Decomposition Approaches: The Role of the Master Problem Formulation

Alberto Caprara¹ Antonio Frangioni² Tiziano Parriani³

1. DEIS, Università di Bologna 2. Dipartimento di Informatica, Università di Pisa 3. Optlt

19th Aussois Combinatorial Optimization Workshop

January 5, 2015

Outline

1 Multicommodity Flow Models

- 2 Dantzig-Wolfe decomposition
- 3 Master Problem Reformulation I: Stabilization
 - 4 Master Problem Reformulation II: Disaggregated Model
- 5 Master Problem Reformulation III: Structured Decomposition

6 Conclusions

The Multicommodity flow model

• Graph G = (N, A), the generic Multicommodity flow model

$$\min \sum_{k \in K} \sum_{(i,j) \in A} c_{ij}^k x_{ij}^k \tag{1}$$

$$\sum_{(i,j)\in A} x_{ij}^k - \sum_{(j,i)\in A} x_{ji}^k = b^k \qquad i \in \mathbb{N} \ , \ k \in \mathbb{K}$$
 (2)

$$\sum_{k \in K} x_{ij}^k \le u_{ij} \qquad (i,j) \in A \qquad (3)$$

$$0 \le x_{ij}^k \le u_{ij}^k \qquad (i,j) \in A, \ k \in K \qquad (4)$$

- Multiple source/sink commodities with individual capacities
- Can assume w.l.o.g. only one source, but in principle need (4) then
- In many cases, $K = \{ (s^k, t^k, d^k) \}, u^k_{ij} = +\infty$ "naturally"
- Many generalizations (extra constraints, nonlinearities [1], ...)

F., Galli, Scutellà "Delay-Constrained Shortest Paths: Approx. Algorithms and Second-Order Cone Models" JOTA, to appear
 F., Galli. Stea "Optimal Joint Path Computation and Rate Allocation Real-time Traffic" The Computer Journal, to appear

Multicommodity flow applications

- Pervasive structure in most of combinatorial optimization
- Interesting links with many hard problems (e.g. Max-Cut)
- Very many practical applications: logistic, transportation, telecommunications, energy, ...
- Very different cases:
 - transportation: very large (often time-space \Longrightarrow acyclic) networks, "few" commodities
 - telecommunications: "small" (undirected) networks, very many $(O(|N|^2))$ commodities
 - . . .
- "Easy" in theory but "hard" in practice: very-large-scale LPs
- The archetype of block-structured problems [3,4]

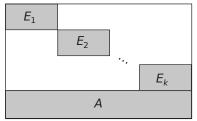
 ^[3] Ford, Fulkerson "A Suggested Computation for Maximal Multicommodity Network Flows" Management Science 1958
 [4] Dantzig, Wolfe "The Decomposition Principle for Linear Programs" Operations Research 1960

Block-Structured Linear Programs

• Block-structured LP:

(
$$\Pi$$
) max { $cx : Ax \le b, x \in X = \{x : Ex \le d\}$ }

 $X = \bigotimes_{k \in K} X^k = \{ x^k : E^k x^k \le d^k \} \equiv Ax = b \text{ linking constraints}$



• We know how to efficiently optimize upon X, for two reasons:

- a bunch of (many, much) smaller problems instead of a large one
- The X^k have structure: Min-Cost Flow (MCF) or shortest path (SPT)
- Many other applications (stochastic programs, ...)

Dantzig-Wolfe decomposition

• Dantzig-Wolfe reformulation (temporarily assume X compact): represent X by points instead

$$X = \left\{ x = \sum_{\bar{x} \in X} \bar{x} \theta_{\bar{x}} : \sum_{\bar{x} \in X} \theta_{\bar{x}} = 1 , \ \theta_{\bar{x}} \ge 0 \quad \bar{x} \in X \right\}$$

then reformulate (Π) in terms of the convex multipliers θ

$$(\Pi) \qquad \begin{cases} \max \quad c\left(\sum_{\bar{x}\in X} \ \bar{x}\theta_{\bar{x}}\right) \\ & A\left(\sum_{\bar{x}\in X} \ \bar{x}\theta_{\bar{x}}\right) \le b \\ & \sum_{\bar{x}\in X} \ \theta_{\bar{x}} = 1 \quad , \quad \theta_{\bar{x}} \ge 0 \qquad \bar{x} \in X \end{cases}$$

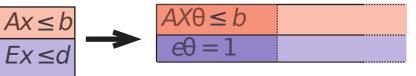
• Could this ever be a good idea? Actually, it could: polyhedra may have few faces and many vertices ... or vice-versa

n-cube
$$|x_i| \le 1 \quad \forall i \quad 2n \text{ faces} \quad 2^n \text{ vertices}$$

n-co-cube $\sum_i |x_i| \le 1 \quad 2^n \text{ faces} \quad 2n \text{ vertices}$

Dantzig-Wolfe decomposition \equiv Lagrangian relaxation

- Actually, only the vertices $V \subset X$ of X are required
- Except, most often the number of vertices is too large



