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It Is Possible to Succumb to One’s Success

The Internet was built around a set of assumptions:

Integrity of information is crucial: lost packets are retransmitted

Timeliness does not matter: the sooner the better, but no deadline

Application adapt to the available rate
(higher rate ⇐⇒ higher user satisfaction, but no QoS agreements)

=⇒ Packets don’t count, can be: delayed (arbitrarily long), dropped,
duplicated, displaced (N + 1 arrives before N)

=⇒ Internet is built upon the “Best Effort” Service Model:
routers do their best to relay packets to destination, but
no guarantee that a given packet will arrive at all

Traditional Internet applications play by these rules
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Succumbing to One’s Success (cont.d)

Despite this, Internet has became a huge splash hit (doh!)

This has made some technologies (TCP-IP, Ethernet) dominant,
economy of scale dictates convergence of everything:

traditional internet applications (+ social stuff)

IP Telephony

live Internet Protocol Television

online gaming/MMORPGs

industrial control systems

remote sensing and surveillance systems

M2M communication, IoT/IoE (pick your favorite buzzword)

irrespectively of the access medium (fixed, cellular, WiFi, BLE, . . . )

Clear issue: many of these completely unsuitable for best effort
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Succumbing to One’s Success (cont.d)

Applications 

Real-Time Elastic 

Tolerant Intolerant 

Adaptive Nonadaptive 

Delay Adaptive Rate Adaptive 

Best Effort 
is adequate 

Best Effort 
is not adequate 
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How to Avoid Succumbing to One’s Success

Now what? Introduce QoS guarantees

What is QoS? “The ability of a network to offer different levels of
service, in order to support different types of applications”

Prime example: controlled end-to-end delay

Critical in embedded systems (automative, avionics, . . . )

Much easier said than done, the provisions simply weren’t there

Introducing QoS is a complex, multi-faceted effort
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Introducing QoS

Requires adding ad hoc algorithms, hw/sw components, protocols:

simple, scalable and cost-effective (106 routers, 109 devices)

effective ≡ guarantee that QoS objectives are met (money involved)

distributed and cooperating (no central control & management)

Some building blocks have been designed, a few standardized

Big issue: cooperation at the various timescales (vertical)

years/months: network design/expansion

weeks/days: resource provisioning (traffic engineering, routing)

hours/seconds: flow lifetime (resource reservation, admission control)

sub-millisecond: transmission (packet scheduling)

Horizontal cooperation is also needed

All this within a distributed decision model
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QoS Requires Optimization (doh!)

Example: setting OSPF weights in a domain
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. . . a heinously complex problem for wanting too simple a system

Select the “best” path for a flow (can be many, horrible in practice)

Packets, not circuits: how will the packets behave?

Can’t say unless you reserve capacity for the flow (≈ circuits)

...
How to do that optimally? It depends on many things
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Flows, routers, links

Flow: “distinguishable directed stream of packets with the same QoS
requirements traveling from a source to one or more destinations”

Lots of delays:

IP IP IP IP 

Forwarding 

Processing Delay Queuing Delay 
Transmission and  

Propagation Delays 

Ba
nd

wi
dt

h 

Slowly creeping closer to our mathspeak:

IP Network ≡ directed graph G = (N,A) (n = |N|, m = |A|)
set of flows K : origin/destination (sk , dk ), arrival curve Ak (???)

packet transmission cannot be preempted, for packets size matters:
maximum transfer unit L (MTU, max. packet length)

(i , j) ∈ A: link speed (bandwidth) wij =⇒ link delay lij (≥ L/wij )

i ∈ N: node processing delay ni , assumed constant (!)

Queuing delay a relevant factor, depends on packet schedulers
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A (very brief) Intro To Packet Schedulers

It all starts with a classifier
F1
P1

F1
P2

F1
P3

TF
P1

TF
P2

TF
P3

TF
P4

Multi-queue 
scheduler

FIFO queues

F2
P1

F2
P2

Packet
Classifier

Multiple logical lists in a single memory buffer space

F1
P1

F1
P2

TF
P1

Tf
P2

F2
P1

F2
P2

F1
P3

TF
P3

Tf
P4

Head of flow 
F1 Tail of flow F1

The scheduler 
knows this

The classifier
knows this

The crucial part is the scheduler
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The Ideal Packet Scheduler

What we would want from a packet scheduler:

simplicity (low complexity)

isolation of flows

controllability (parameters to alter the behavior)

fairness

guarantees

Not at all easy

Example: FIFO scheduler

simple: O(1) X

no isolation of flows: a burst of a new flow can starve yours forever X

not controllable: can’t change how it behaves X

no fairness: the first flow arriving takes it all X

no guarantees: can’t prove anything on anything (e.g. max delay) X

Strict priority list not much better
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The Ideal Packet Scheduler: Generalized Processor Sharing

What is the perfect formula of a scheduler?

Control: reserved rate rk
ij such that r̄ij =

∑
k∈K rk

ij ≤ wij

Schedule packets so that flow k achieves effective rate

r eff ,k
ij =

(
wij/r̄ij

)
rk
ij ≥ rk

ij ≡ delay = L/r eff ,k
ij

≡ rk
ij if the arc loaded, more if spare bandwidth available

Provable perfect fairness (with appropriate definition)

Can this be achieved? Almost, but not quite

For once, GPS defined for idealized fluid model but we have packets

Furthermore, it cannot be done in less than O(log |K |) (no O(1))

Yet, O(log |K |) good approximations exist
(e.g. Worst-case Fair Weighted Fair Queuing — WF2Q)
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Good Approximations To The Ideal Packet Scheduler

Notation: rk
ij > 0 =⇒ flow k passes through (i , j) =⇒ k ∈ P(i , j)

rmin
ij = min{ rk

ij : k ∈ P(i , j) }

Actual scheduling protocols (others ∃, e.g. group-based SRP approx.)

θk
ij =

L

wij
+

{
L/r eff ,k

ij if P(i , j) \ {k} 6= ∅
0 otherwise

Strictly
Rate-Proportional

(1)

θk
ij =

(
|P(i , j)|+ 1

) L

wij
+

L

r eff ,k
ij

Weakly
Rate-Proportional

(2)

θk
ij =

(
|P(i , j)|+

r̄ij

rmin
ij

)
L

wij
+

L

r eff ,k
ij

Frame-Based (3)

L/wij : a packet has to be entirely received before anything happens

SRP ≤ WRP ≤ FB

SRP is O(log |K |), WRP is O(log |K |) but simpler, FB is O(1)
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Putting It All Together

Given all individual pieces, compute the end-to-end delay (e2ed)

Could use queuing theory, but it would be very complex;
plus: do your really know the arrival distribution?

Alternative: worst case analysis, using network calculus

Last crucial ingredient: the arrival function Ak

Not trivial to determine, but a nice trick: traffic shaper

packets shaper 

In particular, leaky-bucket traffic shaper with burst σk and rate ρk

makes for a very simple arrival function
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The Worst-case End-To-End Delay Formula (at last!)

