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The Multicommodity flow model

Graph G = (N,A), the generic Multicommodity flow model

min
∑

k∈K
∑

(i , j)∈A ckij x
k
ij (1)∑

(i , j)∈A xkij −
∑

(j ,i)∈A xkji = bk i ∈ N , k ∈ K (2)∑
k∈K xkij ≤ uij (i , j) ∈ A (3)

0 ≤ xkij ≤ ukij (i , j) ∈ A , k ∈ K (4)

Multiple source/sink commodities with individual capacities

Can assume w.l.o.g. only one source, but in principle need (4) then

In many cases, K = { (sk , tk , dk) }, ukij = +∞ “naturally”

Many generalizations (extra constraints, nonlinearities [1], . . . )

[1] F., Galli, Scutellà “Delay-Constrained Shortest Paths: Approx. Algorithms and Second-Order Cone Models” JOTA, to appear

[2] F., Galli. Stea “Optimal Joint Path Computation and Rate Allocation Real-time Traffic” The Computer Journal, to appear
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Multicommodity flow applications

Pervasive structure in most of combinatorial optimization

Interesting links with many hard problems (e.g. Max-Cut)

Very many practical applications: logistic, transportation,
telecommunications, energy, . . .

Very different cases:
transportation: very large (often time-space =⇒ acyclic) networks,
“few” commodities

telecommunications: “small” (undirected) networks, very many
(O(|N|2)) commodities

. . .

“Easy” in theory but “hard” in practice: very-large-scale LPs

The archetype of block-structured problems [3,4]

[3] Ford, Fulkerson “A Suggested Computation for Maximal Multicommodity Network Flows” Management Science 1958
[4] Dantzig, Wolfe “The Decomposition Principle for Linear Programs” Operations Research 1960
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Block-Structured Linear Programs

Block-structured LP:

(Π) max { cx : Ax ≤ b , x ∈ X = { x : Ex ≤ d } }

X =
⊗

k∈K X k = { xk : E kxk ≤ dk } ≡ Ax = b linking constraints

E1

Ek

A

…
E2

We know how to efficiently optimize upon X , for two reasons:

a bunch of (many, much) smaller problems instead of a large one

The X k have structure: Min-Cost Flow (MCF) or shortest path (SPT)

Many other applications (stochastic programs, . . . )
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Dantzig-Wolfe decomposition

Dantzig-Wolfe reformulation (temporarily assume X compact):
represent X by points instead

X =
{
x =

∑
x̄∈X x̄θx̄ :

∑
x̄∈X θx̄ = 1 , θx̄ ≥ 0 x̄ ∈ X

}
then reformulate (Π) in terms of the convex multipliers θ

(Π)


max c

( ∑
x̄∈X x̄θx̄

)
A
( ∑

x̄∈X x̄θx̄
)
≤ b∑

x̄∈X θx̄ = 1 , θx̄ ≥ 0 x̄ ∈ X

Could this ever be a good idea? Actually, it could:
polyhedra may have few faces and many vertices . . . or vice-versa

n-cube |xi | ≤ 1 ∀ i 2n faces 2n vertices

n-co-cube
∑

i |xi | ≤ 1 2n faces 2n vertices
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Dantzig-Wolfe decomposition ≡ Lagrangian relaxation

Actually, only the vertices V ⊂ X of X are required

Except, most often the number of vertices is too large

AXθ=bAXθ=b
eθ=1eθ=1

Ax=bAx b≤
Ex≤dEx≤d

AXθ=bAXθ b
eθ=1eθ=1

≤

But, if we can efficiently optimize over X , we can generate vertices

B ⊂ X (small), solve restriction of (Π) with X → B, i.e.,

(ΠB) max { cx : Ax ≤ b , x ∈ conv(B) }

feed (partial) dual optimal solution y∗ (of Ax = b) to pricing problem

(Πy∗) max { (c − y∗A)x : x ∈ X } [ + y∗b ]

a.k.a. Lagrangian relaxation

Use primal optimal solution x̄ of (Πy∗) to enlarge B
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The NDO Perspective: the Lagrangian dual

