An introduction to energy optimization in SMS++
Part IV: decomposition & energy optimization in SMS++

Antonio Frangioni
Dipartimento di Informatica, Università di Pisa
EdF Labs — May 25-26, 2023
Meta–Outline

- Part I: SMS++ basics & energy-related components
- Part II: hands-on with SMS++ for energy optimization
- Part III: a quick recap of decomposition techniques
- Part IV: decomposition & energy optimization in SMS++
Outline – Part IV

1. A Lagrangian Approach to the Investment Problem
2. InvestmentBlock
3. The InvestmentBlock exercise
4. Conclusions (Part IV, overall)
A general Investment Problem

- Set N of (generation/distribution) units, κ_i identical copies of each $i \in N$

- For $\kappa = [\kappa_i]_{i \in N}$, investment cost $F(\kappa)$ (“easy”) and operational cost

$$O(\kappa) = \min \sum_{i \in N} \sum_{j=1}^{\kappa_i} c_i(x_{i,j})$$

s.t. $x_{i,j} \in X_i$, \quad $j = 1, \ldots, \kappa_i$, \quad $i \in N$ \quad (1)

$$\sum_{i \in N} \sum_{j=1}^{\kappa_i} A_i x_{i,j} \geq d$$

- Everything convex \implies all $i \in N$ produce identically at optimality \implies

$$O(\kappa) = \min \sum_{i \in N} \kappa_i c_i(x_i)$$

s.t. $x_i \in X_i$, \quad $i \in N$ \quad (2)

$$\sum_{i \in N} \kappa_i A_i x_i \geq d$$

- Can extend to stochastic setting ($S =$ scenarios, $N' =$ nonanticipativity)

$$O(\kappa) = \min \sum_{i \in N} \kappa_i \sum_{s \in S} \pi^s c_i^s(x_i^s)$$

s.t. $x_i^s \in X_i^s$, \quad $i \in N$, \quad $s \in S$ \quad (3)

$$\sum_{i \in N} \kappa_i \sum_{s \in S} A_i^s x_i^s \geq d$, \quad $x \in N'$
A general Investment Problem

- Investment problem \(\min \{ F(\kappa) + O(\kappa) : \kappa \in K \} \): extremely hard as even (2) / (3) hard ((1) harder), since convexity assumption untrue

- Lagrangian relaxation triply clever:
 \[
 \phi(\lambda, \kappa) = \lambda d + \sum_{i \in N} \kappa_i \min \{ c_i(x_i) - \lambda A_i x_i : x_i \in X_i \}
 \]
 - decomposes into (many, easier, smaller) independent subproblems
 - automatically convexifies \(c \) and \(X^1 \)
 - \(\phi(\lambda, \kappa) \) is concave in \(\lambda \) and affine in \(\kappa \)

- Convexified version: \(O(\kappa) = \max \{ \phi(\lambda, \kappa) : \lambda \geq 0 \} = \phi(\lambda^*(\kappa), \kappa) \)

- Convexified Investment Problem: \(\min \{ F(\kappa) + O(\kappa) : \kappa \in K \} \)
 possibly the best trade-off between computability and accuracy

- Crucial: \[
 \left[c_i(x_i^*(\lambda^*(\kappa))) - \lambda^*(\kappa) A_i x_i^*(\lambda^*(\kappa)) \right]_{i \in N} \in \partial O(\kappa)
 \]
 \(\implies \) can use bundle methods\(^2\) or stabilised Benders' ones\(^3\)

\(^1\) Lemaréchal, Renaud “A geometric study of duality gaps, with applications” Math. Prog., 2001
\(^2\) van Ackooij, F. “Incremental bundle methods using upper models” SIOPT, 2018
\(^3\) van Ackooij, AF., de Oliveira “Inexact Stabilized Benders’ Decomposition Approaches […]” COAP, 2016
Outline

