On Some Network-Structured Mixed-Integer NonLinear Problems with Applications to IP Routing
(MINLP meets computer networks)

A. Frangioni
with L. Galli M.G. Scutellà G. Stea

Dipartimento di Informatica, Università di Pisa
Dipartimento di Ingegneria dell’Informazione, Università di Pisa

COST Workshop on Mixed Integer Nonlinear Programming
Paris, October 1st, 2013
Outline

1. Motivation
2. Delay Constrained Routing
3. SOCP models for SFSP-DCR
4. Combinatorial approaches
5. 3-Pronged Approach
6. Simulations
7. Other Delay Formulae and Access Control
8. Computational results for WRP and FB
9. Extending the combinatorial approaches to WRP and FB
10. Conclusions
Motivation

- Trends in computer networks:
 - high-bandwidth applications
 - stringent Quality of Service (QoS) guarantees
- Packet-switching (IP, Ethernet) now dominant
- Issue: real-time guarantees (e.g. controlled end-to-end delay)
- Relevant in many WAN/LAN settings:
 - industrial control systems
 - remote sensing and surveillance systems
 - live Internet Protocol Television
 - IP Telephony
 - online gaming/MMORPGs
- Critical in embedded systems (automotive, avionics, ...)
- Packets, not circuits → requires traffic engineering
Delay Constrained Routing Problem

- IP Network \(\equiv \text{directed graph } G = (N, A) \quad (n = |N|, \; m = |A|) \), MTU \(L \)
- Set of flows \(K \): origin/destination \((s^k, d^k)\), deadline \(\delta^k \)
- Leaky-bucket traffic shaper \(\equiv \) Arrival curve \(A \equiv \) parameters \(\sigma^k \) (burst) and \(\rho^k \) (rate) \((A(t) = \sigma + t\rho)\)
- \((i, j) \in A\): link delay \(l_{ij} \), link speed \(w_{ij} \), reservable capacity \(c_{ij}^k \) \((\leq w_{ij})\)
- \(i \in N \): node delay \(n_i \)
- Linear capacity reservation cost \(f_{ij} \) (often \(= 1 \equiv \text{Equal Cost (EC)} \))

Delay Constrained Routing Problem (DCR)

Compute paths and reserve resources on arcs at minimum cost such that the maximum delay of each flow is \(\leq \) deadline

- Single-Flow Single-Path (SFSP) DCR: \(|K| = 1\), unsplittable flow
Worst-case delay modeling

- **One new flow to enter** (drop superscripts, $r_{ij}^k = $ existing flows, fixed)

- **Worst-case delay** of the flow depends on several factors:
 1. the selected \(s-d \) path \(P \) in \(G \);
 2. the reserved rate (capacity) \(r_{ij} \in [0, c_{ij}] \) for each \((i, j) \in P \);
 3. the details of the scheduling protocol (requires network calculus)

- Necessary assumption for finite delay: \(r_{ij} \geq \rho \) for each \((i, j) \in P \)
 (\(\rho \equiv \text{rate} \equiv \text{“steady-state” flow demand in classical flow models} \))

- General formula (**already nonlinear!**):

\[
\sigma \min\{ r_{ij} : (i, j) \in P \} + \sum_{(i,j)\in P} (\theta_{ij} + l_{ij} + n_i) \tag{1}
\]

where \(\theta_{ij} \equiv \text{protocol-specific arc delay (also nonlinear!)} \)

- (1) convex and SOCP-representable if \(\theta_{ij} \) is
Worst-case delay modeling (cont.)

- Exact formula for θ_{ij} depends on the scheduling protocol:

\[
\theta_{ij} = \frac{L}{r_{ij}} + \frac{L}{w_{ij}} \quad \text{Strictly Rate-Proportional (2)}
\]

\[
\theta_{ij} = \frac{L}{r_{ij}} + |P(i,j)| \frac{L}{w_{ij}} \quad \text{Weakly Rate-Proportional (3)}
\]

\[
\theta_{ij} = \frac{L}{w_{ij}} \frac{w_{ij} - r_{ij}}{\min\{r_{ij}, r_{ij}^{\text{min}}\}} + \frac{L}{r_{ij}} + |P(i,j)| \frac{L}{w_{ij}} \quad \text{Frame-Based (4)}
\]

- $P(i,j)$ = set of paths passing through (i,j) excluding new one
- $r_{ij}^{\text{min}} = \min\{r_{ij}^k : q^k \in P(i,j)\}$ (\implies SRP \(\lesssim\) WRP \(\leq\) FB)

- (2) flow-independent, convex, SOCP-representable
- (3) \(\approx\) (2) but not flow-independent
- (4) (surprisingly) also convex but only for SFSP, less trivial
- (3) and (4) not flow-independent \(\implies\) have admission control issue
A SOCP model for SFSP-DCR [with SRP]

- **Path binary variables** x_{ij}, reserve continuous variables r_{ij}

$$\min \sum_{(i,j) \in A} f_{ij} r_{ij}$$

$$\sum_{(j,i) \in BS(i)} x_{ji} - \sum_{(i,j) \in FS(i)} x_{ij} = \begin{cases} -1 & \text{if } i = s \\ 1 & \text{if } i = d \\ 0 & \text{otherwise} \end{cases} \quad i \in N$$

$$0 \leq r_{ij} \leq c_{ij} x_{ij} \quad (i,j) \in A$$

$$\rho \leq r_{min} \leq r_{ij} + c_{max}(1 - x_{ij}) \quad (i,j) \in A$$

$$t + \sum_{(i,j) \in A} \left(\theta_{ij} + \left(\frac{L}{w_{ij}} + l_{ij} + n_i \right) x_{ij} \right) \leq \delta$$

$$t r_{min} \geq \sigma \quad , \quad t \geq 0$$

$$x_{ij} \in \{0, 1\} \quad , \quad r_{ij} \in \mathbb{R} \quad (i,j) \in A$$

- **(10) rotated SOCP constraint** $\equiv t \geq \sigma / r_{min}$ (since $t \geq 0$)

- **Issue:** how to write “$x_{ij} = 1 \implies \theta_{ij} \geq L/r_{ij}, \ x_{ij} = 1 \implies \theta_{ij} = 0$”
Solution I: big-M

- Issue: can’t use $r_{ij} \theta_{ij} \geq L$ for that $\implies \theta_{ij} > 0$ always

- Solution: two extra sets of variables s_{ij} and r'_{ij}

\[
0 \leq \theta_{ij} \leq Mx_{ij} \\
\theta_{ij} \geq s_{ij} - M(1 - x_{ij}) \\
s_{ij} r'_{ij} \geq L, \ s_{ij} \geq 0 \\
0 \leq r'_{ij} \leq r_{ij} + M(1 - x_{ij})
\]