Dual of (ΠB):

(∆B)
min

{
yb + v : v ≥ (c − yA)x x ∈ B

}
= min

{
fB(y) = max { cx + y(b − Ax) : x ∈ B } , y ≥ 0

}
(note: x ∈ B “constraints index”)

fB = lower approximation of “true” Lagrangian function

f (y) = max { cx + y(b − Ax) : x ∈ X }

“easy” computability of f (y) the only requirement

Thus, (∆B) outer approximation of the Lagrangian dual

(∆) min
{
f (y) = max { cx + y(b − Ax) : x ∈ X } , y ≥ 0

}
that is equivalent to (Π)

Dantzig-Wolfe decomposition ≡ Cutting Plane approach to (∆) [5]

[5] Kelley “The Cutting-Plane Method for Solving Convex Programs” Journal of the SIAM 1960
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Geometry of the Lagrangian dual

y

f

x2

y*

fBx3
x4

x1

x5

x6
v*

v∗ = fB(y∗) lower bound on v(ΠB)

Optimal solution x̄ gives separator between (v∗, y∗) and epi f

(cx̄ ,Ax̄) = new row in (∆B) (subgradient of f at y∗)
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Issue with the approach: instability

y∗k+1 can be very far from y∗k , where fB is a “bad model” of f

f

fB

y*k y*k+1

. . . as a matter of fact, infinitely far

(ΠB) empty ≡ (∆B) unbounded ⇒ Phase 0 / Phase 1 approach

More in general: {y∗k } is unstable, has no locality properties ≡
convergence speed does not improve near the optimum
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The effects of instability

What does it mean?

a good (even perfect) estimate of
dual optimum is useless!

frequent oscillations of dual values

“bad quality” of generated columns

=⇒ tailing off, slow convergence

Upper bound (dual)

Lower bound (primal)

The solution is pretty obvious: stabilize it

Gedankenexperiment: starting from known dual optimum,
constrain duals in a box of given width

width time iter. columns
∞ 4178.4 % 509 % 37579 %

200.0 835.5 20.0 119 23.4 9368 24.9
20.0 117.9 2.8 35 6.9 2789 7.4

2.0 52.0 1.2 20 3.9 1430 3.8
0.2 47.5 1.1 19 3.7 1333 3.5

Works wonders! . . .
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Stabilized Dantzig-Wolfe

. . . if only we knew the dual optimum! (which we don’t)

Current point ȳ , box of size t > 0 around it

Stabilized dual master problem [6]

(∆B,ȳ ,t) min
{
fB( ȳ + d ) : ‖ d ‖∞ ≤ t

}
Corresponding stabilized primal master problem

(ΠB,ȳ ,t) max { cx+ȳ z−t‖ z ‖1 : z ≥ Ax−b , z ≥ 0 , x ∈ conv(B) }

i.e., just Dantzig-Wolfe with slacks

When stuck and z∗ = [Ax∗ − b]+ 6= 0, either move ȳ or enlarge t

Minor modifications to the master problem

How should one choose t?

Does this really work?

[6] Marsten, Hogan, Blankenship “The Boxstep Method for Large-scale Optimization” Operations Research 1975
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Computational results of the boxstep method (pds18)
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Left = distance from final dual optimum

right = relative gap with optimal value

All cases show a “combinatorial tail” where convergence is very quick

t = 1e3: “smooth but slow” until the combinatorial tail kicks in

t =∞: apparently trashing along until some magic threshold is hit

“intermediate” t work best
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Computational results of the boxstep method (pds30)
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t = 1e5: initially even worse than t =∞ but ends up faster

Clearly, some on-line tuning of t would be appropriate

A different stabilizing term would help? Already

(∆B,ȳ ,t) min
{
fB( ȳ + d ) + 1

2t ‖ d ‖
2
2

}
does [7,8], or even a more generic D( d ) =⇒ D∗( d ) in the primal [9]

