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Block-Structured Programs

o (Challenging) applications of Integer Linear Programming are
large-scale: millions of variables/constraints

@ Good news: all large-scale problems are block-structured

@ Usually several nested forms of structure, but two main ones:

E
E, E,
. EO
Ek
A E,
block-diagonal staircase-structured
= complicating constraints = complicating variables

@ Relaxing constraints / fixing variables yields independent subproblems

= much easier because of size and/or structure (integrality, ...)
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Example I: Two-stage Stochastic (Integer) Linear Programs

@ Problems involving decisions over time and uncertainty
o First-stage (here-and-now) decisions x, constraints Egx < by
@ Set S of scenarios, realization known only after deciding x

@ Recourse decisions ys, different for each scenario s € S,
constraints Ejx + Esys < bs

@ Minimize here-and-now cost plus average cost of reserve actions
min { COX + D ges MsCsys o Eox < by, Egx+ Esys < bs s € 5}

e Extends to multi-stage (structure repeats “fractally” into each Ej)

@ Often other structures inside E, network a common one

e Extends to other risk measures (CVaR, ...), integer variables, ...

e Many applications: energy [0], water, logistics, telecom, finance, ...

[0] Tahanan, van Ackooij, F., Lacalandra “Large-scale Unit Commitment under uncertainty” 40R 2015
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(Very) Classical decomposition approaches I: primal

@ Structure = use decomposition approaches
@ Here-and-now decisions are naturally complicating
e Main idea: define the (expected, nonlinear) value function
V(x) = cox + Y sc5 Ts Min { CsYs @ Esys < bs — ng}
decomposes = “easy” to compute (but can be )
e Construct Benders’ reformulation [1]
min { v(x) : Eox < by }
a much smaller but nonlinear equivalent problem
@ A “complicated” function that can be evaluated at each x

e Can use appropriate algorithms to solve it [2]

[1] Benders “Partitioning procedures for solving mixed-variables programming problems” Numerische Mathematik 1962

[2] Kelley “The Cutting-Plane Method for Solving Convex Programs” J. of the SIAM, 1960

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 5/81



(Very) Classical decomposition approaches II: dual

@ Alternative approach: introduce artificial complicating constraints

mMin CoX + Y e TsCsYs (1)
Eox < by
Egxs + Esys < bs ses
Xs = X ses (2)

@ Relax (2) into (1) with multipliers A, Lagrangian function [3]

f(A) =min  cox + D cg MsCsls + D seg As(X — Xs)
Eox < by
ESxs + Esys < bs ses
decomposes = “easy” to compute

@ The Lagrangian dual max{ f(\) } equivalent to the problem
(not necessarily much smaller, |\| = |x||S| may be ~ |y|)

e Can still be solved by [2]

[3] Geoffrion “Lagrangean relaxation for integer programming” Mathematical Programming Study 1974

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 6/



Example Il: Multicommodity Network Design

e Graph G = (N, A), multicommodity network design model

min Y yck D, j)ea dkc,-f-x,-f- + 2 -G jyea fiVi (3)
1 ifi=s"
doxp— D> xi=q 1 ifi=t ieN, keK (4)
(i, J)eA (,1)EA 0 otherwise
Y rer dx < ujy; (i,j)eA (5)
x5 €10,1] (ibj)eA, ke K (6)
yij € {0,1} (i,))eA (7)

e K = commodities = (s*, tX | d¥) (not completely generic)

@ Pervasive structure in most of combinatorial optimization

Many applications: logistic, transportation, telecom, energy, ...

@ Many sources of structure = the paradise of decomposition [4,5]

[4] Ford, Fulkerson “A Suggested Computation for Maximal Multicommodity Network Flows” Management Science 1958
[5] Dantzig, Wolfe “The Decomposition Principle for Linear Programs” Operations Research 1960
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Classical decomposition approaches

@ Benders’ decomposition [1] of linking variables:
o design (y) variables are “naturally” linking if uj; large
e Benders' cuts are metric inequalities defining the multiflow feasibility

e Linking variables can be artificially added if not present
ke, k k k
d X < uj , ZkeK i < ujj
(“resource decomposition”) [6]

e Lagrangian relaxation [3] of linking constraints:
o (5): = flow (shortest path) relaxation (integrality property = “easy”)
o (4): = knapsack relaxation (only one integer variable per problem)

e others possible

@ Let’s see how they work

[6] Kennington, Shalaby “An Effective Subgradient Procedure for Minimal Cost Multicomm. Flow Problems” Man. Sci. 1977
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Dual decomposition, a.k.a.
Dantzig-Wolfe decomposition
Lagrangian Relaxation
Column Generation
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Block-diagonal Linear Program

@ Block-diagonal LP (linking constraints)
() max{cx : Ax=b,xeX ={x: Ex<d}}
X = Quex XK ={xk: Ekxk < dk}
e |K]| is large so, (1) is very large