- But, if we can efficiently optimize over X, we can generate vertices
- $\mathcal{B} \subset X$ (small), solve restriction of (Π) with $X \to \mathcal{B}$, i.e.,

$$\mathsf{l}_\mathcal{B}) \qquad \mathsf{max} \ \{ \ cx \ : \ \mathcal{A}x \leq b \ , \ x \in \mathit{conv}(\mathcal{B}) \ \}$$

feed (partial) dual optimal solution y^* (of Ax = b) to pricing problem

$$(\Pi_{y^*})$$
 max { $(c - y^*A)x : x \in X$ } [$+ y^*b$]

a.k.a. Lagrangian relaxation

([

• Use primal optimal solution \bar{x} of (Π_{y^*}) to enlarge \mathcal{B}

The NDO Perspective: the Lagrangian dual

• Dual of $(\Pi_{\mathcal{B}})$:

$$\begin{array}{l} \min \left\{ yb + v : v \ge (c - yA)x \quad x \in \mathcal{B} \right\} \\ = \min \left\{ f_{\mathcal{B}}(y) = \max \left\{ cx + y(b - Ax) : x \in \mathcal{B} \right\}, \ y \ge 0 \right\} \\ (\text{note: } x \in \mathcal{B} \text{ "constraints index"}) \end{array}$$

• $f_{\mathcal{B}} = \text{lower approximation of "true" Lagrangian function}$

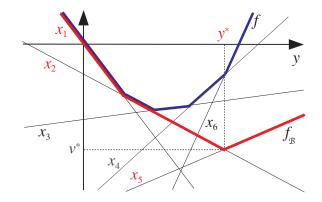
$$f(y) = \max \left\{ cx + y(b - Ax) : x \in X \right\}$$

"easy" computability of f(y) the only requirement

- Thus, (Δ_B) outer approximation of the Lagrangian dual
 (Δ) min { f(y) = max { cx + y(b Ax) : x ∈ X } , y ≥ 0 } that is equivalent to (Π)
- Dantzig-Wolfe decomposition \equiv Cutting Plane approach to (Δ) [5]

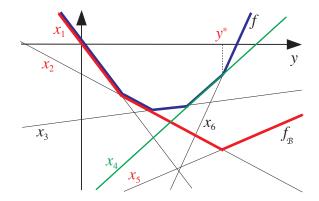
^[5] Kelley "The Cutting-Plane Method for Solving Convex Programs" Journal of the SIAM 1960

Geometry of the Lagrangian dual



• $v^* = f_{\mathcal{B}}(y^*)$ lower bound on $v(\Pi_{\mathcal{B}})$

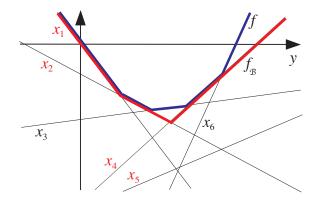
Geometry of the Lagrangian dual



• $v^* = f_{\mathcal{B}}(y^*)$ lower bound on $v(\Pi_{\mathcal{B}})$

• Optimal solution \bar{x} gives separator between (v^*, y^*) and *epi* f

Geometry of the Lagrangian dual



• $v^* = f_{\mathcal{B}}(y^*)$ lower bound on $v(\Pi_{\mathcal{B}})$

- Optimal solution \bar{x} gives separator between (v^*, y^*) and epi f
- $(c\bar{x}, A\bar{x}) =$ new row in $(\Delta_{\mathcal{B}})$ (subgradient of f at y^*)

1 Multicommodity Flow Models

2 Dantzig-Wolfe decomposition

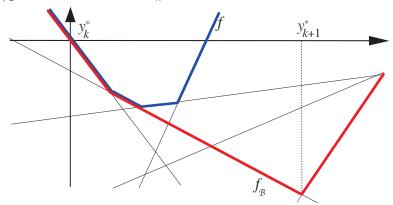
3 Master Problem Reformulation I: Stabilization

- 4 Master Problem Reformulation II: Disaggregated Model
- 5 Master Problem Reformulation III: Structured Decomposition

6 Conclusions

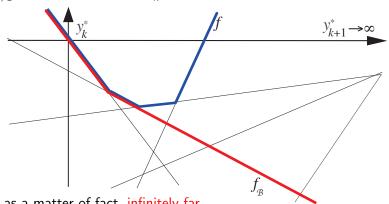
Issue with the approach: instability

• y_{k+1}^* can be very far from y_k^* , where $f_{\mathcal{B}}$ is a "bad model" of f



Issue with the approach: instability

• y_{k+1}^* can be very far from y_k^* , where $f_{\mathcal{B}}$ is a "bad model" of f

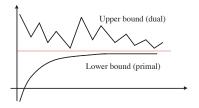


...as a matter of fact, infinitely far

- $(\Pi_{\mathcal{B}})$ empty $\equiv (\Delta_{\mathcal{B}})$ unbounded \Rightarrow Phase 0 / Phase 1 approach
- More in general: {y_k^{*}} is unstable, has no locality properties ≡ convergence speed does not improve near the optimum

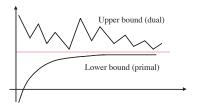
The effects of instability

- What does it mean?
 - a good (even perfect) estimate of dual optimum is useless!
 - frequent oscillations of dual values
 - "bad quality" of generated columns
 - \implies tailing off, slow convergence



The effects of instability

- What does it mean?
 - a good (even perfect) estimate of dual optimum is useless!
 - frequent oscillations of dual values
 - "bad quality" of generated columns
 - \implies tailing off, slow convergence



- The solution is pretty obvious: stabilize it
- Gedankenexperiment: starting from known dual optimum, constrain duals in a box of given width

width	time	e	ite	er.	columns						
∞	4178.4	%	509	%	37579	%					
200.0	835.5	20.0	119	23.4	9368	24.9					
20.0	117.9	2.8	35	6.9	2789	7.4					
2.0	52.0	1.2	20	3.9	1430	3.8					
0.2	47.5	1.1	19	3.7	1333	3.5					
Works wonders!											

