with prescribed accuracy finitely attained

- Reminder: $\gamma_k = 0 \Rightarrow \bar{\sigma}_k = (1 \alpha_k)\bar{\sigma}_{k-1} + \alpha_k\sigma_k$ $\gamma_k = \sigma_k \Rightarrow \bar{\sigma}_k = \alpha_k\sigma_k$
- What if $\gamma_k > 0$ and "not too far" from σ_k ?
- Abstract condition ($\Rightarrow \bar{\gamma} = 0$):

$$\liminf_{k \to \infty} \gamma_k = \gamma^* \ge \xi \sigma^* \qquad \xi \in [0, 1] \tag{10}$$

- (10) $\Rightarrow \bar{\sigma}_k \approx \sigma_k (1 (1 \alpha_k)\xi)$ (technical form really ugly)
- Convergence: (10) $\Rightarrow f^{\infty} \leq f^* + \sigma^*(\xi + 2(1 \xi)/\Gamma)$
- ullet $\xi=1\Rightarrow$ "optimal" error
- Again, asymptotic results require $\lambda_k \geq 0$ for infinitely many k, if not a solution with prescribed accuracy finitely attained
- Is (10) reasonable?

- 1 Introduction, Motivation
- 2 Subgradient methods: introduction
- 3 Polyak-type stepsize: the abstract case
- 4 Polyak-type stepsize: the implementable case
- Deflection-restricted rules
- 6 Bundle methods
- Conclusions

• In general, f^* unknown (and it may be $-\infty$)

- In general, f^* unknown (and it may be $-\infty$)
- Solution: replace it with a target f_{lev}^k , revise it appropriately

$$0 \le \nu_k = \beta_k \frac{f_k - f_{lev}^k}{\|d_k\|^2} \quad , \quad 0 < \beta^* \le \beta_k \le \alpha_k \le 1$$

- In general, f^* unknown (and it may be $-\infty$)
- Solution: replace it with a target f_{lev}^k , revise it appropriately

$$0 \le \nu_k = \beta_k \frac{f_k - f_{lev}^k}{\|d_k\|^2} \quad , \quad 0 < \beta^* \le \beta_k \le \alpha_k \le 1$$

- Usually, $f_{lev}^k = f_{ref}^k$ (reference) $-\delta_k$ (threshold)
- Typical choice: $f_{ref}^k = f_{rec}^k = \min_{h \le k} f(x_h)$ (record value)

- In general, f^* unknown (and it may be $-\infty$)
- Solution: replace it with a target f_{lev}^k , revise it appropriately

$$0 \le \nu_k = \beta_k \frac{f_k - f_{lev}^k}{\|d_k\|^2} \quad , \quad 0 < \beta^* \le \beta_k \le \alpha_k \le 1$$

- Usually, $f_{lev}^k = f_{ref}^k$ (reference) $-\delta_k$ (threshold)
- Typical choice: $f_{ref}^k = f_{rec}^k = \min_{h \le k} f(x_h)$ (record value)
- Looks uncorrected but it is not necessarily so:

$$\lambda_k = f_k - f_{lev}^k = f_k - f^* - (f_{ref}^k - f^* - \delta_k)$$

$$\gamma_k = f_{ref}^k - f^* - \delta_k$$
 unknown

- In general, f^* unknown (and it may be $-\infty$)
- Solution: replace it with a target f_{lev}^k , revise it appropriately

$$0 \le \nu_k = \beta_k \frac{f_k - f_{lev}^k}{\|d_k\|^2} \quad , \quad 0 < \beta^* \le \beta_k \le \alpha_k \le 1$$

- Usually, $f_{lev}^k = f_{ref}^k$ (reference) $-\delta_k$ (threshold)
- Typical choice: $f_{ref}^k = f_{rec}^k = \min_{h \le k} f(x_h)$ (record value)
- Looks uncorrected but it is not necessarily so:

$$\lambda_k = f_k - f_{lev}^k = f_k - f^* - (f_{ref}^k - f^* - \delta_k)$$

$$\gamma_k = f_{ref}^k - f^* - \delta_k$$
 unknown

- Small technical hurdle: all previous proofs require $f^* > -\infty$
- Solution: $f_{rec}^{\infty} = -\infty \Rightarrow f^* = -\infty$, otherwise feasible target $\bar{f} > -\infty$, $\bar{f} \ge f^*$, $\bar{f} \le f_{rec}^{\infty}$ ($\Rightarrow f_k \bar{f} \ge 0$)

either
$$f_{ref}^{\infty}=-\infty$$
 , or $\liminf_{k \to \infty} \delta_k = \delta^* > 0$

Abstract property:

either
$$f_{ref}^{\infty}=-\infty$$
 , or $\liminf_{k\to\infty}\delta_k=rac{\delta^*}{}>0$

• Implementation: $\mu \in [0, 1)$

$$\delta_{k+1} \in \left\{ \begin{array}{ll} \left[\begin{array}{cc} \delta^* \;,\; \infty \end{array} \right) & \text{if } f_{k+1} \leq f_{lev}^k \\ \left[\begin{array}{cc} \delta^* \;,\; \max \{ \begin{array}{cc} \delta^* \;,\; \mu \delta_k \end{array} \} \end{array} \right] & \text{if } f_{k+1} > f_{lev}^k \end{array} \right.$$

Abstract property:

either
$$f_{ref}^{\infty}=-\infty$$
 , or $\liminf_{k \to \infty} \delta_k = \frac{\delta^*}{}>0$

• Implementation: $\mu \in [0,1)$

$$\delta_{k+1} \in \left\{ \begin{array}{ll} \left[\begin{array}{cc} \delta^* \;,\; \infty \end{array} \right) & \text{if } f_{k+1} \leq f_{lev}^k \\ \left[\begin{array}{cc} \delta^* \;,\; \max \{ \begin{array}{cc} \delta^* \;,\; \mu \delta_k \end{array} \} \end{array} \right] & \text{if } f_{k+1} > f_{lev}^k \end{array} \right.$$

• Convergence: either $f_{ref}^{\infty}=-\infty=f^*$, or $f_{ref}^{\infty}\leq f^*+\xi\sigma^*+\delta^*$ where $0\leq \xi=\max \{\ 1-\delta^*\Gamma/2\sigma^*\ ,\ 0\ \}<1$

Abstract property:

either
$$f_{ref}^{\infty}=-\infty$$
 , or $\liminf_{k \to \infty} \delta_k = \frac{\delta^*}{}>0$

• Implementation: $\mu \in [0,1)$

$$\delta_{k+1} \in \left\{ \begin{array}{ll} \left[\begin{array}{cc} \delta^* \;,\; \infty \end{array} \right) & \text{if } f_{k+1} \leq f_{lev}^k \\ \left[\begin{array}{cc} \delta^* \;,\; \max \{ \begin{array}{cc} \delta^* \;,\; \mu \delta_k \end{array} \} \end{array} \right] & \text{if } f_{k+1} > f_{lev}^k \end{array} \right.$$

