Advanced Decomposition Methods
Part I: all is one, one is all

Antonio Frangioni
Dipartimento di Informatica, Università di Pisa

COST/MINO Ph.D. School on Advanced Optimization Methods

Roma — June 8, 2016
Outline

1. Block-Structured (Mixed-Integer NonLinear) Programs
2. Dual decomposition (Dantzig-Wolfe/Lagrangian/Column Generation)
3. Primal decomposition (Benders’/Resource)
4. The Integer Case
5. Example Applications (the Reformulation before the Reformulation)
6. Conclusions (for now)
Many applications of Mixed-Integer NonLinear Programming are large-scale: millions/billions of variables/constraints

Good news: (almost) all large-scale problems are block-structured

Usually several nested forms of structure, but two main ones:

- **Block-diagonal**: complicating constraints
- **Staircase-structured**: complicating variables

Relaxing constraints / fixing variables yields independent subproblems

\[\rightarrow \text{much easier because of size and/or structure (integrality, \ldots)} \]
Example I: Two-stage Stochastic (Linear) Programs

- Problems involving decisions over time and uncertainty
- First-stage (here-and-now) decisions x, constraints $E_0 x \leq b_0$
- Set S of scenarios, realization known only after deciding x
- Recourse decisions z_s, different for each scenario $s \in S$, constraints $E_0^s x + E_s z_s \leq b_s$
- Minimize here-and-now cost plus average cost of reserve actions
 \[
 \min \left\{ c_0 x + \sum_{s \in S} \pi_s c_s z_s : E_0 x \leq b_0, \ E_0^s x + E_s z_s \leq b_s \quad s \in S \right\}
 \]
- Extends to multi-stage (structure repeats “fractally” into each E_s)
- Often other structures inside E, network a common one
- Extends to nonlinear risk measures (CVaR, . . .), integer variables, . . .
- Many applications: energy\cite{1}, water, logistics, telecom, finance, . . .

\[1\] Tahanan, van Ackooij, F., Lacalandra “Large-scale Unit Commitment under uncertainty” 4OR 2015
Example II: (Linear) Multicommodity Network Design

- Graph $G = (N, A)$, multicommodity network design model

$$\min \sum_{k \in K} \sum_{(i,j) \in A} d^k c^k_{ij} x^k_{ij} + \sum_{(i,j) \in A} f_{ij} z_{ij}$$

(1)

$$\sum_{(i,j) \in A} x^k_{ij} - \sum_{(j,i) \in A} x^k_{ji} = \begin{cases} 1 & \text{if } i = s^k \\ 1 & \text{if } i = t^k \\ 0 & \text{otherwise} \end{cases} \quad i \in N, \ k \in K$$

(2)

$$\sum_{k \in K} d^k x^k_{ij} \leq u_{ij} z_{ij} \quad (i,j) \in A$$

(3)

$$x^k_{ij} \in [0, 1] \quad (i,j) \in A, \ k \in K$$

(4)

$$z_{ij} \in \{0, 1\} \quad (i,j) \in A$$

(5)

- $K \equiv \text{commodities} \equiv (s^k, t^k, d^k)$ (not completely generic)

- Pervasive structure in most of combinatorial optimization

- Many applications: logistic, transportation, telecom, energy, . . .

Dual decomposition, a.k.a.
Inner Approximation
Dantzig-Wolfe decomposition
Lagrangian Relaxation
Column Generation
Block-diagonal Convex (Linear) Program

- **Block-diagonal program:** convex X, n "complicating" constraints

$$ (\Pi) \quad \max \{ \, cx : Ax = b \ , \ x \in X \, \} $$

e.g., $X = \{ \, x : Ex \leq d \, \} = \bigotimes_{k \in K} \left(X^k = \{ \, x^k : E^k x^k \leq d^k \, \} \right)$

($|K|$ large \implies (\Pi) very large), $Ax = b$ linking constraints

- **We can efficiently optimize upon** X, for different reasons:
 - a bunch of (many, much) smaller problems instead of a large one
 - X has (the X^k have) structure (shortest path, knapsack, ...)