- $\theta_{ij} \geq s_{ij}$ if $x_{ij} = 1$, while θ_{ij} and s_{ij} are “free” if $x_{ij} = 0$

- $r'_{ij} \leq r_{ij}$ if $x_{ij} = 1$, while r'_{ij} and r_{ij} are “free” if $x_{ij} = 0$

- $s_{ij} \geq L / r'_{ij} \implies \theta_{ij} \geq s_{ij} \geq L / r'_{ij} \geq L / r_{ij}$ if $x_{ij} = 1$

- $M = \max(\sqrt{L}, L / \rho)$ suffices, still it’s big-M: can we do better?
Solution II: Perspective Reformulation

- **General Perspective Reformulation:** \(f : \mathbb{R}^q \rightarrow \mathbb{R} \) convex, two sets

 \[
P_0 = \{ 0 \} \quad , \quad P_1 = \{ v \in \mathbb{R}^q : l \leq v \leq u , f(v) \leq 0 \}
 \]

 the best possible convex approximation of their (nonconvex) union is

 \[
 \text{conv}(P_0 \cup P_1) = \left\{ v : \lambda l \leq v \leq \lambda u , \lambda f(v/\lambda) \leq 0 , \lambda \in [0, 1] \right\}
 \]

- Application: after a little tedious algebra

 \[
 \rho x_{ij} \leq r_{ij} \leq c_{ij} x_{ij} \quad , \quad 0 \leq \theta_{ij} \leq (L/\rho) x_{ij} \quad , \quad \theta_{ij} r_{ij} \geq L x_{ij}^2
 \]

 (now \(\theta_{ij} \) can be 0 when \(x_{ij} = 0 \), \(x^2/r \) convex for \(r > 0 \))

- original variables + a(another rotated) SOCP constraint

- Looks much better: is it?
Instances

- **Real-world** IP network topologies (GARR, SNDlib, TopoZOO)

- Realistic random topologies (Waxman model)

- **Equal (reservation) Costs** $f_{ij} = 1$

- **FNSS** tool for **realistic traffic matrices** ($\mu(T) = 0.8$ Gbps and $\sigma^2(T) = 0.05$) and link-capacity assignment (1, 10, 40 Gbps)

- **DCR-generator** for the remaining network parameters ($L = 1500, n_i = l_{ij} = L/w_{ij}, \sigma = 3L$)

- Distributed at
 http://www.di.unipi.it/optimize/Data/MMCF.html#UMMCF

- Experiments with “unloaded networks”, but “loaded” case analogous
SOCP models – Cplex

<table>
<thead>
<tr>
<th></th>
<th>Cplex P</th>
<th></th>
<th></th>
<th>Cplex bM</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>avg</td>
<td>max</td>
<td>avg</td>
<td>max</td>
<td></td>
</tr>
<tr>
<td></td>
<td>t n</td>
<td></td>
<td>t n</td>
<td>t n</td>
<td></td>
</tr>
<tr>
<td>abilene</td>
<td>0.011 0.000</td>
<td>0.03</td>
<td>0</td>
<td>0.02 0.03</td>
<td>0.09</td>
</tr>
<tr>
<td>atlanta</td>
<td>0.015 0.044</td>
<td>0.18</td>
<td>1</td>
<td>0.03 0.07</td>
<td>0.17</td>
</tr>
<tr>
<td>cost266</td>
<td>0.015 0.017</td>
<td>0.06</td>
<td>1</td>
<td>0.05 0.03</td>
<td>0.26</td>
</tr>
<tr>
<td>dfn-bwin</td>
<td>0.012 0.000</td>
<td>0.03</td>
<td>0</td>
<td>0.05 0.02</td>
<td>0.11</td>
</tr>
<tr>
<td>dfn-gwin</td>
<td>0.020 0.151</td>
<td>0.10</td>
<td>1</td>
<td>0.05 0.00</td>
<td>0.16</td>
</tr>
<tr>
<td>di-yuan</td>
<td>0.051 1.190</td>
<td>0.34</td>
<td>18</td>
<td>0.11 1.36</td>
<td>0.62</td>
</tr>
<tr>
<td>france</td>
<td>0.014 0.000</td>
<td>0.05</td>
<td>0</td>
<td>0.04 0.02</td>
<td>0.16</td>
</tr>
<tr>
<td>geant</td>
<td>0.011 0.016</td>
<td>0.06</td>
<td>1</td>
<td>0.03 0.03</td>
<td>0.19</td>
</tr>
<tr>
<td>germany50</td>
<td>0.024 0.025</td>
<td>0.10</td>
<td>1</td>
<td>0.09 0.06</td>
<td>0.70</td>
</tr>
<tr>
<td>giul39</td>
<td>0.245 0.547</td>
<td>0.99</td>
<td>13</td>
<td>1.27 15.33</td>
<td>6.68</td>
</tr>
<tr>
<td>india35</td>
<td>0.021 0.036</td>
<td>0.27</td>
<td>1</td>
<td>0.08 0.07</td>
<td>0.58</td>
</tr>
<tr>
<td>janos-us</td>
<td>0.093 0.108</td>
<td>0.63</td>
<td>7</td>
<td>0.43 2.65</td>
<td>1.55</td>
</tr>
<tr>
<td>janos-us-ca</td>
<td>0.141 0.138</td>
<td>0.83</td>
<td>8</td>
<td>0.80 5.76</td>
<td>2.76</td>
</tr>
<tr>
<td>newyork</td>
<td>0.018 0.034</td>
<td>0.14</td>
<td>1</td>
<td>0.07 0.05</td>
<td>0.28</td>
</tr>
<tr>
<td>nobel-eu</td>
<td>0.016 0.009</td>
<td>0.08</td>
<td>1</td>
<td>0.04 0.05</td>
<td>0.26</td>
</tr>
<tr>
<td>nobel-ger</td>
<td>0.011 0.020</td>
<td>0.04</td>
<td>1</td>
<td>0.04 0.08</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Frangioni et al. (DI + DII, UniPI)
SOCP models – Cplex (cont.)

