The Long Road to Practical Decomposition Methods Part I: Why Leaving the Bed At All? Part II: A Long Journey Begins

Antonio Frangioni

Dipartimento di Informatica, Università di Pisa

AIRO PhD School 2021 & 5th AIRO Young Workshop "Napoli" — February 9, 2021

- Part I: Why Leaving the Bed At All?
- Part II: The Long Journey Begins
- Part III: Many Twists and Turns
- Part IV: A Useful Companion on the Road

- Why Leaving the Bed I
- 2 Why Leaving the Bed II
- 3 Dual decomposition (Dantzig-Wolfe/Lagrangian/Column Generation)
- Primal decomposition (Benders'/Resource)
- 5 All Are One, One Is All
- 6 The Nonlinear and Integer Cases
 - 7 Conclusions (for now)

Part I: Why Leaving the Bed At All?

Why Leaving the Bed I:

Why Leaving the Bed I: "For Science" Why Leaving the Bed I: "For Science" (You Monster)

It All Starts with some Nice Structure

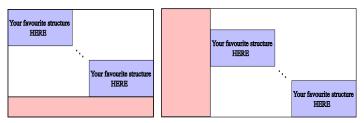
• You (or your boss) have a nice structure you know and love

It All Starts with some Nice Structure

- You (or your boss) have a nice structure you know and love ... but you start feeling you are scraping the bottom of the barrel
- Want to re-use what you know for solving something else: maximise your scientific productivity

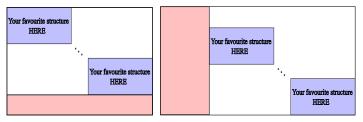
It All Starts with some Nice Structure

- You (or your boss) have a nice structure you know and love ... but you start feeling you are scraping the bottom of the barrel
- Want to re-use what you know for solving something else: maximise your scientific productivity ("for science", of course)
- Possible in many ways, but two particular ones of interest here



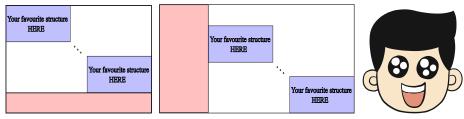
block-diagonal ≡ complicating constraints

staircase-structured \equiv complicating variables



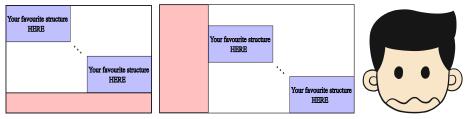
block-diagonal ≡ complicating constraints staircase-structured \equiv complicating variables

Relaxing constraints / fixing variables yields independent subproblems
 much easier because of size and/or structure



 $block-diagonal \equiv$ complicating constraints staircase-structured \equiv complicating variables

- Relaxing constraints / fixing variables yields independent subproblems
 much easier because of size and/or structure
- Your beloved structure is still there



block-diagonal ≡ complicating constraints staircase-structured \equiv complicating variables

- Relaxing constraints / fixing variables yields independent subproblems
 much easier because of size and/or structure
- Your beloved structure is still there
- But you have to understand how to glue back the pieces

My Own Poison: Multicommodity Network Design

- My bosses \heartsuit d shortest paths \implies I won multicommodity flows: graph G = (N, A), commodities $K \equiv (s^k, t^k, d^k)$ (or general flows) $\min \sum_{k \in K} \sum_{(i,j) \in A} d^k c_{ij}^k x_{ij}^k + \sum_{(i,j) \in A} f_{ij} z_{ij}$ (1) $\sum_{(i,j)\in A} x_{ij}^k - \sum_{(j,i)\in A} x_{ji}^k = \begin{cases} 1 & \text{if } i = s^k \\ 1 & \text{if } i = t^k \\ 0 & \text{otherwise} \end{cases}$ $i \in N$. $k \in K$ (2) $\sum_{k \in K} d^k x_{ii}^k \leq u_{ij} z_{ij}$ $(i,j) \in A$ (3) $x_{ii}^{k} \in [0, 1]$ (4) $(i, j) \in A, k \in K$ $z_{ii} \in \{0, 1\}$ $(i, j) \in A$ (5)
- Pervasive structure in most of combinatorial optimization
- Many applications: logistic, transportation, telecom, energy, ...
- Multicommodity flows is where actually it all began^[1]

[1] Ford, Fulkerson "A Suggested Computation for Maximal Multicommodity Network Flows" Man. Sci., 1958

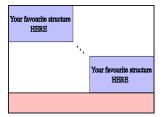
Does decomposition work?

- Of course it does, in fact with several different approaches:
 - plain^[2,3,4] or fancy^[5] Lagrangian relaxation, even in parallel^[6]
 - structured Dantzig-Wolfe decomposition^[7,8]
- Other approaches do as well, though:
 - structured Interior-Point methods^[9]
 - structured active-set (simplex) methods^[10]
- All in all, lots of fun out of a simple shortest path

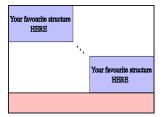
[2] F., Gallo "A Bundle Type Dual-Ascent Approach to Linear Multicommodity Min-Cost Flow Problems" *IJoC*, 1999
[3] Crainic, F., Gendron "Bundle-Based Relaxation Methods for Multicommodity [...] Network Design" *DAM*, 2001
[4] F., Gendron, Gorgone "On the Computational Efficiency of Subgradient Methods: [...]" *Math. Prog. Comput.*, 2017
[5] Grigoriadis, Khachiyan "An Exponential Function Reduction Method for Block-Angular Convex Programs" Networks, 1995
[6] Cappanera, F. "Symmetric and Asymmetric Parallelization of a Cost-Decomposition Algorithm [...]" *IJoC*, 2003
[7] F., Gendron "A Stabilized Structured Dantzig-Wolfe Decomposition Method" *Math. Prog.*, 2013
[8] Mamer, McBride "A Decomposition-Based pricing Procedure for Large-Scale Linear Programs [...]" *Man. Sci.*, 2000
[9] Castro "Solving Difficult Multicommodity Problems Through a Specialized Interior-Point Algorithm" *Ann. OR*, 2003
[10] McBride "Progress Made in Solving the Multicommodity Flow Problem" *SIOPT*, 1998

A. Frangioni (DI - UniPi)

• My structure



- My structure is decomposition
- Each time there is a valuable structure, I have a new problem to solve
- Give me many structures!



- My structure is decomposition
- Each time there is a valuable structure, I have a new problem to solve
- Give me many structures!
- Careful what you wish for, you may get it!

Why Leaving the Bed II:

Why Leaving the Bed II: "For Real"

One Day I Got a Phone Call from ...

- ... the Electrical System: mankind's most complex machine
- Many sources of complexity:
 - **(**) the system is just complicated with lots of different machinery inside
 - electricity is difficult to store => for the most part it must be produced exactly when needed
 - electricity is difficult to route, goes where Kirchoff's laws say
 - growing renewables production is highly uncertain
 - almost everything is (from slightly to highly) nonlinear
 - a lot of decisions are combinatorial (on/off)
 - ø possibly several actors involved (markets, equilibria, ...)
- All manner of Mixed-Integer NonLinear uncertain optimization problems (or worse) spanning from multi-decades to sub-second
- Let's start "small": the Unit Commitment problem

The Unit Commitment problem

- Schedule a set of generating units over a time horizon (hours/15m in day/week) to satisfy the (forecasted) energy demand at each time
- Gazzillions $\in \in \in /$ \$\$, enormous amount of research^[11]
- Different types of production units, many complex constraints:
 - thermal^[12] (comprised nuclear): min/max production, min up/down time, ramp rates, start-up cost, modulation, ...
 - hydro^[13] (valleys): min/max production, min/max reservoir volume, time delay, pumping, head-dependent energy production, ...
 - non programmable intermittent units: ROR hydro, solar, wind, ...
 - fancy things: small-scale storage, demand response, smart grids, ...
- Plus the electrical network (AC^[14]/DC, transmission/distribution) and reliability (primary/secondary reserve, n - 1 units, ...)