Stabilized Dantzig-Wolfe

... if only we knew the dual optimum! (which we don't)

- Current point \bar{y} , box of size t > 0 around it
- Stabilized dual master problem [6]

$$(\Delta_{\mathcal{B},\bar{y},t}) \qquad \min \left\{ f_{\mathcal{B}}(\bar{y}+d) : \| d \|_{\infty} \leq t \right\}$$

• Corresponding stabilized primal master problem

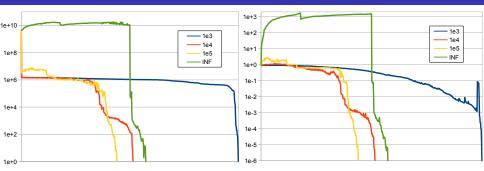
 $(\Pi_{\mathcal{B},\bar{y},t}) \max \{ cx + \bar{y}z - t \| z \|_1 : z \ge Ax - b, z \ge 0, x \in conv(\mathcal{B}) \}$

i.e., just Dantzig-Wolfe with slacks

- When stuck and $z^* = [Ax^* b]_+ \neq 0$, either move \bar{y} or enlarge t
- Minor modifications to the master problem
- How should one choose *t*?
- Does this really work?

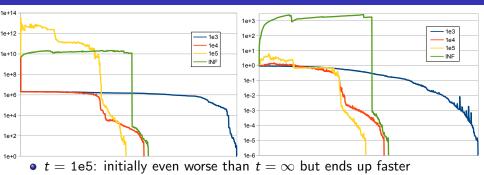
[6] Marsten, Hogan, Blankenship "The Boxstep Method for Large-scale Optimization" Operations Research 1975

Computational results of the boxstep method (pds18)



- Left = distance from final dual optimum right = relative gap with optimal value
- All cases show a "combinatorial tail" where convergence is very quick
- t = 1e3: "smooth but slow" until the combinatorial tail kicks in
- $t = \infty$: apparently trashing along until some magic threshold is hit
- "intermediate" t work best

Computational results of the boxstep method (pds30)



- Clearly, some on-line tuning of *t* would be appropriate
- A different stabilizing term would help? Already

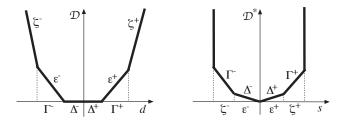
$$(\Delta_{\mathcal{B},\bar{y},t}) \qquad \min\left\{ f_{\mathcal{B}}(\bar{y}+d) + \frac{1}{2t} \| d \|_2^2 \right\}$$

does [7,8], or even a more generic $\mathcal{D}(d) \Longrightarrow \mathcal{D}^*(d)$ in the primal [9]

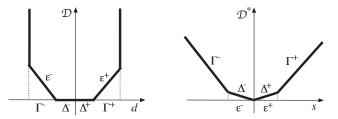
[7] Lemaréchal "Bundle Methods in Nonsmooth Optimization" in *Nonsmooth Optimization* vol. 3, Pergamon Press, 1978
[8] Briant, Lemaréchal, et. al. "Comparison of bundle and classical column generation" *Mathematical Programming* 2006
[9] F. "Generalized Bundle Methods" *SIAM Journal on Optimization* 2002

A 5-piecewise-linear function

Trust region on \bar{y} + small penalty close + much larger penalty farther [10]



Slightly simplified version: only 3 pieces.



[10] Ben Amor, Desrosiers, F. "On the choice of explicit stabilizing terms in column generation" Discrete Applied Math. 2009

A 5-piecewise-linear master problem

$$(\Pi_{\mathcal{B},\bar{y},\mathcal{D}}) \begin{cases} \max c \left(\sum_{\bar{x}\in\mathcal{B}} \bar{x}\theta_{\bar{x}} \right) - \bar{y} \left(s^{-} + w^{-} - w^{+} - s^{+} \right) \\ + \gamma^{-}s^{-} + \delta^{-}w^{-} + \delta^{+}w^{+} + \gamma^{+}s^{+} \\ A \left(\sum_{\bar{x}\in\mathcal{B}} \bar{x}\theta_{\bar{x}} \right) + s^{-} + w^{-} - w^{+} - s^{+} = b \\ \sum_{\bar{x}\in\mathcal{B}} \theta_{\bar{x}} = 1 , \quad \theta_{\bar{x}} \geq 0 \quad \bar{x}\in\mathcal{B} \\ 0 \leq s^{-} \leq \zeta^{-} , \quad 0 \leq s^{+} \leq \zeta^{+} \\ 0 \leq w^{-} \leq \varepsilon^{-} , \quad 0 \leq w^{+} \leq \varepsilon^{+} \end{cases}$$