@ We know how to efficiently optimize upon X, for two reasons:

o a bunch of (many, much) smaller problems instead of a large one
o the X* may have structure (shortest path, knapsack, ...)

e We could efficiently solve () if linking constraints removed:
how to exploit it?
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Dantzig-Wolfe reformulation

e Dantzig-Wolfe reformulation (temporarily assume X compact):
X convex = represent it by points

X={x=Yscx X0 : Ygex 0x=1,0>0 xeX}
then reformulate (1) in terms of the convex multipliers 6
max ¢ ( Y zex X0z )
(1) A(Dgex X03) =b
Seex s =1 , 6z>0 xeX
@ How many points? Only the vertices V C X of X are required

@ Could this ever be a good idea? Actually, it could:
polyhedra may have few faces and many vertices ... or vice-versa

n-cube | |x;| <1 Vi | 2nfaces | 2" vertices

Zi Ixi| <1

n-co-cube 2" faces | 2n vertices
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Dantzig-Wolfe decomposition = Column Generation

@ Except, most often the number of vertices is too large

Ex<d

linear program with (exponentially) many columns
e But, efficiently optimize over X = generate vertices (= columns)
e B C X (small), solve restriction of (1) with X — B, i.e.,
max ¢ ( Y zep Xb% )
(Ms) A(Yges X0z) =b
Yz =1 , 0:>0 xeB
“master problem” (B small, not too costly)

e If B contains the “right” columns, x* =3 -, X0 optimal for (I)
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Dantzig-Wolfe decomposition = Lagrangian relaxation

@ How do | tell if B contains the “right” columns? Use duality
@ “Abstract” view of the master problem:
(Np) max { cx : Ax=b, x € conv(B) }
@ Has a (linear) dual, (partial) dual optimal solution y* of Ax = b
@ Feed y* to pricing problem (a.k.a. Lagrangian relaxation)
(My+) max { (c —y*A)x : xe X} [+ y*b]
(the whole of X, not B3, but we can do it efficiently)

o If primal optimal solution X (= column) of (M,+) has
negative reduced cost (¢ — y*A)(x* — X), use it to enlarge B
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Geometry of Dantzig-Wolfe/Column Generation

@ ¢ — y A separates conv(B) N Ax = b from all x € X better than x*
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Geometry of Dantzig-Wolfe/Column Generation

@ ¢ — y A separates conv(B) N Ax = b from all x € X better than x*

@ Thus, optimizing it allows finding new points (if any)
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Geometry of Dantzig-Wolfe/Column Generation

@ ¢ — y A separates conv(B) N Ax = b from all x € X better than x*
@ Thus, optimizing it allows finding new points (if any)

@ Issue: conv(B) N Ax = b must be nonempty
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The Lagrangian dual

e Dual of (Mg):

min b+v : v c—yAx xeB
(As) { yb+ >(c—yA)x xeB}

= min{ fg(y) =max{cx+y(b—Ax) : xeB}}
(note: x € B “constraints index")

o fp = lower approximation of “true” Lagrangian function
f(y)=max{cx+y(b—Ax) : xe X}

“easy” computability of f(y) the only requirement

@ Thus, (Ap) outer approximation of the Lagrangian dual
(A) min{f(y)=max{cx+y(b—Ax) : xe X} }
that is equivalent to (1)

e Dantzig-Wolfe decomposition = Cutting Plane approach to (A) [2]
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Geometry of the Lagrangian dual

X /
-
] Xe
X3 1
V*
Xy
Xs
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Geometry of the Lagrangian dual

e v* = fg(y*) lower bound on v(Ip)

e Optimal solution x gives separator between (v*,y*) and epi f
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Geometry of the Lagrangian dual

e v* = fg(y*) lower bound on v(Ip)
e Optimal solution x gives separator between (v*,y*) and epi f

e (cx,Ax) = new row in (Ag) (subgradient of f at y*)
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The Integer Case:
relationships with B&C
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A Structured Integer Program

e What if our problem has X = { x € Z" : Ex < d } combinatorial
(N) max{cx : Ax=b,xe X}

If we can still efficiently optimize over X, due to size (decomposition)
and/or structure (integrality), nothing changes

@ What are we solving? Obviously, a (possibly tight) relaxation
(Mx) max { cx : Ax=b, x € conv(X) }

Often does not solve (I1), but gives (good) bounds
—> Branch & Bound with DW/Lagrangian/CG = Branch & Price

Branching nontrivial: may destroy subproblem structure
= branch on x (but (M) is on )

Note: { x € R” : Ex < d } = conv(X) (integrality) is bad
=— bound not better than standard linear relaxation
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Alternative: a Good Formulation for X

@ (Under mild assumptions) conv(X) is a polyhedron =
conv(X)={xeR" : Ex<d}

@ There are good formulations for the problem
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Alternative: a Good Formulation for X

@ (Under mild assumptions) conv(X) is a polyhedron =
conv(X)={xeR" : Ex<d}

@ There are good formulations for the problem
@ Except, practically all good formulations are too large