A. Frangioni (DI - UniPi)

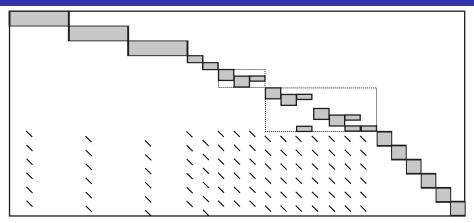
^[11] van Ackooij, Danti Lopez, F., Lacalandra, Tahanan "Large-Scale Unit Commitment Under Uncertainty [...]" AOR, 2018

^[12] F., Gentile "Solving Nonlinear Single-Unit Commitment Problems with Ramping Constraints" Op. Res. 2006

^[13] van Ackooij, D'Ambrosio, Thomopulos, Trindade "Decomposition and Shortest Path Problem Formulation for Solving the Hydro Unit Commitment and Scheduling in a Hydro Valley" EJOR, 2020

^[14] Bienstock, Escobar, Gentile, Liberti "Mathematical Programming Formulations for the [AC / OPF]" 40R, 2020

All in all



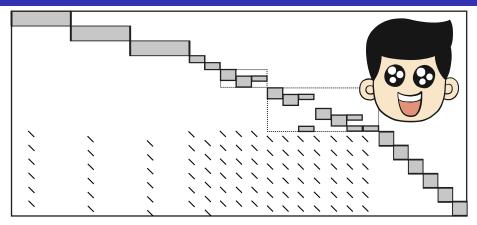
Decomposition methods^[15] always been the go-to approach especially in the uncertain case^[16]:

[15] Borghetti, F., Lacalandra, Nucci "Lagrangian [...] for Hydrothermal Unit Commitment", IEEE TPWRS, 2003
 [16] Scuzziato, Finardi, F. "Comparing Spatial and Scenario Decomposition for Stochastic [...]" IEEE Trans. Sust. En., 2018

A. Frangioni (DI - UniPi)

Practical Decomposition Methods I&II

All in all



Decomposition methods^[15] always been the go-to approach especially in the uncertain case^[16]: very good

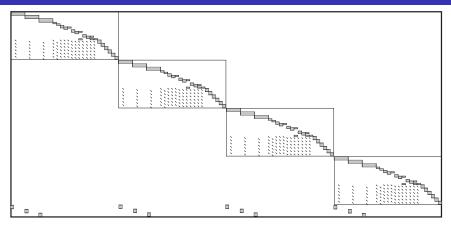
[15] Borghetti, F., Lacalandra, Nucci "Lagrangian [...] for Hydrothermal Unit Commitment", IEEE TPWRS, 2003
 [16] Scuzziato, Finardi, F. "Comparing Spatial and Scenario Decomposition for Stochastic [...]" IEEE Trans. Sust. En., 2018

A. Frangioni (DI — UniPi)

Practical Decomposition Methods I&II

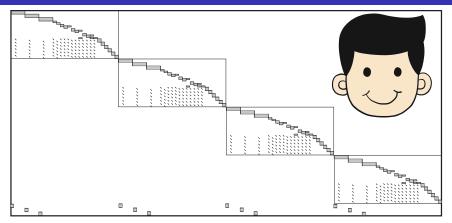
"Napoli" 2021 10 / 49

Then they tell you



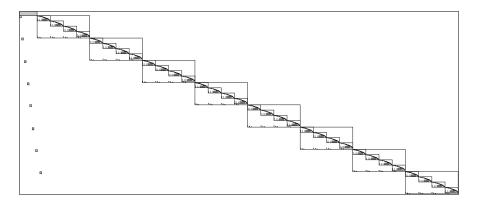
... that was the operational problem but you must solve the tactical one \equiv that many times over:

Then they tell you



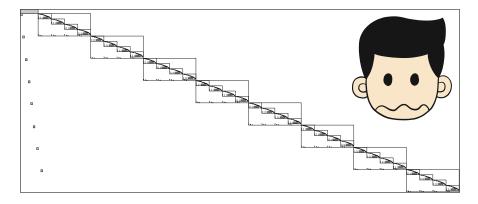
... that was the operational problem but you must solve the tactical one ≡ that many times over: perhaps still good enough?

And then it turns out



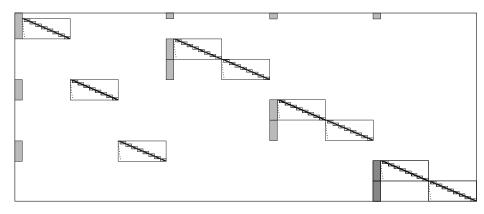
... There's uncertainty and you must do scenarios. And perhaps use some Stochastic Dual Dynamic Programming to tame it:

And then it turns out



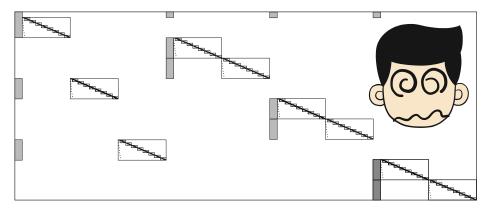
... There's uncertainty and you must do scenarios. And perhaps use some Stochastic Dual Dynamic Programming to tame it: still feels good?

And finally



Of course what they really wanted to solve is the strategic problem \equiv that many times over again with more scenarios:

And finally



Of course what they really wanted to solve is the strategic problem \equiv that many times over again with more scenarios: I don't feel too good

• Can you really solve something like this?

- Can you really solve something like this?
- Surelynot without decomposition
- At least the theory is there (Part II)
- And we can now throw a gazzillion of CPU/GPU cores at it if it helps: yesterday's super^[6] is today's smartphone (dishwasher)

- Can you really solve something like this?
- Surelynot without decomposition
- At least the theory is there (Part II)
- And we can now throw a gazzillion of CPU/GPU cores at it if it helps: yesterday's super^[6] is today's smartphone (dishwasher)
- But it won't work by-the-book (Part III)

- Can you really solve something like this?
- Surelynot without decomposition
- At least the theory is there (Part II)
- And we can now throw a gazzillion of CPU/GPU helps: yesterday's super^[6] is today's smartphone
- But it won't work by-the-book (Part III)

And implementing it (in parallel) would be a total nightmare

"Napoli" 2021 14 / 49

- Can you really solve something like this?
- Surelynot without decomposition
- At least the theory is there (Part II)
- And we can now throw a gazzillion of CPU/GPU helps: yesterday's super^[6] is today's smartphone
- But it won't work by-the-book (Part III)

- And implementing it (in parallel) would be a total nightmare
- Yet, if we can make it we can do tons of other interesting stuff
- That's why we are trying to (Part IV), and you're welcome to join
- That's the plan, let's start from the beginning

Part II: The Long Journey Begins

Dual decomposition, a.k.a. Inner Approximation Dantzig-Wolfe decomposition Lagrangian Relaxation Column Generation

Block-diagonal Convex (Linear) Program

• Block-diagonal program: convex X, n "complicating" constraints

$$(\Pi) \qquad \max \{ cx : Ax = b, x \in X \}$$

e.g,
$$X = \{x : Ex \le d\} = \bigotimes_{k \in K} (X^k = \{x^k : E^k x^k \le d^k\})$$

(|K| large \Longrightarrow (Π) very large), $Ax = b$ linking constraints

- We can efficiently optimize upon X (much more so than solving the whole of (Π), anyway) for different reasons:
 - a bunch of (many, much) smaller problems instead of a large one
 - X has (the X^k have) structure (shortest path, ...)
- We could efficiently solve (Π) if linking constraints were not there
- But they are (there): how to exploit it?