1. A Lagrangian Approach to the Investment Problem

2. InvestmentBlock

3. The InvestmentBlock exercise

4. Conclusions (Part IV, overall)
The new InvestmentBlock component

- Specific component for the Investment Problem, public as of two days ago
- Mostly relays on specialised InvestmentFunction: both a C05Function and a Block (sounds familiar?), computing $O(\kappa)$
- Two kinds of continuous resources (κ_i):
 - upper / lower bounds on variables (network / unit capacities)
 - number of copies of existing :UnitBlock
- Requires support from UCBlock and the :UnitBlock / :NetworkBlock:
 - scale() in ThermalUnitBlock, BatteryUnitBlock, IntermittentUnitBlock (scales the whole unit)
 - set_kappa() in BatteryUnitBlock, IntermittentUnitBlock, DCNetworkBlock (only scales some RHSs)
 - then UCBlock has to scale the linking constraints when κ_i change
- Supports SDDPBlock with UCBlock inside (same changes to all stages)
- Can use any CDASolver (LagrangianDualSolver, :MILPSolver)
InvestmentBlock schematics

```
InvestmentBlock
FRealObjective

InvestmentFunction(\kappa)

UCBlock
ThermalUnitBlock scale()

BatteryUnitBlock scale() set_kappa()

IntermittentU.B. scale() set_kappa()

DCNetworkBlock set_kappa()

\kappa \mid l \leq \kappa \leq u \mid lhs \leq A\kappa \leq rhs

BundleSolver : CDASolver

A. Frangioni (DI — UniPi)
SMS++ @ EdF
May 25-26, 2023 7 / 12
```
Scaling a Block a general concept, may be upcasted to base Block
InvestmentFunction netCDF structure

- ReplicateBatteryUnits and ReplicateIntermittentUnits:
 1 is scale(), 0 if set kappa()

- NumAssets, AssetType[i] = 0 if UnitBlock, 1, if transmission line

- Assets[i] = either sub-Block number or line number

- LowerBound and UpperBound on investment assets

- InstalledQuantity at start of investment decision

- Cost for each unit above InstalledQuantity

- DisinvestmentCost for each unit below InstalledQuantity

- InnerBlock to be invested upon, either a UCBlock or a SDDPBlock with UCBlock in each stage

- NumConstraints, Constraints_A, Constraints_LowerBound and Constraints_UpperBound for \(l \leq A_k \leq u \)
Outline

1 A Lagrangian Approach to the Investment Problem

2 InvestmentBlock

3 The InvestmentBlock exercise

4 Conclusions (Part IV, overall)
The InvestmentBlock exercise

- You are given a netCDF file for a small instance (5 units, 5 timestamps, HVDC network)
- Run it to see the results
- Take any (small but decent-sized) UC instance from the repos
- Produce an Investment Problem replicating a few of that UC’s units
- Run it to see the results, find “interesting” values of design costs
- @home: replace UCBlock with a SDDPBlock using UCBlock for the stochastic version (or wait the next iteration of the course)
Conclusions

(Part IV, overall)
Conclusions Part IV

- Investment problems perhaps the biggest challenge in energy optimization.
- Trade-off between system modelling accuracy and computational cost, extremely hard to navigate (simplify operational model up-front).
- Choosing what to relax nontrivial, side-effects can be hard to predict.
- Lagrangian approach one interesting way: automatic convexification.
- Should really be used with (convex) stochastic model inside.
- Should really be used with scenarios outside.
- Multilevel heterogeneous parallel decomposition a necessity.
- Models must support algorithms features all along the hierarchy.
- SMS++ \(\approx\) the only game in town for this kind of applications.
Conclusions overall

- Decomposition a large set of different techniques focusing on **structure**
- Not useful in all cases, often somewhat useful, at times crucial
- Theory (more or less) established, **software support** always been the issue
- **SMS++** trying to improve on that, some steps of a long and winding road
- Useful already for huge-scale applications
- **Could** become very useful **after having attracted mindshare** (very hard)
- Yet, I think it (imperfectly) tries to address some real needs:
 - improve collaboration and code reuse, reduce huge code waste
 - help the **software development process** of very complex models and the corresponding highly complex algorithms
 - make decomposition approaches much more easily available
 - help a much-needed higher uptake of **parallel methods**
- **Collaborative effort**, all users / testers / contributors welcome
- **In the future, one of the three legs** of the **ultimate modelling system**\(^4\)

Please fill-in the course evaluation form