Worst-case e2ed (WCD) of flow k with σk , ρk depends on:
1 the selected sk –dk path Pk in G ;
2 the reserved rates rk

ij ∈ (0,wij ] for each (i , j) ∈ Pk

3 the specific packet scheduler

Necessary assumption for finite WCD:
rk
ij ≥ ρk for each (i , j) ∈ Pk ≡ rk

min = min{ rk
ij : (i , j) ∈ Pk } ≥ ρk

(rate ρk ≡ “steady-state” flow demand in usual flow models)

General WCD formula (nonlinear!):

σk

rk
min

+
∑

(i , j)∈Pk

(
θk

ij + lij + ni

)
(4)

where θk
ij is the protocol-specific arc delay (also nonlinear!)

σk/rk
min: the burst can happen just before the worst-case packet,

all of it has to go through the bottleneck arc

Good news: (4) convex and SOCP-representable if θk
ij is
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Delay Constrained Routing Problems

Delay Constrained Routing Problem (DCR)

Compute paths and reserve resources on arcs at minimum cost such that
the maximum delay of each flow is ≤ deadline

Single-Flow Single-Path (SFSP) DCR: one new unsplittable flow
(just about to enter the network, has to be routed now)

drop superscripts, rk
ij = existing flows, fixed

P(i , j) = set of paths passing through (i , j) excluding the new one

r̄ij =
∑

k∈P(i, j) r
k
ij , rmin

ij = min{ rk
ij : k ∈ P(i , j) } exclude new flow

Fixed deadline δ on the new flow

Reservable capacity wij ≥ wij − r̄ij ≥ cij ≥ rij

Linear capacity reservation cost fij (often = 1 ≡ Equal Cost (EC))

Assumption: all the other flows must remain feasible (access control)
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A (partial) MI-SOCP Model for SFSP-DCR

Path binary variables xij , reserve continuous variables rij

min
∑

(i ,j)∈A fij rij (5)∑
(j ,i)∈BS(i)

xji −
∑

(i ,j)∈FS(i)

xij =

{
−1 if i = s

1 if i = d
0 otherwise

i ∈ N (6)

0 ≤ rij ≤ cijxij (i , j) ∈ A (7)

ρ ≤ rmin ≤ rij + cmax (1− xij ) (i , j) ∈ A (8)

t +
∑

(i ,j)∈A

(
θij +

(
lij + ni

)
xij

)
≤ δ (9)

t rmin ≥ σ , t ≥ 0 (10)

xij ∈ {0, 1} , rij ∈ R (i , j) ∈ A

(10) rotated SOCP constraint ≡ t ≥ σ/rmin (since t ≥ 0)

cmax = max{ cij : (i , j) ∈ A } = big-M, but cannot use cij

(otherwise rmin ≤ cij even if (i , j) /∈ P)
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“Bound” Versions of the (Worst-case) Delay Formulæ

Worst-worst case: r eff
ij = rij , P(i , j) 6= ∅ =⇒ coarser (but valid)

estimate of the delay, somewhat simplified formulæ:

θij =
L

rij
+

L

wij
SRP (11)

θij =
L

rij
+ |P(i , j)| L

wij
WRP (12)

θij =
L

rij
+

(
|P(i , j)|+

wij − rij

min{ rij , rmin
ij }

)
L

wij
FB (13)

(11) independent of other flows, convex, SOCP-representable

(12) ≈ (11) but not flow-independent

(13) (surprisingly) also convex but only for SFSP, less trivial

(12) and (13) not flow-independent =⇒ have admission control issue
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A big-M Formulation for SRP-SFSP-DCR

θij = L/rij , add L/wij to the coefficient of xij in (9)

Issue: how to write “xij = 1 =⇒ θij = L/rij , xij = 0 =⇒ θij = 0”;
can’t use rij θij ≥ L for that =⇒ θij > 0 always

Solution: two extra sets of variables sij and r ′ij

0 ≤ θij ≤ Mxij

θij ≥ sij −M(1− xij )

sij r
′
ij ≥ L , sij ≥ 0

0 ≤ r ′ij ≤ rij + M(1− xij )

θij ≥ sij if xij = 1, while θij and sij are “free” if xij = 0

r ′ij ≤ rij if xij = 1, while r ′ij and rij are “free” if xij = 0

sij ≥ L/r ′ij =⇒ θij ≥ sij ≥ L/r ′ij ≥ L/rij if xij = 1

M = max(
√
L , L/ρ) suffices, still it’s big-M: can we do better?
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can’t use rij θij ≥ L for that =⇒ θij > 0 always

Solution: two extra sets of variables sij and r ′ij
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sij r
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√
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A Step Up: Convex Indicator Constraints

Vector of n variables x , convex function f (x), one binary variable y

Constraint f (x) ≤ 0 “active” ⇐⇒ y = 1, or more in general,
constraint . . .+ s + . . . ≤ d with s = f (x) if y = 1, s = 0 otherwise

Union of P0 = { (x , 0) ∈ Rn+1 : l0 ≤ x ≤ u0 }
P1 = { (x , 1) ∈ Rn+1 : l1 ≤ x ≤ u1 , f (x) ≤ 0 }

Special case: P0 = { (0, 0) }, i.e., l0 = u0 = 0

Obvious MINLP formulations: yl1 ≤ x ≤ yu1 plus

f (y) ≤ M(1− y) or s ≥ 0 , s ≥ f (x)−M(1− y)

Continuous relaxation can be very weak: M “large”

What can we do to improve on this? If f is linear, nothing . . .

. . . but if f is nonlinear, we can indeed do something
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Constructing a better formulation

General result: conv(P0 ∪ P1) = pr(p,u)(cl(P∗)), where

P∗ =

{
(x , x ′, y) ∈ R2n+1 : y f (x ′/y) ≤ 0 , y ∈ (0, 1]
yl1 ≤ x ′ ≤ yu1 , (1− y)l0 ≤ x − x ′ ≤ (1− y)u0

the best possible convex approximation of their (nonconvex) union

Simplifies somewhat for P0 = { (0, 0) } (and f “nice”):

conv(P0∪P1 ) =
{

(x , y) : yl1 ≤ x ≤ yu1 , y f (x/y) ≤ 0 , y ∈ [0, 1]
}

Even simpler to see: nonlinear convex-cost semi-continuous variable

f (x , y) =


0 if y = 0 and x = 0
f (x) + c if y = 1 and l1 ≤ x ≤ u1

+∞ otherwise

whose convex envelope (assuming 0f (0/0) = 0 and f nice) is

cof (x , y)=

{
yf (x/y) + cy if y l1 ≤ x ≤ yu1 , y ∈ [0, 1]
+∞ otherwise

f (x , y) = y f (x/y) is the perspective function of f

Frangioni et al. (DI + DII, UniPI) Nonlinear & Routing GTAA3–2014 24 / 74



Constructing a better formulation

General result: conv(P0 ∪ P1) = pr(p,u)(cl(P∗)), where

P∗ =

{
(x , x ′, y) ∈ R2n+1 : y f (x ′/y) ≤ 0 , y ∈ (0, 1]
yl1 ≤ x ′ ≤ yu1 , (1− y)l0 ≤ x − x ′ ≤ (1− y)u0

the best possible convex approximation of their (nonconvex) union

Simplifies somewhat for P0 = { (0, 0) } (and f “nice”):