(much more so than solving the whole of (\Pi), anyway)

- **In other words we could efficiently solve** (\Pi) if linking constraints were removed: how to exploit it?
Dantzig-Wolfe reformulation

- Dantzig-Wolfe reformulation\cite{Dantzig60}: X convex \Rightarrow represent it by points

$$X = \{ x = \sum_{\bar{x} \in X} \bar{x} \theta_{\bar{x}} : \sum_{\bar{x} \in X} \theta_{\bar{x}} = 1 , \theta_{\bar{x}} \geq 0 \quad \bar{x} \in X \}$$

then reformulate (Π) in terms of the convex multipliers θ

$$\begin{align*}
(\Pi) \quad \begin{cases}
\max & c \left(\sum_{\bar{x} \in X} \bar{x} \theta_{\bar{x}} \right) \\
A \left(\sum_{\bar{x} \in X} \bar{x} \theta_{\bar{x}} \right) & = b \\
\sum_{\bar{x} \in X} \theta_{\bar{x}} & = 1 , \theta_{\bar{x}} \geq 0 \quad \bar{x} \in X \end{cases}
\end{align*}$$

- only $n + 1$ rows (but how many columns?)
- note that “$\bar{x} \in X$” is an index, not a constraint (θ is the variable)

- A rather semi-infinite program, but “only” $\bar{x} \in \text{ext} X$ needed

- Not that this makes it any less infinite, unless X is a polytope (compact polyhedron) \Rightarrow finite set of vertices

Could this ever be a good idea? Actually, it could: polyhedra may have few faces and many vertices . . . or vice-versa

- **n-cube** \(|x_i| \leq 1 \quad \forall i \) \(2n \) faces \(2^n \) vertices
- **n-co-cube** \(\sum_i |x_i| \leq 1 \) \(2^n \) faces \(2n \) vertices

Except, most often the number of vertices is too large

A (linear) program with (exponentially/infinitely) many columns

But, efficiently optimize over \(X \) \(\rightleftharpoons \) generate vertices (\(\equiv \) columns)
Dantzig-Wolfe decomposition \equiv Column Generation

- $\mathcal{B} \subset X$ (small), solve restriction of (Π) with $X \rightarrow \mathcal{B}$, i.e.,

$$
(\Pi_{\mathcal{B}}) \begin{cases}
\max & \sum_{\bar{x} \in \mathcal{B}} (c \bar{x}) \theta_{\bar{x}} \\
\sum_{\bar{x} \in \mathcal{B}} (A \bar{x}) \theta_{\bar{x}} & = b \\
\sum_{\bar{x} \in \mathcal{B}} \theta_{\bar{x}} & = 1, \quad \theta_{\bar{x}} \geq 0 \quad \bar{x} \in \mathcal{B}
\end{cases}
$$

- "master problem" (\mathcal{B} small, not too costly)
- note how the parentheses have moved: linearity is needed (for now)

- If \mathcal{B} contains the “right” columns, $x^* = \sum_{\bar{x} \in \mathcal{B}} \bar{x}\theta_{\bar{x}}^*$ optimal for (Π)

- How do I tell if \mathcal{B} contains the “right” columns? Use duality

$$
(\Delta_{\mathcal{B}}) \min \{ \ yb + v : v \geq c\bar{x} - y(A\bar{x}) \quad \bar{x} \in \mathcal{B} \}
$$

$$
= \min \{ \ f_{\mathcal{B}}(y) = \max \{ \ c\bar{x} + y(b - A\bar{x}) : \bar{x} \in \mathcal{B} \} \}
$$

one constraint for each $\bar{x} \in \mathcal{B}$
Dantzig-Wolfe decomposition ≡ Lagrangian relaxation

- Dual of (Π): \((\Delta) \equiv (\Delta_X)\) (many constraints)

- \(f_B = \) lower approximation of Lagrangian function

\[
(\Pi_y) \quad f(y) = \max \{ cx + y(b - Ax) : x \in X \}
\]

- Assumption: optimizing over \(X\) is “easy” for each objective \(\Rightarrow\) obtaining \(\bar{x}\) s.t. \(f(y) = c\bar{x} + y(b - A\bar{x})\) is “easy”

- Important: \((\Pi_y)\) Lagrangian relaxation\(^{[4]}\), \(f(y) \geq v(\Pi) = v(\Delta) \forall y\)
 provided \((\Pi_y)\) is solved exactly (or at least a \(\bar{f} \geq f(y)\) is used)

- Thus, \((\Delta_B)\) outer approximation of the Lagrangian dual

\[
(\Delta) \quad \min \{ f(y) = \max \{ cx + y(b - Ax) : x \in X \} \}
\]

\(^{[4]}\) Geoffrion “Lagrangean relaxation for integer programming” Mathematical Programming Study 1974
Lagrangian duality vs. Linear duality

- Note about the LP case \(X = \{ x : Ex \leq d \} \):

 \[
 (\Delta) \quad \min \left\{ yb + \max \left\{ (c - yA)x : Ex \leq d \right\} \right\} \\
 \equiv \min \left\{ yb + \min \left\{ wd : wE = c - yA, \, w \geq 0 \right\} \right\} \\
 \equiv \min \left\{ yb + wd : wE + yA = c, \, w \geq 0 \right\} \\
 \equiv \text{exactly the linear dual of } (\Pi)
 \]