Dantzig-Wolfe reformulation

• Dantzig-Wolfe reformulation^[17]: X convex \implies represent it by points $X = \left\{ x = \sum_{\bar{x} \in X} \bar{x} \theta_{\bar{x}} : \sum_{\bar{x} \in X} \theta_{\bar{x}} = 1 \ , \ \theta_{\bar{x}} \ge 0 \quad \bar{x} \in X \right\}$

then reformulate (Π) in terms of the convex multipliers θ

$$(\Pi) \qquad \begin{cases} \max \quad c \left(\sum_{\bar{x} \in X} \ \bar{x} \theta_{\bar{x}} \right) \\ & A \left(\sum_{\bar{x} \in X} \ \bar{x} \theta_{\bar{x}} \right) = b \\ & \sum_{\bar{x} \in X} \ \theta_{\bar{x}} = 1 \ , \ \theta_{\bar{x}} \ge 0 \quad \bar{x} \in X \end{cases}$$

- only n+1 rows, but ∞ -ly many columns
- note that " $\bar{x} \in X$ " is an index, not a constraint (θ is the variable)
- A rather semi-infinite program, but "only" $\bar{x} \in ext X$ needed
- Not that this makes it any less infinite, unless
 X is a polytope (compact polyhedron) ⇒ finite set of vertices

[17] Dantzig, Wolfe "The Decomposition Principle for Linear Programs" Op. Res., 1960

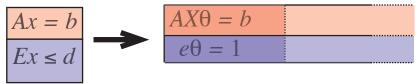
Dantzig-Wolfe reformulation (cont.d)

• Could this ever be a good idea? Actually, it could: polyhedra may have few faces and many vertices ... or vice-versa

n-cube
$$|x_i| \le 1 \quad \forall i \quad 2n \text{ faces} \quad 2^n \text{ vertices}$$

n-co-cube $\sum_i |x_i| \le 1 \quad 2^n \text{ faces} \quad 2n \text{ vertices}$

• Except, most often the number of vertices is too large



- a (linear) program with (exponentially/infinitely) many columns
- But, efficiently optimize over $X \Longrightarrow$ generate vertices (\equiv columns)

Dantzig-Wolfe decomposition \equiv Column Generation

• $\mathcal{B} \subset X$ (small), solve restriction of (Π) with $X \to \mathcal{B}$, i.e.,

$$(\Pi_{\mathcal{B}}) egin{array}{ccc} \left\{ egin{array}{ccc} \max & \sum_{ar{x}\in\mathcal{B}}\left(car{x}
ight) heta_{ar{x}} & \ & \sum_{ar{x}\in\mathcal{B}}\left(Aar{x}
ight) heta_{ar{x}} &= b & \ & \sum_{ar{x}\in\mathcal{B}}\left(heta_{ar{x}}
ight) = 1 &, \ & heta_{ar{x}}\geq 0 & ar{x}\in\mathcal{B} \end{array}
ight.$$

- "master problem" (\mathcal{B} small, not too costly)
- note how the parentheses have moved: linearity is needed (for now)
- If \mathcal{B} contains the "right" columns, $x^* = \sum_{\bar{x} \in \mathcal{B}} \bar{x} \theta^*_{\bar{x}}$ optimal for (Π)
- How do I tell if $\mathcal B$ contains the "right" columns? Use duality

$$(\Delta_{\mathcal{B}}) \qquad \min \left\{ \begin{array}{ll} yb + v : v \ge c\bar{x} - y(A\bar{x}) & \bar{x} \in \mathcal{B} \end{array} \right\} \\ = \min \left\{ \begin{array}{ll} f_{\mathcal{B}}(y) = \max \left\{ \begin{array}{ll} c\bar{x} + y(b - A\bar{x}) & : \bar{x} \in \mathcal{B} \end{array} \right\} \end{array} \right\}$$

one constraint for each $\bar{x} \in \mathcal{B}$

Dantzig-Wolfe decomposition \equiv Lagrangian relaxation

- Dual of (Π): (Δ) \equiv (Δ_X) (many constraints)
- $f_{\mathcal{B}} =$ lower approximation of Lagrangian function

$$(\Pi_y) \qquad f(y) = \max \{ cx + y(b - Ax) : x \in X \}$$

- Assumption: optimizing over X is "easy" for each objective \implies obtaining \bar{x} s.t. $f(y) = c\bar{x} + y(b A\bar{x})$ is "easy"
- Important: (Π_y) Lagrangian relaxation^[18], f(y) ≥ v(Π) = v(Δ) ∀y provided (Π_y) is solved exactly (or at least a f̄ ≥ f(y) is used)
- Thus, (Δ_B) outer approximation of the Lagrangian Dual
 (Δ) min { f(y) = max { cx + y(b − Ax) : x ∈ X } }

[18] Geoffrion "Lagrangean Relaxation for Integer Programming" Math. Prog. Study, 1974

Lagrangian duality vs. Linear duality

• Note about the LP case $(X = \{x : Ex \le d\})$:

$$(\Delta) \min \{ yb + \max \{ (c - yA)x : Ex \le d \} \}$$

$$\equiv \min \{ yb + \min \{ wd : wE = c - yA, w \ge 0 \} \}$$

$$\equiv \min \{ yb + wd : wE + yA = c, w \ge 0 \}$$

$$\equiv \text{ exactly the linear dual of } (\Pi)$$

- y "partial" duals: duals w of $Ex \le d$ "hidden" in the subproblem
- There is only one duality
- Will repeatedly come in handy

Dantzig-Wolfe decomposition \equiv Dual row generation

• Primal/dual optimal solution $x^*/(v^*, y^*)$ out of $(\Pi_{\mathcal{B}})/(\Delta_{\mathcal{B}})$

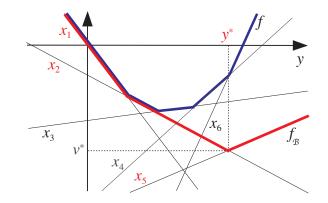
•
$$x^*$$
 feasible to (Π), so optimal $\iff (v^*, y^*)$ feasible to (Δ)
 $\iff v^* \ge (c - y^*A)x \quad \forall x \in X$
 $\iff v^* \ge \max \{ (c - y^*A)x : x \in X \}$
• In fact: $v^* \ge (c - y^*A)\overline{x} \equiv y^*b + v^* \ge f(y^*) \Longrightarrow$
 $v(\Pi) \ge cx^* = y^*b + v^* \ge f(y^*) \ge v(\Delta) \ge v(\Pi) \Longrightarrow$
 $x^*/(v^*, y^*)$ optimal

- Otherwise, $\mathcal{B} = \mathcal{B} \cup \{ \bar{x} \}$: add new column to $(\Pi_{\mathcal{B}}) / \text{ row to } (\Delta_{\mathcal{B}})$, rinse & repeat
- Clearly finite if ext X is, globally convergent anyway: the Cutting-Plane algorithm for convex programs^[19] (applied to (Δ))

[19] Kelley "The Cutting-Plane Method for Solving Convex Programs" J. of the SIAM, 1960

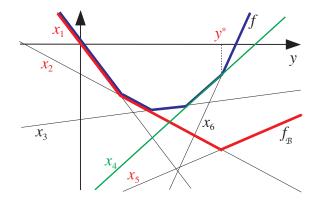
A. Frangioni (DI — UniPi) Practical Decomposition Methods I&II

Geometry of the Lagrangian dual



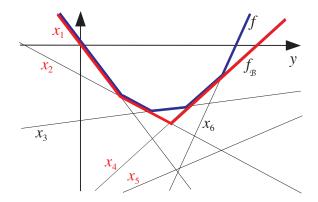
• $v^* = f_{\mathcal{B}}(y^*)$ lower bound on $v(\Pi_{\mathcal{B}})$