conv(P0∪P1 ) =
{

(x , y) : yl1 ≤ x ≤ yu1 , y f (x/y) ≤ 0 , y ∈ [0, 1]
}

Even simpler to see: nonlinear convex-cost semi-continuous variable

f (x , y) =


0 if y = 0 and x = 0
f (x) + c if y = 1 and l1 ≤ x ≤ u1

+∞ otherwise

whose convex envelope (assuming 0f (0/0) = 0 and f nice) is

cof (x , y)=

{
yf (x/y) + cy if y l1 ≤ x ≤ yu1 , y ∈ [0, 1]
+∞ otherwise

f (x , y) = y f (x/y) is the perspective function of f

Frangioni et al. (DI + DII, UniPI) Nonlinear & Routing GTAA3–2014 24 / 74



Constructing a better formulation

General result: conv(P0 ∪ P1) = pr(p,u)(cl(P∗)), where

P∗ =

{
(x , x ′, y) ∈ R2n+1 : y f (x ′/y) ≤ 0 , y ∈ (0, 1]
yl1 ≤ x ′ ≤ yu1 , (1− y)l0 ≤ x − x ′ ≤ (1− y)u0

the best possible convex approximation of their (nonconvex) union

Simplifies somewhat for P0 = { (0, 0) } (and f “nice”):

conv(P0∪P1 ) =
{

(x , y) : yl1 ≤ x ≤ yu1 , y f (x/y) ≤ 0 , y ∈ [0, 1]
}

Even simpler to see: nonlinear convex-cost semi-continuous variable

f (x , y) =


0 if y = 0 and x = 0
f (x) + c if y = 1 and l1 ≤ x ≤ u1

+∞ otherwise

whose convex envelope (assuming 0f (0/0) = 0 and f nice) is

cof (x , y)=

{
yf (x/y) + cy if y l1 ≤ x ≤ yu1 , y ∈ [0, 1]
+∞ otherwise

f (x , y) = y f (x/y) is the perspective function of f

Frangioni et al. (DI + DII, UniPI) Nonlinear & Routing GTAA3–2014 24 / 74



Constructing a better formulation

General result: conv(P0 ∪ P1) = pr(p,u)(cl(P∗)), where

P∗ =

{
(x , x ′, y) ∈ R2n+1 : y f (x ′/y) ≤ 0 , y ∈ (0, 1]
yl1 ≤ x ′ ≤ yu1 , (1− y)l0 ≤ x − x ′ ≤ (1− y)u0

the best possible convex approximation of their (nonconvex) union

Simplifies somewhat for P0 = { (0, 0) } (and f “nice”):

conv(P0∪P1 ) =
{

(x , y) : yl1 ≤ x ≤ yu1 , y f (x/y) ≤ 0 , y ∈ [0, 1]
}

Even simpler to see: nonlinear convex-cost semi-continuous variable

f (x , y) =


0 if y = 0 and x = 0
f (x) + c if y = 1 and l1 ≤ x ≤ u1

+∞ otherwise

whose convex envelope (assuming 0f (0/0) = 0 and f nice) is

cof (x , y)=

{
yf (x/y) + cy if y l1 ≤ x ≤ yu1 , y ∈ [0, 1]
+∞ otherwise

f (x , y) = y f (x/y) is the perspective function of f

Frangioni et al. (DI + DII, UniPI) Nonlinear & Routing GTAA3–2014 24 / 74



The Perspective what?

f (x , y) = y f (x/y) is convex for y > 0 if f is

epi f (x , y) is a cone emanating from (0, 0) with the “shape of f ”

y

f

x

1

f (x , y) “much more nonlinear” than f (x) + cy

example: f (x) = ax2 + bx =⇒ f (x , y) = (a/y)x2 + bx + cy

notes: I) a/y > a for y < 1; II) for a = 0 nothing happens
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The Perspective Reformulation (Relaxation)

Slightly more general: Ax ≤ b compact (≡ {Ax ≤ 0} = {0}), MINLP

min
{
f (x) + cy : Ax ≤ by , y ∈ {0, 1}

}
(14)

Its continuous relaxation: convex, but weak bound

min
{
f (x) + cy : Ax ≤ by , y ∈ [0, 1]

}
(15)

Better relaxation (best possible convex one):

min
{
yf (x/y) + cy : Ax ≤ by , y ∈ [0, 1]

}
(16)

better lower bound than (15), still convex, but “more nonlinear”

Even better: (16) continuous relaxation of Perspective Reformulation

min
{
y f (x/y) + cy : Ax ≤ by , y ∈ {0, 1}

}
(17)

≡ (14) (requires assuming 0f (0/0) = 0, not really an issue)
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Solving the Perspective Relaxation I

But how to solve (16) it efficiently?

Good news: y f (x/y) is SOCP-representable if f is

Example 1: for f (x) = ax2 + bx , (17) becomes

min
{
t + bx + cy : ax2 ≤ ty , Ax ≤ by , y ∈ {0, 1}

}
(18)

a Mixed-Integer (rotated) Second-Order Cone Program

Example 2: f (θ, r) = L/r − θ ≤ 0⇐⇒ x = 1 gives

Lx2/r ≤ θ ≡ Lx2 ≤ θr

if x = 0 then θ can be 0 whatever r , if x = 1 then θ ≥ L/r

Note: Lx/r would be even better, but it is not convex;
in fact, L0/0 6= 0, whereas L02/0 = 0

Frangioni et al. (DI + DII, UniPI) Nonlinear & Routing GTAA3–2014 27 / 74



Solving the Perspective Relaxation I

But how to solve (16) it efficiently?

Good news: y f (x/y) is SOCP-representable if f is

Example 1: for f (x) = ax2 + bx , (17) becomes

min
{
t + bx + cy : ax2 ≤ ty , Ax ≤ by , y ∈ {0, 1}

}
(18)

a Mixed-Integer (rotated) Second-Order Cone Program

Example 2: f (θ, r) = L/r − θ ≤ 0⇐⇒ x = 1 gives

Lx2/r ≤ θ ≡ Lx2 ≤ θr

if x = 0 then θ can be 0 whatever r , if x = 1 then θ ≥ L/r

Note: Lx/r would be even better, but it is not convex;
in fact, L0/0 6= 0, whereas L02/0 = 0

Frangioni et al. (DI + DII, UniPI) Nonlinear & Routing GTAA3–2014 27 / 74



Solving the Perspective Relaxation I

But how to solve (16) it efficiently?

Good news: y f (x/y) is SOCP-representable if f is

Example 1: for f (x) = ax2 + bx , (17) becomes

min
{
t + bx + cy : ax2 ≤ ty , Ax ≤ by , y ∈ {0, 1}

}
(18)

a Mixed-Integer (rotated) Second-Order Cone Program

Example 2: f (θ, r) = L/r − θ ≤ 0⇐⇒ x = 1 gives

Lx2/r ≤ θ ≡ Lx2 ≤ θr

if x = 0 then θ can be 0 whatever r , if x = 1 then θ ≥ L/r

Note: Lx/r would be even better, but it is not convex;
in fact, L0/0 6= 0, whereas L02/0 = 0

Frangioni et al. (DI + DII, UniPI) Nonlinear & Routing GTAA3–2014 27 / 74



Solving the Perspective Relaxation II

Is it the only way? Of course not.