- \(y \) “partial” duals: duals \(w \) of \(Ex \leq d \) “hidden” in the subproblem

- There is only one duality

- Will repeatedly come in handy
Dantzig-Wolfe decomposition \equiv Dual row generation

- Primal/dual optimal solution \(x^*/(v^*, y^*) \) out of \((\Pi_B)/(\Delta_B) \)
- \(x^* \) feasible to \((\Pi) \), so optimal \(\iff (v^*, y^*) \) feasible to \((\Delta) \)
 \[\iff v^* \geq (c - y^*A)x \quad \forall x \in X \]
 \[\iff v^* \geq \max \{ (c - y^*A)x : x \in X \} \]
- In fact: \(v^* \geq (c - y^*A)\bar{x} \equiv y^*b + v^* \geq f(y^*) \implies \\
 v(\Pi) \geq cx^* = y^*b + v^* \geq f(y^*) \geq v(\Delta) \geq v(\Pi) \implies \\
 x^*/(v^*, y^*) \) optimal
- Otherwise, \(B = B \cup \{ \bar{x} \} \): add new column to \((\Pi_B) \) / row to \((\Delta_B) \), rinse, repeat
- Clearly finite is \(ext X \) is, globally convergent anyway:
 the cutting plane algorithm for convex programs\(^5\) (applied to \((\Delta) \))

v^* = f_B(y^*) lower bound on \(v(\Pi_B) \)
Geometry of the Lagrangian dual

- $v^* = f_B(y^*)$ lower bound on $v(\Pi_B)$
- Optimal solution \bar{x} gives separator between (v^*, y^*) and $\text{epi } f$
Geometry of the Lagrangian dual

- $v^* = f_B(y^*)$ lower bound on $v(\Pi_B)$
- Optimal solution \bar{x} gives separator between (v^*, y^*) and $epi \ f$
- $(c\bar{x}, A\bar{x}) = \text{new row in } (\Delta_B)$ (subgradient of f at y^*)
Dantzig-Wolfe decomposition \equiv Inner Approximation

- “Abstract” view of (Π_B): $\text{conv}(B)$ inner approximation of X

$$\begin{align*}
(\Pi_B) \quad \max \{ \ cx : \ Ax = b , \ x \in \text{conv}(B) \ \} \\
\end{align*}$$

- x^* solves the Lagrangian relaxation of (Π_B) with y^*, i.e.,

$$x^* \in \arg\max \{ \ (c - y^*A)x : \ x \in \text{conv}(B) \ \}$$

$$\implies (c - y^*A)x \leq (c - y^*A)x^* \text{ for each } x \in \text{conv}(B) \subseteq X$$

- $(c - y^*A)\bar{x} = \max\{ (c - y^*A)x : x \in X \} \geq (c - y^*A)x^*$

- Column \bar{x} has positive reduced cost

$$(c - y^*A)(\bar{x} - x^*) = (c - y^*A)\bar{x} - cx^* + y^*b = (c - y^*A)\bar{x} - v^* > 0$$

$$\implies \bar{x} \notin \text{conv}(B) \implies \text{makes sense to add } \bar{x} \text{ to } B$$
\[\mathbf{Ax} = \mathbf{b} \]

\[\mathbf{c - y}^* \mathbf{A} \]

\[\text{conv}(\mathbf{B}) \cap \mathbf{Ax} = \mathbf{b} \]

\[\text{from all } x \in X \text{ better than } x^* \]
c − y*A separates $conv(B) \cap Ax = b$ from all $x \in X$ better than x^*

Thus, optimizing it allows finding new points (if any)
Geometry of Dantzig-Wolfe/Column Generation

- $c - y^*A$ separates $\text{conv}(B) \cap Ax = b$ from all $x \in X$ better than x^*
- Thus, optimizing it allows finding new points (if any)
- Issue: $\text{conv}(B) \cap Ax = b$ must be nonempty
Extension I: the Unbounded Case