- Convergence: either $f_{ref}^{\infty}=-\infty=f^*$, or $f_{ref}^{\infty}\leq f^*+\xi\sigma^*+\delta^*$ where $0\leq \xi=\max \{\ 1-\delta^*\Gamma/2\sigma^*\ ,\ 0\ \}<1$
- Proof: (almost) straightforward, $\gamma^* \geq \xi \sigma^*$

Abstract property:

either
$$f_{ref}^{\infty}=-\infty$$
 , or $\liminf_{k \to \infty} \delta_k = rac{\delta^*}{}>0$

• Implementation: $\mu \in [0,1)$

$$\delta_{k+1} \in \left\{ \begin{array}{ll} \left[\begin{array}{cc} \delta^* \;,\; \infty \end{array} \right) & \text{if } f_{k+1} \leq f_{lev}^k \\ \left[\begin{array}{cc} \delta^* \;,\; \max \{ \begin{array}{cc} \delta^* \;,\; \mu \delta_k \end{array} \} \end{array} \right] & \text{if } f_{k+1} > f_{lev}^k \end{array} \right.$$

- Convergence: either $f_{ref}^{\infty} = -\infty = f^*$, or $f_{ref}^{\infty} \leq f^* + \xi \sigma^* + \frac{\delta^*}{\delta^*}$ where $0 \leq \xi = \max \{ 1 \delta^* \Gamma / 2\sigma^* , 0 \} < 1$
- Proof: (almost) straightforward, $\gamma^* \geq \xi \sigma^*$
- Compares favorably with $f_{ref}^{\infty} \leq f^* + \sigma^* + \delta^*$ (without deflection)⁷

Abstract property:

either
$$f_{ref}^{\infty}=-\infty$$
 , or $\liminf_{k \to \infty} \delta_k = \delta^* > 0$

• Implementation: $\mu \in [0,1)$

$$\delta_{k+1} \in \left\{ \begin{array}{ll} \left[\begin{array}{cc} \delta^* \;,\; \infty \end{array} \right) & \text{if } f_{k+1} \leq f_{lev}^k \\ \left[\begin{array}{cc} \delta^* \;,\; \max \{ \begin{array}{cc} \delta^* \;,\; \mu \delta_k \end{array} \} \end{array} \right] & \text{if } f_{k+1} > f_{lev}^k \end{array} \right.$$

- Convergence: either $f_{ref}^{\infty} = -\infty = f^*$, or $f_{ref}^{\infty} \leq f^* + \xi \sigma^* + \frac{\delta^*}{\delta^*}$ where $0 \leq \xi = \max \{ 1 \delta^* \Gamma / 2\sigma^* , 0 \} < 1$
- Proof: (almost) straightforward, $\gamma^* \geq \xi \sigma^*$
- Compares favorably with $f_{ref}^{\infty} \leq f^* + \sigma^* + \delta^*$ (without deflection)⁷
- Note: it may seem that "small ξ is good", but $\xi \sigma^* + \delta^* \geq \sigma^*$

$$\text{either } f^\infty_{\mathit{ref}} = f^* = -\infty \ , \qquad \text{or } \liminf_{k \to \infty} \delta_k = 0 \ \text{ and } \sum_{k=1}^\infty \lambda_k / \|d_k\|^2 = \infty$$

¹⁶ Lim, Sherali "Convergence . . . for Some Variable Target Value and Subgradient Deflection Methods", COAP, 2006

either
$$f_{ref}^{\infty}=f^*=-\infty$$
 , or $\liminf_{k \to \infty} \delta_k=0$ and $\sum_{k=1}^{\infty} \lambda_k/\|d_k\|^2=\infty$

- Implementation: R>0 and $\mu\in[0,1)$
 - $f_{ref}^1 = f(x_1), \ \delta_1 \in (0, \infty), \ r_1 = 0;$
 - if $f_k \le f_{ref}^k \delta_k/2$ (sufficient descent condition) then $f_{ref}^k = f_{rec}^k$, $r_k = 0$;
 - else, if $r_k > R$ (target infeasibility condition) then $\delta_k = \mu \delta_{k-1}$, $r_k = 0$;
 - otherwise, $f_{ref}^{k} = f_{ref}^{k-1}$, $\delta_{k} = \delta_{k-1}$, $r_{k} = r_{k-1} + \|\widehat{x}_{k+1} x_{k}\|$

¹⁶Lim, Sherali "Convergence ... for Some Variable Target Value and Subgradient Deflection Methods", COAP, 2006

either
$$f_{ref}^{\infty}=f^*=-\infty$$
 , or $\liminf_{k \to \infty} \delta_k=0$ and $\sum_{k=1}^{\infty} \lambda_k/\|d_k\|^2=\infty$

- Implementation: R>0 and $\mu\in[0,1)$
 - $f_{ref}^1 = f(x_1), \ \delta_1 \in (0, \infty), \ r_1 = 0;$
 - if $f_k \le f_{ref}^k \delta_k/2$ (sufficient descent condition) then $f_{ref}^k = f_{rec}^k$, $r_k = 0$;
 - else, if $r_k > R$ (target infeasibility condition) then $\delta_k = \mu \delta_{k-1}$, $r_k = 0$;
 - otherwise, $f_{ref}^{k} = f_{ref}^{k-1}$, $\delta_{k} = \delta_{k-1}$, $r_{k} = r_{k-1} + \|\widehat{x}_{k+1} x_{k}\|$
- Convergence: either $f_{ref}^{\infty} = -\infty = f^*$, or $f_{ref}^{\infty} \leq f^* + \sigma^*$
- Proof: again (almost) straightforward, $\gamma^* \geq \sigma^*$ ($\xi = 1$), minor quirks

 $^{^{16}}$ Lim, Sherali "Convergence \dots for Some Variable Target Value and Subgradient Deflection Methods", COAP, 2006

either
$$f_{ref}^\infty=f^*=-\infty$$
 , or $\liminf_{k\to\infty}\delta_k=0$ and $\sum_{k=1}^\infty\lambda_k/\|d_k\|^2=\infty$

- Implementation: R>0 and $\mu\in[0,1)$
 - $f_{ref}^1 = f(x_1), \ \delta_1 \in (0, \infty), \ r_1 = 0;$
 - if $f_k \le f_{ref}^k \delta_k/2$ (sufficient descent condition) then $f_{ref}^k = f_{rec}^k$, $r_k = 0$;
 - else, if $r_k > R$ (target infeasibility condition) then $\delta_k = \mu \delta_{k-1}$, $r_k = 0$;
 - otherwise, $f_{ref}^{k} = f_{ref}^{k-1}$, $\delta_{k} = \delta_{k-1}$, $r_{k} = r_{k-1} + \|\widehat{x}_{k+1} x_{k}\|$
- Convergence: either $f^{\infty}_{ref} = -\infty = f^*$, or $f^{\infty}_{ref} \leq f^* + \sigma^*$
- ullet Proof: again (almost) straightforward, $\gamma^* \geq \sigma^*$ ($\xi=1$), minor quirks
- Optimal error, extends known results¹⁶ to projection and errors