<table>
<thead>
<tr>
<th>Model</th>
<th>Time</th>
<th>Memory</th>
<th>Objective</th>
<th>MIOGap</th>
<th>Time</th>
<th>Memory</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>nobel-us</td>
<td>0.015</td>
<td>0.083</td>
<td>0.10</td>
<td>1</td>
<td>0.04</td>
<td>0.04</td>
<td>0.19</td>
</tr>
<tr>
<td>norway</td>
<td>0.035</td>
<td>0.079</td>
<td>0.32</td>
<td>8</td>
<td>0.11</td>
<td>0.36</td>
<td>0.96</td>
</tr>
<tr>
<td>pdh</td>
<td>0.042</td>
<td>0.444</td>
<td>0.38</td>
<td>8</td>
<td>0.11</td>
<td>0.74</td>
<td>0.38</td>
</tr>
<tr>
<td>pioro40</td>
<td>0.019</td>
<td>0.039</td>
<td>0.27</td>
<td>1</td>
<td>0.10</td>
<td>0.14</td>
<td>0.57</td>
</tr>
<tr>
<td>polska</td>
<td>0.020</td>
<td>0.042</td>
<td>0.11</td>
<td>1</td>
<td>0.03</td>
<td>0.08</td>
<td>0.09</td>
</tr>
<tr>
<td>sun</td>
<td>0.165</td>
<td>0.587</td>
<td>0.89</td>
<td>13</td>
<td>0.65</td>
<td>7.68</td>
<td>2.36</td>
</tr>
<tr>
<td>ta2</td>
<td>0.020</td>
<td>0.015</td>
<td>0.13</td>
<td>1</td>
<td>0.12</td>
<td>0.08</td>
<td>0.89</td>
</tr>
<tr>
<td>garr 1999-01</td>
<td>0.022</td>
<td>0.017</td>
<td>0.13</td>
<td>1</td>
<td>0.09</td>
<td>0.21</td>
<td>0.33</td>
</tr>
<tr>
<td>garr 1999-04</td>
<td>0.029</td>
<td>0.000</td>
<td>0.07</td>
<td>0</td>
<td>0.10</td>
<td>0.07</td>
<td>0.45</td>
</tr>
<tr>
<td>garr 1999-05</td>
<td>0.029</td>
<td>0.004</td>
<td>0.09</td>
<td>1</td>
<td>0.10</td>
<td>0.08</td>
<td>0.40</td>
</tr>
<tr>
<td>garr 2001-09</td>
<td>0.030</td>
<td>0.000</td>
<td>0.10</td>
<td>0</td>
<td>0.11</td>
<td>0.10</td>
<td>0.44</td>
</tr>
<tr>
<td>garr 2001-12</td>
<td>0.029</td>
<td>0.000</td>
<td>0.08</td>
<td>0</td>
<td>0.09</td>
<td>0.16</td>
<td>0.32</td>
</tr>
<tr>
<td>garr 2004-04</td>
<td>0.028</td>
<td>0.000</td>
<td>0.18</td>
<td>0</td>
<td>0.09</td>
<td>0.05</td>
<td>0.31</td>
</tr>
<tr>
<td>garr 2009-08</td>
<td>0.087</td>
<td>0.005</td>
<td>0.46</td>
<td>2</td>
<td>0.57</td>
<td>0.47</td>
<td>1.99</td>
</tr>
<tr>
<td>garr 2009-09</td>
<td>0.089</td>
<td>0.011</td>
<td>0.62</td>
<td>4</td>
<td>0.60</td>
<td>0.61</td>
<td>2.19</td>
</tr>
<tr>
<td>garr 2009-12</td>
<td>0.090</td>
<td>0.013</td>
<td>0.78</td>
<td>4</td>
<td>0.60</td>
<td>0.59</td>
<td>2.47</td>
</tr>
<tr>
<td>garr 2010-01</td>
<td>0.093</td>
<td>0.013</td>
<td>0.50</td>
<td>4</td>
<td>0.61</td>
<td>0.57</td>
<td>2.32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Time</th>
<th>Memory</th>
<th>Objective</th>
<th>MIOGap</th>
<th>Time</th>
<th>Memory</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>w1-100-04</td>
<td>1.854</td>
<td>3.176</td>
<td>43.14</td>
<td>85</td>
<td>8.88</td>
<td>164.49</td>
<td>43.87</td>
</tr>
<tr>
<td>w1-200-04</td>
<td>24.231</td>
<td>25.366</td>
<td>413.95</td>
<td>4075</td>
<td>231.09</td>
<td>2714.68</td>
<td>9088.54</td>
</tr>
</tbody>
</table>
SOCP models – GUROBI

