
The Long Road to Practical Decomposition Methods

Part I: Why Leaving the Bed At All?

Part II: A Long Journey Begins

Antonio Frangioni

Dipartimento di Informatica, Università di Pisa

“Napoli” — February 9, 2021

Meta–Outline

Part I: Why Leaving the Bed At All?

Part II: The Long Journey Begins

Part III: Many Twists and Turns

Part IV: A Useful Companion on the Road

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 1 / 49

Outline – Parts I & II

1 Why Leaving the Bed I

2 Why Leaving the Bed II

3 Dual decomposition (Dantzig-Wolfe/Lagrangian/Column Generation)

4 Primal decomposition (Benders’/Resource)

5 All Are One, One Is All

6 The Nonlinear and Integer Cases

7 Conclusions (for now)

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 2 / 49

Part I:
Why Leaving the Bed At All?

Why Leaving the Bed I:

“For Science”

(You Monster)

Why Leaving the Bed I:

“For Science”

(You Monster)

Why Leaving the Bed I:

“For Science”

(You Monster)

It All Starts with some Nice Structure

Your favourite structure
 HERE

You (or your boss) have a nice structure you know and love

. . . but you start feeling you are scraping the bottom of the barrel

Want to re-use what you know for solving something else:

maximise your scientific productivity (“for science”, of course)

Possible in many ways, but two particular ones of interest here

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 3 / 49

It All Starts with some Nice Structure

Your favourite structure
 HERE

You (or your boss) have a nice structure you know and love

. . . but you start feeling you are scraping the bottom of the barrel

Want to re-use what you know for solving something else:

maximise your scientific productivity

(“for science”, of course)

Possible in many ways, but two particular ones of interest here

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 3 / 49

It All Starts with some Nice Structure

Your favourite structure
 HERE

You (or your boss) have a nice structure you know and love

. . . but you start feeling you are scraping the bottom of the barrel

Want to re-use what you know for solving something else:

maximise your scientific productivity (“for science”, of course)

Possible in many ways, but two particular ones of interest here

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 3 / 49

Block-Structured Programs

…

Your favourite structure

 HERE

Your favourite structure

 HERE

…

Your favourite structure

 HERE

Your favourite structure

 HERE

block-diagonal ≡ staircase-structured ≡
complicating constraints complicating variables

Relaxing constraints / fixing variables yields independent subproblems
=⇒ much easier because of size and/or structure

Your beloved structure is still there

But you have to understand how to glue back the pieces

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 4 / 49

Block-Structured Programs

…

Your favourite structure

 HERE

Your favourite structure

 HERE

…

Your favourite structure

 HERE

Your favourite structure

 HERE

block-diagonal ≡ staircase-structured ≡
complicating constraints complicating variables

Relaxing constraints / fixing variables yields independent subproblems
=⇒ much easier because of size and/or structure

Your beloved structure is still there

But you have to understand how to glue back the pieces

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 4 / 49

Block-Structured Programs

…

Your favourite structure

 HERE

Your favourite structure

 HERE

…

Your favourite structure

 HERE

Your favourite structure

 HERE

block-diagonal ≡ staircase-structured ≡
complicating constraints complicating variables

Relaxing constraints / fixing variables yields independent subproblems
=⇒ much easier because of size and/or structure

Your beloved structure is still there

But you have to understand how to glue back the pieces

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 4 / 49

Block-Structured Programs

…

Your favourite structure

 HERE

Your favourite structure

 HERE

…

Your favourite structure

 HERE

Your favourite structure

 HERE

block-diagonal ≡ staircase-structured ≡
complicating constraints complicating variables

Relaxing constraints / fixing variables yields independent subproblems
=⇒ much easier because of size and/or structure

Your beloved structure is still there

But you have to understand how to glue back the pieces

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 4 / 49

My Own Poison: Multicommodity Network Design

My bosses ♥d shortest paths =⇒ I won multicommodity flows:

graph G = (N,A), commodities K ≡ (sk , tk , dk) (or general flows)

min
∑

k∈K
∑

(i , j)∈A dkckij x
k
ij +

∑
(i , j)∈A fijzij (1)∑

(i , j)∈A

xkij −
∑

(j ,i)∈A

xkji =

{
1 if i = sk

1 if i = tk

0 otherwise
i ∈ N , k ∈ K (2)

∑
k∈K dkxkij ≤ uijzij (i , j) ∈ A (3)

xkij ∈ [0, 1] (i , j) ∈ A , k ∈ K (4)

zij ∈ {0, 1} (i , j) ∈ A (5)

Pervasive structure in most of combinatorial optimization

Many applications: logistic, transportation, telecom, energy, . . .

Multicommodity flows is where actually it all began[1]

[1] Ford, Fulkerson “A Suggested Computation for Maximal Multicommodity Network Flows” Man. Sci., 1958

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 5 / 49

Does decomposition work?

Of course it does, in fact with several different approaches:

plain[2,3,4] or fancy[5] Lagrangian relaxation, even in parallel[6]

structured Dantzig-Wolfe decomposition[7,8]

Other approaches do as well, though:

structured Interior-Point methods[9]

structured active-set (simplex) methods[10]

All in all, lots of fun out of a simple shortest path

[2] F., Gallo “A Bundle Type Dual-Ascent Approach to Linear Multicommodity Min-Cost Flow Problems” IJoC, 1999

[3] Crainic, F., Gendron “Bundle-Based Relaxation Methods for Multicommodity [. . .] Network Design” DAM, 2001

[4] F., Gendron, Gorgone “On the Computational Efficiency of Subgradient Methods: [. . .]” Math. Prog. Comput., 2017

[5] Grigoriadis, Khachiyan “An Exponential Function Reduction Method for Block-Angular Convex Programs” Networks, 1995

[6] Cappanera, F. “Symmetric and Asymmetric Parallelization of a Cost-Decomposition Algorithm [. . .]” IJoC, 2003

[7] F., Gendron “A Stabilized Structured Dantzig-Wolfe Decomposition Method” Math. Prog., 2013

[8] Mamer, McBride “A Decomposition-Based pricing Procedure for Large-Scale Linear Programs [. . .]” Man. Sci., 2000

[9] Castro “Solving Difficult Multicommodity Problems Through a Specialized Interior-Point Algorithm” Ann. OR, 2003

[10] McBride “Progress Made in Solving the Multicommodity Flow Problem” SIOPT, 1998

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 6 / 49

The end result

MY favourite
 structure

My structure

is decomposition

Each time there is a valuable structure, I have a new problem to solve

Give me many structures!

Careful what you wish for, you may get it!

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 7 / 49

The end result

…

Your favourite structure

 HERE

Your favourite structure

 HERE

My structure is decomposition

Each time there is a valuable structure, I have a new problem to solve

Give me many structures!

Careful what you wish for, you may get it!

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 7 / 49

The end result

…

Your favourite structure

 HERE

Your favourite structure

 HERE

My structure is decomposition

Each time there is a valuable structure, I have a new problem to solve

Give me many structures!

Careful what you wish for, you may get it!

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 7 / 49

Why Leaving the Bed II:

“For Real”

Why Leaving the Bed II:
“For Real”

One Day I Got a Phone Call from . . .

. . . the Electrical System: mankind’s most complex machine

Many sources of complexity:
1 the system is just complicated with lots of different machinery inside

2 electricity is difficult to store =⇒ for the most part it must be

produced exactly when needed

3 electricity is difficult to route, goes where Kirchoff’s laws say

4 growing renewables production is highly uncertain

5 almost everything is (from slightly to highly) nonlinear

6 a lot of decisions are combinatorial (on/off)

7 possibly several actors involved (markets, equilibria, . . .)