 $^{^{16}}$ Lim, Sherali "Convergence \dots for Some Variable Target Value and Subgradient Deflection Methods", COAP, 2006

either
$$f_{ref}^{\infty}=f^*=-\infty$$
 , or $\liminf_{k \to \infty} \delta_k=0$ and $\sum_{k=1}^\infty \lambda_k/\|d_k\|^2=\infty$

- Implementation: R>0 and $\mu\in[0,1)$
 - $f_{ref}^1 = f(x_1), \ \delta_1 \in (0, \infty), \ r_1 = 0;$
 - if $f_k \le f_{ref}^k \delta_k/2$ (sufficient descent condition) then $f_{ref}^k = f_{rec}^k$, $r_k = 0$;
 - else, if $r_k > R$ (target infeasibility condition) then $\delta_k = \mu \delta_{k-1}$, $r_k = 0$;
 - otherwise, $f_{ref}^{k} = f_{ref}^{k-1}$, $\delta_{k} = \delta_{k-1}$, $r_{k} = r_{k-1} + \|\widehat{x}_{k+1} x_{k}\|$
- Convergence: either $f_{ref}^{\infty} = -\infty = f^*$, or $f_{ref}^{\infty} \leq f^* + \sigma^*$
- ullet Proof: again (almost) straightforward, $\gamma^* \geq \sigma^*$ ($\xi=1$), minor quirks
- Optimal error, extends known results¹⁶ to projection and errors
- Weaker results than (8) $(f^{\infty} \to f_{ref}^{\infty}$, no convergence of $\{x_k\}$)

 $^{^{16}}$ Lim, Sherali "Convergence \dots for Some Variable Target Value and Subgradient Deflection Methods", COAP, 2006

- Introduction, Motivation
- 2 Subgradient methods: introduction
- 3 Polyak-type stepsize: the abstract case
- 4 Polyak-type stepsize: the implementable case
- 5 Deflection-restricted rules
- 6 Bundle methods
- Conclusions

• Other main class of stepsize rules: diminishing/square summable

$$\sum_{k=1}^{\infty} \nu_k = \infty \quad , \quad \sum_{k=1}^{\infty} \nu_k^2 < \infty \tag{11}$$

• Other main class of stepsize rules: diminishing/square summable

$$\sum_{k=1}^{\infty} \nu_k = \infty \quad , \quad \sum_{k=1}^{\infty} \nu_k^2 < \infty \tag{11}$$

• Pros: do not need f^* , not even any estimate

Other main class of stepsize rules: diminishing/square summable

$$\sum_{k=1}^{\infty} \nu_k = \infty \quad , \quad \sum_{k=1}^{\infty} \nu_k^2 < \infty \tag{11}$$

- Pros: do not need f^* , not even any estimate
- Cons: no control over ε_k (cf. (5), (6))
- All our results hinge over these estimates

Other main class of stepsize rules: diminishing/square summable

$$\sum_{k=1}^{\infty} \nu_k = \infty \quad , \quad \sum_{k=1}^{\infty} \nu_k^2 < \infty \tag{11}$$

- Pros: do not need f^* , not even any estimate
- Cons: no control over ε_k (cf. (5), (6))
- All our results hinge over these estimates
- Solution: restrict the deflection instead of the stepsize

$$0 \le \zeta_k = \frac{\nu_{k-1} \|d_{k-1}\|^2}{\left(|f_k - f^*|\right) + \nu_{k-1} \|d_{k-1}\|^2} \le \alpha_k \le 1$$

• Other main class of stepsize rules: diminishing/square summable

$$\sum_{k=1}^{\infty} \nu_k = \infty \quad , \quad \sum_{k=1}^{\infty} \nu_k^2 < \infty \tag{11}$$

- Pros: do not need f^* , not even any estimate
- Cons: no control over ε_k (cf. (5), (6))
- All our results hinge over these estimates
- Solution: restrict the deflection instead of the stepsize

$$0 \le \zeta_k = \frac{\nu_{k-1} \|d_{k-1}\|^2}{(f_k - f^*) + \nu_{k-1} \|d_{k-1}\|^2} \le \alpha_k \le 1$$

• Gives analogous to (5), (6)

$$\varepsilon_k \le f_k - f^* + \bar{\sigma}_k \tag{12}$$

where $\bar{\sigma}_k = \alpha_k \sigma_k + (1 - \alpha_k) \bar{\sigma}_{k-1}$

Deflection Rule (geometrically)

• Moving "towards x^* " is a short enough step

Deflection Rule (geometrically)

• Moving "towards x^* " is a short enough step and then any deflection

Deflection Rule (geometrically)

- Moving "towards x^* " is a short enough step and then any deflection
- ...or any step

Deflection Rule (geometrically)

- Moving "towards x^* " is a short enough step and then any deflection
- ...or any step and a proper deflection

Corrected Deflection Rule

• We learnt our lesson: corrected deflection rule

$$0 \le \zeta_k = \frac{\nu_{k-1} \|d_{k-1}\|^2}{(f_k - f^* - \gamma_k) + \nu_{k-1} \|d_{k-1}\|^2} \le \alpha_k \le 1$$

Corrected Deflection Rule

We learnt our lesson: corrected deflection rule

$$0 \le \zeta_k = \frac{\nu_{k-1} \|d_{k-1}\|^2}{\left(|f_k - f^* - \gamma_k|\right) + \nu_{k-1} \|d_{k-1}\|^2} \le \alpha_k \le 1$$

• Avoid ζ_k is undefined $(\lambda_k = f_k - f^* - \gamma_k)$:

$$\nu_{k-1} \|d_{k-1}\|^2 \le \alpha_k (\lambda_k + \nu_{k-1} \|d_{k-1}\|^2)$$
(13)

• Avoid negative λ_k : makes (13) impossible

$$\lambda_k \ge 0 \implies \alpha_k \ge \alpha^* > 0$$

$$\lambda_k < 0 \implies \alpha_k = 0 \ (\implies \nu_k = 0)$$
(14)

Corrected Deflection Rule

We learnt our lesson: corrected deflection rule

$$0 \le \zeta_k = \frac{\nu_{k-1} \|d_{k-1}\|^2}{(f_k - f^* - \gamma_k) + \nu_{k-1} \|d_{k-1}\|^2} \le \alpha_k \le 1$$

• Avoid ζ_k is undefined $(\lambda_k = f_k - f^* - \gamma_k)$:

$$|\nu_{k-1}||d_{k-1}||^2 \le \alpha_k (\lambda_k + \nu_{k-1}||d_{k-1}||^2)$$
(13)