- X unbounded \iff $\text{rec } X \supset \{0\} \implies f(y) = v(\Pi_y) = \infty$ happens
- $X = \text{conv}(\text{ext } X = X_0) + \text{cone}(\text{ext } \text{rec } X = X_\infty)$
- $B = (B_0 \subset X_0) \cup (B_\infty \subset X_\infty) = \{\text{points } \bar{x}\} \cup \{\text{rays } \bar{\chi}\} \implies$
 $$
 (\Pi_B) \begin{cases}
 \max & c \left(\sum_{\bar{x} \in B_0} \bar{x} \theta_{\bar{x}} + \sum_{\bar{\chi} \in B_\infty} \bar{\chi} \theta_{\bar{\chi}} \right) \\
 A \left(\sum_{\bar{x} \in B_0} \bar{x} \theta_{\bar{x}} + \sum_{\bar{\chi} \in B_\infty} \bar{\chi} \theta_{\bar{\chi}} \right) = b \\
 \sum_{\bar{x} \in B_0} \theta_{\bar{x}} = 1 \\
 \theta_{\bar{x}} \geq 0 \quad \bar{x} \in B_0, \quad \theta_{\bar{\chi}} \geq 0 \quad \bar{\chi} \in B_\infty
 \end{cases}
 $$
- In (Δ_B), constraints $y(A\bar{\chi}) \geq c\bar{\chi}$ (a.k.a. “feasibility cuts”)
- (Π_{y^*}) unbounded \iff $(c - y^* A)\bar{\chi} > 0$ for some $\bar{\chi} \in \text{rec } X$
 (violated constraint) $\implies B_\infty = B_\infty \cup \{\bar{\chi}\}$
- $(\Delta) = \min \{ f(y) : y \in Y \}$, (Π_{y^*}) provides either subgradients of f
 (a.k.a. “optimality cuts”), or violated valid inequalities for Y
Extension II: the Nonlinear Case

- Nonlinear case: \(c(\cdot) \) concave, \(A(\cdot) \) component-wise convex

 \((\Pi)\) \(\max \ \{ c(x) : A(x) \leq b , \ x \in X \} \)

 \((\Delta)\) \(\max \ \{ f(y) = yb + \max \ \{ c(x) - yA(x) : x \in X \} : y \geq 0 \} \)

- Any \(\bar{x} \in X \) still gives \(f(y) \geq c(\bar{x}) + y(b - A(\bar{x})) \), same \((\Delta_B) / (\Pi_B)\)

- \(c(\sum_{\bar{x} \in B} \bar{x} \theta_{\bar{x}}) \geq \sum_{\bar{x} \in B} c(\bar{x}) \theta_{\bar{x}} \) \((c(\cdot) \) concave),

 \(A(\sum_{\bar{x} \in B} \bar{x} \theta_{\bar{x}}) \leq \sum_{\bar{x} \in B} A(\bar{x}) \theta_{\bar{x}} \leq b \) \((A(\cdot) \) convex) \implies

 \((\Pi_B)\) safe inner approximation \((\nu(\Pi_B) \leq \nu(\Pi))\)

- Basically everything keeps working, but you may need constraint qualification\(^6\) (usually easy to get)

Primal decomposition, a.k.a.
Outer Approximation
Benders’ decomposition
Resource decomposition
Staircase-structured Convex (Linear) Program

- Staircase-structured program: convex X, “complicating” variables

$$\max \{ cx + ez : Dx + Ez \leq d , \ x \in X \}$$

e.g, $Dx + Ez \leq d \equiv D_k x + E_k z_k \leq d_k \ k \in K \ (|K| \text{ large}) \implies$

$$Z(x) = \{ z : Ez \leq d - Dx \}$$

$$= \bigotimes_{k \in K} (Z_k(x) = \{ z_k : E_k z_k \leq d_k - D_k x \})$$

- We can efficiently optimize upon $Z(x)$, for different reasons:
 - a bunch of (many, much) smaller problems instead of a large one
 - $Z(x)$ has (the $Z_k(x)$ have) structure (shortest path, knapsack, . . .)

(much more so than solving the whole of (Π), anyway)

- In other words we could efficiently solve (Π) if linking variables were fixed: how to exploit it?
Benders’ reformulation

- Benders’ reformulation: define the **convex value function**

 \[(B) \quad \max \left\{ \, cx + v(x) = \max \{ \, ez : Ez \leq d - Dx \, \} : x \in X \, \right\} \]

 (note: clearly \(v(x) = -\infty \) happens)

- Clever trick\(^7\): **use duality** to reformulate the inner problem

 \[v(x) = \min \left\{ \, w(d - Dx) : w \in W = \{ \, w : wE = e , w \geq 0 \, \} \, \right\} \]

 so that \(W \) does not depend on \(x \)

- As usual, \(W = \text{conv}(\text{ext} \, W = W_0) + \text{cone}(\text{ext rec} \, W = W_\infty) \implies \)

 \[(B) \quad \max \, cx + v \]

 \[\begin{align*}
 v & \leq \bar{w}(d - Dx) & \bar{w} & \in W_0 \\
 0 & \leq \bar{w}(d - Dx) & \bar{w} & \in W_\infty \\
 x & \in X
 \end{align*} \]

 still very large, but we can generate \(\bar{w} / \bar{w} \) by computing \(v(x) \)