All manner of Mixed-Integer NonLinear uncertain optimization

problems (or worse) spanning from multi-decades to sub-second

Let’s start “small”: the Unit Commitment problem

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 8 / 49

The Unit Commitment problem

Schedule a set of generating units over a time horizon (hours/15m in
day/week) to satisfy the (forecasted) energy demand at each time

Gazzillions eee / $$$, enormous amount of research[11]

Different types of production units, many complex constraints:

thermal[12] (comprised nuclear): min/max production, min up/down
time, ramp rates, start-up cost, modulation, . . .

hydro[13] (valleys): min/max production, min/max reservoir volume,
time delay, pumping, head-dependent energy production, . . .

non programmable intermittent units: ROR hydro, solar, wind, . . .

fancy things: small-scale storage, demand response, smart grids, . . .

Plus the electrical network (AC[14]/DC, transmission/distribution)
and reliability (primary/secondary reserve, n − 1 units, . . .)

[11] van Ackooij, Danti Lopez, F., Lacalandra, Tahanan “Large-Scale Unit Commitment Under Uncertainty [. . .]” AOR, 2018

[12] F., Gentile “Solving Nonlinear Single-Unit Commitment Problems with Ramping Constraints” Op. Res. 2006

[13] van Ackooij, D’Ambrosio, Thomopulos, Trindade “Decomposition and Shortest Path Problem Formulation for Solving the
Hydro Unit Commitment and Scheduling in a Hydro Valley” EJOR, 2020

[14] Bienstock, Escobar, Gentile, Liberti “Mathematical Programming Formulations for the [AC / OPF]” 4OR, 2020

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 9 / 49

All in all

Decomposition methods[15] always been the go-to approach

especially in the uncertain case[16]:

[15] Borghetti, F., Lacalandra, Nucci “Lagrangian [. . .] for Hydrothermal Unit Commitment”, IEEE TPWRS, 2003

[16] Scuzziato, Finardi, F. “Comparing Spatial and Scenario Decomposition for Stochastic [. . .]” IEEE Trans. Sust. En., 2018

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 10 / 49

All in all

Decomposition methods[15] always been the go-to approach

especially in the uncertain case[16]: very good

[15] Borghetti, F., Lacalandra, Nucci “Lagrangian [. . .] for Hydrothermal Unit Commitment”, IEEE TPWRS, 2003

[16] Scuzziato, Finardi, F. “Comparing Spatial and Scenario Decomposition for Stochastic [. . .]” IEEE Trans. Sust. En., 2018

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 10 / 49

Then they tell you

. . . that was the operational problem but you must

solve the tactical one ≡ that many times over:

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 11 / 49

Then they tell you

. . . that was the operational problem but you must

solve the tactical one ≡ that many times over:

perhaps still good enough?

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 11 / 49

And then it turns out

. . . There’s uncertainty and you must do scenarios.

And perhaps use some Stochastic Dual Dynamic

Programming to tame it:

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 12 / 49

And then it turns out

. . . There’s uncertainty and you must do scenarios.

And perhaps use some Stochastic Dual Dynamic

Programming to tame it: still feels good?

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 12 / 49

And finally

Of course what they really wanted to solve is the

strategic problem ≡ that many times over again

with more scenarios:

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 13 / 49

And finally

Of course what they really wanted to solve is the

strategic problem ≡ that many times over again

with more scenarios: I don’t feel too good

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 13 / 49

Too Much of a Good Thing?

Can you really solve something like this?

Surelynot without decomposition

At least the theory is there (Part II)

And we can now throw a gazzillion of CPU/GPU cores at it if it
helps: yesterday’s super[6] is today’s smartphone (dishwasher)

But it won’t work by-the-book (Part III)

And implementing it (in parallel) would be a total nightmare

Yet, if we can make it we can do tons of other interesting stuff

That’s why we are trying to (Part IV), and you’re welcome to join

That’s the plan, let’s start from the beginning

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 14 / 49

Too Much of a Good Thing?

Can you really solve something like this?

Surelynot without decomposition

At least the theory is there (Part II)

And we can now throw a gazzillion of CPU/GPU cores at it if it
helps: yesterday’s super[6] is today’s smartphone (dishwasher)

But it won’t work by-the-book (Part III)

And implementing it (in parallel) would be a total nightmare

Yet, if we can make it we can do tons of other interesting stuff

That’s why we are trying to (Part IV), and you’re welcome to join

That’s the plan, let’s start from the beginning

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 14 / 49

Too Much of a Good Thing?

Can you really solve something like this?

Surelynot without decomposition

At least the theory is there (Part II)

And we can now throw a gazzillion of CPU/GPU cores at it if it
helps: yesterday’s super[6] is today’s smartphone (dishwasher)

But it won’t work by-the-book (Part III)

And implementing it (in parallel) would be a total nightmare

Yet, if we can make it we can do tons of other interesting stuff

That’s why we are trying to (Part IV), and you’re welcome to join

That’s the plan, let’s start from the beginning

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 14 / 49

Too Much of a Good Thing?

Can you really solve something like this?

Surelynot without decomposition

At least the theory is there (Part II)

And we can now throw a gazzillion of CPU/GPU cores at it if it
helps: yesterday’s super[6] is today’s smartphone (dishwasher)

But it won’t work by-the-book (Part III)

And implementing it (in parallel) would be a total nightmare

Yet, if we can make it we can do tons of other interesting stuff

That’s why we are trying to (Part IV), and you’re welcome to join

That’s the plan, let’s start from the beginning

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 14 / 49

Too Much of a Good Thing?

Can you really solve something like this?

Surelynot without decomposition

At least the theory is there (Part II)

And we can now throw a gazzillion of CPU/GPU cores at it if it
helps: yesterday’s super[6] is today’s smartphone (dishwasher)

But it won’t work by-the-book (Part III)

And implementing it (in parallel) would be a total nightmare

Yet, if we can make it we can do tons of other interesting stuff

That’s why we are trying to (Part IV), and you’re welcome to join

That’s the plan, let’s start from the beginning

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 14 / 49

Part II:
The Long Journey Begins

Dual decomposition, a.k.a.
Inner Approximation

Dantzig-Wolfe decomposition
Lagrangian Relaxation
Column Generation

Block-diagonal Convex (Linear) Program

Block-diagonal program: convex X , n “complicating” constraints

(Π) max { cx : Ax = b , x ∈ X }

e.g, X = { x : Ex ≤ d } =
⊗

k∈K
(
X k = { xk : E kxk ≤ dk }

)
(|K | large =⇒ (Π) very large), Ax = b linking constraints

We can efficiently optimize upon X (much more so than solving

the whole of (Π), anyway) for different reasons:

a bunch of (many, much) smaller problems instead of a large one

X has (the X k have) structure (shortest path, . . .)

We could efficiently solve (Π) if linking constraints were not there

But they are (there): how to exploit it?