Ax=D| |Ex<d = |Ax = b

o Very few exceptions (integrality property a networks)
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Row generation /polyhedral approaches

@ The good news is: rows can be generated incrementally
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Row generation /polyhedral approaches

@ The good news is: rows can be generated incrementally

@ Relevant concept: separator
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Row generation /polyhedral approaches

@ The good news is: rows can be generated incrementally

@ Relevant concept: separator
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e R = (small) subset of row( indice)s, Erx < dr reduced set

@ Solve outer approximation to (I1)
(Nz) max{cx : Ax=b, Exx <dr }
feed the separator with primal optimal solution x*
@ Separator for (several sub-families of) facets of conv(X)
@ Several general approaches, countless specialized ones

@ Most often separators are hard combinatorial problems themselves
(though using general-purpose MIP codes is an option)

e May tail off, branching useful far before having solved (IMx)
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Branch & Cut vs. Branch & Price

@ Which is best?

@ Row generation naturally allows multiple separators

Very well integrated in general-purpose solvers
(but harder to exploit “complex” structures)

Column generation naturally allows very unstructured separators

Simpler to exploit “complex” structures

(but much less developed software tools)

Column generation is row generation in the dual

@ Then, of course, Branch & Cut & Price

(nice, but software issues remain and possibly worsen)
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Primal decomposition, a.k.a.
Benders' decomposition
Resource decomposition
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Staircase-structured Linear Program

@ Staircase-structured LP (linking variables)
(m max{cx+ey : Ax+By<b, Ex<d}

Ax+ By < b=Axx+Biyr < by keK
e |K]| is large so, (1) is very large

@ We know how to efficiently solve if x is fixed, for two reasons:

o a bunch of (many, much) smaller problems instead of a large one
e the By may have structure (shortest path, knapsack, ...)

e We could efficiently solve () if linking variables fixed:
how to exploit it?
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Benders' reformulation

@ Benders' reformulation: use value function
(B) max { ex+v(x)=max{ey : By<b—Ax} : Ex<d}
then use duality to reformulate the inner problem
vix)=min{A(b—Ax) : A\e A={X: AB=e, A>0}}
@ The polyhedron A does not depend on x, reformulate by points
(B) max {ex+v : v<Ab—Ax) NeA, Ex<d}
@ How many points? Only the vertices V C A of A are required

e Of course, in general the vertices are (exponentially) many
but we can generate them solving the problem v(x)
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Benders’' decomposition

@ Select (small) B C V, solve master problem

max { ex+v : v<A(b—Ax) NeB, Ex<d }
(Bs)
= max{ cx+vg(y)=min{\(b—Ax) : AeB}, Ex<d}
(again, A € B “constraints index")

@ vi = lower approximation of “true” value function v

e Find (primal) optimal solution x*, compute v(x*), rinse & repeat

Benders' decomposition = Cutting Plane approach to (B) [2]

Spookily similar to the Lagrangian dual, ain't it?

@ Except, constraints are now attached to dual solutions A +

v(x) = co = feasibility cut (extreme ray of A, details omitted)
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Benders' decomposition for Integer Programs

@ Staircase-structured ILP (integer linking vriables)

() max{cx+ey : Ax+By<b,xe X}
X ={x€Z" : Ex <d } combinatorial

@ Nothing changes . ..except (Bs) now is combinatorial = hard

e However (Bp) now is equivalent to (1) = no branching needed
(unless for solving (Bg)) = no Branch & Benders'’

@ However, everything breaks down if y integer:
there is no (workable) dual of an Integer Program

e Can do with “approximated” duals (strong formulations, RLT, ...)
but equivalence lost = branching again
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Conclusions

(Part 1)

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 28 / 81



Conclusions (part 1)

@ Structured (Integer) Linear Programs are challening
@ However, structure can be exploited by reformulation + duality

@ Two different approaches, “primal” and “dual”

o Different twists, different conditions to work

e who is complicating (constraints vs. variables), but
tricks can be used to create the desired structure

o who is reformulated (subproblem vs. master problem)
e where integer variables are (subproblem vs. master problem)

o where branching is done (subproblem vs. master problem)

For linear programs, Lagrange is Benders' in the dual

Both boil down to the Cutting Plane algorithm [2]

55 years old, does it work well? We'll see tomorrow
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Stabilization
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Issue with the Cutting Plane approach: instability

® yi,, can be very far from y;, where fz is a "bad model” of f

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 31/81



Issue with the Cutting Plane approach: instability

® yi,, can be very far from yy, where fz is a "bad model” of f

...as a matter of fact, infinitely far
e (MNp) empty = (Ap) unbounded = Phase 0 / Phase 1 approach

@ More in general: {y; } is unstable, has no locality properties =
convergence speed does not improve near the optimum
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The effects of instability

@ What does it mean?
e a good (even perfect) estimate of Upper bound (dual)
dual optimum is useless! \/\/\/\/\/\/v
e frequent oscillations of dual values
e "bad quality” of generated columns /?W)