A 5-piecewise-linear master problem

$$(\Pi_{\mathcal{B},\bar{y},\mathcal{D}}) \begin{cases} \max c \left(\sum_{\bar{x}\in\mathcal{B}} \bar{x}\theta_{\bar{x}} \right) - \bar{y} \left(s^- + w^- - w^+ - s^+ \right) \\ + \gamma^- s^- + \delta^- w^- + \delta^+ w^+ + \gamma^+ s^+ \\ A \left(\sum_{\bar{x}\in\mathcal{B}} \bar{x}\theta_{\bar{x}} \right) + s^- + w^- - w^+ - s^+ = b \\ \sum_{\bar{x}\in\mathcal{B}} \theta_{\bar{x}} = 1 , \quad \theta_{\bar{x}} \geq 0 \quad \bar{x}\in\mathcal{B} \\ 0 \leq s^- \leq \zeta^- , \quad 0 \leq s^+ \leq \zeta^+ \\ 0 \leq w^- \leq \varepsilon^- , \quad 0 \leq w^+ \leq \varepsilon^+ \end{cases}$$

- Same constraints as $(\Pi_{\mathcal{B}})$, 4 slack variables for each constraint
- Many parameters: widths Γ^{\pm} and Δ^{\pm} , penalties ζ^{\pm} and ε^{\pm} , different roles for small and large penalties
- Large penalties ζ^{\pm} easily make $(\Delta_{\mathcal{B},\bar{y},\mathcal{D}})$ bounded \Longrightarrow no Phase 0
- 3-pieces: either large penalty \Longrightarrow small moves, or small penalty \Longrightarrow instability
- 5-pieces better than 3-pieces, 5-then-3 even better

1 Multicommodity Flow Models

- 2 Dantzig-Wolfe decomposition
- 3 Master Problem Reformulation I: Stabilization

Master Problem Reformulation II: Disaggregated Model

5 Master Problem Reformulation III: Structured Decomposition

6 Conclusions

The Arc-Path Formulation of Multicommodity Flows

- Assume each k ∈ K is a O-D pair s^k-t^k with demand d^k (natural in many cases, can be forced somewhat in general)
- Arc-path formulation of Multicommodity Flows:

$$p \in \mathcal{P}^{k} = \{ s^{k} - t^{k} \text{ paths } \}, c_{p} \text{ cost, } f_{p} \text{ flow, } \mathcal{P} = \bigcup_{k \in \mathcal{K}} \mathcal{P}^{k}$$

$$\min \quad \sum_{p \in \mathcal{P}} c_{p} f_{p}$$

$$\sum_{p \in \mathcal{P} : (i,j) \in p} f_{p} \leq u_{ij} \quad (i,j) \in A$$

$$\sum_{p \in \mathcal{P}^{k}} f_{p} = d^{k} \qquad k \in \mathcal{K}$$

$$f_{p} \geq 0 \qquad p \in \mathcal{P}$$

Fewer constraints but exponentially many variables: oddly familiar?

- In fact, just a disaggregated version of the Dantzig-Wolfe formulation
- General principle: $X = X^1 \times X^2 \times \ldots \times X^{|K|} \Longrightarrow$ $conv(X) = conv(X^1) \times conv(X^2) \times \ldots \times conv(X^{|K|})$

Dantzig-Wolfe and Multicommodity flows

• Standard D-W: $S = \{ \text{ (extreme) flows } s = [\bar{x}^{1,s}, \dots, \bar{x}^{k,s}] \}$

$$\begin{array}{ll} \min & \sum_{s \in \mathcal{S}} \left(\sum_{k \in K} \sum_{(i,j) \in A} c_{ij}^k \bar{x}_{ij}^{k,s} \right) \theta_s \\ & \sum_{s \in \mathcal{S}} \left(\sum_{k \in K} \bar{x}_{ij}^{k,s} - u_{ij} \right) \theta_s \leq 0 \quad (i,j) \in A \\ & \sum_{s \in \mathcal{S}} \theta_s = 1 \quad , \quad \theta_s \geq 0 \quad s \in \mathcal{S} \end{array}$$

Disaggregated D-W: a different multiplier θ_s^k for each $\bar{x}^{k,s}$, with

$$\sum_{s\in\mathcal{S}}\theta_s^k=1\qquad k\in K$$

(clearly, previous case is $\theta_{\epsilon}^{k} = \theta_{\epsilon}^{h}, h \neq k$) \implies better value

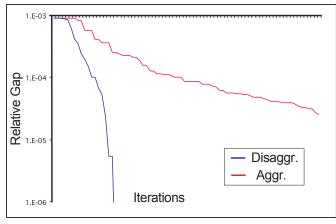
- In NDO-speak: sum of models is better than model of the sum
- Simple scaling leads to arc-path formulation: $f_p = d^k \theta_s^k$
- Many more columns but sparser, (a few) more rows
- Master problem size (\approx time, or not) increases, but convergence speed increases a lot \equiv consistent improvement [11]

Caprara, Frangioni, Parriani (UniBo-Pi,Optlt) MP Formulations in Decomposition

^[11] Jones, Lustig, Farwolden, Powell "Multicommodity Network Flows: The Impact of Formulation on Decomposition" Mathematical Programming 1993

Disaggregated decomposition

• Easily extended to any decomposable $X \equiv$ sum-function [12]



• Stabilized versions immediate

• Is there anything more to say?