Every convex function is the supremum of its affine minorants

(v , x , y) ∈ epi f ⇐⇒ Ax ≤ by , y ∈ [0, 1], and ∀x̄ s.t. Ax̄ ≤ b

v ≥ f (x̄) + c +
[
s , c + f (x̄)− sx̄

] [ x − x̄
y − 1

]
∀s ∈ ∂f (x̄)

Infinitely many inequalities (possibly “twice” if f nonsmooth at x̄);
looks though, but actually pretty OK for B&C (with some ε)

The quadratic case: Perspective Cuts (P/C)

v ≥ (2ax̄ + b)x + (c − ax̄2)y ∀x̄ s.t. Ax̄ ≤ b

Basically the same thing as linearizing the cones in (18),
which can be done automatically . . .
but does not work nearly as well (don’t know why)
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Application to SRP-SFSP-DCR

“Perspectivized” formulation (first two not even strictly necessary):

ρxij ≤ rij ≤ cijxij , 0 ≤ θij ≤ (L/ρ)xij , θij rij ≥ Lx2
ij

original variables + a(nother rotated) SOCP constraint

Looks much better than

0 ≤ θij ≤ Mxij

θij ≥ sij −M(1− xij )

sij r
′
ij ≥ L , sij ≥ 0

0 ≤ r ′ij ≤ rij + M(1− xij )

not only better bound, but also fewer variables/constraints

Is it? Time for computational tests

Don’t even bother with linearizations, just call a general-purpose
MI-SOCP solver
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Instances

Real-world IP network topologies (GARR, SNDlib, TopoZOO):
10 – 65 nodes, 12 – 170 arcs, few 10s – several 100s flows

Realistic random topologies (Waxman model): ≤ 200 nodes, 1500 arcs

Equal (reservation) Costs fij = 1

FNSS tool for realistic traffic matrices (µ(T ) = 0.8 Gbps and
σ2(T ) = 0.05) and link-capacity assignment (1, 10, 40 Gbps)

DCR-generator for the remaining network parameters
(L = 1500, ni = lij = L/wij , σ = 3L)

Distributed at
http://www.di.unipi.it/optimize/Data/MMCF.html#UMMCF

Experiments with “unloaded networks”, but “loaded” case analogous
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MI-SOCP models – Cplex

Cplex P Cplex bM
avg max avg max
t n t n t n t n

abilene 0.011 0.000 0.03 0 0.02 0.03 0.09 1
atlanta 0.015 0.044 0.18 1 0.03 0.07 0.17 1

cost266 0.015 0.017 0.06 1 0.05 0.03 0.26 1
dfn-bwin 0.012 0.000 0.03 0 0.05 0.02 0.11 1
dfn-gwin 0.020 0.151 0.10 1 0.05 0.00 0.16 0

di-yuan 0.051 1.190 0.34 18 0.11 1.36 0.62 31
france 0.014 0.000 0.05 0 0.04 0.02 0.16 1
geant 0.011 0.016 0.06 1 0.03 0.03 0.19 1

germany50 0.024 0.025 0.10 1 0.09 0.06 0.70 1
giul39 0.245 0.547 0.99 13 1.27 15.33 6.68 610

india35 0.021 0.036 0.27 1 0.08 0.07 0.58 4
janos-us 0.093 0.108 0.63 7 0.43 2.65 1.55 30

janos-us-ca 0.141 0.138 0.83 8 0.80 5.76 2.76 243
newyork 0.018 0.034 0.14 1 0.07 0.05 0.28 1
nobel-eu 0.016 0.009 0.08 1 0.04 0.05 0.26 1

nobel-ger 0.011 0.020 0.04 1 0.04 0.08 0.24 3
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MI-SOCP models – Cplex (cont.)

nobel-us 0.015 0.083 0.10 1 0.04 0.04 0.19 1
norway 0.035 0.079 0.32 8 0.11 0.36 0.96 8

pdh 0.042 0.444 0.38 8 0.11 0.74 0.38 13
pioro40 0.019 0.039 0.27 1 0.10 0.14 0.57 6
polska 0.020 0.042 0.11 1 0.03 0.08 0.09 1

sun 0.165 0.587 0.89 13 0.65 7.68 2.36 257
ta2 0.020 0.015 0.13 1 0.12 0.08 0.89 4

garr 1999-01 0.022 0.017 0.13 1 0.09 0.21 0.33 1
garr 1999-04 0.029 0.000 0.07 0 0.10 0.07 0.45 3
garr 1999-05 0.029 0.004 0.09 1 0.10 0.08 0.40 3
garr 2001-09 0.030 0.000 0.10 0 0.11 0.10 0.44 3
garr 2001-12 0.029 0.000 0.08 0 0.09 0.16 0.32 3
garr 2004-04 0.028 0.000 0.18 0 0.09 0.05 0.31 3
garr 2009-08 0.087 0.005 0.46 2 0.57 0.47 1.99 27
garr 2009-09 0.089 0.011 0.62 4 0.60 0.61 2.19 36
garr 2009-12 0.090 0.013 0.78 4 0.60 0.59 2.47 44
garr 2010-01 0.093 0.013 0.50 4 0.61 0.57 2.32 32

w1-100-04 1.854 3.176 43.14 85 8.88 164.49 43.87 2585
w1-200-04 24.231 25.366 413.95 4075 231.09 2714.68 9088.54 127429
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MI-SOCP models – GUROBI

GUROBI P GUROBI bM
avg max avg max
t n t n t n t n

abilene 0.011 0.0 0.03 0 0.032 0.1 0.06 3
atlanta 0.012 0.5 0.03 8 0.044 1.6 0.08 15

cost266 0.012 0.4 0.05 11 0.099 0.8 0.30 27
dfn-bwin 0.007 0.0 0.01 0 0.068 0.0 0.08 0
dfn-gwin 0.017 0.0 0.04 0 0.104 0.1 0.31 4

di-yuan 0.028 2.0 0.21 46 0.116 4.9 0.46 74
france 0.011 0.3 0.03 6 0.079 1.2 0.18 17
geant 0.011 0.7 0.04 11 0.062 1.2 0.17 22

germany50 0.016 1.1 0.26 34 0.166 2.5 0.93 52
giul39 0.424 67.6 6.69 1308 1.795 138.5 30.02 2212

india35 0.014 0.4 0.12 14 0.132 1.8 0.34 29
janos-us 0.150 21.2 2.14 767 0.717 85.4 16.54 1168

janos-us-ca 0.285 47.1 7.87 916 1.741 158.4 25.93 1595
newyork 0.013 0.8 0.04 14 0.091 2.2 0.22 22
nobel-eu 0.013 0.2 0.09 9 0.080 0.4 0.25 31

nobel-ger 0.012 0.4 0.04 11 0.056 1.4 0.33 38
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MI-SOCP models – GUROBI (cont.)

nobel-us 0.012 0.8 0.05 11 0.047 0.9 0.15 11
norway 0.033 2.8 0.44 30 0.141 7.7 0.63 55

pdh 0.023 4.6 0.09 47 0.081 7.1 0.23 45
pioro40 0.015 0.6 0.09 13 0.160 2.6 0.57 44
polska 0.010 0.5 0.03 7 0.038 1.2 0.06 9

sun 0.189 39.6 0.76 282 0.961 126.9 5.68 583
ta2 0.018 0.6 0.12 27 0.214 1.9 1.52 33

garr 1999-01 0.034 0.5 0.09 9 0.096 6.6 0.38 17
garr 1999-04 0.016 1.9 0.11 26 0.115 2.7 0.55 35
garr 1999-05 0.018 2.0 0.08 25 0.139 3.5 0.79 36
garr 2001-09 0.020 2.0 0.09 19 0.156 4.0 0.97 29
garr 2001-12 0.015 0.0 0.04 0 0.116 0.1 0.31 17
garr 2004-04 0.021 3.0 0.06 14 0.128 3.5 0.57 27
garr 2009-08 0.070 7.6 0.72 124 0.776 18.8 5.39 164
garr 2009-09 0.071 7.6 0.59 202 0.918 21.8 4.85 212
garr 2009-12 0.071 7.6 0.55 123 0.920 22.7 6.21 352
garr 2010-01 0.073 7.6 0.68 114 0.916 22.8 5.76 339

w1-100-04 2.372 159.3 7.09 703 14.064 407.2 110.36 5339
w1-200-04 9.575 241.4 63.37 1395 134.145 637.0 2384.84 10943
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MI-SOCP Model for WRP