= tailing off, slow convergence /
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The effects of instability

@ What does it mean?

e a good (even perfect) estimate of Upper bound (dual)
dual optimum is useless!

e frequent oscillations of dual values

M PT) Lower bound (primal)
e "bad quality” of generated columns //ﬁ

= tailing off, slow convergence /

@ The solution is pretty obvious: stabilize it

@ Gedankenexperiment: starting from known dual optimum,
constrain duals in a box of given width

width columns
00 %
200.0 8355 20.0| 119 234
20.0 1179 2.8 35 6.9 2789 7.4
2.0 52.0 1.2 20 3.9
0.2

Works wonders! ...
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Stabilizing DW /Lagrange/CG

...if only we knew the dual optimum! (which we don't)

Current point y, box of size t > 0 around it

o Stabilized dual master problem [7]
(BB, min{ fs(y +d) : [ dllsc <t} (8)

Corresponding stabilized primal master problem

(Nsy,:) max{ cx+yz—t|z|1 : z=b—Ax, x € conv(B) } (9)
i.e., just Dantzig-Wolfe with slacks

When f(y + d*) < f(y), move y = y + d* (“serious step”)

Uses just LP tools, relatively minor modifications

How should one choose t7?

@ Does this really work?

[7] Marsten, Hogan, Blankenship “The Boxstep Method for Large-scale Optimization” Operations Research 1975
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Computational results of the boxstep method (pds7)

1e+3

1e+10 —1e3 1e+2
— 1led
1e5 1e+1
1e+8 ‘ — INF
1e+0
1e+6 '—. 1e-1
1e-2
1e+4
1e-3
le-4
1e+2
1e-5
1e+0 1e-6

@ Pure multicommodity flow instance (no y)

o Left = distance from final dual optimum

right = relative gap with optimal value
@ Stabilized with (fixed) different t, un-stabilized (t = c0)

@ One can clearly over-stabilize
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Computational results of the boxstep method (pds18

1e+3
1e+10

1e+2

1e+1

1e+8 15
——INF 16+0
L
1e+6 e 1e-1
1e-2
1e+d
1e-3
1e-4
1e+2
1e-5
1e+0 1e-6

@ All cases show a “combinatorial tail” where convergence is very quick

o t = 1e3: “smooth but slow” until the combinatorial tail kicks in
a short-step approach not unlike subgradient methods [8]

@ t = oo: apparently trashing along until some magic threshold is hit

o ‘intermediate” t work best, but pattern not clear

[8] Camerini, Fratta, Maffioli “On Improving Relaxation Methods by Modified Gradient Techniques” Math. Prog. Study 1975
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Computational results of the boxstep method (pds30

1e+14

1e+12

1e+10

1e+8

1e+6

1e+4

1e+2

1e+0

1e+3

—te3 1e+2
— le4

1e5 1e+1
— INF

1e+0 ——
]

1e-1

[ ]
B

1e-2
1e-3
le-4
1e-5
1e-6

)

—1e3
—le4

1e5
— INF

@ t = 1eb: initially even worse than t = oo but ends up faster

@ Clearly, some on-line tuning of t would be appropriate

@ Perhaps a different stabilizing term would help? Why not [9]

(A1)

min{ fa(7 +d)+ %[ d |3 }

@ “Because it's not LP" = a different duality need be used

[9] Lemaréchal “Bundle Methods in Nonsmooth Optimization” in Nonsmooth Optimization vol. 3, Pergamon Press, 1978
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Generalized stabilization

@ General stabilizing term D, stabilized dual problem
(Ayp)  ép(y)=min{f(y+d)+D(d) } (10)
with proper D, ¢p has same minima as f but is “smoother”
@ Stabilized primal problem = Fenchel's dual of (Ay p)
(Ny.p) min{ f*(z) — zy + D*(~z) } (11)
where f*(x) = max,{ xz — f(z) } the Fenchel's conjugate of f
@ For our dual f, a generalized augmented Lagrangian
max { cx + y(b — Ax) — D*(Ax — b) : x € conv(X) } (12)
e A "primal” exists even for a non-dual f: v([1) = —f*(0) = v(A) for
(m max{ —f*(z) : z=0}

@ General theory exist [10], but never mind

[10] F. “Generalized Bundle Methods” SIAM Journal on Optimization 2002
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Classical stabilizing terms

D D D

D=zl 13

D = 3t|| - |13

D =tfl- |
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A 5-piecewise-linear function

Trust region on y + small penalty close + much larger penalty farther [11]

DA @*A
I I},
A | A
A C € et 2;+ s
Slightly simplified version: only 3 pieces
A D*k
r r+
€
: " A A d
(AT TY 4 g | ¢ s

[11] Ben Amor, Desrosiers, F. “On the choice of explicit stabilizing terms in column generation” Discrete Applied Math. 2009
A. Frangioni (DI — UniPi)
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A 5-piecewise-linear master problem