<table>
<thead>
<tr>
<th></th>
<th>GUROBI P</th>
<th></th>
<th>GUROBI bM</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>avg</td>
<td>max</td>
<td>avg</td>
<td>max</td>
</tr>
<tr>
<td></td>
<td>t</td>
<td>n</td>
<td>t</td>
<td>n</td>
</tr>
<tr>
<td>abilene</td>
<td>0.011</td>
<td>0.0</td>
<td>0.03</td>
<td>0</td>
</tr>
<tr>
<td>atlanta</td>
<td>0.012</td>
<td>0.5</td>
<td>0.03</td>
<td>8</td>
</tr>
<tr>
<td>cost266</td>
<td>0.012</td>
<td>0.4</td>
<td>0.05</td>
<td>11</td>
</tr>
<tr>
<td>dfn-bwin</td>
<td>0.007</td>
<td>0.0</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>dfn-gwin</td>
<td>0.017</td>
<td>0.0</td>
<td>0.04</td>
<td>0</td>
</tr>
<tr>
<td>di-yuan</td>
<td>0.028</td>
<td>2.0</td>
<td>0.21</td>
<td>46</td>
</tr>
<tr>
<td>france</td>
<td>0.011</td>
<td>0.3</td>
<td>0.03</td>
<td>6</td>
</tr>
<tr>
<td>geant</td>
<td>0.011</td>
<td>0.7</td>
<td>0.04</td>
<td>11</td>
</tr>
<tr>
<td>germany50</td>
<td>0.016</td>
<td>1.1</td>
<td>0.26</td>
<td>34</td>
</tr>
<tr>
<td>giul39</td>
<td>0.424</td>
<td>67.6</td>
<td>6.69</td>
<td>1308</td>
</tr>
<tr>
<td>india35</td>
<td>0.014</td>
<td>0.4</td>
<td>0.12</td>
<td>14</td>
</tr>
<tr>
<td>janos-us</td>
<td>0.150</td>
<td>21.2</td>
<td>2.14</td>
<td>767</td>
</tr>
<tr>
<td>janos-us-ca</td>
<td>0.285</td>
<td>47.1</td>
<td>7.87</td>
<td>916</td>
</tr>
<tr>
<td>newyork</td>
<td>0.013</td>
<td>0.8</td>
<td>0.04</td>
<td>14</td>
</tr>
<tr>
<td>nobel-eu</td>
<td>0.013</td>
<td>0.2</td>
<td>0.09</td>
<td>9</td>
</tr>
<tr>
<td>nobel-ger</td>
<td>0.012</td>
<td>0.4</td>
<td>0.04</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>nobel-us</td>
<td>0.012</td>
<td>0.8</td>
<td>0.05</td>
<td>11</td>
</tr>
<tr>
<td>norway</td>
<td>0.033</td>
<td>2.8</td>
<td>0.44</td>
<td>30</td>
</tr>
<tr>
<td>pdh</td>
<td>0.023</td>
<td>4.6</td>
<td>0.09</td>
<td>47</td>
</tr>
<tr>
<td>pioro40</td>
<td>0.015</td>
<td>0.6</td>
<td>0.09</td>
<td>13</td>
</tr>
<tr>
<td>polska</td>
<td>0.010</td>
<td>0.5</td>
<td>0.03</td>
<td>7</td>
</tr>
<tr>
<td>sun</td>
<td>0.189</td>
<td>39.6</td>
<td>0.76</td>
<td>282</td>
</tr>
<tr>
<td>ta2</td>
<td>0.018</td>
<td>0.6</td>
<td>0.12</td>
<td>27</td>
</tr>
<tr>
<td>garr 1999-01</td>
<td>0.034</td>
<td>0.5</td>
<td>0.09</td>
<td>9</td>
</tr>
<tr>
<td>garr 1999-04</td>
<td>0.016</td>
<td>1.9</td>
<td>0.11</td>
<td>26</td>
</tr>
<tr>
<td>garr 1999-05</td>
<td>0.018</td>
<td>2.0</td>
<td>0.08</td>
<td>25</td>
</tr>
<tr>
<td>garr 2001-09</td>
<td>0.020</td>
<td>2.0</td>
<td>0.09</td>
<td>19</td>
</tr>
<tr>
<td>garr 2001-12</td>
<td>0.015</td>
<td>0.0</td>
<td>0.04</td>
<td>0</td>
</tr>
<tr>
<td>garr 2004-04</td>
<td>0.021</td>
<td>3.0</td>
<td>0.06</td>
<td>14</td>
</tr>
<tr>
<td>garr 2009-08</td>
<td>0.070</td>
<td>7.6</td>
<td>0.72</td>
<td>124</td>
</tr>
<tr>
<td>garr 2009-09</td>
<td>0.071</td>
<td>7.6</td>
<td>0.59</td>
<td>202</td>
</tr>
<tr>
<td>garr 2009-12</td>
<td>0.071</td>
<td>7.6</td>
<td>0.55</td>
<td>123</td>
</tr>
<tr>
<td>garr 2010-01</td>
<td>0.073</td>
<td>7.6</td>
<td>0.68</td>
<td>114</td>
</tr>
<tr>
<td>w1-100-04</td>
<td>2.372</td>
<td>159.3</td>
<td>7.09</td>
<td>703</td>
</tr>
<tr>
<td>w1-200-04</td>
<td>9.575</td>
<td>241.4</td>
<td>63.37</td>
<td>1395</td>
</tr>
</tbody>
</table>
Combinatorial properties

- A MINLP with strong network structure, how to exploit it?
 \[\sigma = L = 0 \implies r_{ij} = \rho x_{ij} \implies \text{Constrained Shortest Path (CSP)} \]
 (this gives more than one idea, and proves \mathcal{NP}-hardness)

- Checking feasibility is easy: delay is a decreasing function of r_{ij}
 \[\implies \text{simply push the rates to the maximum} \]

- Modified arc costs $\overline{l}_{ij} = \frac{L}{c_{ij}} + \frac{L}{w_{ij}} + l_{ij} + n_i$

- For each $r \in C = \{ c_{ij} : (i, j) \in A \}$:
 - define reduced graph $G^r = (N, A^r)$ where $A^r = \{ (i, j) \in A : c_{ij} \geq r \}$
 - solve s-d shortest path P on G^r w.r.t. \overline{l}
 - if $\overline{l}(P) \leq \delta - \sigma / r$, then P feasible
 - if no feasible P found, then problem unfeasible
 (for fixed P, both LHS and RHS of (1) increase with r)

- Keep f-best solution found: (ERA-I heuristic)
Equal Rate Allocation

- Equal Rate Allocation: $r_{ij} = r \geq \rho$ for all $(i,j) \in P \implies r_{\text{min}} = r$

- It is easy to solve EC-ERA-SFSP-DCR for fixed r ($f_{ij} = 1$)
 - run Bellman-Ford on G^r with costs $l^r_{ij} = L/r + L/w_{ij} + l_{ij} + n_i$
 - each time d extracted from Q, check if delay $\leq \delta - \sigma/r$

- Repeating the above for all $r \in C$ does not solve EC-ERA-SFSP-DCR
 counterexample: returned path P with delay constraint not tight

- Obvious solution: for each P reduce r until constraint tight
 \implies keep feasibility, improve objective function \implies optimal

- Solves EC-ERA-SFSP-DCR, ERA-H heuristic for EC-SFSP-DCR

- Extensions:
 - Non-equal but integer f_{ij}: use dynamic programming instead of Bellman-Ford (pseudo-poly)
 - Non-equal continuous f_{ij}: classical approximation algorithm with cost rounding using the above pseudo-poly
ERA-Based Heuristics: Experiments