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 15 / 49

Dantzig-Wolfe reformulation

Dantzig-Wolfe reformulation[17]: X convex =⇒ represent it by points

X =
{
x =

∑
x̄∈X x̄θx̄ :

∑
x̄∈X θx̄ = 1 , θx̄ ≥ 0 x̄ ∈ X

}
then reformulate (Π) in terms of the convex multipliers θ

(Π)


max c

(∑
x̄∈X x̄θx̄

)
A
(∑

x̄∈X x̄θx̄
)

= b∑
x̄∈X θx̄ = 1 , θx̄ ≥ 0 x̄ ∈ X

only n + 1 rows, but ∞-ly many columns

note that “x̄ ∈ X” is an index, not a constraint (θ is the variable)

A rather semi-infinite program, but “only” x̄ ∈ ext X needed

Not that this makes it any less infinite, unless
X is a polytope (compact polyhedron) =⇒ finite set of vertices

[17] Dantzig, Wolfe “The Decomposition Principle for Linear Programs” Op. Res., 1960

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 16 / 49

Dantzig-Wolfe reformulation (cont.d)

Could this ever be a good idea? Actually, it could:
polyhedra may have few faces and many vertices . . . or vice-versa

n-cube |xi | ≤ 1 ∀ i 2n faces 2n vertices

n-co-cube
∑

i |xi | ≤ 1 2n faces 2n vertices

Except, most often the number of vertices is too large

 AX = bAX = b
 e = 1 e = 1

 Ax = bAx = b
 Ex dEx d

AX = bAX = b
 e = 1 e = 1

a (linear) program with (exponentially/infinitely) many columns

But, efficiently optimize over X =⇒ generate vertices (≡ columns)

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 17 / 49

Dantzig-Wolfe decomposition ≡ Column Generation

B ⊂ X (small), solve restriction of (Π) with X → B, i.e.,

(ΠB)


max

∑
x̄∈B (cx̄) θx̄∑
x̄∈B (Ax̄) θx̄ = b∑

x̄∈B θx̄ = 1 , θx̄ ≥ 0 x̄ ∈ B

“master problem” (B small, not too costly)

note how the parentheses have moved: linearity is needed (for now)

If B contains the “right” columns, x∗ =
∑

x̄∈B x̄θ∗x̄ optimal for (Π)

How do I tell if B contains the “right” columns? Use duality

(∆B)
min

{
yb + v : v ≥ cx̄ − y(Ax̄) x̄ ∈ B

}
= min

{
fB(y) = max { cx̄ + y(b − Ax̄) : x̄ ∈ B }

}
one constraint for each x̄ ∈ B

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 18 / 49

Dantzig-Wolfe decomposition ≡ Lagrangian relaxation

Dual of (Π): (∆) ≡ (∆X) (many constraints)

fB = lower approximation of Lagrangian function

(Πy) f (y) = max { cx + y(b − Ax) : x ∈ X }

Assumption: optimizing over X is “easy” for each objective =⇒
obtaining x̄ s.t. f (y) = cx̄ + y(b − Ax̄) is “easy”

Important: (Πy) Lagrangian relaxation[18], f (y) ≥ v(Π) = v(∆) ∀y
provided (Πy) is solved exactly (or at least a f̄ ≥ f (y) is used)

Thus, (∆B) outer approximation of the Lagrangian Dual

(∆) min
{
f (y) = max { cx + y(b − Ax) : x ∈ X }

}
[18] Geoffrion “Lagrangean Relaxation for Integer Programming” Math. Prog. Study, 1974

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 19 / 49

Lagrangian duality vs. Linear duality

Note about the LP case (X = { x : Ex ≤ d }):

(∆) min
{
yb + max { (c − yA)x : Ex ≤ d }

}
≡ min

{
yb + min { wd : wE = c − yA , w ≥ 0 }

}
≡ min

{
yb + wd : wE + yA = c , w ≥ 0

}
≡ exactly the linear dual of (Π)

y “partial” duals: duals w of Ex ≤ d “hidden” in the subproblem

There is only one duality

Will repeatedly come in handy

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 20 / 49

Dantzig-Wolfe decomposition ≡ Dual row generation

Primal/dual optimal solution x∗/(v∗, y∗) out of (ΠB)/(∆B)

x∗ feasible to (Π), so optimal ⇐⇒ (v∗, y∗) feasible to (∆)

⇐⇒ v∗ ≥ (c − y∗A)x ∀x ∈ X

⇐⇒ v∗ ≥ max { (c − y∗A)x : x ∈ X }

In fact: v∗ ≥ (c − y∗A)x̄ ≡ y∗b + v∗ ≥ f (y∗) =⇒

v(Π) ≥ cx∗ = y∗b + v∗ ≥ f (y∗) ≥ v(∆) ≥ v(Π) =⇒

x∗/(v∗, y∗) optimal

Otherwise, B = B ∪ { x̄ }: add new column to (ΠB) / row to (∆B),
rinse & repeat

Clearly finite if ext X is, globally convergent anyway:
the Cutting-Plane algorithm for convex programs[19] (applied to (∆))

[19] Kelley “The Cutting-Plane Method for Solving Convex Programs” J. of the SIAM, 1960

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 21 / 49

Geometry of the Lagrangian dual

y

f

x2

y*

fBx3
x4

x1

x5

x6
v*

v∗ = fB(y∗) lower bound on v(ΠB)

Optimal solution x̄ gives separator between (v∗, y∗) and epi f

(cx̄ ,Ax̄) = new row in (∆B) (subgradient of f at y∗)

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 22 / 49

Geometry of the Lagrangian dual

y

f

x2

y*

fBx3
x4

x1

x5

x6

v∗ = fB(y∗) lower bound on v(ΠB)

Optimal solution x̄ gives separator between (v∗, y∗) and epi f

(cx̄ ,Ax̄) = new row in (∆B) (subgradient of f at y∗)

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 22 / 49

Geometry of the Lagrangian dual

y

f

x2 fB

x3
x4

x1

x5

x6

v∗ = fB(y∗) lower bound on v(ΠB)

Optimal solution x̄ gives separator between (v∗, y∗) and epi f

(cx̄ ,Ax̄) = new row in (∆B) (subgradient of f at y∗)

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 22 / 49

Dantzig-Wolfe decomposition ≡ Inner Approximation

“Abstract” view of (ΠB): conv(B) inner approximation of X

(ΠB) max { cx : Ax = b , x ∈ conv(B) }

x∗ solves the Lagrangian relaxation of (ΠB) with y∗, i.e.,

x∗ ∈ argmax
{

(c − y∗A)x : x ∈ conv(B)
}

=⇒ (c − y∗A)x ≤ (c − y∗A)x∗ for each x ∈ conv(B) ⊆ X

(c − y∗A)x̄ = max{ (c − y∗A)x : x ∈ X } ≥ (c − y∗A)x∗

Column x̄ has positive reduced cost

(c − y∗A)(x̄ − x∗) = (c − y∗A)x̄ − cx∗+ y∗b = (c − y∗A)x̄ − v∗ > 0

=⇒ x̄ /∈ conv(B) =⇒ makes sense to add x̄ to B

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 23 / 49

Geometry of Dantzig-Wolfe/Column Generation

 Ax = b Ax = b

c
c y*A

c − y∗A separates conv(B) ∩ Ax = b from all x ∈ X better than x∗

Thus, optimizing it allows finding new points (if any)

Issue: conv(B) ∩ Ax = b must be nonempty

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 24 / 49

Geometry of Dantzig-Wolfe/Column Generation

 Ax = b Ax = b

c
c y*A

c − y∗A separates conv(B) ∩ Ax = b from all x ∈ X better than x∗

Thus, optimizing it allows finding new points (if any)

Issue: conv(B) ∩ Ax = b must be nonempty

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 24 / 49

Geometry of Dantzig-Wolfe/Column Generation

 Ax = b Ax = b

c
c y*A

c − y∗A separates conv(B) ∩ Ax = b from all x ∈ X better than x∗

Thus, optimizing it allows finding new points (if any)

Issue: conv(B) ∩ Ax = b must be nonempty

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 24 / 49

The Unbounded Case

X unbounded ⇐⇒ rec X ⊃ {0} =⇒ f (y) = v(Πy) =∞ happens

X = conv(ext X = X0) + cone(ext rec X = X∞)

B = (B0 ⊂ X0) ∪ (B∞ ⊂ X∞) = { points x̄ } ∪ { rays χ̄ } =⇒

(ΠB)


max c

(∑
x̄∈B0

x̄θx̄ +
∑

χ̄∈B∞ χ̄θχ̄

)
A
(∑

x̄∈B0
x̄θx̄ +

∑
χ̄∈B∞ χ̄θχ̄

)
= b∑

x̄∈B0
θx̄ = 1

θx̄ ≥ 0 x̄ ∈ B0 , θχ̄ ≥ 0 χ̄ ∈ B∞
In (∆B), constraints y(Aχ̄) ≥ cχ̄ (a.k.a. “feasibility cuts”)

(Πy∗) unbounded ⇐⇒ (c − y∗A)χ̄ > 0 for some χ̄ ∈ rec X

(violated constraint) =⇒ B∞ = B∞ ∪ { χ̄ }

(∆) = min{ f (y) : y ∈ Y }, (Πy∗) provides either subgradients of f
(a.k.a. “optimality cuts”), or violated valid inequalities for Y [19]

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 25 / 49

Primal decomposition, a.k.a.