[7] Lemaréchal “Bundle Methods in Nonsmooth Optimization” in Nonsmooth Optimization vol. 3, Pergamon Press, 1978

[8] Briant, Lemaréchal, et. al. “Comparison of bundle and classical column generation” Mathematical Programming 2006

[9] F. “Generalized Bundle Methods” SIAM Journal on Optimization 2002
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A 5-piecewise-linear function

Trust region on ȳ + small penalty close + much larger penalty farther [10]

d++-

+-

+- D

- s

+
+

-

+- +-

-

D*

Slightly simplified version: only 3 pieces.

d++-

+-

D

- s

+

+

-

+-

-

D*

[10] Ben Amor, Desrosiers, F. “On the choice of explicit stabilizing terms in column generation” Discrete Applied Math. 2009
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A 5-piecewise-linear master problem

(ΠB,ȳ ,D)



max c
( ∑

x̄∈B x̄θx̄
)
−ȳ (s− + w− − w+ − s+)
+γ−s− + δ−w− + δ+w+ + γ+s+

A
( ∑

x̄∈B x̄θx̄
)

+s− + w− − w+ − s+ = b∑
x̄∈B θx̄ = 1 , θx̄ ≥ 0 x̄ ∈ B

0 ≤ s− ≤ ζ− , 0 ≤ s+ ≤ ζ+

0 ≤ w− ≤ ε− , 0 ≤ w+ ≤ ε+

Same constraints as (ΠB), 4 slack variables for each constraint

Many parameters: widths Γ± and ∆±, penalties ζ± and ε±,
different roles for small and large penalties

Large penalties ζ± easily make (∆B,ȳ ,D) bounded =⇒ no Phase 0

3-pieces: either large penalty =⇒ small moves, or
small penalty =⇒ instability

5-pieces better than 3-pieces, 5-then-3 even better
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The Arc-Path Formulation of Multicommodity Flows

Assume each k ∈ K is a O-D pair sk–tk with demand dk

(natural in many cases, can be forced somewhat in general)

Arc-path formulation of Multicommodity Flows:

p ∈ Pk = { sk–tk paths }, cp cost, fp flow, P = ∪k∈KPk

min
∑

p∈P cpfp∑
p∈P : (i , j)∈p fp ≤ uij (i , j) ∈ A∑
p∈Pk fp = dk k ∈ K

fp ≥ 0 p ∈ P
Fewer constraints but exponentially many variables: oddly familiar?

In fact, just a disaggregated version of the Dantzig-Wolfe formulation

General principle: X = X 1 × X 2 × . . .× X |K | =⇒
conv(X ) = conv(X 1)× conv(X 2)× . . .× conv(X |K |)
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Dantzig-Wolfe and Multicommodity flows

Standard D-W: S = { (extreme) flows s = [x̄1,s , . . . , x̄k,s ] }

min
∑

s∈S
(∑

k∈K
∑

(i , j)∈A ckij x̄
k,s
ij

)
θs∑

s∈S
(∑

k∈K x̄k,sij − uij
)
θs ≤ 0 (i , j) ∈ A∑

s∈S θs = 1 , θs ≥ 0 s ∈ S

Disaggregated D-W: a different multiplier θks for each x̄k,s , with∑
s∈S θ

k
s = 1 k ∈ K

(clearly, previous case is θks = θhs , h 6= k) =⇒ better value

In NDO-speak: sum of models is better than model of the sum

Simple scaling leads to arc-path formulation: fp = dkθks

Many more columns but sparser, (a few) more rows

Master problem size (≈ time, or not) increases, but
convergence speed increases a lot ≡ consistent improvement [11]

[11] Jones, Lustig, Farwolden, Powell “Multicommodity Network Flows: The Impact of Formulation on Decomposition”
Mathematical Programming 1993
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Disaggregated decomposition

Easily extended to any decomposable X ≡ sum-function [12]

1.E-06

1.E-05

1.E-04

1.E-03

Iterations

Aggr.
Disaggr.