Geometry of the Lagrangian dual



- $v^* = f_{\mathcal{B}}(y^*)$ lower bound on $v(\Pi_{\mathcal{B}})$
- Optimal solution \bar{x} gives separator between (v^*, y^*) and epi f

Geometry of the Lagrangian dual



- $v^* = f_{\mathcal{B}}(y^*)$ lower bound on $v(\Pi_{\mathcal{B}})$
- Optimal solution \bar{x} gives separator between (v^*, y^*) and epi f
- $(c\bar{x}, A\bar{x}) =$ new row in $(\Delta_{\mathcal{B}})$ (subgradient of f at y^*)

Dantzig-Wolfe decomposition \equiv Inner Approximation

• "Abstract" view of $(\Pi_{\mathcal{B}})$: conv (\mathcal{B}) inner approximation of X

$$(\Pi_{\mathcal{B}}) \qquad \max \{ cx : Ax = b , x \in conv(\mathcal{B}) \}$$

• x^* solves the Lagrangian relaxation of $(\Pi_{\mathcal{B}})$ with y^* , i.e.,

$$x^* \in \operatorname{argmax} \left\{ (c - y^*A)x : x \in \operatorname{conv}(\mathcal{B}) \right\}$$

$$\Longrightarrow (c - y^*A)x \leq (c - y^*A)x^*$$
 for each $x \in conv(\mathcal{B}) \subseteq X$

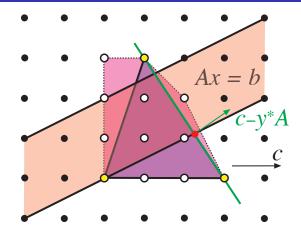
•
$$(c - y^*A)\bar{x} = \max\{(c - y^*A)x : x \in X\} \ge (c - y^*A)x^*$$

• Column \bar{x} has positive reduced cost

$$(c - y^*A)(\bar{x} - x^*) = (c - y^*A)\bar{x} - cx^* + y^*b = (c - y^*A)\bar{x} - v^* > 0$$

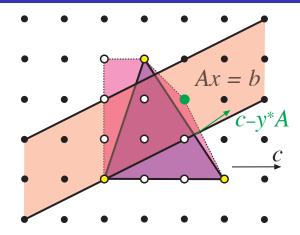
 $\implies \bar{x} \notin conv(\mathcal{B}) \implies$ makes sense to add \bar{x} to \mathcal{B}

Geometry of Dantzig-Wolfe/Column Generation



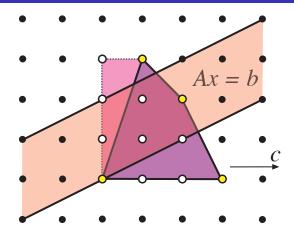
• $c - y^*A$ separates $conv(\mathcal{B}) \cap Ax = b$ from all $x \in X$ better than x^*

Geometry of Dantzig-Wolfe/Column Generation



c - y*A separates conv(B) ∩ Ax = b from all x ∈ X better than x*
Thus, optimizing it allows finding new points (if any)

Geometry of Dantzig-Wolfe/Column Generation



• $c - y^*A$ separates $conv(\mathcal{B}) \cap Ax = b$ from all $x \in X$ better than x^*

- Thus, optimizing it allows finding new points (if any)
- Issue: $conv(\mathcal{B}) \cap Ax = b$ must be nonempty

The Unbounded Case

- X unbounded \iff rec $X \supset \{0\} \Longrightarrow f(y) = v(\Pi_y) = \infty$ happens
- $X = conv(ext X = X_0) + cone(ext rec X = X_{\infty})$
- $\mathcal{B} = (\mathcal{B}_0 \subset X_0) \cup (\mathcal{B}_{\infty} \subset X_{\infty}) = \{ \text{ points } \bar{x} \} \cup \{ \text{ rays } \bar{\chi} \} \Longrightarrow$ $\begin{pmatrix} \max & c \left(\sum_{\bar{x} \in \mathcal{B}_0} \bar{x} \theta_{\bar{x}} + \sum_{\bar{\chi} \in \mathcal{B}_{\infty}} \bar{\chi} \theta_{\bar{\chi}} \right) \\ A \left(\sum_{\bar{x} \in \mathcal{B}_0} \bar{x} \theta_{\bar{x}} + \sum_{\bar{\chi} \in \mathcal{B}_{\infty}} \bar{\chi} \theta_{\bar{\chi}} \right) = b \\ \sum_{\bar{x} \in \mathcal{B}_0} \theta_{\bar{x}} = 1 \\ \theta_{\bar{x}} \ge 0 \quad \bar{x} \in \mathcal{B}_0 \ , \ \theta_{\bar{\chi}} \ge 0 \quad \bar{\chi} \in \mathcal{B}_{\infty} \end{cases}$
- In $(\Delta_{\mathcal{B}})$, constraints $y(A\bar{\chi}) \ge c\bar{\chi}$ (a.k.a. "feasibility cuts")
- (Π_{y^*}) unbounded $\iff (c y^*A)\overline{\chi} > 0$ for some $\overline{\chi} \in rec X$ (violated constraint) $\implies \mathcal{B}_{\infty} = \mathcal{B}_{\infty} \cup \{ \overline{\chi} \}$
- (Δ) = min{ f(y) : y ∈ Y }, (Π_{y*}) provides either subgradients of f (a.k.a. "optimality cuts"), or violated valid inequalities for Y^[19]

Primal decomposition, a.k.a. Outer Approximation Benders' decomposition Resource decomposition

Staircase-structured Convex (Linear) Program

- Staircase-structured program: convex X, "complicating" variables (П) max { $cx + ez : Dx + Ez \le d$, $x \in X$ } e.g, $Dx + Ez \le d \equiv D_k x + E_k z_k \le d_k$ $k \in K$ (|K| large) \Longrightarrow $Z(x) = \{ z : Ez \le d - Dx \}$ $= \bigotimes_{k \in K} (Z_k(x) = \{ z_k : E_k z_k \le d_k - D_k x \})$
- We can efficiently optimize upon Z(x) (much more so than solving the whole of (Π), anyway) for different reasons:
 - a bunch of (many, much) smaller problems instead of a large one
 - Z(x) has (the $Z_k(x)$ have) structure (shortest path, ...)
- We could efficiently solve (Π) if linking variables were fixed
- But they are not (fixed): how to exploit it?

Benders' reformulation

- Benders' reformulation: define the concave value function

 (B) max { cx + v(x) = max{ ez : Ez ≤ d Dx } : x ∈ X }
 (note: clearly v(x) = -∞ may happen)
- Clever trick^[20]: use duality to reformulate the inner problem
 v(x) = min { w(d − Dx) : w ∈ W = { w : wE = e , w ≥ 0 } }
 so that W does not depend on x
- As usual, $W = conv(ext W = W_0) + cone(ext rec W = W_{\infty}) \Longrightarrow$ (B) max cx + v

$$egin{aligned} & v \leq ar w(d-Dx) & ar w \in W_0 \ & 0 \leq ar \omega(d-Dx) & ar \omega \in W_\infty \ & x \in X \end{aligned}$$

still very large, but we can generate $\bar{w} / \bar{\omega}$ by computing v(x)

[20] Benders "Partitioning Procedures for Solving Mixed-Variables Programming Problems" Numerische Mathematik, 1962