Outer Approximation

Benders’ decomposition
Resource decomposition

Staircase-structured Convex (Linear) Program

Staircase-structured program: convex X , “complicating” variables

(Π) max { cx + ez : Dx + Ez ≤ d , x ∈ X }

e.g, Dx + Ez ≤ d ≡ Dkx + Ekzk ≤ dk k ∈ K (|K | large) =⇒

Z (x) = { z : Ez ≤ d − Dx }

=
⊗

k∈K
(
Zk(x) = { zk : Ekzk ≤ dk − Dkx }

)
We can efficiently optimize upon Z (x) (much more so than solving

the whole of (Π), anyway) for different reasons:

a bunch of (many, much) smaller problems instead of a large one

Z (x) has (the Zk(x) have) structure (shortest path, . . .)

We could efficiently solve (Π) if linking variables were fixed

But they are not (fixed): how to exploit it?

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 26 / 49

Benders’ reformulation

Benders’ reformulation: define the concave value function

(B) max
{
cx + v(x) = max{ ez : Ez ≤ d − Dx } : x ∈ X

}
(note: clearly v(x) = −∞ may happen)

Clever trick[20]: use duality to reformulate the inner problem

v(x) = min
{
w(d − Dx) : w ∈W = {w : wE = e , w ≥ 0 }

}
so that W does not depend on x

As usual, W = conv(ext W = W0) + cone(ext rec W = W∞) =⇒
(B) max cx + v

v ≤ w̄(d − Dx) w̄ ∈W0

0 ≤ ω̄(d − Dx) ω̄ ∈W∞

x ∈ X

still very large, but we can generate w̄ / ω̄ by computing v(x)

[20] Benders “Partitioning Procedures for Solving Mixed-Variables Programming Problems” Numerische Mathematik, 1962

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 27 / 49

Benders’ decomposition

Select (small) B = (B0 ⊂W0)∪ (B∞ ⊂W∞), solve master problem

(BB) max cx + v

v ≤ w̄(d − Dx) w̄ ∈ B0

0 ≤ ω̄(d − Dx) ω̄ ∈ B∞
x ∈ X

= max
{
cx + vB(x) : x ∈ X ∩ VB

}
, where

vB(x) = min{ w̄(d − Dx) : w̄ ∈ B0 } ≤ v(x), VB ⊇ dom v

Find (primal) optimal solution x∗, compute v(x∗), get either w̄ or ω̄,
update either B0 or B∞, rinse & repeat

Benders’ decomposition ≡ Cutting-Plane approach to (B)[19]

Spookily similar to the Lagrangian dual, ain’t it?

Except, constraints are now attached to dual objects w̄ / ω̄

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 28 / 49

All Are One, One Is All

Benders is Lagrange . . .

Block-diagonal case

(Π) max { cx : Ax = b , Ex ≤ d }

(∆) min
{
yb + wd : wE + yA = c , w ≥ 0

}
Think of y as complicating variables in (∆), you get

(Π) max { cx : Ax = b , Ey ≤ d }

(∆) min
{
yb + min{ wd : wE = c − yA , w ≥ 0 }

}
= min

{
yb + max{ (c − yA)x : Ex ≤ d }

}
i.e., the Lagrangian dual of (Π)

The value function of (∆) is the Lagrangian function of (Π)

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 29 / 49

. . . Lagrange is Benders . . .

Dual of (Π) (linear case X = { x : Ax = b })

(Π) max { cx + ez : Dx + Ez ≤ d , Ax = b }

(∆) min { yb + wd : yA + wD = c , wE = e , w ≥ 0 }

Lagrangian dual of the dual constraints yA + wD = c (multiplier x):

(∆) max
{

min{ yb + wd + (c − yA + wD)x : wE = e , w ≥ 0 }
}

= max
{
cx + min{ y(b − Ax) + w(d − Dx) : wE = e , w ≥ 0 }

}
= max

{
cx + min{ y(b − Ax) } +

min{ w(d − Dx) : wE = e , w ≥ 0 }
}

= max
{
cx + max{ ez : Dx + Ez ≤ e } : Ax = b

}
i.e., Benders’ reformulation of (Π)

The Lagrangian function of (∆) is the value function of (Π)

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 30 / 49

. . . and Both are the Cutting-Plane Algorithm

Both Lagrange and Benders boil down (changing sign if necessary) to

min
{
φ(λ) : λ ∈ Λ

}
with Λ and φ convex, φ nondifferentiable

Both Λ and φ only implicitly known via a (costly) oracle: λ̄ −→
either φ(λ̄) <∞ and ḡ ∈ ∂φ(λ̄) ≡ φ(λ) ≥ φ(λ̄) + ḡ(λ− λ̄) ∀λ
or φ(λ̄) =∞ and a valid inequality for Λ violated by λ̄

“Natural” algorithm: the Cutting-Plane method[19] ≡
revised simplex method with mechanized pricing in the discrete case

Natural is not fast, convex nondifferentiable optimization Ω(1/ε2)

and the Cutting-Plane method is much worse than that

Many variants/other algorithms possible (cf. Part III)

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 31 / 49

You can apply Lagrange to a Staircase-structured program

Reformulate a staircase-structured program

max cx + e ′z ′ + e ′′z ′′

Dx + E ′z ′ ≤ d ′ , Dx + E ′′z ′′ ≤ d ′′

x ∈ X

. . . as a block-diagonal one

max c(x ′ + x ′′)/2 + e ′z ′ + e ′′z ′′

Dx ′ + E ′z ′ ≤ d ′ , x ′ ∈ X

Dx ′′ + E ′′z ′′ ≤ d ′′ , x ′′ ∈ X

x ′ = x ′′

Issue: Dx + Ez ≤ d must have structure, not Ez ≤ d − Dx

Classical approach in stochastic programs[11,16]

(but beware the multi-stage case)

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 32 / 49

You can apply Lagrange to a Staircase-structured program

Reformulate a staircase-structured program

max cx + e ′z ′ + e ′′z ′′

Dx + E ′z ′ ≤ d ′ , Dx + E ′′z ′′ ≤ d ′′

x ∈ X

. . . as a block-diagonal one

max c(x ′ + x ′′)/2 + e ′z ′ + e ′′z ′′

Dx ′ + E ′z ′ ≤ d ′ , x ′ ∈ X

Dx ′′ + E ′′z ′′ ≤ d ′′ , x ′′ ∈ X

x ′ = x ′′

Issue: Dx + Ez ≤ d must have structure, not Ez ≤ d − Dx

Classical approach in stochastic programs[11,16]

(but beware the multi-stage case)

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 32 / 49

You can apply Benders’ to a Block-diagonal program

Reformulate a block-diagonal program

max c ′x ′ + c ′′x ′′

E ′x ′ ≤ d ′ , E ′′x ′′ ≤ d ′′

A′x ′ + A′′x ′′ = b

. . . as a staircase-structured one

max c ′z ′ + c ′′z ′′

E ′z ′ ≤ d ′ , A′z ′ = x ′

E ′′z ′′ ≤ d ′′ , A′′z ′′ = x ′′

x ′ + x ′′ = b

Issue: Ez ≤ d , Az = x must have structure, not Ez ≤ d

Resource decomposition[21] in multicommodity parlance

[21] Kennington, Shalaby “An Effective Subgradient Procedure for Minimal Cost Multicomm. Flow Problems” Man. Sci., 1977