R
el

at
iv

e 
G

ap

Stabilized versions immediate

Is there anything more to say?

[12] Borghetti, F., Lacalandra, Nucci “Lagrangian Heuristics Based on Disaggregated Bundle Methods for Hydrothermal Unit
Commitment” IEEE Transactions on Power Systems 2003
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More Disaggregated Versions

Aggregation is arbitrary, then why “all or nothing”?

Partition C = (C1,C2, . . . ,Ch) of K

Partially aggregated model f CB with h (+1) components f iB,

each the sum over one Ci

Basically, θks = θhs for each (h, k) ∈ Ci × Ci

Exploring the trade-off between master problem size =⇒ time and
iterations, subproblem time remains the same

Aggregation index η ∈ [0, 1]:

h = |C | = max
{⌈

(1− η)|K |
⌉
, 1
}

0 = fully disaggregated, 1 = fully aggregated

How to choose the commodities in each Ci? In general open problem,

here just group commodities with “close original names”
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Even More Disaggregated Versions

But what is a commodity, anyway?

Modeler’s view: a product, origin-destination, stream of packets, . . .

Algorithm’s view: all that can be bunched together

Commodity-independent data ≡ bunch commodities with same origin

Why is that? Because you can solve a unique SPT for all of them

(which is because SPT has a funny auto-separability property)

From a modeling viewpoint, there is no reason to

(can always recover the original solution, less variables)

This impact how the master problem is formulated [11] . . .

or not: the Master Problem can be freely reformulated

Aggregation index η ∈ [−1, 0]: K the number of OD pairs,

h = |C | = max
{ ⌈
− η|K |

⌉
, |K |

}
−1 = ODP formulation, 0 = DSP formulation [11]

Again, commodities in a Ci just have “close destination node names”
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Dealing With Multiple-origin Commodities

What about commodities that have many origins (PSP in [11])?

Can always assume one origin (add a super-origin) . . .

but must add commodity-specific capacities on super-origin arcs

Data no longer commodity-independent, subproblems no longer SPTs

=⇒ cannot disaggregate by origin . . . or you can:

“just” consider individual capacities as complicating constraints

This is still a reformulation of the master problem,

has (almost) nothing to do with the original problem formulation

Obvious trade-off: simpler subproblems, harder master problem

(possibly many more rows, more columns but sparser ones)

TTBoOK haven’t been computationally explored to far
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(Preliminary, η ≥ 0) Computational Results

Generalized Bundle code using D∗t = ‖ · ‖1 (boxstep)

Latest Cplex as Master Problem Solver

Efficient implementation: overhead due to subgradient handling
significant

Limited effect of stabilization (not much need)

(Reasonably) efficient subproblem solution with MCFClass

http://www.di.unipi.it/optimize/Software/MCF.html

Many instances, some old, some new, from

http://www.di.unipi.it/optimize/Data/MMCF.html

Results for η < 0 still brewing, but these significant enough already
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Computational Results: Planar & Grid Instances

0 0.2 0.4 0.6 0.8 1
time it. time it. time it. time it. time it. time it.

grid7 2.5 12 2.91 13 2.39 15 2.12 14 2.62 18 285.76 1169
grid8 18.52 18 18.33 19 21.05 20 25.61 23 42.36 33 *** 3848
grid9 36.04 15 45.94 16 60.54 18 85.99 20 189.92 32 *** 2862

grid10 54.51 15 61.40 16 77.96 17 104.18 18 233.07 24 *** 3848
grid12 61.64 11 61.24 10 65.44 11 71.81 11 148.89 13 *** 2862
grid14 433.64 11 388.76 11 289.13 12 230.66 11 259.22 12 *** 2862

planar100 2.16 14 1.96 13 1.42 13 2.36 13 2.74 15 25.49 1400
planar150 25.75 17 29.11 17 28.77 17 30.44 19 35.49 23 *** 68896
planar300 21.34 13 22.86 14 23.54 14 24.12 15 24.71 14 1292.09 2967
planar500 15.27 11 14.75 11 13.91 11 12.71 12 10.84 11 197.62 317

Large, nasty instances (you’ll see later)

*** = out of time limit (6400 seconds): all for η = 1, clearly worst

Results somewhat erratic, but clearly η = 0 not always best
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Computational Results: Goto & Mnetgen Instances

0 0.2 0.4 0.6 0.8 1
time it. time it. time it. time it. time it. time it.