<table>
<thead>
<tr>
<th>instance</th>
<th>n</th>
<th>m</th>
<th>k</th>
<th>ERA-I avg</th>
<th>ERA-I max</th>
<th>ERA-I inf</th>
<th>ERA-H avg</th>
<th>ERA-H max</th>
<th>ERA-H inf</th>
</tr>
</thead>
<tbody>
<tr>
<td>abilene</td>
<td>12</td>
<td>15</td>
<td>31</td>
<td>0.52</td>
<td>0.92</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.06</td>
</tr>
<tr>
<td>atlanta</td>
<td>15</td>
<td>22</td>
<td>45</td>
<td>0.57</td>
<td>0.88</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.07</td>
</tr>
<tr>
<td>cost266</td>
<td>37</td>
<td>57</td>
<td>120</td>
<td>0.48</td>
<td>0.95</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.17</td>
</tr>
<tr>
<td>dfn-bwin</td>
<td>10</td>
<td>45</td>
<td>45</td>
<td>0.03</td>
<td>0.06</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.00</td>
</tr>
<tr>
<td>dfn-gwin</td>
<td>11</td>
<td>47</td>
<td>53</td>
<td>0.16</td>
<td>0.86</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.02</td>
</tr>
<tr>
<td>di-yuan</td>
<td>11</td>
<td>42</td>
<td>58</td>
<td>0.48</td>
<td>0.90</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.12</td>
</tr>
<tr>
<td>france</td>
<td>25</td>
<td>45</td>
<td>66</td>
<td>0.44</td>
<td>0.90</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.02</td>
</tr>
<tr>
<td>geant</td>
<td>22</td>
<td>36</td>
<td>63</td>
<td>0.46</td>
<td>0.89</td>
<td>0.000</td>
<td>0.000</td>
<td>0.001</td>
<td>0.06</td>
</tr>
<tr>
<td>germany50</td>
<td>50</td>
<td>88</td>
<td>276</td>
<td>0.50</td>
<td>0.90</td>
<td>0.000</td>
<td>0.000</td>
<td>0.001</td>
<td>0.21</td>
</tr>
<tr>
<td>giul39</td>
<td>39</td>
<td>172</td>
<td>1482</td>
<td>0.67</td>
<td>0.97</td>
<td>0.011</td>
<td>0.570</td>
<td>0.000</td>
<td>0.10</td>
</tr>
<tr>
<td>india35</td>
<td>35</td>
<td>80</td>
<td>195</td>
<td>0.53</td>
<td>0.93</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.11</td>
</tr>
<tr>
<td>janos-us</td>
<td>26</td>
<td>84</td>
<td>650</td>
<td>0.71</td>
<td>0.95</td>
<td>0.000</td>
<td>0.000</td>
<td>0.004</td>
<td>0.18</td>
</tr>
<tr>
<td>janos-us-ca</td>
<td>39</td>
<td>122</td>
<td>1482</td>
<td>0.68</td>
<td>0.95</td>
<td>0.010</td>
<td>0.289</td>
<td>0.010</td>
<td>0.23</td>
</tr>
<tr>
<td>newyork</td>
<td>16</td>
<td>49</td>
<td>89</td>
<td>0.50</td>
<td>0.90</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.03</td>
</tr>
<tr>
<td>nobel-eu</td>
<td>28</td>
<td>41</td>
<td>106</td>
<td>0.55</td>
<td>0.93</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.23</td>
</tr>
<tr>
<td>nobel-ger</td>
<td>17</td>
<td>26</td>
<td>51</td>
<td>0.49</td>
<td>0.93</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.10</td>
</tr>
</tbody>
</table>

- **inf** = fraction of feasible wrongly declared unfeasible
ERA-Based Heuristics: Experiments (cont.)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Nodes</th>
<th>Edges</th>
<th>Solutions</th>
<th>Time</th>
<th>Solving Time</th>
<th>CPU</th>
<th>DCR</th>
<th>NC</th>
<th>M</th>
<th>NC</th>
<th>M</th>
<th>NC</th>
<th>M</th>
<th>NC</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>nobel-us</td>
<td>14</td>
<td>21</td>
<td>24</td>
<td>0.35</td>
<td>0.90</td>
<td>0.000</td>
<td>0.001</td>
<td>0.00</td>
<td>0.00</td>
<td>0.001</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>norway</td>
<td>27</td>
<td>51</td>
<td>341</td>
<td>0.71</td>
<td>0.94</td>
<td>0.000</td>
<td>0.000</td>
<td>0.12</td>
<td>0.04</td>
<td>0.000</td>
<td>0.00</td>
<td>0.25</td>
<td>0.00</td>
<td>0.00</td>
<td>0.04</td>
</tr>
<tr>
<td>pdh</td>
<td>11</td>
<td>34</td>
<td>54</td>
<td>0.64</td>
<td>0.90</td>
<td>0.000</td>
<td>0.001</td>
<td>0.04</td>
<td>0.00</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>pioro40</td>
<td>40</td>
<td>89</td>
<td>204</td>
<td>0.40</td>
<td>0.89</td>
<td>0.000</td>
<td>0.000</td>
<td>0.12</td>
<td>0.04</td>
<td>0.000</td>
<td>0.00</td>
<td>0.25</td>
<td>0.00</td>
<td>0.00</td>
<td>0.04</td>
</tr>
<tr>
<td>polska</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>0.59</td>
<td>0.90</td>
<td>0.000</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>sun</td>
<td>27</td>
<td>102</td>
<td>702</td>
<td>0.76</td>
<td>0.95</td>
<td>0.008</td>
<td>0.431</td>
<td>0.06</td>
<td>0.00</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>ta2</td>
<td>65</td>
<td>108</td>
<td>388</td>
<td>0.45</td>
<td>0.92</td>
<td>0.000</td>
<td>0.000</td>
<td>0.31</td>
<td>0.04</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>garr 1999-01</td>
<td>16</td>
<td>36</td>
<td>240</td>
<td>0.65</td>
<td>0.88</td>
<td>0.000</td>
<td>0.001</td>
<td>0.02</td>
<td>0.00</td>
<td>0.001</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>garr 1999-04</td>
<td>23</td>
<td>50</td>
<td>506</td>
<td>0.57</td>
<td>0.94</td>
<td>0.000</td>
<td>0.001</td>
<td>0.75</td>
<td>0.00</td>
<td>0.001</td>
<td>0.00</td>
<td>0.75</td>
<td>0.00</td>
<td>0.00</td>
<td>0.75</td>
</tr>
<tr>
<td>garr 1999-05</td>
<td>23</td>
<td>50</td>
<td>506</td>
<td>0.55</td>
<td>0.94</td>
<td>0.000</td>
<td>0.000</td>
<td>0.75</td>
<td>0.00</td>
<td>0.000</td>
<td>0.00</td>
<td>0.75</td>
<td>0.00</td>
<td>0.00</td>
<td>0.75</td>
</tr>
<tr>
<td>garr 2001-09</td>
<td>22</td>
<td>48</td>
<td>462</td>
<td>0.60</td>
<td>0.94</td>
<td>0.000</td>
<td>0.000</td>
<td>0.74</td>
<td>0.00</td>
<td>0.000</td>
<td>0.00</td>
<td>0.75</td>
<td>0.00</td>
<td>0.00</td>
<td>0.75</td>
</tr>
<tr>
<td>garr 2001-12</td>
<td>24</td>
<td>52</td>
<td>552</td>
<td>0.59</td>
<td>0.94</td>
<td>0.000</td>
<td>0.000</td>
<td>0.75</td>
<td>0.00</td>
<td>0.000</td>
<td>0.00</td>
<td>0.75</td>
<td>0.00</td>
<td>0.00</td>
<td>0.75</td>
</tr>
<tr>
<td>garr 2004-04</td>
<td>22</td>
<td>48</td>
<td>462</td>
<td>0.56</td>
<td>0.94</td>
<td>0.000</td>
<td>0.000</td>
<td>0.75</td>
<td>0.00</td>
<td>0.000</td>
<td>0.00</td>
<td>0.75</td>
<td>0.00</td>
<td>0.00</td>
<td>0.75</td>
</tr>
<tr>
<td>garr 2009-08</td>
<td>54</td>
<td>136</td>
<td>2862</td>
<td>0.65</td>
<td>0.94</td>
<td>0.001</td>
<td>0.386</td>
<td>0.85</td>
<td>0.00</td>
<td>0.000</td>
<td>0.00</td>
<td>0.85</td>
<td>0.00</td>
<td>0.00</td>
<td>0.85</td>
</tr>
<tr>
<td>garr 2009-09</td>
<td>55</td>
<td>138</td>
<td>2970</td>
<td>0.67</td>
<td>0.94</td>
<td>0.000</td>
<td>0.000</td>
<td>0.85</td>
<td>0.00</td>
<td>0.000</td>
<td>0.00</td>
<td>0.85</td>
<td>0.00</td>
<td>0.00</td>
<td>0.85</td>
</tr>
<tr>
<td>garr 2009-12</td>
<td>54</td>
<td>136</td>
<td>2862</td>
<td>0.67</td>
<td>0.94</td>
<td>0.001</td>
<td>0.240</td>
<td>0.85</td>
<td>0.00</td>
<td>0.001</td>
<td>0.24</td>
<td>0.85</td>
<td>0.00</td>
<td>0.00</td>
<td>0.85</td>
</tr>
<tr>
<td>garr 2010-01</td>
<td>54</td>
<td>136</td>
<td>2862</td>
<td>0.67</td>
<td>0.94</td>
<td>0.001</td>
<td>0.241</td>
<td>0.85</td>
<td>0.00</td>
<td>0.001</td>
<td>0.24</td>
<td>0.85</td>
<td>0.00</td>
<td>0.00</td>
<td>0.85</td>
</tr>
<tr>
<td>w1-100-04</td>
<td>100</td>
<td>414</td>
<td>664</td>
<td>0.77</td>
<td>0.95</td>
<td>0.015</td>
<td>0.739</td>
<td>0.07</td>
<td>0.07</td>
<td>0.739</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>w1-200-04</td>
<td>200</td>
<td>1550</td>
<td>1528</td>
<td>0.71</td>
<td>0.96</td>
<td>0.015</td>
<td>0.814</td>
<td>0.05</td>
<td>0.05</td>
<td>0.814</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>
3-Pronged Approach