• Avoid negative λ_k : makes (13) impossible

$$\lambda_k \ge 0 \implies \alpha_k \ge \alpha^* > 0$$

$$\lambda_k < 0 \implies \alpha_k = 0 \ (\implies \nu_k = 0)$$
 (14)

• Now ε_k is controlled: (12) holds with

$$\bar{\sigma}_k = \alpha_k (\sigma_k - \gamma_k) + (1 - \alpha_k) \bar{\sigma}_{k-1}$$

• Yields the crucial technical relationship, similar to (7)

$$\bar{d}_k(\bar{x}-x_k) \leq f(\bar{x})-f^*+\bar{\sigma}_k$$

- Relationships between σ^* and $\bar{\sigma}^*$:
 - in general, $\bar{\sigma}^* \leq \sigma^* + \bar{\gamma}$
 - $\gamma_k \ge \xi \sigma_k \ \forall k \ \text{large enough} \Rightarrow \bar{\sigma}^* \le (1 \xi)\sigma^*$

- Relationships between σ^* and $\bar{\sigma}^*$:
 - in general, $\bar{\sigma}^* \leq \sigma^* + \bar{\gamma}$
 - $\gamma_k \geq \xi \sigma_k \ \forall k \ \text{large enough} \Rightarrow \bar{\sigma}^* \leq (1 \xi) \sigma^*$
- Convergence: under $\sup_k \|d_k\| < \infty$
 - i) in general, $f^{\infty} \leq f^* + \gamma^{\text{sup}} + (\sigma^* + \bar{\gamma})/\alpha^*$
 - ii) $\gamma_k \geq \xi \sigma_k \Rightarrow f^{\infty} \leq f^* + \sigma^* (1 + (1 \xi)(1 \alpha^*)/\alpha^*)$
 - iii) $\gamma_k = \sigma_k \Rightarrow f^{\infty} \leq f^* + \sigma^*$ furthermore, $X^* \neq \emptyset \Rightarrow \{x_k\} \rightarrow x^{\infty} \in X \text{ s.t. } f(x^{\infty}) = f^{\infty}$

- Relationships between σ^* and $\bar{\sigma}^*$:
 - in general, $\bar{\sigma}^* \leq \sigma^* + \bar{\gamma}$
 - $\gamma_k \geq \xi \sigma_k \ \forall k \ \text{large enough} \Rightarrow \bar{\sigma}^* \leq (1 \xi) \sigma^*$
- Convergence: under $\sup_k \|d_k\| < \infty$
 - i) in general, $f^{\infty} \leq f^* + \gamma^{\sup} + (\sigma^* + \bar{\gamma})/\alpha^*$
 - ii) $\gamma_k \geq \xi \sigma_k \Rightarrow f^{\infty} \leq f^* + \sigma^* (1 + (1 \xi)(1 \alpha^*)/\alpha^*)$
 - iii) $\gamma_k = \sigma_k \Rightarrow f^{\infty} \leq f^* + \sigma^*$ furthermore, $X^* \neq \emptyset \Rightarrow \{x_k\} \rightarrow x^{\infty} \in X \text{ s.t. } f(x^{\infty}) = f^{\infty}$
- Analogous to previous results, optimal error
- Boundedness assumption easily attained (bounding strategies⁷)

- Relationships between σ^* and $\bar{\sigma}^*$:
 - in general, $\bar{\sigma}^* \leq \sigma^* + \bar{\gamma}$
 - $\gamma_k \geq \xi \sigma_k \ \forall k \ \text{large enough} \Rightarrow \bar{\sigma}^* \leq (1 \xi) \sigma^*$
- Convergence: under $\sup_k \|d_k\| < \infty$
 - i) in general, $f^{\infty} \leq f^* + \gamma^{\sup} + (\sigma^* + \bar{\gamma})/\alpha^*$
 - ii) $\gamma_k \geq \xi \sigma_k \Rightarrow f^{\infty} \leq f^* + \sigma^* (1 + (1 \xi)(1 \alpha^*)/\alpha^*)$
 - iii) $\gamma_k = \sigma_k \Rightarrow f^{\infty} \leq f^* + \sigma^*$ furthermore, $X^* \neq \emptyset \Rightarrow \{x_k\} \rightarrow x^{\infty} \in X \text{ s.t. } f(x^{\infty}) = f^{\infty}$
- Analogous to previous results, optimal error
- Boundedness assumption easily attained (bounding strategies⁷)
- Technical notes: $\nu_k = 0$ from (14) at odds with the very (11) \Rightarrow finite case to be considered carefully

- Relationships between σ^* and $\bar{\sigma}^*$:
 - in general, $\bar{\sigma}^* \leq \sigma^* + \bar{\gamma}$
 - $\gamma_k \geq \xi \sigma_k \ \forall k \ \text{large enough} \Rightarrow \bar{\sigma}^* \leq (1 \xi) \sigma^*$
- Convergence: under $\sup_k \|d_k\| < \infty$
 - i) in general, $f^{\infty} \leq f^* + \gamma^{\sup} + (\sigma^* + \bar{\gamma})/\alpha^*$
 - ii) $\gamma_k \geq \xi \sigma_k \Rightarrow f^{\infty} \leq f^* + \sigma^* (1 + (1 \xi)(1 \alpha^*)/\alpha^*)$
 - iii) $\gamma_k = \sigma_k \Rightarrow f^{\infty} \leq f^* + \sigma^*$ furthermore, $X^* \neq \emptyset \Rightarrow \{x_k\} \rightarrow x^{\infty} \in X \text{ s.t. } f(x^{\infty}) = f^{\infty}$
- Analogous to previous results, optimal error
- Boundedness assumption easily attained (bounding strategies⁷)
- Technical notes: $\nu_k = 0$ from (14) at odds with the very (11) \Rightarrow finite case to be considered carefully
- As usual, f^* not available (and may be $-\infty$) \Rightarrow same trick

Target Value Deflection

Target value deflection rule

$$0 \le \zeta_k = \frac{\nu_{k-1} ||d_{k-1}||^2}{\left(|f_k - f_{lev}^k|\right) + \nu_{k-1} ||d_{k-1}||^2} \le \alpha_k \le 1$$

(as before, looks uncorrected but it is not: γ_k unknown)

Target Value Deflection

Target value deflection rule

$$0 \le \zeta_k = \frac{\nu_{k-1} \|d_{k-1}\|^2}{\left(f_k - f_{lev}^k\right) + \nu_{k-1} \|d_{k-1}\|^2} \le \alpha_k \le 1$$

(as before, looks uncorrected but it is not: γ_k unknown)

Abstract property:

either
$$f_{\mathit{ref}}^{\infty} = f^* = -\infty$$
 , or $\liminf_{k o \infty} \delta_k = 0$.