[12] Borghetti, F., Lacalandra, Nucci "Lagrangian Heuristics Based on Disaggregated Bundle Methods for Hydrothermal Unit Commitment" IEEE Transactions on Power Systems 2003

Caprara, Frangioni, Parriani (UniBo-Pi,OptIt) MP Formulations in Decomposition

More Disaggregated Versions

- Aggregation is arbitrary, then why "all or nothing"?
- Partition $C = (C_1, C_2, \dots, C_h)$ of K
- Partially aggregated model f^C_B with h (+1) components fⁱ_B, each the sum over one C_i
- Basically, $\theta_s^k = \theta_s^h$ for each $(h, k) \in C_i \times C_i$
- Exploring the trade-off between master problem size \implies time and iterations, subproblem time remains the same
- Aggregation index $\eta \in [0, 1]$:

$$h = |\mathcal{C}| = \max\left\{\left\lceil (1 - \eta)|\mathcal{K}| \right\rceil, 1\right\}$$

0 = fully disaggregated, 1 = fully aggregated

• How to choose the commodities in each *C_i*? In general open problem, here just group commodities with "close original names"

Even More Disaggregated Versions

- But what is a commodity, anyway?
 - Modeler's view: a product, origin-destination, stream of packets, ...
 - Algorithm's view: all that can be bunched together
- Commodity-independent data \equiv bunch commodities with same origin
- Why is that? Because you can solve a unique SPT for all of them (which is because SPT has a funny auto-separability property)
- From a modeling viewpoint, there is no reason to (can always recover the original solution, less variables)
- This impact how the master problem is formulated [11] ...

Even More Disaggregated Versions

- But what is a commodity, anyway?
 - Modeler's view: a product, origin-destination, stream of packets, ...
 - Algorithm's view: all that can be bunched together
- Commodity-independent data \equiv bunch commodities with same origin
- Why is that? Because you can solve a unique SPT for all of them (which is because SPT has a funny auto-separability property)
- From a modeling viewpoint, there is no reason to (can always recover the original solution, less variables)
- This impact how the master problem is formulated [11] ... or not: the Master Problem can be freely reformulated
- Aggregation index $\eta \in [-1,0]$: \overline{K} the number of OD pairs,

$$h = |C| = \max\left\{ \left[-\eta |\overline{K}| \right], |K|
ight\}$$

-1 = ODP formulation, 0 = DSP formulation [11]

• Again, commodities in a C_i just have "close destination node names"

Dealing With Multiple-origin Commodities

- What about commodities that have many origins (PSP in [11])?
- Can always assume one origin (add a super-origin) ...

Dealing With Multiple-origin Commodities

- What about commodities that have many origins (PSP in [11])?
- Can always assume one origin (add a super-origin) . . . but must add commodity-specific capacities on super-origin arcs
- Data no longer commodity-independent, subproblems no longer SPTs

 cannot disaggregate by origin ...

Dealing With Multiple-origin Commodities

- What about commodities that have many origins (PSP in [11])?
- Can always assume one origin (add a super-origin) . . . but must add commodity-specific capacities on super-origin arcs
- Data no longer commodity-independent, subproblems no longer SPTs

 cannot disaggregate by origin ... or you can: "just" consider individual capacities as complicating constraints
- This is still a reformulation of the master problem, has (almost) nothing to do with the original problem formulation
- Obvious trade-off: simpler subproblems, harder master problem (possibly many more rows, more columns but sparser ones)
- TTBoOK haven't been computationally explored to far

(Preliminary, $\eta \geq$ 0) Computational Results

- Generalized Bundle code using $D_t^* = \|\cdot\|_1$ (boxstep)
- Latest Cplex as Master Problem Solver
- Efficient implementation: overhead due to subgradient handling significant
- Limited effect of stabilization (not much need)
- (Reasonably) efficient subproblem solution with MCFClass
 http://www.di.unipi.it/optimize/Software/MCF.html
- Many instances, some old, some new, from http://www.di.unipi.it/optimize/Data/MMCF.html
- $\bullet\,$ Results for $\eta<0$ still brewing, but these significant enough already

Computational Results: Planar & Grid Instances

	0		0.2		0.4		0.6		0.8		1	
	time	it.	time	it.								
grid7	2.5	12	2.91	13	2.39	15	2.12	14	2.62	18	285.76	1169
grid8	18.52	18	18.33	19	21.05	20	25.61	23	42.36	33	***	3848
grid9	36.04	15	45.94	16	60.54	18	85.99	20	189.92	32	***	2862
grid10	54.51	15	61.40	16	77.96	17	104.18	18	233.07	24	***	3848
grid12	61.64	11	61.24	10	65.44	11	71.81	11	148.89	13	***	2862
grid14	433.64	11	388.76	11	289.13	12	230.66	11	259.22	12	***	2862
planar100	2.16	14	1.96	13	1.42	13	2.36	13	2.74	15	25.49	1400
planar150	25.75	17	29.11	17	28.77	17	30.44	19	35.49	23	***	68896
planar300	21.34	13	22.86	14	23.54	14	24.12	15	24.71	14	1292.09	2967
planar500	15.27	11	14.75	11	13.91	11	12.71	12	10.84	11	197.62	317

- Large, nasty instances (you'll see later)
- *** = out of time limit (6400 seconds): all for $\eta = 1$, clearly worst
- Results somewhat erratic, but clearly $\eta = 0$ not always best