((max ¢ (Y sep X0z) —V(sT+w —wh —st)
+y7sT + 5w +5twt 4Tt

A(Yzep X0z ) +s +w —wh—s"=b
Yrepx=1, 0z >0 xcB
0<s  <(¢ , 0<st<(¢t

(NsyD)

0<w <e , 0<wh<et
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A 5-piecewise-linear master problem

((max ¢ (Y sep X0z) —V(sT+w —wh —st)
+y7sT + 5w +5twt 4Tt

A(Ysep X0x ) +s +w —wh —s" =b
(Ms,5,0) Seep =1, 0z >0 xcB
0<s  <(¢ , 0<st<(¢t

0<w <e , 0<wh<ef

@ Same constraints as (3), 4 slack variables for each constraint

o Many parameters: widths It and A, penalties ¢(* and e,
different roles for small and large penalties

Large penalties (* easily make (A yp) bounded = no Phase 0

3-pieces: either large penalty = small moves, or
small penalty = instability
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Some computational results

@ Comparing unstabilized, 5-piecewise and 3-piecewise penalty functions

o State-of-the-art GenCol code, large-scale, difficult MDVS instances
(only root relaxation times)

time

iter 296
PP-3 82 92| 104 | 75 181 129 134 145 144 189
PP-5 47| 47 49| 45 93 64 98 83 86 150
mpt | CG 88| 125 | 165| 105 | 1679 | 2004 | 1955 925 | 1984 | 1743
PP-3| 44| 47 60 | 42 572 399 740 543 858 | 1351
PP-5 13 16 17 10 189 128 | 428 257 542 | 1326

@ 5-pieces better than 3-pieces, 5-then-3 even better

@ Quadratic more “stable”, but optimized 5-pieces always better
(quadratic has far less parameters, easier but less flexible)

@ All this with fixed parameters, on-line adjustment possible (?)
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On unboundedness and early termination

@ Aray r of X: x € X = x 4+ Ar € X for infinitely large A
o (c—yA)r> 0= f(y) = oo = constraint cr < y(Ar) in the dual
(A) min{ f(y) : yeVY}
where facets of Y are dynamically generated like ordinary columns
(constraint = column with a 0 in the convexity constraint)
@ One might even hide the convexity constraint:
o Ax—» [Ax, 1] , b—[b,1];
o Ignoring the special role of v (just another y)
o Advantage: everything is a constraint
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On unboundedness and early termination

@ Aray r of X: x € X = x 4+ Ar € X for infinitely large A

o (c—yA)r> 0= f(y) = oo = constraint cr < y(Ar) in the dual

(A) min{f(y) :yeY}
where facets of Y are dynamically generated like ordinary columns
(constraint = column with a 0 in the convexity constraint)
@ One might even hide the convexity constraint:
o Ax > [Ax,1] , b—[b,1];
o Ignoring the special role of v (just another y)
o Advantage: everything is a constraint

’This is a bad ideal ‘
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On unboundedness and early termination

@ Aray r of X: x € X = x 4+ Ar € X for infinitely large A

o (c—yA)r> 0= f(y) = oo = constraint cr < y(Ar) in the dual
(A) min{ f(y) : yeVY}
where facets of Y are dynamically generated like ordinary columns
(constraint = column with a 0 in the convexity constraint)
@ One might even hide the convexity constraint:
o Ax—» [Ax, 1] , b—[b,1];
o Ignoring the special role of v (just another y)
o Advantage: everything is a constraint

’This is a bad ideal ‘

@ Approximate stabilization = testing for decrease in f-value, but
when a ray is generated, f(y + d*) = +c0

o Convexity constraints are good: invent them if they are not there
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Bundle vs. Proximal Point

@ Same computational setting as before

o Comparing the same stabilization (5-piecewise)
with (BP) or without (PP) early termination

time | CG
PP
BP
iter | CG
PP 47 47 49 45 93 64 98 83 86 150
BP 37 43 44 36 57 53 59 49 51 101
mpt | CG 88| 125 | 165 | 105 | 1679 | 2004 | 1955 925 | 1984 | 1743
PP 13 16 17 10 189 128 428 257 542 | 1326
BP 10 14 15 10 100 70 329 206 334 983

@ Stabilization works well, approximate stabilization works better
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Stabilization for Integer Master Problems (Benders’)

@ Stabilized master problem easy to do: with trust region
(Bax,t) min{ va(x) : [ x = X[ <t, x€X }
pretty identical to (8) (no dual, though)
e For X C{0,1}", local branching constraint
Yozl =x)+2 s oxi <t
@ However, when solved for one X only a local optima (nonconvex)
= have to increase t until t = n (c0)

@ Silver lining: reverse box || x — X ||oc > t (nonconvex) now easy
o Different idea possible: level stabilization [12]
(Bax.1) min{ | x = X[l : v8(x) </, x€ X} (13)

@ Pros and cons: (13) can be solved inexactly, / somewhat easier to
manage than t and need not go oo, (13) larger (more difficult?),
no reverse box, ...early days (no results to show)