Target Value Deflection

Target value deflection rule

$$0 \le \zeta_k = \frac{\nu_{k-1} ||d_{k-1}||^2}{\left(|f_k - f_{lev}^k|\right) + \nu_{k-1} ||d_{k-1}||^2} \le \alpha_k \le 1$$

(as before, looks uncorrected but it is not: γ_k unknown)

• Abstract property:

either
$$f_{ref}^{\infty}=f^*=-\infty$$
 , or $\liminf_{k o \infty} \delta_k=0$.

• Implementation:

$$\delta_{k+1} \in \left\{ \begin{array}{l} \left[\Delta_{r(k)+1} , \infty \right) & \text{if } f(x_{k+1}) \leq f_{lev}^k \\ \left\{ \Delta_{k+1} \right\} & \text{if } f(x_{k+1}) > f_{lev}^k \end{array} \right.$$

where $r(k) = \#h \le k$ s.t. $f_{h+1} \le f_{lev}^h$ and

$$\Delta_k > 0$$
 , $\liminf_{k \to \infty} \Delta_k = 0$, $\sum_{k=1}^{\infty} \Delta_k = \infty$

- Similar technical hurdles (reference value, ...)
- Convergence: either $f_{ref}^{\infty} = -\infty = f^*$, or $f_{ref}^{\infty} \leq f^* + \sigma^*$
- Easy proof (all the dirty work done already)

- Similar technical hurdles (reference value, ...)
- Convergence: either $f^{\infty}_{ref} = -\infty = f^*$, or $f^{\infty}_{ref} \leq f^* + \sigma^*$
- Easy proof (all the dirty work done already)
- Same as stepsize-restricted (but it was not obvious beforehand)

- Similar technical hurdles (reference value, ...)
- Convergence: either $f^{\infty}_{ref} = -\infty = f^*$, or $f^{\infty}_{ref} \leq f^* + \sigma^*$
- Easy proof (all the dirty work done already)
- Same as stepsize-restricted (but it was not obvious beforehand)

Conclusions (for now)

- Similar technical hurdles (reference value, ...)
- Convergence: either $f^{\infty}_{ref} = -\infty = f^*$, or $f^{\infty}_{ref} \leq f^* + \sigma^*$
- Easy proof (all the dirty work done already)
- Same as stepsize-restricted (but it was not obvious beforehand)

Conclusions (for now)

1 If σ^* is your error, then $f^* + \sigma^*$ is your target

- Similar technical hurdles (reference value, ...)
- Convergence: either $f^{\infty}_{ref} = -\infty = f^*$, or $f^{\infty}_{ref} \leq f^* + \sigma^*$
- Easy proof (all the dirty work done already)
- Same as stepsize-restricted (but it was not obvious beforehand)

- **1** If σ^* is your error, then $f^* + \sigma^*$ is your target
- 2 Knowing σ_k , even approximately, is useful

Bundle Methods

(with Giovanni Giallombardo)

• Any iterative algorithm produces a sequence $\{x_k\}$ of tentative points \Rightarrow the f-values sequence $\{f_k\}$ and the bundle $\mathcal{B} = \{z_k \in \partial f(x_k)\}$

¹⁷ Jones, Lustig, Farwolden, Powell "Multicommodity Network Flows: The Impact of Formulation on Decomposition" Math. Prog., 1993

- Any iterative algorithm produces a sequence $\{x_k\}$ of tentative points \Rightarrow the f-values sequence $\{f_k\}$ and the bundle $\mathcal{B} = \{z_k \in \partial f(x_k)\}$
- Idea: use \mathcal{B} to construct a model $f_{\mathcal{B}}^{k}$ of f, e.g.

$$\hat{f}^k_{\mathcal{B}}(x) = \sup_{\bar{z}} \left\{ \ \bar{z}x - f^*(\bar{z}) \ : \ \bar{z} \in \mathcal{B} \ \right\}$$

(cutting plane model)

 $^{^{17}}$ Jones, Lustig, Farwolden, Powell "Multicommodity Network Flows: The Impact of Formulation on Decomposition" Math. Prog. 1993

- Any iterative algorithm produces a sequence $\{x_k\}$ of tentative points \Rightarrow the f-values sequence $\{f_k\}$ and the bundle $\mathcal{B} = \{z_k \in \partial f(x_k)\}$
- Idea: use \mathcal{B} to construct a model $f_{\mathcal{B}}^{k}$ of f, e.g.

$$\hat{f}_{\mathcal{B}}^{k}(x) = \sup_{\bar{z}} \left\{ \bar{z}x - f^{*}(\bar{z}) : \bar{z} \in \mathcal{B} \right\}$$

(cutting plane model)

Immediate consequence: cutting plane algorithm

$$x_{k+1} = \operatorname{argmin} \{ \hat{f}_{\mathcal{B}}^{k}(x) : x \in X \}$$

 $^{^{17}}$ Jones, Lustig, Farwolden, Powell "Multicommodity Network Flows: The Impact of Formulation on Decomposition" Math. Prog. 1993

- Any iterative algorithm produces a sequence $\{x_k\}$ of tentative points \Rightarrow the f-values sequence $\{f_k\}$ and the bundle $\mathcal{B} = \{z_k \in \partial f(x_k)\}$
- Idea: use \mathcal{B} to construct a model $f_{\mathcal{B}}^{k}$ of f, e.g.

$$\hat{f}_{\mathcal{B}}^{k}(x) = \sup_{\bar{z}} \left\{ \bar{z}x - f^{*}(\bar{z}) : \bar{z} \in \mathcal{B} \right\}$$

(cutting plane model)

Immediate consequence: cutting plane algorithm

$$x_{k+1} = \operatorname{argmin} \{ \hat{f}_{\mathcal{B}}^{k}(x) : x \in X \}$$

• Simple to implement, one linear program at each iteration

¹⁷ Jones, Lustig, Farwolden, Powell "Multicommodity Network Flows: The Impact of Formulation on Decomposition" Math. Prog., 1993

- Any iterative algorithm produces a sequence $\{x_k\}$ of tentative points \Rightarrow the f-values sequence $\{f_k\}$ and the bundle $\mathcal{B} = \{z_k \in \partial f(x_k)\}$
- Idea: use \mathcal{B} to construct a model $f_{\mathcal{B}}^{k}$ of f, e.g.

$$\hat{f}_{\mathcal{B}}^{k}(x) = \sup_{\bar{z}} \left\{ \bar{z}x - f^{*}(\bar{z}) : \bar{z} \in \mathcal{B} \right\}$$

(cutting plane model)

Immediate consequence: cutting plane algorithm

$$x_{k+1} = \operatorname{argmin} \{ \hat{f}_{\mathcal{B}}^{k}(x) : x \in X \}$$

- Simple to implement, one linear program at each iteration
- Unfortunately, often rather slow in practice (with exceptions)¹⁷

¹⁷ Jones, Lustig, Farwolden, Powell "Multicommodity Network Flows: The Impact of Formulation on Decomposition" Math. Prog., 1993