- MI-SOCP approach **accurate but slow**
 ERA-* approaches **fast but inaccurate**

- Best of both worlds: **3-pronged approach**
 1. run **ERA-I**, if instance unfeasible terminate
 2. otherwise run **ERA-H**: if a solution found, report it and terminate
 3. if all else fails, then run **model P** and report its solution

- **So crude, does it really work?**
3-Pronged Approach: Experiments

<table>
<thead>
<tr>
<th></th>
<th>Cplex SOCP</th>
<th>3P</th>
<th>GUROBI SOCP</th>
<th>3P</th>
<th>Gaps</th>
<th>ERA-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>avg</td>
<td>0.009</td>
<td>0.02</td>
<td>0.009</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>max</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.06</td>
</tr>
<tr>
<td>avg</td>
<td>0.016</td>
<td>0.16</td>
<td>0.010</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>max</td>
<td>0.02</td>
<td>0.01</td>
<td>0.012</td>
<td>0.01</td>
<td>0.00</td>
<td>0.07</td>
</tr>
<tr>
<td>avg</td>
<td>0.013</td>
<td>0.05</td>
<td>0.007</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>max</td>
<td>0.01</td>
<td>0.01</td>
<td>0.012</td>
<td>0.01</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td>avg</td>
<td>0.011</td>
<td>0.02</td>
<td>0.007</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>max</td>
<td>0.01</td>
<td>0.00</td>
<td>0.012</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>avg</td>
<td>0.019</td>
<td>0.09</td>
<td>0.015</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>max</td>
<td>0.01</td>
<td>0.01</td>
<td>0.012</td>
<td>0.01</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>avg</td>
<td>0.050</td>
<td>0.35</td>
<td>0.028</td>
<td>0.22</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>max</td>
<td>0.35</td>
<td>0.23</td>
<td>0.028</td>
<td>0.22</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>avg</td>
<td>0.015</td>
<td>0.04</td>
<td>0.010</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>max</td>
<td>0.01</td>
<td>0.01</td>
<td>0.012</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>avg</td>
<td>0.013</td>
<td>0.05</td>
<td>0.010</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>max</td>
<td>0.01</td>
<td>0.01</td>
<td>0.012</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>avg</td>
<td>0.021</td>
<td>0.09</td>
<td>0.017</td>
<td>0.24</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>max</td>
<td>0.08</td>
<td>0.27</td>
<td>0.012</td>
<td>0.23</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>avg</td>
<td>0.254</td>
<td>1.01</td>
<td>0.449</td>
<td>1.01</td>
<td>0.01</td>
<td>7e-5</td>
</tr>
<tr>
<td>max</td>
<td>0.66</td>
<td>6.52</td>
<td>0.087</td>
<td>0.08</td>
<td>0.00</td>
<td>0.10</td>
</tr>
<tr>
<td>avg</td>
<td>0.019</td>
<td>0.25</td>
<td>0.016</td>
<td>0.11</td>
<td>0.00</td>
<td>3e-4</td>
</tr>
<tr>
<td>max</td>
<td>0.04</td>
<td>0.07</td>
<td>0.002</td>
<td>0.02</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>avg</td>
<td>0.091</td>
<td>0.62</td>
<td>0.153</td>
<td>0.22</td>
<td>0.00</td>
<td>1e-4</td>
</tr>
<tr>
<td>max</td>
<td>0.33</td>
<td>2.19</td>
<td>0.012</td>
<td>0.22</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>avg</td>
<td>0.144</td>
<td>0.84</td>
<td>0.298</td>
<td>0.49</td>
<td>0.01</td>
<td>2e-4</td>
</tr>
<tr>
<td>max</td>
<td>0.49</td>
<td>2.19</td>
<td>0.012</td>
<td>0.49</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>avg</td>
<td>0.017</td>
<td>0.13</td>
<td>0.015</td>
<td>0.04</td>
<td>0.00</td>
<td>2e-4</td>
</tr>
<tr>
<td>max</td>
<td>0.02</td>
<td>0.02</td>
<td>0.005</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>avg</td>
<td>0.014</td>
<td>0.05</td>
<td>0.016</td>
<td>0.09</td>
<td>0.00</td>
<td>2e-4</td>
</tr>
<tr>
<td>max</td>
<td>0.05</td>
<td>0.09</td>
<td>0.005</td>
<td>0.02</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>avg</td>
<td>0.010</td>
<td>0.03</td>
<td>0.015</td>
<td>0.04</td>
<td>0.00</td>
<td>2e-4</td>
</tr>
<tr>
<td>max</td>
<td>0.03</td>
<td>0.04</td>
<td>0.002</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Frangioni et al. (DI + DII, UniPI)
3-Pronged Approach: Experiments (cont.)