Benders’ decomposition

- Select (small) $\mathcal{B} = (\mathcal{B}_0 \subset \mathcal{W}_0) \cup (\mathcal{B}_\infty \subset \mathcal{W}_\infty)$, solve master problem

 $\max \{ cx + \nu \}$

 $\nu \leq \bar{w}(d - Dx)$ \quad $\bar{w} \in \mathcal{B}_0$

 $0 \leq \bar{\omega}(d - Dx)$ \quad $\bar{\omega} \in \mathcal{B}_\infty$

 $x \in X$

 $= \max \{ cx + \nu_{\mathcal{B}}(x) : x \in X \cap \mathcal{V}_{\mathcal{B}} \}$, where

 $\nu_{\mathcal{B}}(x) = \min \{ \bar{w}(d - Dx) : \bar{w} \in \mathcal{B}_0 \} \geq \nu(x)$, $\mathcal{V}_{\mathcal{B}} \supseteq \text{dom } \nu$

- Find (primal) optimal solution x^*, compute $\nu(x^*)$, get either \bar{w} or $\bar{\omega}$, update either \mathcal{B}_0 or \mathcal{B}_∞, rinse & repeat

- Benders’ decomposition \equiv Cutting Plane approach to $\{B\}^{[5]}$

- Spookily similar to the Lagrangian dual, ain’t it?

- Except, constraints are now attached to dual objects \bar{w} / $\bar{\omega}$
Benders is Lagrange . . .

- Block-diagonal case

\[(\Pi) \quad \max \{ \ cx : \ Ax = b, \ Ex \leq d \} \]
\[(\Delta) \quad \min \{ \ yb + wd : \ wE + yA = c, \ w \geq 0 \} \]

Think of \(y \) as complicating variables in \((\Delta)\), you get

\[(\Pi) \quad \max \{ \ cx : \ Ax = b, \ Ey \leq d \} \]
\[(\Delta) \quad \min \{ \ yb + \min\{ \ wd : \ wE = c - yA, \ w \geq 0 \} \} \]
\[= \min \{ \ yb + \max\{ \ (c - yA)x : \ Ex \leq d \} \} \]

i.e., the Lagrangian dual of \(\Pi\)

- The value function of \((\Delta)\) is the Lagrangian function of \((\Pi)\)
...Lagrange is Benders...

- Dual of (Π) (linear case $X = \{ x : Ax = b \}$)

 (Π) \(\max \{ cx + ez : Dx + Ez \leq d, Ax = b \} \)

 (Δ) \(\min \{ yb + wd : yA + wD = c, wE = e, w \geq 0 \} \)

 Lagrangian dual of the dual constraints $yA + wD = c$ (multiplier x):

 (Δ) \(\max \{ \min \{ yb + wd + (c - yA + wD)x : wE = e, w \geq 0 \} \} \)

 \[= \max \{ cx + \min \{ y(b - Ax) + w(d - Dx) : wE = e, w \geq 0 \} \} \]

 \[= \max \{ cx + \min \{ y(b - Ax) \} + \]

 \[\min \{ w(d - Dx) : wE = e, w \geq 0 \} \} \]

 \[= \max \{ cx + \min \{ ez : Dx + Ez \leq e \} : Ax = b \} \]

 i.e., Benders’ reformulation of (Π)

- The Lagrangian function of (Δ) is the value function of (Π)
Both Lagrange and Benders boil down to

\[
\min \left\{ \phi(\lambda) : \lambda \in \Lambda \right\}
\]

with \(\Lambda\) and \(\phi\) convex, nondifferentiable, both only implicitly known by means of a (potentially costly) oracle that, given \(\bar{\lambda}\), provides:

- either \(\phi(\bar{\lambda}) < \infty\) and \(\bar{g} \in \partial \phi(\bar{\lambda}) \equiv \phi(\lambda) \geq \phi(\bar{\lambda}) + \bar{g}(\lambda - \bar{\lambda})\)
- or \(\phi(\bar{\lambda}) = \infty\) and a valid cut for \(\Lambda\) violated by \(\bar{\lambda}\)

“Natural” algorithm: the Cutting Plane method\(^5\) \(\equiv\) revised simplex method with mechanized pricing in the discrete case

Many other variants/algorithms possible (cf. Part II)
The Nonlinear Case

- Each $f(x, \cdot)$ and $G(x, \cdot)$ concave, Z convex:

 (Π) $\max \{ f(x, z) : G(x, z) \geq 0 , x \in X , z \in Z \}$

 (B) $\max \{ v(x) : x \in X \}$

 where $v(x) = \max \{ f(x, z) : G(x, z) \geq 0 , z \in Z \}$

 $(B) \equiv (\Pi)$ without assumptions on $f(\cdot, z), G(\cdot, z)$ and X (hard)