- Any iterative algorithm produces a sequence $\{x_k\}$ of tentative points \Rightarrow the f-values sequence $\{f_k\}$ and the bundle $\mathcal{B} = \{z_k \in \partial f(x_k)\}$
- Idea: use \mathcal{B} to construct a model $f_{\mathcal{B}}^{k}$ of f, e.g.

$$\hat{f}_{\mathcal{B}}^{k}(x) = \sup_{\bar{z}} \left\{ \ \bar{z}x - f^{*}(\bar{z}) \ : \ \bar{z} \in \mathcal{B} \ \right\}$$

(cutting plane model)

Immediate consequence: cutting plane algorithm

$$x_{k+1} = \operatorname{argmin} \{ \hat{f}_{\mathcal{B}}^{k}(x) : x \in X \}$$

- Simple to implement, one linear program at each iteration
- Unfortunately, often rather slow in practice (with exceptions)¹⁷
- Problem: instability

¹⁷ Jones, Lustig, Farwolden, Powell "Multicommodity Network Flows: The Impact of Formulation on Decomposition" Math. Prog., 1993

• Issue: x_{k+1} can be far from x_k

• Issue: x_{k+1} can be far from x_k ... even infinitely far

- Issue: x_{k+1} can be far from x_k ... even infinitely far
- Solution: stabilize the model

- Issue: x_{k+1} can be far from x_k ... even infinitely far
- Solution: stabilize the model ... with the right weight

$$(\Pi_{\bar{x},t}) \qquad \phi_t(\bar{x}) = \inf_d \left\{ f(\bar{x}+d) + D_t(d) \right\}$$
 (15)

• Stabilization: stabilized primal problem $(X = \mathbb{R}^n \text{ for simplicity})$

$$(\Pi_{\bar{x},t}) \qquad \phi_t(\bar{x}) = \inf_d \left\{ f(\bar{x}+d) + D_t(d) \right\}$$
 (15)

• current point \bar{x}

$$(\Pi_{\bar{x},t}) \qquad \phi_t(\bar{x}) = \inf_d \left\{ f(\bar{x}+d) + D_t(d) \right\}$$
 (15)

- current point \bar{x}
- $\phi_t =$ (generalized) Moreau–Yosida regularization of f

$$(\Pi_{\bar{x},t}) \qquad \phi_t(\bar{x}) = \inf_d \left\{ f(\bar{x}+d) + D_t(d) \right\}$$
 (15)

- current point \bar{x}
- $\phi_t =$ (generalized) Moreau–Yosida regularization of f
- $D_t = \text{stabilizing term } (\approx \text{norm}), t = \text{proximity weight}$

$$(\Pi_{\bar{x},t}) \qquad \phi_t(\bar{x}) = \inf_d \left\{ f(\bar{x}+d) + D_t(d) \right\}$$
 (15)

- current point \bar{x}
- $\phi_t =$ (generalized) Moreau–Yosida regularization of f
- $D_t = \text{stabilizing term } (\approx \text{norm}), t = \text{proximity weight}$
- With proper D_t , good properties (e.g. smooth)

$$(\Pi_{\bar{x},t}) \qquad \phi_t(\bar{x}) = \inf_d \left\{ f(\bar{x}+d) + D_t(d) \right\}$$
 (15)

- current point \bar{x}
- $\phi_t =$ (generalized) Moreau–Yosida regularization of f
- D_t = stabilizing term (\approx norm), t = proximity weight
- With proper D_t , good properties (e.g. smooth)
- But computing ϕ_t with an oracle for f is difficult \Rightarrow approximation

$$(\Pi_{\bar{x},t}) \qquad \phi_t(\bar{x}) = \inf_d \left\{ f(\bar{x}+d) + D_t(d) \right\}$$
 (15)

- current point \bar{x}
- $\phi_t =$ (generalized) Moreau–Yosida regularization of f
- $D_t = \text{stabilizing term } (\approx \text{norm}), t = \text{proximity weight}$
- With proper D_t , good properties (e.g. smooth)
- ullet But computing ϕ_t with an oracle for f is difficult \Rightarrow approximation
- Stabilized primal master problem

$$(\Pi_{\mathcal{B},\bar{x},t}) \qquad \phi_{\mathcal{B},t}(\bar{x}) = \inf_{d} \left\{ f_{\mathcal{B}}(\bar{x}+d) + D_{t}(d) \right\}$$
 (16)

• Stabilization: stabilized primal problem $(X = \mathbb{R}^n \text{ for simplicity})$

$$(\Pi_{\bar{x},t}) \qquad \phi_t(\bar{x}) = \inf_d \left\{ f(\bar{x}+d) + D_t(d) \right\}$$
 (15)

- current point \bar{x}
- $\phi_t =$ (generalized) Moreau–Yosida regularization of f
- $D_t = \text{stabilizing term } (\approx \text{norm}), t = \text{proximity weight}$
- With proper D_t , good properties (e.g. smooth)
- But computing ϕ_t with an oracle for f is difficult \Rightarrow approximation
- Stabilized primal master problem

$$(\Pi_{\mathcal{B},\bar{x},t}) \qquad \phi_{\mathcal{B},t}(\bar{x}) = \inf_{d} \left\{ f_{\mathcal{B}}(\bar{x}+d) + D_{t}(d) \right\}$$
 (16)

• $x_{k+1} = \bar{x} + d^*$, compute f_{k+1} , $\mathcal{B} = \mathcal{B} \cup \{z_{k+1}\}$

• Stabilization: stabilized primal problem $(X = \mathbb{R}^n \text{ for simplicity})$

$$(\Pi_{\bar{x},t}) \qquad \phi_t(\bar{x}) = \inf_d \left\{ f(\bar{x}+d) + D_t(d) \right\}$$
 (15)

- current point \bar{x}
- $\phi_t =$ (generalized) Moreau–Yosida regularization of f
- $D_t = \text{stabilizing term } (\approx \text{norm}), t = \text{proximity weight}$
- With proper D_t , good properties (e.g. smooth)
- ullet But computing ϕ_t with an oracle for f is difficult \Rightarrow approximation
- Stabilized primal master problem

$$(\Pi_{\mathcal{B},\bar{x},t}) \qquad \phi_{\mathcal{B},t}(\bar{x}) = \inf_{d} \left\{ f_{\mathcal{B}}(\bar{x}+d) + D_{t}(d) \right\}$$
 (16)

- $x_{k+1} = \bar{x} + d^*$, compute f_{k+1} , $\mathcal{B} = \mathcal{B} \cup \{z_{k+1}\}$
- if $f_{k+1} \ll f(\bar{x})$, then $\bar{x} = x_{k+1}$