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 33 / 49

You can apply Benders’ to a Block-diagonal program

Reformulate a block-diagonal program

max c ′x ′ + c ′′x ′′

E ′x ′ ≤ d ′ , E ′′x ′′ ≤ d ′′

A′x ′ + A′′x ′′ = b

. . . as a staircase-structured one

max c ′z ′ + c ′′z ′′

E ′z ′ ≤ d ′ , A′z ′ = x ′

E ′′z ′′ ≤ d ′′ , A′′z ′′ = x ′′

x ′ + x ′′ = b

Issue: Ez ≤ d , Az = x must have structure, not Ez ≤ d

Resource decomposition[21] in multicommodity parlance

[21] Kennington, Shalaby “An Effective Subgradient Procedure for Minimal Cost Multicomm. Flow Problems” Man. Sci., 1977

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 33 / 49

The Nonlinear and Integer Cases

Block-diagonal Convex Nonlinear Programs

Nonlinear c(·) concave, A(·) component-wise convex, X convex

(Π) max
{
c(x) : A(x)≤ b , x ∈ X

}
(∆) max

{
f (y) = yb + max { c(x)− yA(x) : x ∈ X } : y ≥ 0

}
Any x̄ ∈ X still gives f (y) ≥ c(x̄) + y(b − A(x̄)), same (∆B) / (ΠB)

yA(x̄) still linear in y even if nonlinear in x

c(
∑

x̄∈B x̄θx̄) ≥
∑

x̄∈B c(x̄)θx̄ (c(·) concave),

A(
∑

x̄∈B x̄θx̄) ≤
∑

x̄∈B A(x̄)θx̄ ≤ b (A(·) convex) =⇒

(ΠB) safe inner approximation (v(ΠB) ≤ v(Π))

Basically everything keeps working, but you may need

constraint qualification[22] (usually easy to get)

[22] Lemaréchal, Hiriart-Urrity “Convex Analysis and Minimization Algorithms” Springer, 1993

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 34 / 49

Block-diagonal Nonconvex Nonlinear Programs

c(·) and/or A(·) and/or X not concave/convex: not much changes

except (Πy) is hard and you are not really solving (Π)

yA(x̄) still linear in y , (∆) still convex ≡ “convexified” (Π):

c(x) = cx , A(x) = Ax =⇒ (∆) ≡ max
{
cx : Ax ≤ b , x ∈ X ∗∗

}
(“∗∗” ≡ biconjugate ≡ closed convex envelope / hull)

A(x) = Ax =⇒ (∆) ≡ max
{
c∗∗X (x) : Ax ≤ b

}
(cX (·) = c(·) + ıX (·), ıX ≡ indicator function ≡ 0 in X , ∞ outside)

better than max
{
c∗∗(x) : Ax ≤ b , x ∈ X ∗∗

}
General formula ugly to write[23], but better than

max
{
c∗∗(x) : A∗∗(x) ≤ b , x ∈ X ∗∗

}
“A Lagrangian Dual does not distinguish a set from its convex hull”
for better (efficiency) and for worse (not the same problem)

[23] Lemaréchal, Renaud “A Geometric Study of Duality Gaps, with Applications” Math. Prog., 2001

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 35 / 49

Block-diagonal Nonconvex Nonlinear Programs

c(·) and/or A(·) and/or X not concave/convex: not much changes

except (Πy) is hard and you are not really solving (Π)

yA(x̄) still linear in y , (∆) still convex ≡ “convexified” (Π):

c(x) = cx , A(x) = Ax =⇒ (∆) ≡ max
{
cx : Ax ≤ b , x ∈ X ∗∗

}
(“∗∗” ≡ biconjugate ≡ closed convex envelope / hull)

A(x) = Ax =⇒ (∆) ≡ max
{
c∗∗X (x) : Ax ≤ b

}
(cX (·) = c(·) + ıX (·), ıX ≡ indicator function ≡ 0 in X , ∞ outside)

better than max
{
c∗∗(x) : Ax ≤ b , x ∈ X ∗∗

}
General formula ugly to write[23], but better than

max
{
c∗∗(x) : A∗∗(x) ≤ b , x ∈ X ∗∗

}
“A Lagrangian Dual does not distinguish a set from its convex hull”
for better (efficiency) and for worse (not the same problem)

[23] Lemaréchal, Renaud “A Geometric Study of Duality Gaps, with Applications” Math. Prog., 2001

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 35 / 49

Block-diagonal Nonconvex Nonlinear Programs

c(·) and/or A(·) and/or X not concave/convex: not much changes

except (Πy) is hard and you are not really solving (Π)

yA(x̄) still linear in y , (∆) still convex ≡ “convexified” (Π):

c(x) = cx , A(x) = Ax =⇒ (∆) ≡ max
{
cx : Ax ≤ b , x ∈ X ∗∗

}
(“∗∗” ≡ biconjugate ≡ closed convex envelope / hull)

A(x) = Ax =⇒ (∆) ≡ max
{
c∗∗X (x) : Ax ≤ b

}
(cX (·) = c(·) + ıX (·), ıX ≡ indicator function ≡ 0 in X , ∞ outside)

better than max
{
c∗∗(x) : Ax ≤ b , x ∈ X ∗∗

}
General formula ugly to write[23], but better than

max
{
c∗∗(x) : A∗∗(x) ≤ b , x ∈ X ∗∗

}
“A Lagrangian Dual does not distinguish a set from its convex hull”
for better (efficiency) and for worse (not the same problem)

[23] Lemaréchal, Renaud “A Geometric Study of Duality Gaps, with Applications” Math. Prog., 2001

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 35 / 49

Staircase-structured convex Nonlinear Programs

f (x , ·) and G (x , ·) concave, Z convex:

(Π) max { f (x , z) : G (x , z) ≥ 0 , x ∈ X , z ∈ Z }

(B) max
{
v(x) : x ∈ X

}
where v(x) = max{ f (x , z) : G (x , z) ≥ 0 , z ∈ Z }

(B) ≡ (Π) without assumptions on f (·, z), G (·, z) and X (hard)

Which duality would you use? Lagrangian[24], of course

v(x) = min
{

max{ f (x , z) + λG (x , z) : z ∈ Z } : λ ≥ 0
}

Under appropriate constraint qualification, two cases occur:

either ∃ λ̄ ≥ 0 , z̄ ∈ Z s.t. v(x∗) = f (x∗, z̄) + λ̄G (x∗, z̄) > −∞
or v(x∗) = −∞ =⇒ { z ∈ Z : G (x∗, z) ≥ 0 } = ∅ =⇒ ∃ ν̄ ≥ 0 , z̄ ∈ Z

s.t. max{ ν̄G (x∗, z) : z ∈ Z } = ν̄G (x∗, z̄) < 0

[24] Geoffrion “Generalized Benders Decomposition” JOTA, 1972

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 36 / 49

Staircase-structured convex Nonlinear Programs (cont.d)

General form of the master problem

(B) max v

v ≤ max{ f (x , z) + λ̄G (x , z) : z ∈ Z } λ̄ ∈ Λ0

0 ≤ max{ ν̄G (x , z) : z ∈ Z } ν̄ ∈ Λ∞

x ∈ X

Er . . . how on Earth do you manage those nasty “max”?

Must be that the “max” can be done independently of x!

Possible in a few cases, complicated in general

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 37 / 49

Staircase-structured convex Nonlinear Programs (cont.d)

General form of the master problem

(B) max v

v ≤ max{ f (x , z) + λ̄G (x , z) : z ∈ Z } λ̄ ∈ Λ0

0 ≤ max{ ν̄G (x , z) : z ∈ Z } ν̄ ∈ Λ∞

x ∈ X

Er . . . how on Earth do you manage those nasty “max”?