θij = L/rij + |P(i , j)|L/wij ≈ (11) =⇒ (basically) same model

But requires access control: not to make existing flows unfeasible

Delay slack:

δ̄k = δk − σk

rk
min

−
∑

(i , j)∈Pk

(
L

rk
ij

+ |P(i , j)| L
wij

+ lij + ni

)

Access control constraint, one for each k ∈ K∑
(i , j)∈Pk

L

wij
xij ≤ δ̄k

|P(i , j)| increases by one in all (i , j) that the new path traverses

Can be used to “preprocess away” some arcs

The coefficients are the same for each flow, can use
path (+ RHS) dominance to detect redundant ones

Still, possibly many constraints (|K | ≈ n2)
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MI-SOCP Model for FB

θij = L/rij + ( |P(i , j)|+φ(rij ) )L/wij (≈ WRP), where

φ(r) = (wij − r)/min{ r , rmin
ij }

Since rmin
ij is fixed, can be rewritten as

φ(r) =

{
φ1(r) = wij/r − 1 if 0 < r ≤ rmin

ij

φ2(r) = (wij − r)/rmin
ij if rmin

ij ≤ r ≤ cij (≤ wij )

Convex!: both φ1 and φ2 are, and φ′1(rmin
ij ) ≤ φ′2(rmin

ij )

Can use the classical variable splitting reformulation:

φ(r) = φ1(r ′) + φ2(r ′′ + rmin
ij )− φ(rmin

ij ) s.t.

0 ≤ r ′ij ≤ rmin
ij , 0 ≤ r ′′ij ≤ (cij − rmin

ij ), r = r ′ + r ′′

The idea: r ′ is cheaper than r ′′ (φ′ is nondecreasing) and hence it
gets used first =⇒ r ′′ > 0 only if r ′ = rmin

ij
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MI-SOCP Model I for FB

Note that φ1(r ′) +φ1(r ′′+ rmin
ij )−φ(rmin

ij ) = wij/r
′− r ′′/rmin

ij −1 =⇒

θij = vij + v ′ij +
L

wij

[
( |P(i , j)| − 1 )xij −

r ′′ij

rmin
ij

]
rij = r ′ij + r ′′ij , ρxij ≤ r ′ij ≤ rmin

ij xij , 0 ≤ r ′′ij ≤ (cij − rmin
ij )xij

vij rij ≥ Lx2
ij , vij ≥ 0 , v ′ij r

′
ij ≥ Lx2

ij , v ′ij ≥ 0

still compact, but two conic constraints to represent the same L/rij ,
one for rij ≤ rmin

ij , and the other for rij “unconstrained”

Can we do better? Consider that

φ1(rmin
ij ) = φ2(rmin

ij )

φ′2 is constant while φ′1 is strictly increasing

φ1(wij ) = φ2(wij ) = 0

=⇒ φ2(r) ≥ φ1(r) for r ∈ [rmin
ij ,wij ], φ1(r) ≥ φ2(r) for r ∈ (0, rmin

ij ]

=⇒ φ(r) = max{φ1(r) , φ2(r) }!
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MI-SOCP Model II for FB

Can use the “cutting planes” representation of φ

v ≥ φ1(r) = wij/r − 1 , v ≥ φ2(r) = (wij − r)/rmin
ij

Alternative formulation (recall the L/wij factor):

θij = vij + v ′ij +
L

wij
(|P(i , j)|+ 1)xij

vij rij ≥ Lx2
ij , vij ≥ 0

v ′ij ≥ vij − L/wij

v ′ij ≥ (L/rmin
ij )xij − Lrij/(wij r

min
ij )

only one conic constraint, less variables

Note the xij · wij/r
min
ij in φ2: otherwise, v ′ij ≥ L/rmin

ij even if xij = 0
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Admission Control for FB

“Abstract” admission control constraint for FB: same δ̄k as WRP,∑
(i ,j)∈Pk

L

wij

(
xij +

wij − rk
ij

min{ rij , rmin
ij }

)
≤ δ̄k

|P(i , j)| += 1, plus rmin
ij decreases ⇐⇒ rij ≤ rmin

ij

Extra term (wij − rk
ij )/rij , but only if rij ≤ rmin

ij ;

otherwise, constant term (wij − rk
ij )/rmin

ij =⇒∑
(i ,j)∈Pk

L

wij

(
xij + (wij − rk

ij )zij

)
≤ δ̄k

sij ≤ rij , sij ≤ rmin
ij , sijzij ≥ x2

ij , zij ≥ 0

+2|A| variables, +|A| conic constraints but shared among flows

Different coefficients (to share the zij ), dominance more difficult

Arc-based preprocessing still possible (using rij = cij )
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Computational results for WRP and FB

Er . . . , not ready yet, sorry!

Still brewing, too early to post tables

So far good enough; usually within a small factor of running time

But there are exceptions, especially FB w.r.t. SRP:
can see a factor of 50 in max time, a factor of 10 in average time

Admittedly unrefined tests, but can we do better?
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Combinatorial properties

A MINLP with strong network structure, how to exploit it?

σ = L = 0 =⇒ rij = ρxij =⇒ Constrained Shortest Path (CSP)
(this gives more than one idea, and proves NP-hardness)

Feasibility is easy: delay ↘ when rij ↗ =⇒ rij = cij =⇒
modified arc costs l̄ij = L/cij + ( l ′ij = L/wij + lij + ni )

But using (i , j) with “low” cij ↘ rmin =⇒↗ the delay:

G r = (N,Ar ) with Ar = { (i , j) ∈ A : cij ≥ r } =⇒ rmin ≥ r

For each r ∈ C = { cij : (i , j) ∈ A }:
solve s–d shortest path P on G r w.r.t. l̄

if l̄(P) ≤ δ − σ/r , then P feasible: stop

if no feasible P found, then problem unfeasible
(for fixed P, both LHS and RHS of (4) increase with r)

Keep f -best solution found: ERA-I heuristic
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Equal-Cost, Equal Rate Allocation

Equal Rate Allocation: rij = r (≥ ρ) for all (i , j) ∈ P (=⇒ rmin = r)

EC-ERA-SRP-SFSP-DCR (fij = 1) is easy for fixed r :

run Bellman-Ford on G r with costs l rij = L/r + l ′ij
at each round of BF, check path P entering d (if any)

if l r (P) ≤ δ − σ/r then stop: P optimal

Works because BF solves hop-constrained shortest path:
find least-cost(= delay) path with that number of hops,
but r fixed =⇒ true cost proportional to |P|
Each round, cost(= delay) ↘ but hop count (= cost) ↗:
first feasible path is optimal

Repeating the above for all r ∈ C does not solve (. . . )DCR;
counterexample: returned path P with delay constraint not tight

∆(r ,P) =
σ + L|P|

r
+
∑

(i , j)∈P

l ′ij < δ
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Equal-Cost, Equal Rate Allocation

Obvious solution: for each feasible P reduce r until constraint tight

r̃(P) = (σ + L|P| )/( δ − l ′(P) )

=⇒ r̃(P) ≤ r , ∆(r̃(P),P) = δ (keep feasibility, improve objective)

Theorem

For all r ∈ C run BF on G r , for all P decrease r , keep best P (don’t stop
at first feasible): solves EC-ERA-SRP-SFSP-DCR in O(|C |nm) ≤ O(nm2)

Proof.