A. Frangioni (DI — UniPi)

Benders' decomposition

- Select (small) $\mathcal{B} = (\mathcal{B}_0 \subset W_0) \cup (\mathcal{B}_\infty \subset W_\infty)$, solve master problem $(\mathcal{B}_{\mathcal{B}}) \mod cx + v$ $v \leq \bar{w}(d - Dx) \qquad \bar{w} \in \mathcal{B}_0$ $0 \leq \bar{\omega}(d - Dx) \qquad \bar{\omega} \in \mathcal{B}_\infty$ $x \in X$ $= \max \{ cx + v_{\mathcal{B}}(x) : x \in X \cap V_{\mathcal{B}} \}$, where $v_{\mathcal{B}}(x) = \min\{ \bar{w}(d - Dx) : \bar{w} \in \mathcal{B}_0 \} \leq v(x), V_{\mathcal{B}} \supseteq dom v$
- Find (primal) optimal solution x^* , compute $v(x^*)$, get either \bar{w} or $\bar{\omega}$, update either \mathcal{B}_0 or \mathcal{B}_{∞} , rinse & repeat
- Benders' decomposition \equiv Cutting-Plane approach to $(B)^{[19]}$
- Spookily similar to the Lagrangian dual, ain't it?
- $\bullet\,$ Except, constraints are now attached to dual objects \bar{w} / $\bar{\omega}$

All Are One, One Is All

Block-diagonal case

(
$$\Pi$$
) max { $cx : Ax = b , Ex \le d$ }
(Δ) min { $yb + wd : wE + yA = c , w \ge 0$ }

Think of y as complicating variables in (Δ), you get

(
$$\Pi$$
) max { $cx : Ax = b$, $Ey \le d$ }
(Δ) min { $yb + \min\{wd : wE = c - yA, w \ge 0$ } }
= min { $yb + \max\{(c - yA)x : Ex \le d\}$ }

i.e., the Lagrangian dual of (Π)

• The value function of (Δ) is the Lagrangian function of (Π)

... Lagrange is Benders ...

- Dual of (Π) (linear case $X = \{x : Ax = b\}$) (Π) max { $cx + ez : Dx + Ez \le d$, Ax = b } (Δ) min { yb + wd : yA + wD = c, wE = e, w > 0 } Lagrangian dual of the dual constraints yA + wD = c (multiplier x): (Δ) max { min{ $yb + wd + (c - yA + wD)x : wE = e, w \ge 0$ } $= \max \{ cx + \min \{ y(b - Ax) + w(d - Dx) : wE = e, w \ge 0 \} \}$ $= \max \{ cx + \min \{ y(b - Ax) \} +$ $\min\{w(d - Dx) : wE = e, w > 0\}$ $= \max \{ cx + \max \{ ez : Dx + Ez \le e \} : Ax = b \}$ i.e., Benders' reformulation of (Π)
- The Lagrangian function of (Δ) is the value function of (Π)

... and Both are the Cutting-Plane Algorithm

• Both Lagrange and Benders boil down (changing sign if necessary) to min $\{ \phi(\lambda) : \lambda \in \Lambda \}$

with Λ and ϕ convex, ϕ nondifferentiable

• Both Λ and ϕ only implicitly known via a (costly) oracle: $\bar{\lambda} \longrightarrow$

- either $\phi(\bar{\lambda}) < \infty$ and $\bar{g} \in \partial \phi(\bar{\lambda}) \equiv \phi(\lambda) \ge \phi(\bar{\lambda}) + \bar{g}(\lambda \bar{\lambda}) \ \forall \lambda$
- or $\phi(\,ar\lambda\,)=\infty$ and a valid inequality for Λ violated by $ar\lambda$
- "Natural" algorithm: the Cutting-Plane method^[19] ≡ revised simplex method with mechanized pricing in the discrete case
- Natural is not fast, convex nondifferentiable optimization $\Omega(1/\varepsilon^2)$ and the Cutting-Plane method is much worse than that
- Many variants/other algorithms possible (cf. Part III)

You can apply Lagrange to a Staircase-structured program

• Reformulate a staircase-structured program

$$\max cx + e'z' + e''z''$$
$$Dx + E'z' \le d', Dx + E''z'' \le d''$$
$$x \in X$$

You can apply Lagrange to a Staircase-structured program

• Reformulate a staircase-structured program $\max cx + e'z' + e''z''$ $Dx + E'z' \le d' , Dx + E''z'' \le d''$ $x \in X$

... as a block-diagonal one

$$\max c(x' + x'')/2 + e'z' + e''z''$$
$$Dx' + E'z' \le d', \ x' \in X$$
$$Dx'' + E''z'' \le d'', \ x'' \in X$$
$$x' = x''$$

• Issue: $Dx + Ez \le d$ must have structure, not $Ez \le d - Dx$

 Classical approach in stochastic programs^[11,16] (but beware the multi-stage case)

You can apply Benders' to a Block-diagonal program

• Reformulate a block-diagonal program max c'x' + c''x''

 $E'x' \leq d' \;,\; E''x'' \leq d''$

A'x' + A''x'' = b

You can apply Benders' to a Block-diagonal program

• Reformulate a block-diagonal program max c'x' + c''x'' $E'x' \le d'$, $E''x'' \le d''$ A'x' + A''x'' = b

... as a staircase-structured one

$$\begin{array}{l} \max \, c'z' + c''z'' \\ E'z' \leq d' \,\,, \,\, A'z' = x' \\ E''z'' \leq d'' \,\,, \,\, A''z'' = x'' \\ x' + x'' = b \end{array}$$

• Issue: $Ez \leq d$, Az = x must have structure, not $Ez \leq d$

• Resource decomposition^[21] in multicommodity parlance

[21] Kennington, Shalaby "An Effective Subgradient Procedure for Minimal Cost Multicomm. Flow Problems" Man. Sci., 1977

The Nonlinear and Integer Cases

Block-diagonal Convex Nonlinear Programs

- Nonlinear c(·) concave, A(·) component-wise convex, X convex
 (Π) max { c(x) : A(x) ≤ b , x ∈ X }
 (Δ) max { f(y) = yb + max { c(x) yA(x) : x ∈ X } : y ≥ 0 }
- Any $\bar{x} \in X$ still gives $f(y) \ge c(\bar{x}) + y(b A(\bar{x}))$, same $(\Delta_{\mathcal{B}}) / (\Pi_{\mathcal{B}})$
- $yA(\bar{x})$ still linear in y even if nonlinear in x

•
$$c(\sum_{\bar{x}\in\mathcal{B}} \bar{x}\theta_{\bar{x}}) \ge \sum_{\bar{x}\in\mathcal{B}} c(\bar{x})\theta_{\bar{x}} \ (c(\cdot) \text{ concave}),$$

 $A(\sum_{\bar{x}\in\mathcal{B}} \bar{x}\theta_{\bar{x}}) \le \sum_{\bar{x}\in\mathcal{B}} A(\bar{x})\theta_{\bar{x}} \le b \ (A(\cdot) \text{ convex}) \Longrightarrow$
 $(\Pi_{\mathcal{B}}) \text{ safe inner approximation } (v(\Pi_{\mathcal{B}}) \le v(\Pi))$

 Basically everything keeps working, but you may need constraint qualification^[22] (usually easy to get)

[22] Lemaréchal, Hiriart-Urrity "Convex Analysis and Minimization Algorithms" Springer, 1993

A. Frangioni (DI - UniPi)

Practical Decomposition Methods I&II

Block-diagonal Nonconvex Nonlinear Programs

• $c(\cdot)$ and/or $A(\cdot)$ and/or X not concave/convex: not much changes

Block-diagonal Nonconvex Nonlinear Programs

- c(·) and/or A(·) and/or X not concave/convex: not much changes except (Π_y) is hard and you are not really solving (Π)
- $yA(\bar{x})$ still linear in y, (Δ) still convex \equiv "convexified" (Π):

$$\begin{array}{l} c(x) = cx \;,\; A(x) = Ax \Longrightarrow (\Delta) \equiv \max \; \left\{ \; cx \; : \; Ax \leq b \;,\; x \in X^{**} \; \right\} \\ (``**'' \equiv \mathsf{biconjugate} \equiv \mathsf{closed \; convex \; envelope \; / \; hull) \end{array}$$