• Dual of
$$(\Pi)^{18}$$
: (Δ) $f^*(0) = \inf_{z} \{ f^*(z) : z = 0 \}$

¹⁸F. "Generalized Bundle Methods", SIOPT, 2002

- Dual of $(\Pi)^{18}$: (Δ) $f^*(0) = \inf_z \{ f^*(z) : z = 0 \}$
- May look funny, but then every f is a Lagrangian function:

$$(\Delta_{\bar{x}})$$
 $f(\bar{x}) = -\inf_z \{ f^*(z) - z\bar{x} \}$

¹⁸ F. "Generalized Bundle Methods". SIOPT. 200

- Dual of $(\Pi)^{18}$: (Δ) $f^*(0) = \inf_z \{ f^*(z) : z = 0 \}$
- May look funny, but then every f is a Lagrangian function:

$$(\Delta_{\bar{x}})$$
 $f(\bar{x}) = -\inf_z \{ f^*(z) - z\bar{x} \}$

• Further, (15) has a non-weird (Fenchel's) dual

$$(\Delta_{\bar{x},t}) \qquad \inf_{z} \left\{ f^{*}(z) - z\bar{x} + D^{*}_{t}(-z) \right\}$$

= (generalized) Augmented Lagrangian of (Δ) \Rightarrow so has (16)

$$(\Delta_{\mathcal{B},\bar{x},t})$$
 inf_z $\{f_{\mathcal{B}}^*(z) - z\bar{x} + D_t^*(-z)\}$

¹⁸F. "Generalized Bundle Methods", SIOPT, 2002

- Dual of $(\Pi)^{18}$: (Δ) $f^*(0) = \inf_z \{ f^*(z) : z = 0 \}$
- May look funny, but then every f is a Lagrangian function:

$$(\Delta_{\bar{x}})$$
 $f(\bar{x}) = -\inf_z \{ f^*(z) - z\bar{x} \}$

• Further, (15) has a non-weird (Fenchel's) dual

$$(\Delta_{\bar{x},t}) \qquad \inf_{z} \left\{ f^{*}(z) - z\bar{x} + D^{*}_{t}(-z) \right\}$$

= (generalized) Augmented Lagrangian of (Δ) \Rightarrow so has (16)

$$(\Delta_{\mathcal{B},\bar{x},t})$$
 inf_z $\{f_{\mathcal{B}}^*(z) - z\bar{x} + D_t^*(-z)\}$

• Illustration: $f_{\mathcal{B}} = \hat{f}_{\mathcal{B}}$, g(u) = Au - b, $x \ge 0$

$$(\Delta_{\mathcal{B},\bar{x},t}) \equiv \sup_{u} \left\{ egin{array}{l} c(u) + \bar{x}z - D_{t}^{*}(-z) \ z = b + \omega - Au \; , \; \omega \geq 0 \; , \; u \in co \; \mathcal{B} \subseteq U \end{array}
ight.$$

 \Rightarrow actually solving the weird convexification (3)

 $^{^{18}}$ F. "Generalized Bundle Methods", SIOPT, 2002

• $f(x) = \sum_{h \in \mathcal{K}} f^h(x)$, computing each f^h produces $z^h \in \partial f^h(x)$

 $^{^{19}}$ Bacaud, Lemaréchal, Renaud, Sagastizábal "Bundle methods in stochastic optimal power management: a disaggregated approach using preconditioners" COAP, 2001

- $f(x) = \sum_{h \in \mathcal{K}} f^h(x)$, computing each f^h produces $z^h \in \partial f^h(x)$
- Can aggregate: $\sum_{h \in \mathcal{K}} z^h = z \in \partial f(x)$

 $^{^{19}}$ Bacaud, Lemaréchal, Renaud, Sagastizábal "Bundle methods in stochastic optimal power management: a disaggregated approach using preconditioners" COAP, 2001

- $f(x) = \sum_{h \in \mathcal{K}} f^h(x)$, computing each f^h produces $z^h \in \partial f^h(x)$
- Can aggregate: $\sum_{h \in \mathcal{K}} z^h = z \in \partial f(x)$
- Better yet: use separate models $f_{\mathcal{B}}^h$ for each component

¹⁹ Bacaud, Lemaréchal, Renaud, Sagastizábal "Bundle methods in stochastic optimal power management: a disaggregated approach using preconditioners" COAP, 2001

- $f(x) = \sum_{h \in \mathcal{K}} f^h(x)$, computing each f^h produces $z^h \in \partial f^h(x)$
- Can aggregate: $\sum_{h \in \mathcal{K}} z^h = z \in \partial f(x)$
- Better yet: use separate models $f_{\mathcal{B}}^h$ for each component
- Disaggregated master problems $(X = \mathbb{R}^n \text{ for simplicity})$

$$(\Pi_{\mathcal{B},\bar{\mathbf{x}},t}) \qquad \inf_{d} \left\{ \sum_{h \in \mathcal{K}} f_{\mathcal{B}}^{h}(\bar{\mathbf{x}}+d) + D_{t}(d) \right\}$$

$$(\Delta_{\mathcal{B},\bar{\mathbf{x}},t}) \quad \inf_{z} \left\{ \sum_{h \in \mathcal{K}} (f_{\mathcal{B}}^{h})^{*}(z^{h}) - \left(\sum_{h \in \mathcal{K}} z^{h}\right) \bar{x} + D_{t}^{*}\left(-\sum_{h \in \mathcal{K}} z^{h}\right) \right\}$$

¹⁹ Bacaud, Lemaréchal, Renaud, Sagastizábal "Bundle methods in stochastic optimal power management: a disaggregated approach using preconditioners" COAP, 2001

- $f(x) = \sum_{h \in \mathcal{K}} f^h(x)$, computing each f^h produces $z^h \in \partial f^h(x)$
- Can aggregate: $\sum_{h \in \mathcal{K}} z^h = z \in \partial f(x)$
- Better yet: use separate models $f_{\mathcal{B}}^h$ for each component
- Disaggregated master problems $(X = \mathbb{R}^n \text{ for simplicity})$

$$(\Pi_{\mathcal{B},\bar{\mathbf{x}},t}) \qquad \inf_{d} \left\{ \sum_{h \in \mathcal{K}} f_{\mathcal{B}}^{h}(\bar{\mathbf{x}}+d) + D_{t}(d) \right\}$$

$$(\Delta_{\mathcal{B},\bar{\mathbf{x}},t}) \quad \inf_{z} \left\{ \sum_{h \in \mathcal{K}} (f_{\mathcal{B}}^{h})^{*}(z^{h}) - \left(\sum_{h \in \mathcal{K}} z^{h}\right) \bar{x} + D_{t}^{*}\left(-\sum_{h \in \mathcal{K}} z^{h}\right) \right\}$$

• Often more efficient in practice¹⁷ ¹⁹, for good reasons

¹⁹ Bacaud, Lemaréchal, Renaud, Sagastizábal "Bundle methods in stochastic optimal power management: a disaggregated approach using preconditioners" COAP, 2001