- Which duality would you use? Lagrangian\[8\], of course

 $v(x) = \min \{ \max \{ f(x, z) + \lambda G(x, z) : z \in Z \} : \lambda \geq 0 \}$

- Under appropriate constraint qualification, two cases occur:

 - either $\exists \bar{\lambda} \geq 0 , \bar{z} \in Z$ s.t. $v(x^*) = f(x^*, \bar{z}) + \bar{\lambda} G(x^*, \bar{z}) > -\infty$

 - or $v(x^*) = -\infty \implies \{ z \in Z : G(x^*, z) \geq 0 \} = \emptyset \implies \exists \bar{\nu} \geq 0 , \bar{z} \in Z$

 s.t. $\max \{ \bar{\nu} G(x^*, z) : z \in Z \} = \bar{\nu} G(x^*, \bar{z}) < 0$

The Nonlinear Case (cont.d)

- General form of the master problem
 \[(B) \quad \max v\]
 \[v \leq \max \{ f(x, z) + \bar{\lambda}G(x, z) : z \in Z \} \quad \bar{\lambda} \in \Lambda_0\]
 \[0 \leq \max \{ \bar{\nu}G(x^*, z) : z \in Z \} \quad \bar{\nu} \in \Lambda_\infty\]
 \[x \in X\]

- Er ... how on Earth do you manage those nasty “max”?

- Must be that the “max” can be done independently of \(x\)!

- Example: \(f(z_i)\) concave, univariate
 \[\max \{ \sum_i x_i f(z_i) : \sum_i x_i z_i \leq c, \quad z_i \geq 0, \quad A x \leq b, \quad x \geq 0 \}\]
 \[v(x) = \min_{\lambda} \sum_i \max \{ x_i (f(z_i) - \lambda z_i) : z_i \geq 0 \} + \lambda c\]
 \[v(x) \leq \sum_i x_i \max \{ (f(z_i) - \bar{\lambda} z_i) : z_i \geq 0 \} + \bar{\lambda} c\]

 can optimize on the \(z\) independently from the \(x\) \(\Rightarrow\)
 “normal” linear cuts
The Integer Case
Block-structured Integer Programs

- What if \(X \) combinatorial (e.g., \(X = \{ x \in \mathbb{Z}^n : Ex \leq d \} \))?

\[
(\Pi) \quad \max \{ cx : Ax = b, \ x \in X \}
\]

- The Lagrangian dual is

\[
(\Delta) \quad \min \{ yb + \max \{ (c - yA)x : x \in X \} \}
\]

nothing changes if we can still efficiently optimize over \(X \), e.g. due to size (decomposition) and/or structure (integrality)

- ... except we are solving a different problem:

\[
(\bar{\Pi}) \quad \left\{ \begin{array}{l}
\max \ c \left(\sum_{\bar{x} \in X} \bar{x} \theta_{\bar{x}} \right) \\
A \left(\sum_{\bar{x} \in X} \bar{x} \theta_{\bar{x}} \right) = b \\
\sum_{\bar{x} \in X} \theta_{\bar{x}} = 1 \quad , \quad \theta_{\bar{x}} \geq 0 \quad \bar{x} \in X
\end{array} \right.
\]

\[\equiv \max \{ cx : Ax = b, \ x \in \text{conv}(X) \}\]

i.e., a (potentially good) relaxation of \((\Pi)\)
Good news: \((\bar{\Pi})\) better (not worse) than continuous relaxation
\((\text{conv}(X) \subseteq \{ x \in \mathbb{R}^n : Ex \leq d \})\)

Bad news: if \((\Pi_y)\) “too easy” \((\text{conv}(X) = \{ x \in \mathbb{R}^n : Ex \leq d \})\), a.k.a. integrality property), then \((\bar{\Pi})\) same as continuous relaxation

Trade-off: \((\Pi_y)\) must be easy, but not too easy (no free lunch)

Anyway, at best gives good bounds \(\Rightarrow\)
Branch & Bound with DW/Lagrangian/CG \(\equiv\) Branch & Price

Branching nontrivial: may destroy subproblem structure
\(\Rightarrow\) branch on \(x\) (but \((\Pi_B)\) is on \(\theta\))

Lamentably little support from off-the-shelf tools: master problem gives a valid bound only at termination, although subproblem always gives one (but not associated to continuous feasible solution)
Digression: How to Choose your Lagrangian relaxation

- There may be many choices
 \((\Pi) \max \{ \ cx : \ Ax = b \ , \ Ex \leq d \ , \ x \in \mathbb{Z}^n \} \)
 \((\Pi'_y) \max \{ \ cx + y(b - Ax) : \ x \in X' = \{ x \in \mathbb{Z}^n : \ Ex \leq d \} \} \)
 \((\Pi''_w) \max \{ \ cx + w(d - Ex) : \ x \in X'' = \{ x \in \mathbb{Z}^n : \ Ax = b \} \} \)

- The best between \((\Delta') \) and \((\Delta'') \) depends on integrality of \(X', X'' \):
 - If both have it, both \((\Delta') \) and \((\Delta'') \) \(\equiv \) continuous relaxation
 - If only one has it, the one that does not, but if both don't have it?