Optimal (r∗,P∗), r̄ = min{r ∈ C : r ≥ r∗}. When r̄ chosen, P∗ ∈ G r̄ and
delay-feasible (r∗ ≤ r̄ , delay ↘ when r ↗) =⇒ BF finds minimum-delay
feasible P with h∗ = |P∗| hops =⇒ ∆(r̄ ,P) ≤ ∆(r̄ ,P∗); = must hold =⇒
P optimal. In fact ∆(r̄ ,P)<∆(r̄ ,P∗) =⇒ l ′(P)< l ′(P∗) =⇒
δ − l ′(P)>δ − l ′(P∗) =⇒ r̃(P)< r̃(P∗) =⇒ P better than P∗.

Obviously, then, ERA-H heuristic for EC-SRP-SFSP-DCR
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Improving ERA-H (and ERA-I)

Standard Bellman-Ford is Ω(mn), slow in practice

Alternative implementation: SPT.L.Queue with label pairs (l , d) ≡
shortest path on acyclic graph n × G r , not much better

Heuristic alternative: SPT.L.Queue on original G r ,
each time d extracted from Q check delay of that P

Can miss the optimal path but rarely, much faster

mean time max time mean gap max gap

H HBF H HBF H HBF H HBF

garr 2009 08 2.8e-5 3.2e-3 1.0e-2 1.0e-2 0.001 0.000 0.386 0.000
garr 2009 12 2.4e-5 3.1e-3 1.0e-2 1.0e-2 0.001 0.000 0.240 0.000
garr 2010 01 7.0e-6 3.2e-3 1.0e-2 1.0e-2 0.001 0.000 0.241 0.000
giul39 2.0e-5 5.4e-3 1.0e-2 1.0e-2 0.011 0.000 0.570 0.427
janos-us 0.0e+0 5.8e-4 0.0e+0 1.0e-2 0.004 0.000 0.275 0.000
janos-us-ca 2.0e-5 2.1e-3 1.0e-2 1.0e-2 0.010 0.000 0.289 0.041
sun 0.0e+0 7.4e-4 0.0e+0 1.0e-2 0.008 0.001 0.431 0.431

Waxman 100 1.5e-4 1.4e-1 1.0e-2 1.8e-1 0.025 0.011 0.750 0.750
Waxman 200 5.9e-3 2.3e+0 2.0e-2 2.6e+0 0.115 0.105 0.815 0.815
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garr 2009 08 2.8e-5 3.2e-3 1.0e-2 1.0e-2 0.001 0.000 0.386 0.000
garr 2009 12 2.4e-5 3.1e-3 1.0e-2 1.0e-2 0.001 0.000 0.240 0.000
garr 2010 01 7.0e-6 3.2e-3 1.0e-2 1.0e-2 0.001 0.000 0.241 0.000
giul39 2.0e-5 5.4e-3 1.0e-2 1.0e-2 0.011 0.000 0.570 0.427
janos-us 0.0e+0 5.8e-4 0.0e+0 1.0e-2 0.004 0.000 0.275 0.000
janos-us-ca 2.0e-5 2.1e-3 1.0e-2 1.0e-2 0.010 0.000 0.289 0.041
sun 0.0e+0 7.4e-4 0.0e+0 1.0e-2 0.008 0.001 0.431 0.431

Waxman 100 1.5e-4 1.4e-1 1.0e-2 1.8e-1 0.025 0.011 0.750 0.750
Waxman 200 5.9e-3 2.3e+0 2.0e-2 2.6e+0 0.115 0.105 0.815 0.815
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Extending ERA: Non-equal but Integer fij

Non-equal but integer fij : use dynamic programming instead of BF

f̄ ≥ path cost, e.g. f̄ = (n − 1)fmax = max{ fij : (i , j) ∈ A }

DAG G̃ = F̄ × G : nodes (i , f ) for f ∈ F̄ = {0, 1, . . . , f̄ }, (i , j) ∈ A

=⇒ ((i , f ), (j , f + fij )) ∈ Ã (unless f + fij > f̄ ), same delay, capacity

For f ∈ F̄ and r , find the minimum-delay s–d path in G with cost
equal to fr ≡ visit G̃ , O(f̄ m)

Adapt ERA-H as follows:

for each r ∈ C , G̃ r with Ãr (= arcs with capacity ≥ r , |Ãr | ≤ O(f̄ m))

perform BFS of G̃ r from (s, 0); (d , f ) visited for some f =⇒
minimum-delay s–d path of cost f with the given number of hops

if P delay-feasible set r = r̃(P), keep (fr)-best solution found

Theorem

If fij ∈ N, then the algorithm solves ERA-SRP-SFSP-DCR in
O(|C |f̄ m) ≤ O(nm2fmax ) (pseudo-polynomial)
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Extending ERA: Non-equal Continuous fij

NE continuous fij : standard cost rounding approximation algorithm

Standard idea: scaling factor f ∈ F = { fij : (i , j) ∈ A } (|F | ≤ m),
scaled costs f̃ij = dfij/Ke where K = (εf )/(n − 1)

On reduced graph Gf without arcs with cost > f , f̃ij ≤ dn/εe =⇒
the pseudo-poly algorithm is O(n2m2/ε)

Algorithm: cycle over all scaling factors f , apply pseudo-poly
algorithm to Gf , keep best f -solution of all these found

Theorem

The algorithm finds a ε-optimal solution for ERA-SFSP-SRP-DCR (with
unscaled fij ) in O(|F |n2m2/ε) (Fully Poly-time Approximation Scheme)

Proof actually quite standard, follows the same route

Tricky part: select f “large enough” so f̃ij “small”, but also “small
enough” (f ≤ f (P∗)); heuristically, f = fmax (Gf = G ) should work

Yet, we don’t really want to solve the ERA version
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ERA-Based Heuristics: Experiments
ERA-I ERA-H

instance n m k avg max avg max inf
abilene 12 15 31 0.52 0.92 0.000 0.000 0.06
atlanta 15 22 45 0.57 0.88 0.000 0.000 0.07

cost266 37 57 120 0.48 0.95 0.000 0.000 0.17
dfn-bwin 10 45 45 0.03 0.06 0.000 0.000 0.00
dfn-gwin 11 47 53 0.16 0.86 0.000 0.000 0.02

di-yuan 11 42 58 0.48 0.90 0.000 0.000 0.12
france 25 45 66 0.44 0.90 0.000 0.000 0.02
geant 22 36 63 0.46 0.89 0.000 0.001 0.06

germany50 50 88 276 0.50 0.90 0.000 0.001 0.21
giul39 39 172 1482 0.67 0.97 0.011 0.570 0.10

india35 35 80 195 0.53 0.93 0.000 0.000 0.11
janos-us 26 84 650 0.71 0.95 0.004 0.275 0.18

janos-us-ca 39 122 1482 0.68 0.95 0.010 0.289 0.23
newyork 16 49 89 0.50 0.90 0.000 0.000 0.03
nobel-eu 28 41 106 0.55 0.93 0.000 0.000 0.23

nobel-ger 17 26 51 0.49 0.93 0.000 0.000 0.10

gap with optimum, inf = feasible wrongly declared unfeasible
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ERA-Based Heuristics: Experiments (cont.)