Must be that the “max” can be done independently of x!

Possible in a few cases, complicated in general

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 37 / 49

Staircase-structured convex Nonlinear Programs (finish.d)

Case I, separability: f (x , z) = f (x) + h(z), G (x , z) = G (x) + H(z)

(B) max f (x) + v

v ≤ λ̄G (x) + max{ h(z) + λ̄H(z) : z ∈ Z } λ̄ ∈ Λ0

0 ≤ ν̄G (x) + max{ ν̄G (z) : z ∈ Z } ν̄ ∈ Λ∞

x ∈ X

(nonlinear nonconvex cuts, (B) “hard” but it always was so)

Case II, special forms: f (zi) concave, univariate

max
{ ∑

i xi f (zi) :
∑

i xizi ≤ c , zi ≥ 0 , Ax ≤ b , x ≥ 0
}

v(x) = minλ
∑

i max{ xi (f (zi)− λzi) : zi ≥ 0
}

+ λc

v(x) ≤
∑

i xi max{ (f (zi)− λ̄zi) : zi ≥ 0
}

+ λ̄c

can optimize on the z independently from the x =⇒
“normal” linear cuts

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 38 / 49

Staircase-structured non convex Nonlinear Programs

f (x , ·) and/or G (x , ·) not concave and/or Z not convex:

though luck: you basically cannot do anything

Benders’ requires duality, duality requires convexity to work

Some workarounds possible:

Use exact duality for nonconvex problems[25] when available (though!)

Approximate the convex hull by some hierarchy[26] (RLT, . . .)

Give up duality and use combinatorial Benders’ (feasibility) cuts[27]

In general much harder/less efficient

Yet, solves the original problem or gives as good a relaxation as the
convex approximation of the subproblem is

[25] Guzelsoy, Ralphs “Duality for Mixed-Integer Linear Programs” ITOR, 2007

[26] Sen, Sherali “Decomposition [. . .] for Two-Stage Stochastic Mixed-Integer Programming” Math. Prog., 2006

[27] Codato, Fischetti “Combinatorial Benders’ Cuts for Mixed-Integer Linear Programming” Op. Res., 2006

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 39 / 49

Staircase-structured non convex Nonlinear Programs

f (x , ·) and/or G (x , ·) not concave and/or Z not convex:

though luck: you basically cannot do anything

Benders’ requires duality, duality requires convexity to work

Some workarounds possible:

Use exact duality for nonconvex problems[25] when available (though!)

Approximate the convex hull by some hierarchy[26] (RLT, . . .)

Give up duality and use combinatorial Benders’ (feasibility) cuts[27]

In general much harder/less efficient

Yet, solves the original problem or gives as good a relaxation as the
convex approximation of the subproblem is

[25] Guzelsoy, Ralphs “Duality for Mixed-Integer Linear Programs” ITOR, 2007

[26] Sen, Sherali “Decomposition [. . .] for Two-Stage Stochastic Mixed-Integer Programming” Math. Prog., 2006

[27] Codato, Fischetti “Combinatorial Benders’ Cuts for Mixed-Integer Linear Programming” Op. Res., 2006

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 39 / 49

Block-diagonal Integer Programs

Special case: X combinatorial (e.g. , X = { x ∈ Zn : Ex ≤ d })
(Π) max { cx : Ax = b , x ∈ X }

(∆) min
{
yb + max { (c − yA)x : x ∈ X }

}
nothing changes if we can still efficiently optimize over X

due to size (decomposition) and/or structure (integrality)

Except we are solving a (potentially good) relaxation of (Π)

(Π̄)


max c

(∑
x̄∈X x̄θx̄

)
A
(∑

x̄∈X x̄θx̄
)

= b∑
x̄∈X θx̄ = 1 , θx̄ ≥ 0 x̄ ∈ X

≡ max { cx : Ax = b , x ∈ X ∗∗ = conv(X) }

θx̄ ∈ Z gives a reformulation of (Π); could branch on θx̄

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 40 / 49

Block-diagonal Integer Programs (cont.d)

Good news: (Π̄) better (not worse) than continuous relaxation

(conv(X) ⊆ { x ∈ Rn : Ex ≤ d })
Bad news: (Πy) “too easy” (conv(X) = { x ∈ Rn : Ex ≤ d }
≡ integrality property) =⇒ (Π̄) same as continuous relaxation

(Πy) must be easy, but not too easy (no free lunch)

Anyway, at best gives good bounds =⇒
Branch & Bound with DW/Lagrangian/CG ≡ Branch & Price

Although it can be used to drive good heuristics[15,28,29]

Branching nontrivial: may destroy subproblem structure

=⇒ branch on x (but (ΠB) is on θ)

Little support from off-the-shelf tools, only SCIP / GCG[30] (for now)

[28] Daniilidis, Lemaréchal “On a Primal-Proximal Heuristic in Discrete Optimization” Math. Prog., 2005

[29] Scuzziato, Finardi, F. “Solving Stochastic [. . .] Unit Commitment with a New Primal Recovery [. . .]” IJEPES, 2021

[30] https://scipopt.org, https://gcg.or.rwth-aachen.de

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 41 / 49

https://scipopt.org
https://gcg.or.rwth-aachen.de

Digression: How to Choose your Lagrangian relaxation

There may be many choices

(Π) max
{
cx : Ax = b , Ex ≤ d , x ∈ Zn

}
(Π′y) max

{
cx + y(b − Ax) : x ∈ X ′ = { x ∈ Zn : Ex ≤ d }

}
(Π′′w) max

{
cx + w(d − Ex) : x ∈ X ′′ = { x ∈ Zn : Ax = b }

}
The best between (∆′) and (∆′′) depends on integrality of X ′, X ′′:

if both have it, both (∆′) and (∆′′) ≡ continuous relaxation

if only one has it, the one that does not, but if both don’t have it?

Here comes Lagrangian decomposition[31] (looks familiar?)

(Π) ≡ max
{

(cx ′ + cx ′′)/2 : x ′ ∈ X ′ , x ′′ ∈ X ′′ , x ′ = x ′′
}

(Πλ) max { (c/2 + λ)x ′ : x ′ ∈ X ′ }+ max { (c/2− λ)x ′′ : x ′′ ∈ X ′′ }

(∆̄) ≡ (Π̄) max
{
cx : x ∈ conv(X ′) ∩ conv(X ′′)

}
better than both (but need to solve two hard subproblems)

[31] Guignard, Kim “Lagrangean Decomposition: a Model Yielding Stronger Lagrangean Bounds” Math. Prog., 1987

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 42 / 49

Geometry of Lagrangian Decomposition

Intersection between red and blue ≡ grey ≡ continuous relaxation

Lagrangian relaxation of blue constraints shrinks the red (=⇒ grey) part

Lagrangian relaxation of red constraints shrinks the blue (=⇒ grey) part

Lagrangian decomposition (both red and blue constraints) shrinks both =⇒
the grey part more

But the intersection of convex hulls is larger (bad) than
the convex hull of the intersection

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 43 / 49

Geometry of Lagrangian Decomposition

Intersection between red and blue ≡ grey ≡ continuous relaxation

Lagrangian relaxation of blue constraints

Lagrangian relaxation of blue constraints shrinks the red (=⇒ grey) part

Lagrangian relaxation of red constraints shrinks the blue (=⇒ grey) part

Lagrangian decomposition (both red and blue constraints) shrinks both =⇒
the grey part more

But the intersection of convex hulls is larger (bad) than
the convex hull of the intersection

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 43 / 49

Geometry of Lagrangian Decomposition

Intersection between red and blue ≡ grey ≡ continuous relaxation

Lagrangian relaxation of blue constraints shrinks the red (=⇒ grey) part

Lagrangian relaxation of red constraints shrinks the blue (=⇒ grey) part

Lagrangian decomposition (both red and blue constraints) shrinks both =⇒
the grey part more