Goto6-100 1.05 25 1.33 30 1.39 35 1.67 44 1.40 69 16.09 926
Goto6-400 1.45 15 1.59 17 1.76 19 2.40 22 5.79 32 60.53 1272
Goto6-800 2.41 12 2.54 14 2.85 15 3.62 17 9.24 25 134.42 1709
Goto8-10 2.96 75 4.57 104 6.14 137 7.68 164 18.12 301 45.29 722

Goto8-100 3.43 21 4.86 27 4.98 31 5.58 45 13.73 79 388.32 2114
Goto8-400 5.88 16 8.13 18 11.03 20 14.68 23 24.86 36 582.66 2690
Goto8-800 3.12 11 3.30 12 4.53 13 6.34 15 10.32 20 82.93 729

128-32 17.66 57 27.64 76 23.54 91 31.09 128 32.92 222 294.03 2753
128-32 57.23 46 66.04 59 63.66 70 79.97 92 108.53 169 1337.79 5296
128-64 95.45 34 125.27 43 126.71 50 147.25 65 174.81 108 1750.57 3741

128-128 5.68 109 5.73 109 8.08 158 12.34 209 24.09 437 25.22 449
256-8 31.65 140 45.55 183 77.50 252 94.51 276 289.69 635 1020.79 1826

256-16 146.37 148 181.38 219 244.79 271 404.15 381 885.73 704 1856.84 2175
256-32 400.59 117 510.74 163 640.14 200 1081.34 299 1666.35 480 2740.50 2615
256-64 563.66 86 744.93 113 1108.17 143 1624.06 196 1834.86 293 2670.98 1821

. . . although in some cases η = 0 can be (almost) uniformly best
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Computational Results: Waxman & Rmnet Instances
0 0.2 0.4 0.6 0.8 1

time it. time it. time it. time it. time it. time it.
W-50 1.43 3 0.17 3 0.11 3 0.07 3 0.03 3 0.04 9

W-100-6 1.53 2 0.20 2 0.13 2 0.09 2 0.04 2 0.06 10
W-100-10 1.34 3 0.38 3 0.32 3 0.27 3 0.22 3 0.70 15

W-100 1.50 2 2.10 2 1.37 2 0.98 2 0.72 2 1.06 7
W-150-6 2.44 2 2.30 2 1.81 2 1.20 2 0.63 2 4.54 44

W-150-10 1.23 3 0.83 3 0.66 3 0.60 3 0.14 2 0.48 4
W-150 3.23 3 4.74 3 3.17 3 2.70 3 0.67 3 4.49 9

4-8-11-100 0.56 5 1.31 5 0.83 5 0.58 5 0.40 5 0.31 8
4-8-12-200 1.31 5 2.07 5 1.64 5 1.18 5 1.06 5 0.45 6
4-8-13-200 5.88 7 11.11 7 9.31 8 6.54 8 6.00 9 9.70 62
4-8-14-400 55.62 7 75.70 7 39.81 8 27.77 8 15.59 9 19.89 62
7-6-11-100 1.00 6 2.27 6 2.42 6 2.29 6 1.22 7 5.38 54
7-6-12-500 1.80 5 3.08 5 3.62 5 3.23 5 1.80 5 1.64 8
7-6-13-500 4.56 5 8.85 5 7.34 5 5.86 5 4.48 6 11.96 30