nobel-us 14 21 24 0.35 0.90 0.000 0.001 0.00
norway 27 51 341 0.71 0.94 0.000 0.000 0.12

pdh 11 34 54 0.64 0.90 0.000 0.001 0.04
pioro40 40 89 204 0.40 0.89 0.000 0.000 0.25
polska 12 18 24 0.59 0.90 0.000 0.000 0.00

sun 27 102 702 0.76 0.95 0.008 0.431 0.06
ta2 65 108 388 0.45 0.92 0.000 0.000 0.31

garr 1999-01 16 36 240 0.65 0.88 0.000 0.001 0.02
garr 1999-04 23 50 506 0.57 0.94 0.000 0.001 0.75
garr 1999-05 23 50 506 0.55 0.94 0.000 0.000 0.75
garr 2001-09 22 48 462 0.60 0.94 0.000 0.000 0.74
garr 2001-12 24 52 552 0.59 0.94 0.000 0.000 0.75
garr 2004-04 22 48 462 0.56 0.94 0.000 0.000 0.75
garr 2009-08 54 136 2862 0.65 0.94 0.001 0.386 0.85
garr 2009-09 55 138 2970 0.67 0.94 0.000 0.000 0.85
garr 2009-12 54 136 2862 0.67 0.94 0.001 0.240 0.85
garr 2010-01 54 136 2862 0.67 0.94 0.001 0.241 0.85

w1-100-04 100 414 664 0.77 0.95 0.015 0.739 0.07
w1-200-04 200 1550 1528 0.71 0.96 0.015 0.814 0.05
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Why does ERA fail so often?

Hub-and-spoke-like network with well-connected core (40/100 Gb) but
weaker links to the periphery (1 Gb)

Path from a core node to a peripheral one has to cross a weak link

ERA has to allocate the same rate to all links =⇒ no more than the
weak link’s (residual) capacity =⇒ cannot meet the deadline

The deadline can be met by reserving more capacity on core links
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3-Pronged Approach

MI-SOCP approach accurate but slow
ERA-* approaches fast but inaccurate

Best of both worlds: 3-pronged approach

1 run ERA-I, if instance unfeasible terminate

2 otherwise run ERA-H: if a solution found, report it and terminate

3 if all else fails, then run model P and report its solution

So crude, does it really work?
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3-Pronged Approach: Experiments
Cplex GUROBI

SOCP 3P SOCP 3P Gaps ERA-H
avg max avg max avg max avg max avg max avg max inf

0.009 0.02 0.001 0.01 0.009 0.02 0.001 0.01 0.00 0.00 0.00 0.06
0.016 0.16 0.001 0.02 0.010 0.03 0.001 0.02 0.00 0.00 0.00 0.07
0.013 0.05 0.002 0.03 0.012 0.04 0.003 0.04 0.00 0.00 0.00 0.17
0.011 0.02 0.000 0.00 0.007 0.01 0.000 0.01 0.00 0.00 0.00 0.00
0.019 0.09 0.000 0.01 0.015 0.04 0.000 0.01 0.00 0.00 0.00 0.02
0.050 0.35 0.017 0.35 0.028 0.22 0.012 0.23 0.00 0.00 0.00 0.12
0.015 0.04 0.000 0.01 0.010 0.03 0.000 0.01 0.00 0.00 0.00 0.02
0.013 0.05 0.001 0.01 0.010 0.04 0.001 0.03 0.00 0.00 0.00 0.06
0.021 0.09 0.005 0.08 0.017 0.24 0.007 0.27 0.00 0.00 7e-5 0.01 0.21
0.254 1.01 0.019 0.66 0.449 7.57 0.087 6.52 0.01 0.57 3e-4 0.01 0.10
0.019 0.25 0.002 0.04 0.016 0.11 0.002 0.07 0.00 0.00 0.00 0.11
0.091 0.62 0.013 0.33 0.153 2.25 0.051 2.19 0.00 0.28 1e-4 0.01 0.18
0.144 0.84 0.026 0.49 0.298 9.59 0.118 7.70 0.01 0.29 2e-4 0.01 0.23
0.017 0.13 0.000 0.02 0.015 0.04 0.001 0.02 0.00 0.00 0.00 0.03
0.014 0.05 0.004 0.05 0.016 0.09 0.005 0.09 0.00 0.00 0.00 0.23
0.010 0.03 0.002 0.03 0.015 0.04 0.002 0.04 0.00 0.00 0.00 0.10
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3-Pronged Approach: Experiments (cont.)
0.013 0.09 0.000 0.00 0.014 0.05 0.000 0.00 0.00 0.00 0.00 0.00
0.032 0.30 0.005 0.25 0.035 0.32 0.005 0.13 0.00 0.00 6e-5 0.01 0.12
0.034 0.30 0.001 0.02 0.026 0.10 0.002 0.10 0.00 0.00 0.00 0.04
0.019 0.27 0.007 0.25 0.018 0.09 0.007 0.09 0.00 0.00 5e-5 0.01 0.25
0.016 0.09 0.000 0.00 0.014 0.03 0.000 0.00 0.00 0.00 0.00 0.00
0.154 0.89 0.006 0.36 0.188 0.87 0.009 0.40 0.01 0.43 2e-4 0.01 0.06
0.019 0.12 0.008 0.05 0.020 0.13 0.009 0.13 0.00 0.00 8e-5 0.01 0.31
0.025 0.12 0.001 0.03 0.035 0.10 0.001 0.03 0.00 0.00 4e-5 0.01 0.02
0.030 0.08 0.022 0.06 0.017 0.12 0.016 0.10 0.00 0.00 4e-5 0.01 0.75
0.028 0.08 0.021 0.06 0.018 0.08 0.016 0.08 0.00 0.00 6e-5 0.01 0.75
0.026 0.09 0.021 0.08 0.022 0.09 0.018 0.09 0.00 0.00 4e-5 0.01 0.74
0.027 0.07 0.022 0.07 0.016 0.04 0.012 0.04 0.00 0.00 4e-5 0.01 0.75
0.026 0.17 0.020 0.05 0.022 0.06 0.019 0.06 0.00 0.00 4e-5 0.01 0.75
0.084 0.44 0.075 0.44 0.069 0.70 0.065 0.71 0.00 0.39 2e-4 0.01 0.85
0.086 0.62 0.078 0.62 0.069 0.56 0.063 0.57 0.00 0.00 2e-4 0.01 0.85
0.088 0.75 0.078 0.73 0.071 0.52 0.061 0.50 0.00 0.24 2e-4 0.01 0.85
0.087 0.46 0.076 0.45 0.074 0.61 0.066 0.59 0.00 0.24 2e-4 0.01 0.85
1.906 46.7 0.034 1.84 2.354 8.35 0.150 3.54 0.01 0.74 2e-3 0.01 0.07

23.660 357.7 0.247 54.29 9.033 63.19 0.399 12.36 0.01 0.81 1e-2 0.02 0.05
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Does it really matter in practice?