[12] van Ackooij, F., de Oliveira “Inexact stabilized Benders decomposition approaches to chance-constrained problems with
finite support” working paper 2015
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Disaggregated Model
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Dantzig-Wolfe and Multicommodity flows

e Dantzig-Wolfe reformulation (only flows, no y)
o S = { (extreme) flows s = [x}*,...,x5]}
k,s
min > s (ZkeKZ (i,/)EA C:fxu )95

SGS (ZkEKXU UU)HS < 0 (’7./) €A
25689 ) 9520 seS8

@ Another possibility: X = X1 x X2 x ... x XKl =
conv(X) = conv(X') x conv(X?) x ... x conv(XIKI)

o In practice: a different multiplier % for each x%°, with

(clearly, previous case is 0% = 07 h + k)

@ Use more (convexity) constraints in the master problem
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Disaggregated Multicommodity flows

@ Simple scaling leads to arc-path formulation:
p € Pk = { sk—tk paths }, ¢, cost, fo(= d“0K) flow, P = UkexP*
min ZpeP cpfp
> opep:(ijyeptr S uij (iJ) €A
> pepk fp = d* ke K
fp >0 peP

@ Disaggregated formulation: more columns but sparser, more rows
@ Much more efficient than aggregated formulation [13]

@ Master problem size /= time increases, but convergence speed
increases a lot = consistent improvement

[13] Jones, Lustig, Farwolden, Powell “Multicommodity Network Flows: The Impact of Formulation on Decomposition”
Mathematical Programming 1993
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Disaggregated

decomposition

o Easily extended to any decomposable X [14]

@ Stabilized versions immediate

1.E-03

1.E-04

Relative Gap

m
o
&

— Disaggr.
— Aggr.

1.E-06

Iterations

[14] Borghetti, F., Lacalandra, Nucci “Lagrangian Heuristics Based on Disaggregated Bundle Methods for Hydrothermal Unit
Commitment" |EEE Transactions on Power Systems 2003
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More Disaggregated Versions

@ That was true 20 years ago with |K| ~ 10, still true if |K| ~ 100007
@ Aggregation is arbitrary, then why “all or nothing”?

e Partition C = (Cy, G, ..., Gy) of K, partially aggregated model £$
with h components f;, each the sum over one (;

e Basically, 05 = 0! only for each (h, k) € C; x C;

@ Exploring the trade-off between master problem size —-
time and iterations, subproblem time remains the same

e Aggregation index n € [0, 1]:
h=1Cl=max{[ (L -n)lKI],1}
0 = fully disaggregated, 1 = fully aggregated

@ How to choose the commodities in each C;? In general open problem,
here just group commodities with “close original names”
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Even More Disaggregated Versions

@ But what is a commodity, anyway?
o Modeler's view: a product, origin-destination, stream of packets, ...
o Algorithm's view: all that can be bunched together

o Commodity-independent data = bunch commodities with same origin

@ Why is that? Because you can solve a unique SPT for all of them
(which is because SPT has a funny auto-separability property)

@ From a modeling viewpoint, there is no reason to
(can always recover the original solution, less variables)

@ This impact how the master problem is formulated [14] ...
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Even More Disaggregated Versions

@ But what is a commodity, anyway?
o Modeler's view: a product, origin-destination, stream of packets, ...
o Algorithm's view: all that can be bunched together

o Commodity-independent data = bunch commodities with same origin

@ Why is that? Because you can solve a unique SPT for all of them
(which is because SPT has a funny auto-separability property)

@ From a modeling viewpoint, there is no reason to
(can always recover the original solution, less variables)

@ This impact how the master problem is formulated [14] ...
or not: the Master Problem can be freely reformulated

e Aggregation index 1 € [-1,0]: K the number of OD pairs,
h=|Cl = max{ [ —ulK|] . K| }
—1 = ODP formulation, 0 = DSP formulation [14]

@ Again, commodities in a C; just have “close destination node names”
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(Preliminary, n > 0) Computational Results
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Generalized Bundle code using Df = || - ||1 (boxstep)
Latest Cplex as Master Problem Solver

Efficient implementation: overhead due to subgradient handling
significant

Limited effect of stabilization (not much need)
(Reasonably) efficient subproblem solution with MCFClass

http://www.di.unipi.it/optimize/Software/MCF.html

Many instances, some old, some new, from

http://www.di.unipi.it/optimize/Data/MMCF.html

Results for 1 < 0 still brewing, but these significant enough already




Computational Results: Planar & Grid Instances

0 0.2 0.4

time it.| time it.| time it.

grid7? 25 12| 2091 13| 23915
grid8| 18.52 18 19] 21.05 20
grid9 15| 45.94 16| 60.54 18
grid10 15| 61.40 16| 77.96 17
grid12| 61.64 11 10| 65.44 11
grid14|433.64 11|388.76 11(289.13 12
planarl00| 2.16 14| 1.96 13 13
planarl50 17| 29.11 17| 28.77 17
planar300 13| 22.86 14| 23.54 14
planar500| 15.27 11| 14.75 11| 13.91 11

0.6

time it.
14
25.61 23
85.99 20
104.18 18
71.81 11
11
2.36 13
30.44 19
24.12 15
12.71 12

o Large, nasty instances (you'll see later)

0.8 1

time it.