7-6-14-1000 30.29 5 35.54 5 27.04 5 24.58 5 12.57 6 30.26 38

. . . or (almost) uniformly worst (save for η = 1)

but often strange things happen (η = 1 can even be best)
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2 Dantzig-Wolfe decomposition
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5 Master Problem Reformulation III: Structured Decomposition

6 Conclusions

Caprara, Frangioni, Parriani (UniBo-Pi,OptIt) MP Formulations in Decomposition Aussois 2015 29 / 39



Structured Decomposition

Came out for a different (still multicommodity) problem [13]

D-W ≡ reformulation of X always in the same form . . .

or not, as we have already seen. But we can do better:

Assumption 1: alternative Formulation of “easy” set

X =
{
x = Cθ : Γθ ≤ γ

}
Assumption 2: B subset of rows and columns, padding with zeroes

ΓBθ̄B ≤ γB =⇒ Γ
[
θ̄B , 0

]
≤ γ

=⇒ XB =
{
x = CBθB : ΓBθB ≤ γB

}
⊆ X

Assumption 3: easy update of rows and columns

Given B, x̄ ∈ X , x̄ /∈ XB, it is “easy” to find B′ ⊃ B
(=⇒ ΓB′ , γB′) such that ∃ B′′ ⊇ B′ such that x̄ ∈ XB′′ .

[13] F., Gendron “0-1 reformulations of the multicommodity capacitated network design problem” Discrete Applied Math. 2009
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The Structured Dantzig-Wolfe Algorithm

Structured master problem ≡ structured model

(ΠB) max
{
cx : Ax ≤ b , x = CBθB , ΓBθB ≤ γB

}
fB(y) = max{ (c − yA)x + xb : x = CBθB , ΓBθB ≤ γB }

〈 initialize B 〉;
repeat

〈 solve (ΠB) for x∗, y∗ (duals of Ax ≤ b); v∗ = cx∗ 〉;
x̄ = argmin { (c − y∗A)x : x ∈ X };
〈 update B as in Assumption 3 〉;

until v∗ < cx̄ + y∗(b − Ax̄)

Finitely terminates with an optimal solution, even if (proper) removal
from B is allowed, X is non compact and B = ∅ at start (Phase 0)

The subproblem to be solved is identical to that of DW

Requires (=⇒ exploits) extra information on the structure

Master problem with any structure, possibly much larger
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Stabilizing the Structured Dantzig-Wolfe Algorithm

Exactly the same as stabilizing DW: stabilized master problem

(∆B,ȳ ,D) min
{
fB( ȳ + d ) +D( d )

}
except fB is a different model of f (not the cutting plane one)

Even simpler from the primal viewpoint [14]:

max
{
cx + ȳ z−D∗(z) : z ≥ Ax−b , z ≥ 0 , x = CBθB , ΓBθB ≤ γB

}
With proper choice of D, still a(sparsely structured) Linear Program

Dual optimal variables of “z ≥ Ax − b” still give d∗, . . .

How to move ȳ , handle t, handle B: basically as in [9], actually even
somewhat simpler because B is inherently finite

Funnily, aggregation B = B ∪ { x∗ } is also possible, up to

B = { x∗ } ≡ “poorman” method

although clearly contrary to the spirit of S2DW

[14] F., Gendron “A Stabilized Structured Dantzig-Wolfe Decomposition Method” Mathematical Programming 2013
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Structured Decomposition for Multicommodity Flows

All nice and well, but how can we come up with a x = Cθ?