- Here comes Lagrangian decomposition\(^9\) (scale by 1/2)
 \((\Pi) \equiv \max \{ \ cx' + cx'' : \ x' \in X' , \ x'' \in X'' , \ x' = x'' \} \)
 \((\Pi_\lambda) \max \{ (c + \lambda)x' : x' \in X' \} + \max \{ (c - \lambda)x'' : x'' \in X'' \} \)
 \((\bar{\Delta}) \equiv (\bar{\Pi}) \max \{ \ cx : \ x \in \text{conv}(X') \cap \text{conv}(X'') \} \)
 better than both (but need to solve two hard subproblems)

Geometry of Lagrangian Decomposition

Intersection between red and blue \equiv grey \equiv continuous relaxation

Lagrangian relaxation of blue constraints shrinks the red (= grey) part
Lagrangian relaxation of red constraints shrinks the blue (= grey) part
Lagrangian decomposition (both red and blue constraints) shrinks both \Rightarrow the grey part more

But the intersection of convex hulls is larger (bad) than the convex hull of the intersection

Intersection between red and blue \equiv grey \equiv continuous relaxation
Intersection between red and blue \equiv grey \equiv continuous relaxation

Lagrangian relaxation of blue constraints shrinks the red (= grey) part

Lagrangian relaxation of red constraints shrinks the blue (= grey) part

Lagrangian decomposition (both red and blue constraints) shrinks both \Rightarrow grey part more

But the intersection of convex hulls is larger (bad) than the convex hull of the intersection

Intersection between red and blue \equiv grey \equiv continuous relaxation

Lagrangian relaxation of blue constraints
Geometry of Lagrangian Decomposition

- Intersection between red and blue ≡ grey ≡ continuous relaxation
- Lagrangian relaxation of blue constraints shrinks the red (⇒ grey) part

A. Frangioni (DI — UniPi) Advanced Decomposition Methods I Roma 2016 32 / 42
Geometry of Lagrangian Decomposition

- Intersection between red and blue \equiv grey \equiv continuous relaxation
- Lagrangian relaxation of blue constraints shrinks the red (\rightarrow grey) part
- Lagrangian relaxation of red constraints
Intersection between red and blue \equiv grey \equiv continuous relaxation

- Lagrangian relaxation of blue constraints shrinks the red (\Rightarrow grey) part
- Lagrangian relaxation of red constraints shrinks the blue (\Rightarrow grey) part
Intersection between red and blue \equiv grey \equiv continuous relaxation

Lagrangian relaxation of blue constraints shrinks the red (\implies grey) part

Lagrangian relaxation of red constraints shrinks the blue (\implies grey) part

Lagrangian decomposition (both red and blue constraints)
Intersection between red and blue \equiv grey \equiv continuous relaxation

Lagrangian relaxation of blue constraints shrinks the red (\implies grey) part

Lagrangian relaxation of red constraints shrinks the blue (\implies grey) part

Lagrangian decomposition (both red and blue constraints) shrinks both \implies the grey part more
Geometry of Lagrangian Decomposition

- Intersection between red and blue \equiv grey \equiv continuous relaxation
- Lagrangian relaxation of blue constraints shrinks the red (\rightarrow grey) part
- Lagrangian relaxation of red constraints shrinks the blue (\rightarrow grey) part
- Lagrangian decomposition (both red and blue constraints) shrinks both \rightarrow the grey part more
- But the intersection of convex hulls is larger (bad) than the convex hull of the intersection
Digression: Alternative Good Formulations for $conv(X)$

- (Under mild assumptions) $conv(X)$ is a polyhedron \implies

 $$conv(X) = \{ x \in \mathbb{R}^n : \tilde{E}x \leq \tilde{d} \}$$

- There are good formulations for the problem

- Except, practically all good formulations are too large

 $$Ax = b \quad Ex \leq d \quad \implies \quad Ax = b \quad \tilde{E}x \leq \tilde{d}$$

- Very few exceptions (integrality property \approx networks)