Computational Results: Goto & Mnetgen Instances

	0		0.2		0.4		0.6		0.8		1	
	time	it.	time	it.	time	it.	time	it.	time	it.	time	it.
Goto6-100	1.05	25	1.33	30	1.39	35	1.67	44	1.40	69	16.09	926
Goto6-400	1.45	15	1.59	17	1.76	19	2.40	22	5.79	32	60.53	1272
Goto6-800	2.41	12	2.54	14	2.85	15	3.62	17	9.24	25	134.42	1709
Goto8-10	2.96	75	4.57	104	6.14	137	7.68	164	18.12	301	45.29	722
Goto8-100	3.43	21	4.86	27	4.98	31	5.58	45	13.73	79	388.32	2114
Goto8-400	5.88	16	8.13	18	11.03	20	14.68	23	24.86	36	582.66	2690
Goto8-800	3.12	11	3.30	12	4.53	13	6.34	15	10.32	20	82.93	729
128-32	17.66	57	27.64	76	23.54	91	31.09	128	32.92	222	294.03	2753
128-32	57.23	46	66.04	59	63.66	70	79.97	92	108.53	169	1337.79	5296
128-64	95.45	34	125.27	43	126.71	50	147.25	65	174.81	108	1750.57	3741
128-128	5.68	109	5.73	109	8.08	158	12.34	209	24.09	437	25.22	449
256-8	31.65	140	45.55	183	77.50	252	94.51	276	289.69	635	1020.79	1826
256-16	146.37	148	181.38	219	244.79	271	404.15	381	885.73	704	1856.84	2175
256-32	400.59	117	510.74	163	640.14	200	1081.34	299	1666.35	480	2740.50	2615
256-64	563.66	86	744.93	113	1108.17	143	1624.06	196	1834.86	293	2670.98	1821

• ... although in some cases $\eta = 0$ can be (almost) uniformly best

Computational Results: Waxman & Rmnet Instances

		0		0.2		0.4	0.4		0.6			1	
		time	it.	time	time it.		it.	time	it.	t. time		time	it.
	W-50	1.43	3	0.17	3	0.11	3	0.07	3	0.03	3	0.04	9
	W-100-6	1.53	2	0.20	2	0.13	2	0.09	2	0.04	2	0.06	10
	W-100-10	1.34	3	0.38	3	0.32	3	0.27	3	0.22	3	0.70	15
	W-100	1.50	2	2.10	2	1.37	2	0.98	2	0.72	2	1.06	7
	W-150-6	2.44	2	2.30	2	1.81	2	1.20	2	0.63	2	4.54	44
	W-150-10	1.23	3	0.83	3	0.66	3	0.60	3	0.14	2	0.48	4
	W-150	3.23	3	4.74	3	3.17	3	2.70	3	0.67	3	4.49	9
	4-8-11-100	0.56	5	1.31	5	0.83	5	0.58	5	0.40	5	0.31	8
	4-8-12-200	1.31	5	2.07	5	1.64	5	1.18	5	1.06	5	0.45	6
	4-8-13-200	5.88	7	11.11	7	9.31	8	6.54	8	6.00	9	9.70	62
	4-8-14-400	55.62	7	75.70	7	39.81	8	27.77	8	15.59	9	19.89	62
	7-6-11-100	1.00	6	2.27	6	2.42	6	2.29	6	1.22	7	5.38	54
	7-6-12-500	1.80	5	3.08	5	3.62	5	3.23	5	1.80	5	1.64	8
	7-6-13-500	4.56	5	8.85	5	7.34	5	5.86	5	4.48	6	11.96	30
	7-6-14-1000	30.29	5	35.54	5	27.04	5	24.58	5	12.57	6	30.26	38
_	$r_{\rm r}$ (almost) uniformly worst (says for $n = 1$)												

• ... or (almost) uniformly worst (save for $\eta = 1$)

• but often strange things happen ($\eta = 1$ can even be best)

Caprara, Frangioni, Parriani (UniBo-Pi,Optlt)

1 Multicommodity Flow Models

- 2 Dantzig-Wolfe decomposition
- 3 Master Problem Reformulation I: Stabilization
- 4 Master Problem Reformulation II: Disaggregated Model
- 5 Master Problem Reformulation III: Structured Decomposition

6 Conclusions

Structured Decomposition

- Came out for a different (still multicommodity) problem [13]
- D-W \equiv reformulation of X always in the same form ...

Structured Decomposition

- Came out for a different (still multicommodity) problem [13]
- D-W ≡ reformulation of X always in the same form ... or not, as we have already seen. But we can do better:
 - Assumption 1: alternative Formulation of "easy" set

$$X = \left\{ x = C\theta : \Gamma\theta \leq \gamma \right\}$$

• Assumption 2: $\mathcal B$ subset of rows and columns, padding with zeroes

• Assumption 3: easy update of rows and columns

Given
$$\mathcal{B}, \bar{x} \in X, \bar{x} \notin X_{\mathcal{B}}$$
, it is "easy" to find $\mathcal{B}' \supset \mathcal{B}$

 $(\Longrightarrow \Gamma_{\mathcal{B}'}, \gamma_{\mathcal{B}'})$ such that $\exists \mathcal{B}'' \supseteq \mathcal{B}'$ such that $\bar{x} \in X_{\mathcal{B}''}$.