Surprisingly simple: use the node-arc formulation

Start with “empty graph”, find paths: if a node/arc is missing, add it

Intermediate formulation between node-arc and arc-path

Would seem to generalize to many other network-structured problems

Current implementation heavily relies on Cplex preprocessor

it may be preferable to do the path splitting by hand

Current implementation is not stabilized at all
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(Preliminary) Computational results

Ad-hoc code (including in general Bundle non trivial, but possible)
[15]

No stabilization (but probably none needed)

Still using Cplex as main driving force

Comparing also against direct use of Cplex (tuned)

Exactly the same subproblem solver (FiOracle)

Surely can be improved a lot (e.g. explicit graph operations)

Same instances, same machine

[15] F., Gorgone “Bundle methods for sum-functions with “easy” components: applications to multicommodity network design”
Mathematical Programming 2014

Caprara, Frangioni, Parriani (UniBo-Pi,OptIt) MP Formulations in Decomposition Aussois 2015 34 / 39



Computational Results: Planar & Grid Instances

0 * SDW Cplex
time it. time it. time it. time

grid7 2.5 12 2.12 14 1.29 9 54.73
grid8 18.52 18 18.33 19 23.81 12 1745.65
grid9 36.04 15 36.04 15 193.53 12 ***

grid10 54.51 15 54.51 15 596.83 13 ***
grid12 61.64 11 61.24 10 881.37 11 ***
grid14 433.64 11 230.66 11 6086.84 11 ***

planar100 2.16 14 1.42 13 2.66 8 43.90
planar150 25.75 17 25.75 17 183.94 11 4239.98
planar300 21.34 13 21.34 13 112.87 9 5127.74
planar500 15.27 11 10.84 11 25.16 7 ***

*** = out of time limit (6400 seconds): Cplex clearly worst

SDW seldom competitive here, although much better than Cplex

η = 0 not a bad choice overall, but not necessarily best
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Computational Results: Goto & Mnetgen Instances
0 = * SDW Cplex
time it. time it. time

Goto6-100 1.05 25 0.60 11 0.67
Goto6-400 1.45 15 2.42 14 14.22
Goto6-800 2.41 12 5.54 15 64.09

Goto8-10 2.96 75 0.11 8 0.11
Goto8-100 3.43 21 1.45 14 5.63
Goto8-400 5.88 16 11.12 17 105.13
Goto8-800 3.12 11 17.23 18 326.01

128-32 17.66 57 3.90 6 0.32
128-32 57.23 46 15.08 6 0.87
128-64 95.45 34 32.66 7 1.61

128-128 5.68 109 0.25 5 0.05
256-8 31.65 140 0.80 6 0.07

256-16 146.37 148 4.97 6 0.28
256-32 400.59 117 23.95 6 1.07
256-64 563.66 86 61.45 7 1.69

SDW is not often the best, but it is never the worst
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Computational Results: Waxman [& Rmnet] Instances

0 0.8 = * SDW Cplex
time it. time it. time it. time

W-50 1.43 3 0.03 3 0.32 7 1.12
W-100-6 1.53 2 0.04 2 0.39 7 1.20

W-100-10 1.34 3 0.22 3 1.11 6 3.14
W-100 1.50 2 0.72 2 0.86 2 22.49

W-150-6 2.44 2 0.63 2 2.93 6 33.82
W-150-10 1.23 3 0.14 2 3.54 4 10.38

W-150 3.23 3 0.67 3 2.14 3 52.21

Er . . . Rmnet not ready yet, sorry (preliminary I said)

When few paths (= iterations) are required, SDW can’t help much

Still better than using Cplex directly, though

Often better than standard decomposition with non-optimal η
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Conclusions and (a lot of) future work

After 50+ years, Multicommodity flows still inspirational to NDO

DW decomposition ≡ CP is a very old idea, very well-understood;
yet, by-the-book decomposition is not effective enough

Many possible ideas to improve on the standard approach, almost
all of them based on reformulating the MP one way or other

Substantial issue: what works best is “large” MPs

so that “combinatorial tail” kicks in very quickly =⇒

Large MP time

“Unstructured” MPs =⇒ general-purpose solvers

Hard to find the right trade-off between iterations and MP time

Need to exploit the structure of an unstructured problem

(perhaps less contradictory than is sounds [16])

Lesson to NDO: think outside the (black) box,
all structure that is there has to be exploited

[16] Kiwiel “An alternating linearization bundle method for . . . and nonlinear multicommodity flow problems” Math. Prog. 2013
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