Block-diagonal Nonconvex Nonlinear Programs

- c(·) and/or A(·) and/or X not concave/convex: not much changes except (Π_y) is hard and you are not really solving (Π)
- $yA(\bar{x})$ still linear in y, (Δ) still convex \equiv "convexified" (Π):

$$\begin{split} c(x) &= cx \ , \ A(x) = Ax \Longrightarrow (\Delta) \equiv \max \ \big\{ \ cx \ : \ Ax \leq b \ , \ x \in X^{**} \ \big\} \\ (``**'' \equiv biconjugate \equiv closed \ convex \ envelope \ / \ hull) \end{split}$$

 $\begin{aligned} A(x) &= Ax \Longrightarrow (\Delta) \equiv \max \left\{ c_X^{**}(x) : Ax \leq b \right\} \\ (c_X(\cdot) &= c(\cdot) + \iota_X(\cdot), \ \iota_X \equiv \text{ indicator function} \equiv 0 \text{ in } X, \ \infty \text{ outside}) \\ \text{better than max } \left\{ c^{**}(x) : Ax \leq b, \ x \in X^{**} \right\} \end{aligned}$

- General formula ugly to write^[23], but better than max { $c^{**}(x) : A^{**}(x) \le b$, $x \in X^{**}$ }
- "A Lagrangian Dual does not distinguish a set from its convex hull" for better (efficiency) and for worse (not the same problem)

[23] Lemaréchal, Renaud "A Geometric Study of Duality Gaps, with Applications" Math. Prog., 2001

Staircase-structured convex Nonlinear Programs

• $f(x, \cdot)$ and $G(x, \cdot)$ concave, Z convex: (П) max { $f(x,z) : G(x,z) \ge 0, x \in X, z \in Z$ } (B) max { $v(x) : x \in X$ } where $v(x) = \max\{ f(x, z) : G(x, z) > 0, z \in Z \}$ $(B) \equiv (\Pi)$ without assumptions on $f(\cdot, z)$, $G(\cdot, z)$ and X (hard) • Which duality would you use? Lagrangian^[24], of course $v(x) = \min \{ \max\{ f(x, z) + \lambda G(x, z) : z \in Z \} : \lambda \ge 0 \}$ Under appropriate constraint qualification, two cases occur: • either $\exists \bar{\lambda} > 0, \bar{z} \in Z$ s.t. $v(x^*) = f(x^*, \bar{z}) + \bar{\lambda}G(x^*, \bar{z}) > -\infty$

• or
$$v(x^*) = -\infty \Longrightarrow \{ z \in Z : G(x^*, z) \ge 0 \} = \emptyset \Longrightarrow \exists \overline{\nu} \ge 0, \overline{z} \in Z$$

s.t. max $\{ \overline{\nu}G(x^*, z) : z \in Z \} = \overline{\nu}G(x^*, \overline{z}) < 0$

[24] Geoffrion "Generalized Benders Decomposition" JOTA, 1972

Staircase-structured convex Nonlinear Programs (cont.d)

• General form of the master problem

$$(B) \max v$$

$$v \le \max\{ f(x,z) + \overline{\lambda}G(x,z) : z \in Z \} \qquad \overline{\lambda} \in \Lambda_0$$

$$0 \le \max\{ \overline{\nu}G(x,z) : z \in Z \} \qquad \overline{\nu} \in \Lambda_\infty$$

$$x \in X$$

Staircase-structured convex Nonlinear Programs (cont.d)

• General form of the master problem

$$(B) \max v$$

$$v \le \max\{ f(x,z) + \overline{\lambda}G(x,z) : z \in Z \} \qquad \overline{\lambda} \in \Lambda_0$$

$$0 \le \max\{ \overline{\nu}G(x,z) : z \in Z \} \qquad \overline{\nu} \in \Lambda_\infty$$

$$x \in X$$

- Er ... how on Earth do you manage those nasty "max"?
- Must be that the "max" can be done independently of x!
- Possible in a few cases, complicated in general

Staircase-structured convex Nonlinear Programs (finish.d)

• Case I, separability:
$$f(x, z) = f(x) + h(z)$$
, $G(x, z) = G(x) + H(z)$
(B) $\max f(x) + v$
 $v \le \overline{\lambda}G(x) + \max\{h(z) + \overline{\lambda}H(z) : z \in Z\}$ $\overline{\lambda} \in \Lambda_0$
 $0 \le \overline{\nu}G(x) + \max\{\overline{\nu}G(z) : z \in Z\}$ $\overline{\nu} \in \Lambda_\infty$
 $x \in X$

(nonlinear nonconvex cuts, (B) "hard" but it always was so)

• Case II, special forms: $f(z_i)$ concave, univariate $\max \left\{ \sum_i x_i f(z_i) : \sum_i x_i z_i \le c , \quad z_i \ge 0 , \quad Ax \le b , \quad x \ge 0 \right\}$ $v(x) = \min_{\lambda} \sum_i \max \left\{ x_i (f(z_i) - \lambda z_i) : z_i \ge 0 \right\} + \lambda c$ $v(x) \le \sum_i x_i \max \left\{ (f(z_i) - \overline{\lambda} z_i) : z_i \ge 0 \right\} + \overline{\lambda} c$

can optimize on the z independently from the $x \implies$ "normal" linear cuts

A. Frangioni (DI - UniPi)

Staircase-structured non convex Nonlinear Programs

• $f(x, \cdot)$ and/or $G(x, \cdot)$ not concave and/or Z not convex:

Staircase-structured non convex Nonlinear Programs

- f(x, ·) and/or G(x, ·) not concave and/or Z not convex: though luck: you basically cannot do anything
- Benders' requires duality, duality requires convexity to work
- Some workarounds possible:
 - Use exact duality for nonconvex problems^[25] when available (though!)
 - Approximate the convex hull by some hierarchy $^{[26]}$ (RLT, \ldots)
 - Give up duality and use combinatorial Benders' (feasibility) cuts^[27]
- In general much harder/less efficient
- Yet, solves the original problem or gives as good a relaxation as the convex approximation of the subproblem is

^[25] Guzelsoy, Ralphs "Duality for Mixed-Integer Linear Programs" ITOR, 2007

^[26] Sen, Sherali "Decomposition [...] for Two-Stage Stochastic Mixed-Integer Programming" Math. Prog., 2006

^[27] Codato, Fischetti "Combinatorial Benders' Cuts for Mixed-Integer Linear Programming" Op. Res., 2006

Block-diagonal Integer Programs

Special case: X combinatorial (e.g., X = { x ∈ Zⁿ : Ex ≤ d })
(Π) max { cx : Ax = b , x ∈ X }
(Δ) min { yb + max { (c − yA)x : x ∈ X } }

nothing changes if we can still efficiently optimize over X due to size (decomposition) and/or structure (integrality)

• Except we are solving a (potentially good) relaxation of (Π)

$$(\bar{\Pi}) \begin{cases} \max c \left(\sum_{\bar{x} \in X} \bar{x} \theta_{\bar{x}} \right) \\ A \left(\sum_{\bar{x} \in X} \bar{x} \theta_{\bar{x}} \right) = b \\ \sum_{\bar{x} \in X} \theta_{\bar{x}} = 1 , \quad \theta_{\bar{x}} \ge 0 \quad \bar{x} \in X \end{cases}$$
$$\equiv \max \{ cx : Ax = b, x \in X^{**} = conv(X) \}$$

• $\theta_{\bar{x}} \in \mathbb{Z}$ gives a reformulation of (Π); could branch on $\theta_{\bar{x}}$

Block-diagonal Integer Programs (cont.d)