Simulating the network behavior, large number of path computations

Exponential interarrival (avg = λ), exponential duration (avg = 1s)

σ = 3 MTU and δ random in [ dmin , dmin + β(dmax − dmin) ]

dmin = minimum feasible deadline, dmax = delay constraint inactive

Average of five independent replicas, and 95% confidence intervals

Comparing all practical approaches known so far (2 new):

1 ERA (equal rate allocation)

2 SWPF-URA: shortest-widest-path + optimal (unequal) rate allocation

3 WSPF-URA: widest-shortest-path + optimal (unequal) rate allocation

4 SFSP-DCR: MI-SOCP model (perspective version)

5 TPH: 3-pronged heuristic

Same real-world topologies, realistic capacities
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Simulation results: blocking probability
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SFSP-DCR

TPH

ERA fails far too much (allocating the same rate a bad idea)

both ERA and ∗-URA perform considerably worse than SFSP-DCR

TPH performs quite close to the optimum

Similar on all topologies, σ ∈ { 1, 3, 10 }MTU, β ∈ { 0.2, 0.5, 1.0 }
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Simulation results: time
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SFSP-DCR slower but still affordable

TPH much faster and almost as good

“large” networks: |N| = 70+, |A| = 230+

Path Computation Element makes this technically feasible
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YAMV: Yet Another Modeling Variant

Small remaining nuisance: “big” cmax in (8)

Serves to define rmin, which serves for σ/rmin term

Simple idea: v ≥ σ/rij for all (i , j) =⇒ v ≥ σ/rmin

Alternative version of (9):

(σ + L)shk +
∑

(i ,j)∈A\{(h,k)}

Lsij +
∑

(i ,j)∈A

l ′ijxij ≤ δ (h, k) ∈ A (19)

sij rij ≥ x2
ij , sij ≥ 0 (i , j) ∈ A

|A| − 1 more linear constraints, one less variable and conic constraint

Most constraints will not be active at optimum (e.g.,
rhk = 0 =⇒ shk = 0), plus they are linear =⇒ lazy constraints
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Can YAMV Be a Good Idea?

In principle yes

Funny thing: in the optimum of the continuous relaxation,
rmin can be > rij !

Example: 2 nodes, two identical parallel arcs, ρ = f = l + n = 1,
L = cmax = 10, σ = 3, δ = 5

Optimal solution of standard continuous relaxation: x∗ = 1/2,
r∗ = (

√
34− 3)/2 ≈ 1.41548 on both arcs,

r∗min = (
√

34 + 7)/2 ≈ 6.41548, optimum 2r∗ ≈ 2.83095

Trick is that cmax large, and rmin ≤ rij + cmax (1− xij ) > rij

Optimal solution of YAMV continuous relaxation: x∗ = 1/2,
r∗ = 23/16 = 1.4375, optimum 23/8 = 2.875 (true optima 3.25)

So it may work. Does it?
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Computational results for YAMV

Er . . . , not ready yet, sorry!

Still brewing, too early to post tables

So far not promising: most often slower than traditional approach

Still not entirely clear why, but does not seem to improve bound
much & lazy constraint help but not enough
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Lagrangian approaches, Take I

A different use for YAMV: Lagrangian relaxation of (19) w.r.t. λhk

min

{∑
(i ,j)∈A fij rij + lij (λ)xij +

Lij (λ)x2
ij

rij
: (6) , (7)

}
− δ

∑
(h,k)∈A

λhk

where lij (λ) = l̄ij
∑

(h,k)∈A λhk , Lij (λ) = L
∑

(h,k)∈A λhk + σλij .

Reduces to a shortest path because rij can be “projected away”:
xij = 0 =⇒ rij = 0, xij = 1 =⇒ rij solves

[ lij (λ) + ] min
{
φ(rij ) = fij rij + Lij (λ)/rij : ρ ≤ rij ≤ cij

}
that has the closed-formula expression

r∗ij (λ) =

{
cij if fij ≤ 0

min
{
cij ,max

{
ρ ,
√
Lij (λ)/fij

}}
otherwise

Use a Bundle method to find λ∗, Lagrangian heuristic, B&B, . . .
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Lagrangian approaches, Take II

Alternative: original formulation, relax (10) w.r.t. unique λ

min

 λσ

rmin
+
∑

(i ,j)∈A

fij rij + λl̄ijxij +
λLx2

ij

rij
: (6) , (7) , (8)

 [−λδ ]

solvable as above (one shortest path) if rmin fixed

Lagrange, then Benders’: for fixed λ, find the best rmin

Of course, Benders’, then Lagrange: for fixed rmin, find the best λ

Two nested one-dimensional optimizations: hopefully very efficient

Path are produced, can be checked for feasibility =⇒ heuristic
(Benders’, then Lagrange suspiciously similar to ERA)

Good lower bound, hopefully faster than with SOCP solver

B&B, etc.: lots of work, but hopefully faster
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Good lower bound, hopefully faster than with SOCP solver

B&B, etc.: lots of work, but hopefully faster
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Computational results for the Lagrangian Approaches

. . . in a year from now, at best . . .
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Conclusions

The world is indeed nonlinear, but surprisingly often nicely convex

DCR: interesting generalization of classical “steady state” flows

Relevant for applications, apparently good results

MI-SOCP with substantial network structure =

prototypical blend of nonlinear and combinatorial optimization

MINLP techniques useful (Perspective Reformulation, SOCP, . . . )

Combinatorial techniques useful (shortest paths, dynamic
programming, approximation algorithms, Lagrange, Benders’, . . . )

Both are needed

Still lots of work to do (multi-flow, multi-path, network design,
robust, . . . ), problems look pretty hard

Lots of fun. Join in! :-)
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Homework – Models

1 A canonical conic constraint has the form xn ≥
√∑n−1

i=1 x2
i ; write the

rotated cone constraint vs ≥ Lx2, with v , s ≥ 0 in canonical form

2 Write a MI-SOCP model of SFSP-SRP-DCR for the formula

θij =
L

wij
+

{
L/r eff

ij if P(i , j) 6= ∅
0 otherwise

Do you need access control? If so, be sure to include it

3 Write a MI-SOCP model of SFSP-WRP-DCR for the formula

θij =
(
|P(i , j)|+ 1

) L

wij
+

L

r eff
ij

You do need access control, so be sure to include it

4 As before for SFSP-FB-DCR with the worst-case formula

θij =

(
|P(i , j)|+

r̄ij + rij

rmin
ij

)
L

wij
+

L

r eff
ij
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Homework – Models (cont.d)

5 [NASTY] Develop a MI-SOCP model of SFSP-DCR for the
group-based approximation of SRP

θij = 3
2dlog2 wij L/rije

wij
+ 2

L

wij

You are allowed to cheat, using the fact that

3
L

rij
+ 2

L

wij
≤ θij ≤ 6

L

rij
+ 2

L

wij

but it’s not as fun
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Homework – Algorithms

1 Construct an example where the improved ERA-I fails to find the
correct solution (the shortest path of some step-length l is never the
current path when d exits Q)

2 Prove that the pseudo-polynomial algorithm works

3 Prove that the FPTAS works

4 [NASTY] Develop Lagrange, then Benders’ in details

5 [NASTY] Develop Benders’, than Lagrange in details
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