But the intersection of convex hulls is larger (bad) than
the convex hull of the intersection

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 43 / 49

Geometry of Lagrangian Decomposition

Intersection between red and blue ≡ grey ≡ continuous relaxation

Lagrangian relaxation of blue constraints shrinks the red (=⇒ grey) part

Lagrangian relaxation of red constraints

Lagrangian relaxation of red constraints shrinks the blue (=⇒ grey) part

Lagrangian decomposition (both red and blue constraints) shrinks both =⇒
the grey part more

But the intersection of convex hulls is larger (bad) than
the convex hull of the intersection

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 43 / 49

Geometry of Lagrangian Decomposition

Intersection between red and blue ≡ grey ≡ continuous relaxation

Lagrangian relaxation of blue constraints shrinks the red (=⇒ grey) part

Lagrangian relaxation of red constraints shrinks the blue (=⇒ grey) part

Lagrangian decomposition (both red and blue constraints) shrinks both =⇒
the grey part more

But the intersection of convex hulls is larger (bad) than
the convex hull of the intersection

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 43 / 49

Geometry of Lagrangian Decomposition

Intersection between red and blue ≡ grey ≡ continuous relaxation

Lagrangian relaxation of blue constraints shrinks the red (=⇒ grey) part

Lagrangian relaxation of red constraints shrinks the blue (=⇒ grey) part

Lagrangian decomposition (both red and blue constraints)

Lagrangian decomposition (both red and blue constraints) shrinks both =⇒
the grey part more

But the intersection of convex hulls is larger (bad) than
the convex hull of the intersection

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 43 / 49

Geometry of Lagrangian Decomposition

Intersection between red and blue ≡ grey ≡ continuous relaxation

Lagrangian relaxation of blue constraints shrinks the red (=⇒ grey) part

Lagrangian relaxation of red constraints shrinks the blue (=⇒ grey) part

Lagrangian decomposition (both red and blue constraints) shrinks both =⇒
the grey part more

But the intersection of convex hulls is larger (bad) than
the convex hull of the intersection

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 43 / 49

Geometry of Lagrangian Decomposition

Intersection between red and blue ≡ grey ≡ continuous relaxation

Lagrangian relaxation of blue constraints shrinks the red (=⇒ grey) part

Lagrangian relaxation of red constraints shrinks the blue (=⇒ grey) part

Lagrangian decomposition (both red and blue constraints) shrinks both =⇒
the grey part more

But the intersection of convex hulls is larger (bad) than
the convex hull of the intersection

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 43 / 49

Digression: Alternative Good Formulations for conv(X)

(Under mild assumptions) conv(X) is a polyhedron =⇒
conv(X) =

{
x ∈ Rn : Ẽ x ≤ d̃

}
There are good formulations for the problem

Except, practically all good formulations are too large

 Ex d~ ~Ex d~ ~Ex d~ ~Ex d~ ~ Ex dEx d Ax = bAx = b Ax = bAx = b

Very few exceptions (integrality property ≈ networks)

Good part: working in the natural variable space

But a few more variables do as a lot more constraints

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 44 / 49

Row generation/polyhedral approaches

The good news is: rows can be generated incrementally

 Ax = b Ax = b

 Ex d

 Ax = b A

 Ex d

 Ax A Ax A
c

Relevant concept: separator

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 45 / 49

Row generation/polyhedral approaches

The good news is: rows can be generated incrementally

 Ax = b Ax = b

 Ex d

 Ax = b A

 Ex d

 Ax A Ax A
c

Relevant concept: separator

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 45 / 49

Row generation/polyhedral approaches

The good news is: rows can be generated incrementally

 E1x d1 E1x d1

 Ax = b

 E1x d1E d

 Ax = b
c

Relevant concept: separator

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 45 / 49

Branch & Cut

R = (small) subset of row(indice)s, ERx ≤ dR reduced set

Solve outer approximation to (Π̄)

(Π̄R) max { cx : Ax = b , ERx ≤ dR }

feed the separator with primal optimal solution x∗

Separator for (several sub-families of) facets of conv(X)

Several general approaches, countless specialized ones

Most often separators are hard combinatorial problems themselves

(though using general-purpose MIP solvers is an option[32])

May tail off, branching useful far before having solved (Π̄X)

[32] Fischetti, Lodi, Salvagnin “Just MIP It!” MATHEURISTICS, Ann. Inf. Syst., 2009

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 46 / 49

Branch & Cut vs. Branch & Price

Which is best?

Row generation naturally allows multiple separators

Very well integrated in general-purpose solvers

(but harder to exploit “complex” structures)

Column generation naturally allows very unstructured separators

Simpler to exploit “complex” structures

(but much less developed software tools)

Column generation is row generation in the dual

Then, of course, Branch & Cut & Price

(nice, but software issues remain and possibly worsen)

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 47 / 49

Staircase-structured Integer Programs

X = { x ∈ Zn : Ex ≤ d } combinatorial:

(Π) max { cx + ez : Ax + Bz ≤ b , x ∈ X }

nothing changes . . . except (BB) now is combinatorial =⇒ hard

However (BW) now is equivalent to (Π) =⇒ no branching needed

unless for solving (BB)

Conversely, everything breaks down if z ∈ Zm: there is no

(workable[25]) exact dual of an Integer Program

Can do with “approximated” duals (strong formulations, RLT[26], . . .)

but equivalence lost =⇒ branching again

Alternative route: use Benders’ to solve continuous relaxation:

Benders’ as yet another (strong[33]) cut generator

Often more efficient and supported by some off-the-shelf solver

[33] Costa, Cordeau, Gendron “Benders, Metric and Cutset Inequalities for Multicommodity [. . .] Network Design” COAP, 2009

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 48 / 49

Conclusions
(for now)

Conclusions (part I & II)

General block structure can (and must in some cases) be exploited

Well-understood main tools: reformulation + duality

Two different approaches, “primal” and “dual”: for linear programs
Lagrange is Benders’ in the dual, and vice-versa

Both boil down to the 50+-years old Cutting-Plane algorithm[19]

“plus some branching” to deal with nonconvexity

Different twists, different conditions to work:

who is complicating (constraints vs. variables), but tricks (≡ other
reformulations) can be used to create the desired structure

who is reformulated (subproblem vs. master problem)

where integer/nonconvexity can be (subproblem vs. master problem)

where branching/cutting is done (subproblem vs. master problem)

where/which nonlinearities can be easily dealt with

But from theory to practice there is a large gulf to be crossed

Ready your oars, we are going to the sea

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 49 / 49

Conclusions (part I & II)

General block structure can (and must in some cases) be exploited

Well-understood main tools: reformulation + duality

Two different approaches, “primal” and “dual”: for linear programs
Lagrange is Benders’ in the dual, and vice-versa

Both boil down to the 50+-years old Cutting-Plane algorithm[19]

“plus some branching” to deal with nonconvexity

Different twists, different conditions to work:

who is complicating (constraints vs. variables), but tricks (≡ other
reformulations) can be used to create the desired structure

who is reformulated (subproblem vs. master problem)

where integer/nonconvexity can be (subproblem vs. master problem)

where branching/cutting is done (subproblem vs. master problem)

where/which nonlinearities can be easily dealt with

But from theory to practice there is a large gulf to be crossed

Ready your oars, we are going to the sea

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 49 / 49

Conclusions (part I & II)

General block structure can (and must in some cases) be exploited

Well-understood main tools: reformulation + duality

Two different approaches, “primal” and “dual”: for linear programs
Lagrange is Benders’ in the dual, and vice-versa

Both boil down to the 50+-years old Cutting-Plane algorithm[19]