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.013</td>
<td>0.09</td>
<td>0.00</td>
<td>0.00</td>
<td>0.014</td>
<td>0.05</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.032</td>
<td>0.30</td>
<td>0.005</td>
<td>0.25</td>
<td>0.035</td>
<td>0.32</td>
<td>0.005</td>
<td>0.13</td>
<td>0.00</td>
<td>0.00</td>
<td>6e-5</td>
<td>0.01</td>
<td>0.12</td>
<td>0.00</td>
</tr>
<tr>
<td>0.034</td>
<td>0.30</td>
<td>0.001</td>
<td>0.02</td>
<td>0.026</td>
<td>0.10</td>
<td>0.002</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td>5e-5</td>
<td>0.01</td>
<td>0.25</td>
<td>0.00</td>
</tr>
<tr>
<td>0.019</td>
<td>0.27</td>
<td>0.007</td>
<td>0.25</td>
<td>0.018</td>
<td>0.09</td>
<td>0.007</td>
<td>0.09</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>0.016</td>
<td>0.09</td>
<td>0.000</td>
<td>0.00</td>
<td>0.014</td>
<td>0.03</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>0.154</td>
<td>0.89</td>
<td>0.006</td>
<td>0.36</td>
<td>0.18</td>
<td>0.87</td>
<td>0.009</td>
<td>0.40</td>
<td>0.01</td>
<td>0.43</td>
<td>2e-4</td>
<td>0.01</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>0.019</td>
<td>0.12</td>
<td>0.008</td>
<td>0.05</td>
<td>0.020</td>
<td>0.13</td>
<td>0.009</td>
<td>0.13</td>
<td>0.00</td>
<td>0.00</td>
<td>8e-5</td>
<td>0.01</td>
<td>0.31</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.025</td>
<td>0.12</td>
<td>0.001</td>
<td>0.03</td>
<td>0.035</td>
<td>0.10</td>
<td>0.001</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>4e-5</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>0.030</td>
<td>0.08</td>
<td>0.022</td>
<td>0.06</td>
<td>0.017</td>
<td>0.12</td>
<td>0.016</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td>4e-5</td>
<td>0.01</td>
<td>0.75</td>
<td>0.00</td>
</tr>
<tr>
<td>0.028</td>
<td>0.08</td>
<td>0.021</td>
<td>0.06</td>
<td>0.018</td>
<td>0.08</td>
<td>0.016</td>
<td>0.08</td>
<td>0.00</td>
<td>0.00</td>
<td>6e-5</td>
<td>0.01</td>
<td>0.75</td>
<td>0.00</td>
</tr>
<tr>
<td>0.026</td>
<td>0.09</td>
<td>0.021</td>
<td>0.08</td>
<td>0.022</td>
<td>0.09</td>
<td>0.018</td>
<td>0.09</td>
<td>0.00</td>
<td>0.00</td>
<td>4e-5</td>
<td>0.01</td>
<td>0.75</td>
<td>0.00</td>
</tr>
<tr>
<td>0.027</td>
<td>0.07</td>
<td>0.022</td>
<td>0.07</td>
<td>0.016</td>
<td>0.04</td>
<td>0.012</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>4e-5</td>
<td>0.01</td>
<td>0.75</td>
<td>0.00</td>
</tr>
<tr>
<td>0.026</td>
<td>0.17</td>
<td>0.020</td>
<td>0.05</td>
<td>0.022</td>
<td>0.06</td>
<td>0.019</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>4e-5</td>
<td>0.01</td>
<td>0.75</td>
<td>0.00</td>
</tr>
<tr>
<td>0.084</td>
<td>0.44</td>
<td>0.075</td>
<td>0.44</td>
<td>0.069</td>
<td>0.70</td>
<td>0.065</td>
<td>0.71</td>
<td>0.00</td>
<td>0.39</td>
<td>2e-4</td>
<td>0.01</td>
<td>0.85</td>
<td>0.00</td>
</tr>
<tr>
<td>0.086</td>
<td>0.62</td>
<td>0.078</td>
<td>0.62</td>
<td>0.069</td>
<td>0.56</td>
<td>0.063</td>
<td>0.57</td>
<td>0.00</td>
<td>0.00</td>
<td>2e-4</td>
<td>0.01</td>
<td>0.85</td>
<td>0.00</td>
</tr>
<tr>
<td>0.088</td>
<td>0.75</td>
<td>0.078</td>
<td>0.73</td>
<td>0.071</td>
<td>0.52</td>
<td>0.061</td>
<td>0.50</td>
<td>0.00</td>
<td>0.24</td>
<td>2e-4</td>
<td>0.01</td>
<td>0.85</td>
<td>0.00</td>
</tr>
<tr>
<td>0.087</td>
<td>0.46</td>
<td>0.076</td>
<td>0.45</td>
<td>0.074</td>
<td>0.61</td>
<td>0.066</td>
<td>0.59</td>
<td>0.00</td>
<td>0.24</td>
<td>2e-4</td>
<td>0.01</td>
<td>0.85</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.906</td>
<td>46.7</td>
<td>0.034</td>
<td>1.84</td>
<td>2.354</td>
<td>8.35</td>
<td>0.150</td>
<td>3.54</td>
<td>0.01</td>
<td>0.74</td>
<td>2e-3</td>
<td>0.01</td>
<td>0.07</td>
<td>1e-2</td>
</tr>
<tr>
<td>23.660</td>
<td>357.7</td>
<td>0.247</td>
<td>54.29</td>
<td>9.033</td>
<td>63.19</td>
<td>0.399</td>
<td>12.36</td>
<td>0.01</td>
<td>0.81</td>
<td>2e-4</td>
<td>0.01</td>
<td>0.05</td>
<td>1e-2</td>
</tr>
</tbody>
</table>

Frangioni et al. (DI + DII, UniPI) SOCP for DCR CWMINLP13 21 / 31
Does it really matter in practice?