[13] F., Gendron "0-1 reformulations of the multicommodity capacitated network design problem" Discrete Applied Math. 2009

The Structured Dantzig-Wolfe Algorithm

• Structured master problem \equiv structured model

$$\begin{aligned} (\Pi_{\mathcal{B}}) & \max \left\{ cx : Ax \leq b , x = C_{\mathcal{B}}\theta_{\mathcal{B}} , \Gamma_{\mathcal{B}}\theta_{\mathcal{B}} \leq \gamma_{\mathcal{B}} \right\} \\ f_{\mathcal{B}}(y) &= \max \left\{ (c - yA)x + xb : x = C_{\mathcal{B}}\theta_{\mathcal{B}} , \Gamma_{\mathcal{B}}\theta_{\mathcal{B}} \leq \gamma_{\mathcal{B}} \right\} \end{aligned}$$

$$\begin{array}{l} \langle \text{ initialize } \mathcal{B} \rangle; \\ \texttt{repeat} \\ \langle \text{ solve } (\Pi_{\mathcal{B}}) \text{ for } x^*, \ y^* \text{ (duals of } Ax \leq b); \ v^* = cx^* \ \rangle; \\ \bar{x} = \underset{\{ (c - y^*A)x : x \in X \}; \\ \langle \text{ update } \mathcal{B} \text{ as in Assumption } 3 \ \rangle; \\ \texttt{until } v^* < c\bar{x} + y^*(b - A\bar{x}) \end{array}$$

- Finitely terminates with an optimal solution, even if (proper) removal from B is allowed, X is non compact and B = Ø at start (Phase 0)
- The subproblem to be solved is identical to that of DW
- Requires (\Longrightarrow exploits) extra information on the structure
- Master problem with any structure, possibly much larger

Stabilizing the Structured Dantzig-Wolfe Algorithm

• Exactly the same as stabilizing DW: stabilized master problem

 $(\Delta_{\mathcal{B},\bar{y},\mathcal{D}}) \qquad \min \left\{ f_{\mathcal{B}}(\bar{y}+d) + \mathcal{D}(d) \right\}$

except $f_{\mathcal{B}}$ is a different model of f (not the cutting plane one)

• Even simpler from the primal viewpoint [14]:

 $\max\left\{ cx + \bar{y}z - \mathcal{D}^{*}(z) : z \geq Ax - b, \ z \geq 0, \ x = C_{\mathcal{B}}\theta_{\mathcal{B}}, \ \Gamma_{\mathcal{B}}\theta_{\mathcal{B}} \leq \gamma_{\mathcal{B}} \right\}$

- With proper choice of \mathcal{D} , still a(sparsely structured) Linear Program
- Dual optimal variables of " $z \ge Ax b$ " still give d^*, \ldots
- How to move \bar{y} , handle *t*, handle \mathcal{B} : basically as in [9], actually even somewhat simpler because \mathcal{B} is inherently finite
- Funnily, aggregation $\mathcal{B} = \mathcal{B} \cup \{x^*\}$ is also possible, up to

 $\mathcal{B} = \{ x^* \} \equiv$ "poorman" method

although clearly contrary to the spirit of S^2DW

^[14] F., Gendron "A Stabilized Structured Dantzig-Wolfe Decomposition Method" Mathematical Programming 2013

Structured Decomposition for Multicommodity Flows

- All nice and well, but how can we come up with a $x = C\theta$?
- Surprisingly simple: use the node-arc formulation
- Start with "empty graph", find paths: if a node/arc is missing, add it
- Intermediate formulation between node-arc and arc-path
- Would seem to generalize to many other network-structured problems
- Current implementation heavily relies on Cplex preprocessor it may be preferable to do the path splitting by hand
- Current implementation is not stabilized at all

(Preliminary) Computational results

- Ad-hoc code (including in general Bundle non trivial, but possible)
 [15]
- No stabilization (but probably none needed)
- Still using Cplex as main driving force
- Comparing also against direct use of Cplex (tuned)
- Exactly the same subproblem solver (FiOracle)
- Surely can be improved a lot (e.g. explicit graph operations)
- Same instances, same machine

^[15] F., Gorgone "Bundle methods for sum-functions with "easy" components: applications to multicommodity network design" Mathematical Programming 2014

Computational Results: Planar & Grid Instances

	0		*		SDW		Cplex
	time	it.	time	it.	time	it.	time
grid7	2.5	12	2.12	14	1.29	9	54.73
grid8	18.52	18	18.33	19	23.81	12	1745.65
grid9	36.04	15	36.04	15	193.53	12	***
grid10	54.51	15	54.51	15	596.83	13	***
grid12	61.64	11	61.24	10	881.37	11	***
grid14	433.64	11	230.66	11	6086.84	11	***
planar100	2.16	14	1.42	13	2.66	8	43.90
planar150	25.75	17	25.75	17	183.94	11	4239.98
planar300	21.34	13	21.34	13	112.87	9	5127.74
planar500	15.27	11	10.84	11	25.16	7	***

- *** = out of time limit (6400 seconds): Cplex clearly worst
- SDW seldom competitive here, although much better than Cplex
- $\eta = 0$ not a bad choice overall, but not necessarily best