- Good part: working in the natural variable space

- But a few more variables do as a lot more constraints:
The good news is: rows can be generated incrementally
Row generation/polyhedral approaches

- The good news is: rows can be generated incrementally

 Relevant concept: separator
Row generation/polyhedral approaches

- The good news is: rows can be generated incrementally

\[Ax = b \]

- Relevant concept: separator
Branch & Cut

- \(\mathcal{R} = \) (small) subset of row indices, \(E_R x \leq d_R \) reduced set

- Solve outer approximation to \(\bar{\Pi} \)
 \[
 \bar{\Pi}_R \quad \text{max} \{ \, c x : A x = b \, , \, E_R x \leq d_R \, \}
 \]
 feed the separator with primal optimal solution \(x^* \)

- Separator for (several sub-families of) facets of \(\text{conv}(X) \)

- Several general approaches, countless specialized ones

- Most often separators are hard combinatorial problems themselves
 (though using general-purpose MIP codes is an option\(^{[10]}\))

- May tail off, branching useful far before having solved \(\bar{\Pi}_X \)

\(^{[10]}\) Fischetti, Lodi, Salvagnin “Just MIP it!” MATHEURISTICS, Ann. Inf. Syst., 2009
Which is best?

- Row generation naturally allows multiple separators
- Very well integrated in general-purpose solvers
 (but harder to exploit “complex” structures)
- Column generation naturally allows very unstructured separators
- Simpler to exploit “complex” structures
 (but much less developed software tools)
- Column generation is row generation in the dual
- Then, of course, Branch & Cut & Price
 (nice, but software issues remain and possibly worsen)
Staircase-structured Integer Programs

- What if $X = \{ x \in \mathbb{Z}^n : E x \leq d \}$ combinatorial?

 \[(\bar{\Pi}) \quad \max \left\{ cx + ez : Ax + Bz \leq b, \; x \in X \right\} \]

- Nothing changes . . . except (B_B) now is combinatorial \implies hard

- However (B_W) now is equivalent to $(\bar{\Pi})$ \implies no branching needed
 (unless for solving (B_B)) \implies no Branch & Benders’

- Conversely, everything breaks down if $z \in \mathbb{Z}^m$: there is no (workable, exact) dual of an Integer Program

- Can do with “approximated” duals (strong formulations, RLT$^{[11]}$, . . .) but equivalence lost \implies branching again

Example Applications, a.k.a. the Reformulation before the Reformulation
(Very) Classical decomposition approaches for (2SILP)

- Here-and-now decisions are naturally complicating variables
- The (expected) value function decomposes by scenario
 \[v(x) = c_0 x + \sum_{s \in S} \pi_s \min \left\{ c_s z_s : E_s z_s \leq b_s - E_0^s x \right\} \]
- Alternative approach: split variables, introduce copy constraints
 \[
 \min c_0 x + \sum_{s \in S} \pi_s c_s z_s \\
 E_0 x \leq b_0 \\
 E_0^s x_s + E_s z_s \leq b_s , \quad x_s = x \quad s \in S
 \]
 relax them in a Lagrangian fashion
- Lagrangian approach chooses all variables for all scenarios (no unfeasibility), tries to make here-and-now agree by changing prices
- Difference more pronounced in multi-stage programs
Classical decomposition approaches for (MCND)

- Design (z) variables are “naturally” linking / complicating
 - What remains is flow/paths: convex even if integer
 - Benders’ cuts are metric inequalities\(^{[12]}\) defining the multiflow feasibility

- Resource decomposition\(^{[13]}\): add artificial linking variables
 \[
 d^k x^k_{ij} \leq u^k_{ij}, \quad \sum_{k \in K} u^k_{ij} \leq u_{ij}
 \]

- Different possible linking constraints:
 - (3): \implies flow (shortest path) relaxation (integrality property \equiv “easy”)
 - (2): \implies knapsack relaxation (only one integer variable per problem)
 - different efficiency (algorithm-dependent\(^{[14,15]}\)), others possible

Conclusions (for now)
Conclusions (part I)

- Structured (Integer) Programs are challenging, but structure can be exploited: main tools are reformulation + duality

- Two different approaches, “primal” and “dual”

- Different twists, different conditions to work:
 - who is complicating (constraints vs. variables), but tricks (≡ other reformulations) can be used to create the desired structure
 - who is reformulated (subproblem vs. master problem)
 - where integer/nonconvexity can be (subproblem vs. master problem)
 - where branching/cutting is done (subproblem vs. master problem)
 - where/which nonlinearities can be easily dealt with

- (For linear programs) Lagrange is Benders’ in the dual, and vice-versa

- Both boil down to the 50+-years old Cutting Plane algorithm\[5\]

- Has it aged well? We’ll see tomorrow