- Simulating the network behavior, large number of path computations
- Exponential interarrival (avg = \(\lambda \)), exponential duration (avg = 1s)
- \(\sigma = 3 \) MTU and \(\delta \) random in \([d_{min}, d_{min} + \beta(d_{max} - d_{min})]\)
 \(d_{min} = \) minimum feasible deadline, \(d_{max} = \) delay constraint inactive
- Average of five independent replicas, and 95% confidence intervals
- Comparing all practical approaches known so far (2 new):
 1. ERA (equal rate allocation)
 2. SWPF-URA: shortest-widest-path + optimal (unequal) rate allocation
 3. WSPF-URA: widest-shortest-path + optimal (unequal) rate allocation
 4. SFSP-DCR: MI-SOCP model (perspective version)
 5. TPH: 3-pronged heuristic
- Same real-world topologies, realistic capacities
Simulation results: blocking probability

- ERA fails far too much (allocating the same rate a bad idea)
- both ERA and *-URA perform considerably worse than SFSP-DCR
- TPH performs quite close to the optimum

Similar on all topologies, \(\sigma \in \{1, 3, 10\} \) MTU, \(\beta \in \{0.2, 0.5, 1.0\} \)
Why does ERA fail so often?

- Hub-and-spoke-like network with well-connected core (40/100 Gb) but weaker links to the periphery (1 Gb)
- Path from a core node to a peripheral one has to cross a weak link
- ERA has to allocate the same rate to all links \(\Rightarrow\) no more than the weak link’s (residual) capacity \(\Rightarrow\) cannot meet the deadline
- The deadline can be met by reserving more capacity on core links
Simulation results: time

- SFSP-DCR slower but still affordable
- TPH much faster and almost as good
- “large” networks: $|N| = 70+$, $|A| = 230+$
- Path Computation Element makes this technically feasible
SOCP Model for WRP

\[\theta_{ij} = \frac{L}{r_{ij}} + |P(i, j)| \frac{L}{w_{ij}} \approx (2) \implies \text{(basically) same model} \]

But requires access control: not to make existing flows unfeasible

Delay slack:

\[\bar{\delta}^k = \delta^k - \frac{\sigma^k}{r_{\min}^k} - \sum_{(i,j) \in p^k} \left(\frac{L}{r_{ij}^k} + |P(i, j)| \frac{L}{w_{ij}} + l_{ij} + n_i \right) \]

Access control constraint, one for each \(k \in K \)

\[\sum_{(i,j) \in p^k} \frac{L}{w_{ij}} x_{ij} \leq \bar{\delta}^k \]

Can be used to preprocess away some arcs

The coefficients are the same for each flow, can use path (+ RHS) dominance to detect redundant ones

Still, possibly many constraints (\(|K| \approx n^2\))
SOCP Model for FB

\[\theta_{ij} = \frac{L}{r_{ij}} + (|P(i, j)| + \phi(r_{ij})) \frac{L}{w_{ij}} \approx \text{WRP} \]

where

\[\phi(r) = \frac{(w_{ij} - r)}{\min\{r, \bar{r}_{ij}\}} \]

Since \(\bar{r}_{ij} \) is fixed, can be rewritten as

\[\phi(r) = \begin{cases}
\phi_1(r) = \frac{w_{ij}}{r} - 1 & \text{if } 0 < r \leq \bar{r}_{ij} \\
\phi_2(r) = \frac{(w_{ij} - r)}{\bar{r}_{ij}} & \text{if } \bar{r}_{ij} \leq r \leq c_{ij} \leq w_{ij}
\end{cases} \]

Convex!: \(\phi'_1(\bar{r}_{ij}) \leq \phi'_2(\bar{r}_{ij}) \)

Can use the classical variable splitting reformulation

\[\theta_{ij} = v_{ij} + v'_{ij} + \frac{L}{w_{ij}} \left[|P(i, j)| x_{ij} - \frac{r_{ij}}{\bar{r}_{ij}} \right] \]

\[r_{ij} = r'_{ij} + r''_{ij} \quad , \quad \rho x_{ij} \leq r'_{ij} \leq \bar{r}_{ij} x_{ij} \quad , \quad 0 \leq r''_{ij} \leq (c_{ij} - \bar{r}_{ij}) x_{ij} \]

\[v_{ij} r_{ij} \geq L x_{ij}^2 \quad , \quad v_{ij} \geq 0 \quad , \quad v'_{ij} r'_{ij} \geq L x_{ij}^2 \quad , \quad v'_{ij} \geq 0 \]

two conic constraints to represent the same \(L/r_{ij} \): can we do better?
Actually we can: \(\phi_1(w_{ij}) = \phi_2(w_{ij}) \implies \phi(r) = \max\{ \phi_1(r), \phi_2(r) \}! \)

Can use the “cutting planes” representation of \(\phi \):

\[
\theta_{ij} = v_{ij} + v'_{ij} + \frac{L}{w_{ij}} (|P(i,j)| + 1) x_{ij}, \quad v_{ij}r_{ij} \geq Lx_{ij}^2, \quad v_{ij} \geq 0
\]

\[
v'_{ij} \geq v_{ij} - L/w_{ij}, \quad v'_{ij} \geq (L/\bar{r}_{ij}) x_{ij} - Lr_{ij} / (w_{ij}\bar{r}_{ij})
\]

only one conic constraint, less variables (is this better?)

Admission control constraint for FB:

\[
\sum_{(i,j) \in P^k} \frac{L}{w_{ij}} (x_{ij} + (w_{ij} - r^k_{ij}) z_{ij}) \leq \bar{\delta}^k
\]

\[
s_{ij} \leq r_{ij}, \quad s_{ij} \leq \bar{r}_{ij}, \quad s_{ij} z_{ij} \geq x_{ij}^2, \quad z_{ij} \geq 0
\]

+2\(|A|\) variables, +\(|A|\) conic constraints but shared among flows

Different coefficients (to share the \(z_{ij} \)), dominance more difficult

Arc-based preprocessing still possible (using \(r_{ij} = c_{ij} \))
Computational results for WRP and FB
Er . . . , not ready yet, sorry!
Extending the combinatorial approaches to WRP and FB
Er . . ., not ready yet, sorry!
Conclusions

• The world is indeed nonlinear, but surprisingly often nicely convex
• DCR: interesting generalization of classical “steady state” flows
• Relevant for applications, apparently good results
• MI-SOCP with substantial network structure = prototypical blend of nonlinear and combinatorial optimization
• MINLP techniques useful (Perspective Reformulation, SOCP, . . .)
• Combinatorial techniques useful (shortest paths, dynamic programming, approximation algorithms, . . .)
• Both are needed
• Still lots of work to do (WRP/FB, multi-flow, multi-path, network design, robust, . . .), problems look pretty hard
• Lots of fun. Join in! :-)

Frangioni et al. (DI + DII, UniPI)