- Good news: (Π) better (not worse) than continuous relaxation (conv(X) ⊆ { x ∈ ℝⁿ : Ex ≤ d })
- Bad news: (Π_y) "too easy" (conv(X) = { x ∈ ℝⁿ : Ex ≤ d } ≡ integrality property) ⇒ (Π
 integrality property)
- (Π_y) must be easy, but not too easy (no free lunch)
- Anyway, at best gives good bounds ⇒
 Branch & Bound with DW/Lagrangian/CG ≡ Branch & Price
- Although it can be used to drive good heuristics^[15,28,29]
- Branching nontrivial: may destroy subproblem structure
 ⇒ branch on x (but (Π_B) is on θ)
- Little support from off-the-shelf tools, only SCIP / GCG^[30] (for now)

[28] Daniilidis, Lemaréchal "On a Primal-Proximal Heuristic in Discrete Optimization" *Math. Prog.*, 2005
[29] Scuzziato, Finardi, F. "Solving Stochastic [...] Unit Commitment with a New Primal Recovery [...]" *IJEPES*, 2021
[30] https://scipopt.org, https://gcg.or.rwth-aachen.de

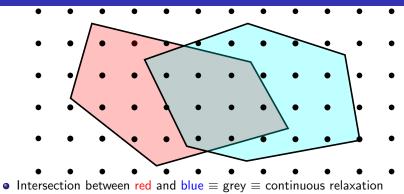
Digression: How to Choose your Lagrangian relaxation

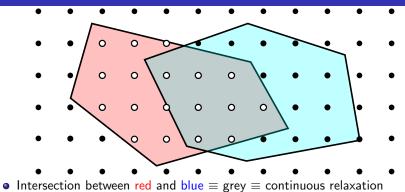
• There may be many choices

$$\begin{array}{ll} (\Pi) & \max \left\{ \ cx \ : \ Ax = b \ , \ Ex \leq d \ , \ x \in \mathbb{Z}^n \ \right\} \\ (\Pi'_y) & \max \left\{ \ cx + y(b - Ax) \ : \ x \in X' = \left\{ \ x \in \mathbb{Z}^n \ : \ Ex \leq d \ \right\} \\ (\Pi''_w) & \max \left\{ \ cx + w(d - Ex) \ : \ x \in X'' = \left\{ \ x \in \mathbb{Z}^n \ : \ Ax = b \right\} \end{array} \right\} \end{array}$$

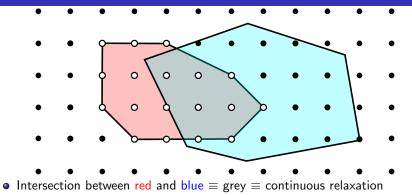
- The best between (Δ') and (Δ'') depends on integrality of X', X'':
 - if both have it, both (Δ') and (Δ'') \equiv continuous relaxation
 - if only one has it, the one that does not, but if both don't have it?
- Here comes Lagrangian decomposition^[31] (looks familiar?) (Π) \equiv max { $(cx' + cx'')/2 : x' \in X', x'' \in X'', x' = x''$ } (Π_{λ}) max { $(c/2 + \lambda)x' : x' \in X'$ } + max { $(c/2 - \lambda)x'' : x'' \in X''$ } ($\bar{\Delta}$) \equiv ($\bar{\Pi}$) max { $cx : x \in conv(X') \cap conv(X'')$ }
 - better than both (but need to solve two hard subproblems)

[31] Guignard, Kim "Lagrangean Decomposition: a Model Yielding Stronger Lagrangean Bounds" Math. Prog., 1987

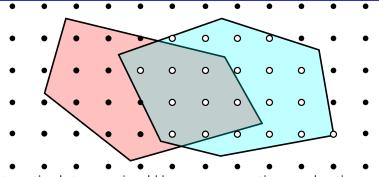




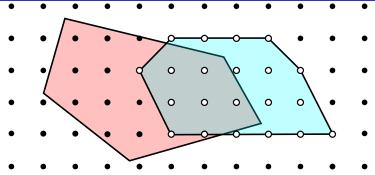
• Lagrangian relaxation of blue constraints



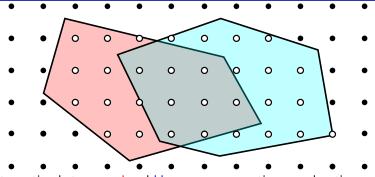
• Lagrangian relaxation of blue constraints shrinks the red (\Longrightarrow grey) part



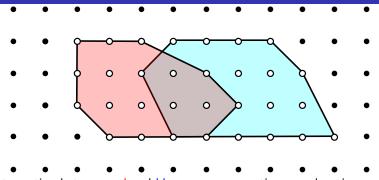
- Intersection between red and blue \equiv grey \equiv continuous relaxation
- Lagrangian relaxation of blue constraints shrinks the red (\Longrightarrow grey) part
- Lagrangian relaxation of red constraints



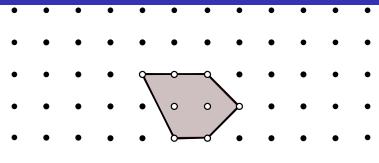
- Intersection between red and blue \equiv grey \equiv continuous relaxation
- Lagrangian relaxation of blue constraints shrinks the red (\Longrightarrow grey) part
- Lagrangian relaxation of red constraints shrinks the blue (\Longrightarrow grey) part



- Intersection between red and blue \equiv grey \equiv continuous relaxation
- Lagrangian relaxation of blue constraints shrinks the red (\Longrightarrow grey) part
- Lagrangian relaxation of red constraints shrinks the blue (\Longrightarrow grey) part
- Lagrangian decomposition (both red and blue constraints)



- $\bullet~$ Intersection between red and blue \equiv grey \equiv continuous relaxation
- Lagrangian relaxation of blue constraints shrinks the red (\Longrightarrow grey) part
- Lagrangian relaxation of red constraints shrinks the blue (\Longrightarrow grey) part
- Lagrangian decomposition (both red and blue constraints) shrinks both \implies the grey part more



- Intersection between red and blue \equiv grey \equiv continuous relaxation
- Lagrangian relaxation of blue constraints shrinks the red (\Longrightarrow grey) part
- Lagrangian relaxation of red constraints shrinks the blue (\Longrightarrow grey) part
- Lagrangian decomposition (both red and blue constraints) shrinks both ⇒ the grey part more
- But the intersection of convex hulls is larger (bad) than the convex hull of the intersection

Digression: Alternative Good Formulations for conv(X)

- (Under mild assumptions) conv(X) is a polyhedron \implies $conv(X) = \{ x \in \mathbb{R}^n : \tilde{E}x \leq \tilde{d} \}$
- There are good formulations for the problem
- Except, practically all good formulations are too large

$$Ax = b$$
 $Ex \le d$ $Ax = b$ $\tilde{Ex} \le \tilde{d}$ • Very few exceptions (integrality property \approx networks)• Good part: working in the natural variable space• But a few more variables do as a lot more constraints

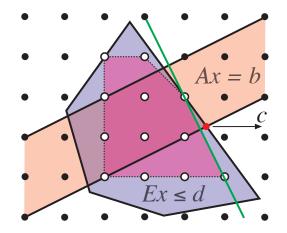
Row generation/polyhedral approaches

• The good news is: rows can be generated incrementally



Row generation/polyhedral approaches

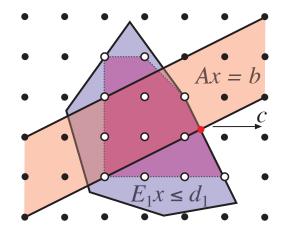
• The good news is: rows can be generated incrementally



• Relevant concept: separator

Row generation/polyhedral approaches

• The good news is: rows can be generated incrementally



• Relevant concept: separator

Branch & Cut

- $\mathcal{R} = (\text{small})$ subset of row(indice)s, $E_{\mathcal{R}} x \leq d_{\mathcal{R}}$ reduced set
- Solve outer approximation to $(\bar{\Pi})$