2.62 18

42.36 33 3848
189.92 32 2862
233.07 24 3848
148.89 13 2862
259.22 12

o *** — out of time limit (6400 seconds): all for n = 1, clearly worst

@ Results somewhat erratic, but clearly 7 = 0 not always best
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Computational Results: Goto & Mnetgen Instances

Goto6-100
Goto6-400
Goto6-800

Goto8-10
Goto8-100
Goto8-400
Goto8-800

@ ...although in some cases 7 = 0 can be (almost) uniformly best

0.2 0.4 0.6 0.8
it.| time it. time it. time it time it.
25| 1.33 30 1.39 35 1.67 44 1.40 69
15| 159 17 1.76 19 240 22 5.79 32
12| 254 14 2.85 15 3.62 17 9.24 25
75| 4.57 104 6.14 137 7.68 164| 18.12 301
21| 4.86 27 498 31 5.58 45| 13.73 79
16| 8.13 18| 11.03 20| 14.68 23| 2486 36
11| 3.30 12 453 13 6.34 15| 10.32 20
57| 27.64 76| 23.54 91| 31.09 128| 32.92 222
46| 66.04 59| 63.66 70| 79.97 92| 108.53 169
34(125.27 43| 126.71 50| 147.25 65| 174.81 108
109 5.73 109 8.08 158| 12.34 209| 24.09 437
140| 45.55 183| 77.50 252| 94.51 276| 289.69 635
148|181.38 219| 244.79 271| 404.15 381| 885.73 704
117|510.74 163| 640.14 200({1081.34 299|1666.35 480
86|744.93 113|1108.17 143{1624.06 196|1834.86 293
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Computational Results: Waxman & Rmnet Instances

0.2

4-8-11-100 0.56
4-8-12-200| 1.31 5
4-8-13-200 [ 5188 7
4-8-14-400(55.62 7
7-6-11-100 6
7-6-12-500| 1.80 5
7-6-13-500| 4.56 5
7-6-14-1000{30.29 5

OO NNOCOWWNNWND W™

@ ...or (almost) uniformly worst (save for n = 1)

OC1 U1 O 00 00 U1 C1W W NN WN WF

(6}

9.70 62
19.89 62
54
8
30
30.26 38

@ but often strange things happen (7 = 1 can even be best)
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Easy Components
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Decomposition of Fixed-Charge Multicommodity

@ Multicommodity flow + arc design costs f; (y;; € {0,1})

e S = extreme points of y (214! vertices of the unitary hypercube):

min ZPEP oo+ ses (z(i,j)eA fijyfj)gs

ZpeP :(ij)ep fo < Ui ses Vibs (i,j) €A
> pepk fp = d* ke K
fo >0 pepP
Ysests=1, 0,>0 ses

Standard (weak) formulation used in Lagrangian approaches [15]

@ Are you sure you're sane? Arguably not:

replacing a 2n formulation with a 2" one!

@ ...and with very long, dense rows

[15] Crainic, F., Gendron “Bundle-based Relaxation Methods for Multicommodity Capacitated Fixed Charge Network Design
Problems” Discrete Applied Mathematics 2001
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Fixed-Charge Multicommodity: even more disaggregated

@ The unitary hypercube is a cartesian product: why not S¥ = {0,1}?
oyj — 0-09041.001  i0 L gil_1 | gi0>0 il >0,
Yij € [0 ’ 1 ]
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Fixed-Charge Multicommodity: even more disaggregated

@ The unitary hypercube is a cartesian product: why not S¥ = {0,1}?
yij€[0, 1] (no, ...really?!)

@ Arc-path formulation with original arc design variables

min >~ ep Sofp + D jea fiYii
ZPEP (i, J)ep fP < uijyij (i7.j) €A

> pep fp = d* ke kK
fo >0 pepP
yij €[0,1] (i,j)eA

@ Only generate the right variables
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Is it always this ea

@ No: what if one had, say,

Z(i,j)eA Yii < r ?