“plus some branching” to deal with nonconvexity

Different twists, different conditions to work:

who is complicating (constraints vs. variables), but tricks (≡ other
reformulations) can be used to create the desired structure

who is reformulated (subproblem vs. master problem)

where integer/nonconvexity can be (subproblem vs. master problem)

where branching/cutting is done (subproblem vs. master problem)

where/which nonlinearities can be easily dealt with

But from theory to practice there is a large gulf to be crossed

Ready your oars, we are going to the sea

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 49 / 49

Conclusions (part I & II)

General block structure can (and must in some cases) be exploited

Well-understood main tools: reformulation + duality

Two different approaches, “primal” and “dual”: for linear programs
Lagrange is Benders’ in the dual, and vice-versa

Both boil down to the 50+-years old Cutting-Plane algorithm[19]

“plus some branching” to deal with nonconvexity

Different twists, different conditions to work:

who is complicating (constraints vs. variables), but tricks (≡ other
reformulations) can be used to create the desired structure

who is reformulated (subproblem vs. master problem)

where integer/nonconvexity can be (subproblem vs. master problem)

where branching/cutting is done (subproblem vs. master problem)

where/which nonlinearities can be easily dealt with

But from theory to practice there is a large gulf to be crossed

Ready your oars, we are going to the sea

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 49 / 49

Conclusions (part I & II)

General block structure can (and must in some cases) be exploited

Well-understood main tools: reformulation + duality

Two different approaches, “primal” and “dual”: for linear programs
Lagrange is Benders’ in the dual, and vice-versa

Both boil down to the 50+-years old Cutting-Plane algorithm[19]

“plus some branching” to deal with nonconvexity

Different twists, different conditions to work:

who is complicating (constraints vs. variables), but tricks (≡ other
reformulations) can be used to create the desired structure

who is reformulated (subproblem vs. master problem)

where integer/nonconvexity can be (subproblem vs. master problem)

where branching/cutting is done (subproblem vs. master problem)

where/which nonlinearities can be easily dealt with

But from theory to practice there is a large gulf to be crossed

Ready your oars, we are going to the sea

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 49 / 49

Conclusions (part I & II)

General block structure can (and must in some cases) be exploited

Well-understood main tools: reformulation + duality

Two different approaches, “primal” and “dual”: for linear programs
Lagrange is Benders’ in the dual, and vice-versa

Both boil down to the 50+-years old Cutting-Plane algorithm[19]

“plus some branching” to deal with nonconvexity

Different twists, different conditions to work:
who is complicating (constraints vs. variables), but tricks (≡ other
reformulations) can be used to create the desired structure

who is reformulated (subproblem vs. master problem)

where integer/nonconvexity can be (subproblem vs. master problem)

where branching/cutting is done (subproblem vs. master problem)

where/which nonlinearities can be easily dealt with

But from theory to practice there is a large gulf to be crossed

Ready your oars, we are going to the sea

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 49 / 49

Conclusions (part I & II)

General block structure can (and must in some cases) be exploited

Well-understood main tools: reformulation + duality

Two different approaches, “primal” and “dual”: for linear programs
Lagrange is Benders’ in the dual, and vice-versa

Both boil down to the 50+-years old Cutting-Plane algorithm[19]

“plus some branching” to deal with nonconvexity

Different twists, different conditions to work:
who is complicating (constraints vs. variables), but tricks (≡ other
reformulations) can be used to create the desired structure

who is reformulated (subproblem vs. master problem)

where integer/nonconvexity can be (subproblem vs. master problem)

where branching/cutting is done (subproblem vs. master problem)

where/which nonlinearities can be easily dealt with

But from theory to practice there is a large gulf to be crossed

Ready your oars, we are going to the sea

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 49 / 49

Conclusions (part I & II)

General block structure can (and must in some cases) be exploited

Well-understood main tools: reformulation + duality

Two different approaches, “primal” and “dual”: for linear programs
Lagrange is Benders’ in the dual, and vice-versa

Both boil down to the 50+-years old Cutting-Plane algorithm[19]

“plus some branching” to deal with nonconvexity

Different twists, different conditions to work:
who is complicating (constraints vs. variables), but tricks (≡ other
reformulations) can be used to create the desired structure

who is reformulated (subproblem vs. master problem)

where integer/nonconvexity can be (subproblem vs. master problem)

where branching/cutting is done (subproblem vs. master problem)

where/which nonlinearities can be easily dealt with

But from theory to practice there is a large gulf to be crossed

Ready your oars, we are going to the sea

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 49 / 49

Conclusions (part I & II)

General block structure can (and must in some cases) be exploited

Well-understood main tools: reformulation + duality

Two different approaches, “primal” and “dual”: for linear programs
Lagrange is Benders’ in the dual, and vice-versa

Both boil down to the 50+-years old Cutting-Plane algorithm[19]

“plus some branching” to deal with nonconvexity

Different twists, different conditions to work:
who is complicating (constraints vs. variables), but tricks (≡ other
reformulations) can be used to create the desired structure

who is reformulated (subproblem vs. master problem)

where integer/nonconvexity can be (subproblem vs. master problem)

where branching/cutting is done (subproblem vs. master problem)

where/which nonlinearities can be easily dealt with

But from theory to practice there is a large gulf to be crossed

Ready your oars, we are going to the sea

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 49 / 49

Conclusions (part I & II)

General block structure can (and must in some cases) be exploited

Well-understood main tools: reformulation + duality

Two different approaches, “primal” and “dual”: for linear programs
Lagrange is Benders’ in the dual, and vice-versa

Both boil down to the 50+-years old Cutting-Plane algorithm[19]

“plus some branching” to deal with nonconvexity

Different twists, different conditions to work:
who is complicating (constraints vs. variables), but tricks (≡ other
reformulations) can be used to create the desired structure

who is reformulated (subproblem vs. master problem)

where integer/nonconvexity can be (subproblem vs. master problem)

where branching/cutting is done (subproblem vs. master problem)

where/which nonlinearities can be easily dealt with

But from theory to practice there is a large gulf to be crossed

Ready your oars, we are going to the sea

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 49 / 49

Conclusions (part I & II)

General block structure can (and must in some cases) be exploited

Well-understood main tools: reformulation + duality

Two different approaches, “primal” and “dual”: for linear programs
Lagrange is Benders’ in the dual, and vice-versa

Both boil down to the 50+-years old Cutting-Plane algorithm[19]

“plus some branching” to deal with nonconvexity

Different twists, different conditions to work:
who is complicating (constraints vs. variables), but tricks (≡ other
reformulations) can be used to create the desired structure

who is reformulated (subproblem vs. master problem)

where integer/nonconvexity can be (subproblem vs. master problem)

where branching/cutting is done (subproblem vs. master problem)

where/which nonlinearities can be easily dealt with

But from theory to practice there is a large gulf to be crossed

Ready your oars, we are going to the sea

A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 49 / 49

Conclusions (part I & II)

General block structure can (and must in some cases) be exploited

Well-understood main tools: reformulation + duality

Two different approaches, “primal” and “dual”: for linear programs
Lagrange is Benders’ in the dual, and vice-versa

Both boil down to the 50+-years old Cutting-Plane algorithm[19]

“plus some branching” to deal with nonconvexity

Different twists, different conditions to work:
who is complicating (constraints vs. variables), but tricks (≡ other
reformulations) can be used to create the desired structure

who is reformulated (subproblem vs. master problem)

where integer/nonconvexity can be (subproblem vs. master problem)

where branching/cutting is done (subproblem vs. master problem)

where/which nonlinearities can be easily dealt with

But from theory to practice there is a large gulf to be crossed

Ready your oars, we are going to the sea
A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II “Napoli” 2021 49 / 49

	Why Leaving the Bed I
	Why Leaving the Bed II
	Dual decomposition (Dantzig-Wolfe/Lagrangian/Column Generation)
	Primal decomposition (Benders'/Resource)
	All Are One, One Is All
	The Nonlinear and Integer Cases
	Conclusions (for now)