 $(\overline{\Pi}_{\mathcal{R}})$ max { $cx : Ax = b , E_{\mathcal{R}}x \leq d_{\mathcal{R}}$ }

feed the separator with primal optimal solution x^*

- Separator for (several sub-families of) facets of conv(X)
- Several general approaches, countless specialized ones
- Most often separators are hard combinatorial problems themselves (though using general-purpose MIP solvers is an option^[32])
- May tail off, branching useful far before having solved $(\overline{\Pi}_X)$

[32] Fischetti, Lodi, Salvagnin "Just MIP It!" MATHEURISTICS, Ann. Inf. Syst., 2009

A. Frangioni (DI — UniPi)

Practical Decomposition Methods I&II

Branch & Cut vs. Branch & Price

- Which is best?
- Row generation naturally allows multiple separators
- Very well integrated in general-purpose solvers (but harder to exploit "complex" structures)
- Column generation naturally allows very unstructured separators
- Simpler to exploit "complex" structures (but much less developed software tools)
- Column generation is row generation in the dual
- Then, of course, Branch & Cut & Price (nice, but software issues remain and possibly worsen)

Staircase-structured Integer Programs

• $X = \{ x \in \mathbb{Z}^n : Ex \le d \}$ combinatorial:

 $(\Pi) \qquad \max \left\{ \ cx + ez \ : \ Ax + Bz \leq b \ , \ x \in X \right\}$

nothing changes . . . except $(B_{\mathcal{B}})$ now is combinatorial \Longrightarrow hard

- However (B_W) now is equivalent to (Π) ⇒ no branching needed unless for solving (B_B)
- Conversely, everything breaks down if z ∈ Z^m: there is no (workable^[25]) exact dual of an Integer Program
- Can do with "approximated" duals (strong formulations, RLT^[26], ...) but equivalence lost ⇒ branching again
- Alternative route: use Benders' to solve continuous relaxation: Benders' as yet another (strong^[33]) cut generator
- Often more efficient and supported by some off-the-shelf solver

[33] Costa, Cordeau, Gendron "Benders, Metric and Cutset Inequalities for Multicommodity [...] Network Design" COAP, 2009

Conclusions (for now)

• General block structure can (and must in some cases) be exploited

- General block structure can (and must in some cases) be exploited
- Well-understood main tools: reformulation + duality

- General block structure can (and must in some cases) be exploited
- Well-understood main tools: reformulation + duality
- Two different approaches, "primal" and "dual": for linear programs Lagrange is Benders' in the dual, and vice-versa

- General block structure can (and must in some cases) be exploited
- Well-understood main tools: reformulation + duality
- Two different approaches, "primal" and "dual": for linear programs Lagrange is Benders' in the dual, and vice-versa
- Both boil down to the 50+-years old Cutting-Plane algorithm^[19]
 "plus some branching" to deal with nonconvexity

- General block structure can (and must in some cases) be exploited
- Well-understood main tools: reformulation + duality
- Two different approaches, "primal" and "dual": for linear programs Lagrange is Benders' in the dual, and vice-versa
- Both boil down to the 50+-years old Cutting-Plane algorithm^[19]
 "plus some branching" to deal with nonconvexity
- Different twists, different conditions to work:

- General block structure can (and must in some cases) be exploited
- Well-understood main tools: reformulation + duality
- Two different approaches, "primal" and "dual": for linear programs Lagrange is Benders' in the dual, and vice-versa
- Both boil down to the 50+-years old Cutting-Plane algorithm^[19]
 "plus some branching" to deal with nonconvexity
- Different twists, different conditions to work:
 - who is complicating (constraints vs. variables), but tricks (\equiv other reformulations) can be used to create the desired structure

- General block structure can (and must in some cases) be exploited
- Well-understood main tools: reformulation + duality
- Two different approaches, "primal" and "dual": for linear programs Lagrange is Benders' in the dual, and vice-versa
- Both boil down to the 50+-years old Cutting-Plane algorithm^[19]
 "plus some branching" to deal with nonconvexity
- Different twists, different conditions to work:
 - who is complicating (constraints vs. variables), but tricks (\equiv other reformulations) can be used to create the desired structure
 - who is reformulated (subproblem vs. master problem)

- General block structure can (and must in some cases) be exploited
- Well-understood main tools: reformulation + duality
- Two different approaches, "primal" and "dual": for linear programs Lagrange is Benders' in the dual, and vice-versa
- Both boil down to the 50+-years old Cutting-Plane algorithm^[19] "plus some branching" to deal with nonconvexity
- Different twists, different conditions to work:
 - who is complicating (constraints vs. variables), but tricks (\equiv other reformulations) can be used to create the desired structure
 - who is reformulated (subproblem vs. master problem)
 - where integer/nonconvexity can be (subproblem vs. master problem)

- General block structure can (and must in some cases) be exploited
- Well-understood main tools: reformulation + duality
- Two different approaches, "primal" and "dual": for linear programs Lagrange is Benders' in the dual, and vice-versa
- Both boil down to the 50+-years old Cutting-Plane algorithm^[19] "plus some branching" to deal with nonconvexity
- Different twists, different conditions to work:
 - who is complicating (constraints vs. variables), but tricks (\equiv other reformulations) can be used to create the desired structure
 - who is reformulated (subproblem vs. master problem)
 - where integer/nonconvexity can be (subproblem vs. master problem)
 - where branching/cutting is done (subproblem vs. master problem)

- General block structure can (and must in some cases) be exploited
- Well-understood main tools: reformulation + duality
- Two different approaches, "primal" and "dual": for linear programs Lagrange is Benders' in the dual, and vice-versa
- Both boil down to the 50+-years old Cutting-Plane algorithm^[19] "plus some branching" to deal with nonconvexity
- Different twists, different conditions to work:
 - who is complicating (constraints vs. variables), but tricks (\equiv other reformulations) can be used to create the desired structure
 - who is reformulated (subproblem vs. master problem)
 - where integer/nonconvexity can be (subproblem vs. master problem)
 - where branching/cutting is done (subproblem vs. master problem)
 - where/which nonlinearities can be easily dealt with

- General block structure can (and must in some cases) be exploited
- Well-understood main tools: reformulation + duality
- Two different approaches, "primal" and "dual": for linear programs Lagrange is Benders' in the dual, and vice-versa
- Both boil down to the 50+-years old Cutting-Plane algorithm^[19] "plus some branching" to deal with nonconvexity
- Different twists, different conditions to work:
 - who is complicating (constraints vs. variables), but tricks (\equiv other reformulations) can be used to create the desired structure
 - who is reformulated (subproblem vs. master problem)
 - where integer/nonconvexity can be (subproblem vs. master problem)
 - where branching/cutting is done (subproblem vs. master problem)
 - where/which nonlinearities can be easily dealt with
- But from theory to practice there is a large gulf to be crossed

- General block structure can (and must in some cases) be exploited
- Well-understood main tools: reformulation + duality
- Two different approaches, "primal" and "dual": for linear programs Lagrange is Benders' in the dual, and vice-versa
- Both boil down to the 50+-years old Cutting-Plane algorithm^[19] "plus some branching" to deal with nonconvexity
- Different twists, different conditions to work:
 - who is complicating (constraints vs. variables), but tricks (\equiv other reformulations) can be used to create the desired structure
 - who is reformulated (subproblem vs. master problem)
 - where integer/nonconvexity can be (subproblem vs. master problem)
 - where branching/cutting is done (subproblem vs. master problem)
 - where/which nonlinearities can be easily dealt with
- But from theory to practice there is a large gulf to be crossed
- Ready your oars, we are going to the sea

A. Frangioni (DI — UniPi)

Practical Decomposition Methods I&II

"Napoli" 2021 49 / 49