Computational Results: Goto & Mnetgen Instances

	0 =	SDV	V	Cplex	
	time	it.	time	it.	time
Goto6-100	1.05	25	0.60	11	0.67
Goto6-400	1.45	15	2.42	14	14.22
Goto6-800	2.41	12	5.54	15	64.09
Goto8-10	2.96	75	0.11	8	0.11
Goto8-100	3.43	21	1.45	14	5.63
Goto8-400	5.88	16	11.12	17	105.13
Goto8-800	3.12	11	17.23	18	326.01
128-32	17.66	57	3.90	6	0.32
128-32	57.23	46	15.08	6	0.87
128-64	95.45	34	32.66	7	1.61
128-128	5.68	109	0.25	5	0.05
256-8	31.65	140	0.80	6	0.07
256-16	146.37	148	4.97	6	0.28
256-32	400.59	117	23.95	6	1.07
256-64	563.66	86	61.45	7	1.69

• SDW is not often the best, but it is never the worst

Computational Results: Waxman [& Rmnet] Instances

	0		0.8 =	*	SDW		Cplex
	time	it.	time	it.	time	it.	time
W-50	1.43	3	0.03	3	0.32	7	1.12
W-100-6	1.53	2	0.04	2	0.39	7	1.20
W-100-10	1.34	3	0.22	3	1.11	6	3.14
W-100	1.50	2	0.72	2	0.86	2	22.49
W-150-6	2.44	2	0.63	2	2.93	6	33.82
W-150-10	1.23	3	0.14	2	3.54	4	10.38
W-150	3.23	3	0.67	3	2.14	3	52.21

- Er ... Rmnet not ready yet, sorry (preliminary I said)
- When few paths (= iterations) are required, SDW can't help much
- Still better than using Cplex directly, though
- \bullet Often better than standard decomposition with non-optimal η

• After 50+ years, Multicommodity flows still inspirational to NDO

- After 50+ years, Multicommodity flows still inspirational to NDO
- DW decomposition = CP is a very old idea, very well-understood; yet, by-the-book decomposition is not effective enough

- After 50+ years, Multicommodity flows still inspirational to NDO
- DW decomposition = CP is a very old idea, very well-understood; yet, by-the-book decomposition is not effective enough
- Many possible ideas to improve on the standard approach, almost all of them based on reformulating the MP one way or other

- After 50+ years, Multicommodity flows still inspirational to NDO
- DW decomposition \equiv CP is a very old idea, very well-understood; yet, by-the-book decomposition is not effective enough
- Many possible ideas to improve on the standard approach, almost all of them based on reformulating the MP one way or other
- Substantial issue: what works best is "large" MPs so that "combinatorial tail" kicks in very quickly =>

- After 50+ years, Multicommodity flows still inspirational to NDO
- DW decomposition = CP is a very old idea, very well-understood; yet, by-the-book decomposition is not effective enough
- Many possible ideas to improve on the standard approach, almost all of them based on reformulating the MP one way or other
- Substantial issue: what works best is "large" MPs so that "combinatorial tail" kicks in very quickly =>
 Large MP time

- After 50+ years, Multicommodity flows still inspirational to NDO
- DW decomposition = CP is a very old idea, very well-understood; yet, by-the-book decomposition is not effective enough
- Many possible ideas to improve on the standard approach, almost all of them based on reformulating the MP one way or other
- Substantial issue: what works best is "large" MPs so that "combinatorial tail" kicks in very quickly =>
 - Large MP time
 - $\bullet \ \ ``Unstructured'' \ \ MPs \Longrightarrow general-purpose \ solvers$

- After 50+ years, Multicommodity flows still inspirational to NDO
- DW decomposition = CP is a very old idea, very well-understood; yet, by-the-book decomposition is not effective enough
- Many possible ideas to improve on the standard approach, almost all of them based on reformulating the MP one way or other
- Substantial issue: what works best is "large" MPs so that "combinatorial tail" kicks in very quickly =>
 - Large MP time
 - "Unstructured" MPs \implies general-purpose solvers
 - Hard to find the right trade-off between iterations and MP time

- After 50+ years, Multicommodity flows still inspirational to NDO
- DW decomposition = CP is a very old idea, very well-understood; yet, by-the-book decomposition is not effective enough
- Many possible ideas to improve on the standard approach, almost all of them based on reformulating the MP one way or other
- Substantial issue: what works best is "large" MPs so that "combinatorial tail" kicks in very quickly =>
 - Large MP time
 - $\bullet \ ``Unstructured'' \ MPs \Longrightarrow general-purpose \ solvers$
 - Hard to find the right trade-off between iterations and MP time
 - Need to exploit the structure of an unstructured problem (perhaps less contradictory than is sounds [16])

- After 50+ years, Multicommodity flows still inspirational to NDO
- DW decomposition = CP is a very old idea, very well-understood; yet, by-the-book decomposition is not effective enough
- Many possible ideas to improve on the standard approach, almost all of them based on reformulating the MP one way or other
- Substantial issue: what works best is "large" MPs so that "combinatorial tail" kicks in very quickly =>
 - Large MP time
 - $\bullet \ \ ``Unstructured'' \ \ MPs \Longrightarrow general-purpose \ solvers$
 - Hard to find the right trade-off between iterations and MP time
 - Need to exploit the structure of an unstructured problem (perhaps less contradictory than is sounds [16])
- Lesson to NDO: think outside the (black) box, all structure that is there has to be exploited

Visit Pisa in September! Come to AIRO 2015