- $f(x) = \sum_{h \in \mathcal{K}} f^h(x)$, computing each f^h produces $z^h \in \partial f^h(x)$
- Can aggregate: $\sum_{h \in \mathcal{K}} z^h = z \in \partial f(x)$
- ullet Better yet: use separate models $f_{\mathcal{B}}^h$ for each component
- Disaggregated master problems $(X = \mathbb{R}^n \text{ for simplicity})$

$$(\Pi_{\mathcal{B},\bar{x},t}) \qquad \inf_{d} \left\{ \sum_{h \in \mathcal{K}} f_{\mathcal{B}}^{h}(\bar{x}+d) + D_{t}(d) \right\}$$

$$(\Delta_{\mathcal{B},\bar{x},t}) \quad \inf_{z} \left\{ \sum_{h \in \mathcal{K}} (f_{\mathcal{B}}^{h})^{*}(z^{h}) - \left(\sum_{h \in \mathcal{K}} z^{h}\right) \bar{x} + D_{t}^{*} \left(-\sum_{h \in \mathcal{K}} z^{h}\right) \right\}$$

- Often more efficient in practice¹⁷ ¹⁹, for good reasons
- Master problem more costly to solve, but faster convergence

¹⁹ Bacaud, Lemaréchal, Renaud, Sagastizábal "Bundle methods in stochastic optimal power management: a disaggregated approach using preconditioners" COAP, 2001

- $f(x) = \sum_{h \in \mathcal{K}} f^h(x)$, computing each f^h produces $z^h \in \partial f^h(x)$
- Can aggregate: $\sum_{h \in \mathcal{K}} z^h = z \in \partial f(x)$
- Better yet: use separate models $f_{\mathcal{B}}^h$ for each component
- Disaggregated master problems $(X = \mathbb{R}^n \text{ for simplicity})$

$$(\Pi_{\mathcal{B},\bar{x},t}) \qquad \inf_{d} \left\{ \sum_{h \in \mathcal{K}} f_{\mathcal{B}}^{h}(\bar{x}+d) + D_{t}(d) \right\}$$

$$(\Delta_{\mathcal{B},\bar{x},t}) \quad \inf_{z} \left\{ \sum_{h \in \mathcal{K}} (f_{\mathcal{B}}^{h})^{*}(z^{h}) - \left(\sum_{h \in \mathcal{K}} z^{h}\right) \bar{x} + D_{t}^{*} \left(-\sum_{h \in \mathcal{K}} z^{h}\right) \right\}$$

- Often more efficient in practice¹⁷ ¹⁹, for good reasons
- Master problem more costly to solve, but faster convergence
- No incremental version as yet

Bacaud, Lemaréchal, Renaud, Sagastizábal "Bundle methods in stochastic optimal power management: a disaggregated approach using preconditioners" COAP, 2001

- Proposal exist only using lower bound ^{8 9} or for finite min-max²⁰
- Unify and extend these.

 $^{^{20}}$ Gaudioso, Giallombardo, Miglionico "An Incremental Method for Solving Convex Finite Minmax Problems" Math. of O.R., 2006

- Proposal exist only using lower bound ^{8 9} or for finite min-max²⁰
- Unify and extend these.

Definition

Incremental inexact oracle for f: inputs $\bar{x} \in \Re^n$, outputs:

- $\underline{f} \le f(\bar{x})$, $z \in \Re^n$ s.t. $\underline{f} + z(x \bar{x}) \le f(x) \ \forall x$ (lower linearization)
- $\bar{f} \geq f(\bar{x})$ (upper bound, may be $+\infty$)

Can be called repeatedly on the same \bar{x} .

ullet Different rules governing the produced sequences $\{\underline{f}_j\}$, $\{ar{f}_j\}$

 $^{^{20}}$ Gaudioso, Giallombardo, Miglionico "An Incremental Method for Solving Convex Finite Minmax Problems" Math. of O.R., 2006

- Proposal exist only using lower bound ^{8 9} or for finite min-max²⁰
- Unify and extend these.

Definition

Incremental inexact oracle for f: inputs $\bar{x} \in \Re^n$, outputs:

- $\underline{f} \le f(\bar{x})$, $z \in \Re^n$ s.t. $\underline{f} + z(x \bar{x}) \le f(x) \ \forall x$ (lower linearization)
- $\bar{f} \geq f(\bar{x})$ (upper bound, may be $+\infty$)

Can be called repeatedly on the same \bar{x} .

- ullet Different rules governing the produced sequences $\{\underline{f}_j\}$, $\{ar{f}_j\}$
- Bundle algorithm works in different "modes" (LB/UB following)

 $^{^{20}}$ Gaudioso, Giallombardo, Miglionico "An Incremental Method for Solving Convex Finite Minmax Problems" Math. of O.R., 2006

- Proposal exist only using lower bound ^{8 9} or for finite min-max²⁰
- Unify and extend these.

Definition

Incremental inexact oracle for f: inputs $\bar{x} \in \Re^n$, outputs:

- $\underline{f} \le f(\bar{x})$, $z \in \Re^n$ s.t. $\underline{f} + z(x \bar{x}) \le f(x) \ \forall x$ (lower linearization)
- $\bar{f} \geq f(\bar{x})$ (upper bound, may be $+\infty$)

Can be called repeatedly on the same \bar{x} .

- ullet Different rules governing the produced sequences $\{\underline{f}_j\}$, $\{ar{f}_j\}$
- Bundle algorithm works in different "modes" (LB/UB following)
- Results still preliminary, but knowing the gap helps

 $^{^{20}}$ Gaudioso, Giallombardo, Miglionico "An Incremental Method for Solving Convex Finite Minmax Problems" Math. of O.R., 2006

 $^{^{21}\}mathrm{Nesterov}$ "Primal-dual subgradient methods for convex problems" Math. Prog., 2008

• Errors are a fact of life

 $^{^{21}}$ Nesterov "Primal-dual subgradient methods for convex problems" Math. Prog., 2008

- Errors are a fact of life
- You can pretend they don't exist, but you're better off not to

 $^{^{21} \}mbox{Nesterov}$ "Primal-dual subgradient methods for convex problems" Math. Prog., 2008

- Errors are a fact of life
- You can pretend they don't exist, but you're better off not to
- Knowing something about them helps

 $^{^{21} \}mbox{Nesterov}$ "Primal-dual subgradient methods for convex problems" Math. Prog., 2008

- Errors are a fact of life
- You can pretend they don't exist, but you're better off not to
- Knowing something about them helps
- Errors may even be a good thing

 $^{^{21}\}mbox{Nesterov}$ "Primal-dual subgradient methods for convex problems" Math. Prog., 2008

- Errors are a fact of life
- You can pretend they don't exist, but you're better off not to
- Knowing something about them helps
- Errors may even be a good thing
- Lots of work still to be done
 - incremental subgradient
 - "dual" subgradient convergence²¹
 - incremental bundle
 - software development/refinement, numerical testing

Nesterov "Primal-dual subgradient methods for convex problems" Math. Prog., 2008