@ Design () subproblem can no longer be disaggregated
@ But, one could write the arc-path formulation in that case, too
@ And could add that constraint to the master problem

@ Can this be stabilized? Of course it can [16]

[16] F., Gorgone “Bundle methods for sum-functions with “easy” components: applications to multicommodity network design”
Mathematical Programming? 2013
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Stabilized decomposition with “easy components”

o f Lagrangian function of structured optimization problem
() max{ axi+a(x) @ x € X!, G(x) <g,Aixx+Axxa=0>b }
i.e., f(y) = f1(y) + f2(y)(—yb) where
fi(y) = max { (c1 — yA1)x1 1 x1 € X1 }
“easy for some reason” (efficient but “totally obscure” black box)
F2(7) = max{ (x) - (7A2)x : G(x)<g}

“easy because a compact convex formulation is known”
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Stabilized decomposition with “easy components”

o f Lagrangian function of structured optimization problem
() max{ axi+a(x) @ x € X!, G(x) <g,Aixx+Axxa=0>b }
i.e., f(y) = f1(y) + f2(y)(—yb) where
fi(y) = max { (c1 — yA1)x1 1 x1 € X1 }
“easy for some reason” (efficient but “totally obscure” black box)
F2(7) = max{ (%) — (7A2)x2 : Glx) <g }
“easy because a compact convex formulation is known”

@ Usual approach: disregard differences
Better idea: treat “easy” components specially

e In practice: insert “full” description of f2 in the master problem

@ Master problem size may increase (at the beginning), but
“perfect” information is known
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“Easy components” in formulae

@ Dual master problem: abstract form
(Apyp) min{ b(y +d) + f5(7 +d) + f(x + d) + D(d) }
@ Primal master problem: abstract form
axi + e(x) + yz — D*(-z)
(Mgyp) maxs z=b—Aixi — Axxo
x1 € conv(B) , xp € X2
and implementable form
a (E;qel? 219)—(1) + a(x) + yz — D*(—2)
(Mpyp) maxq z=b—A; (> gXibx) — Axz (14)
Ymenln =1, Gle)<g

e Barring some details (do not translate ), everything works.
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Extensions, details

@ Multiple easy/hard components: trivial
@ Constrained case: y € Y ={y : Hy<h}
a (XgesXibs) + c(x) +wh+ yz — D*(—z)
(MByp) max z=b+wH— A (22168)?19?1) — Aoxo
Ymepln =1, Gle)<g , w=0
@ Global lower bound / < minf: (¢ and G linear)

C1 Z )?19;;1 + C2Xé - /(1 — p) + yz — ’D*(_z)
x1€8B
(Msyp) maxy z=pb—A Z X105, — Axx;
xeB
221689'%1 =p, Gxpx<pg, 00>0, pecl01]

(0=10/p, x2=x5/p)
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Computational results

@ Several possible options:
o fully aggregated (FA)
e partly disaggregated with easy y (PDE)
o disaggregated with difficult y (DD)
o disaggregated with easy y (DE)

o Stabilizing terms: || - [|oo, || - [|3 only for (FA) (exploiting [17])
e With (strong) or without (weak) forcing constraints
0<cf<ufy; (ilj)yeA, ke K
(very many, so dynamic generation [18,19] needed)

@ http://www.di.unipi.it/optimize/Data/MMCF.html#Canad

group 1 2 3 4 5 6 7 8 9 10 11 12
IN| 20 20 20 20| 30 30 30 30 50 50 50 50
|A] | 300 300 300 300|600 600 600 600 | 1200 1200 1200 1200
|[K| | 100 200 400 800 | 100 200 400 800 | 100 200 400 800

[17] F. “Solving semidefinite quadratic problems within nonsmooth optimization algorithms” Computers & O.R. 1996
[18] F., Lodi, Rinaldi “New approaches for optimizing over the semimetric polytope” Mathematical Programming 2005
[19] Belloni, Sagastizdbal “Dynamic Bundle Methods” Mathematical Programming 2009
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Computational results — weak formulation

124.38 13.95 811 6e-7

PDE FA-2

time f iter gap time

0.03 0.01 6 7.64

0.08 0.01 12 14.24

0.57 0.12 521e-7 12.66

1.06 0.23 50 3e-7 42.38

0.30 0.03 39 4.12

1.81 0.21122 6.36 1.
20.56 1.93 483 2e-7 134.49 15.00

5.17 1.09 120 le-7 126.29 26.19
34.80 0.78 449 5e-9 28.92 2.77

2.39 0.26 89 32.77 5.26
16.03 2.34271 1le-7 80.05 16.48

233.40 50.47

o relative accuracy = 1e-6, maximum running time = 1000 seconds

e all things being equal, || - ||3 trounces || - [|oo

@ PDE better than DD, DE demolishes everything else

@ Master problem time largely preponderant (no trick like [20])

[20] Cappanera, F. “Symmetric and asymmetric parallelization of a cost-decomposition algorithm for multi-commodity flow
problems” INFORMS Journal on Computing 2003
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Computational results — weak formulation — accuracy

Cplex DE FA-2

primal dual  barrier d.net. auto | 1e-6 le-6 le-12
0.30 0.13 8.73 0.23 0.36 | 0.04 7.64 7.74
0.89 0.90 21.25 1.95 2.40 | 0.08 14.24 14.37
3.04 10.22 76.24 16.32 25.44 | 0.25 12.66 13.13
8.21 16.56 151.14 27.58 4479 | 0.64 42.38 49.18
1.09 4.98 42.57 6.88 10.62 | 0.10 4.12 4.19
328 24.68 135.57 29.46 69.86 | 0.25 6.36 7.94
53.25 2258 417.10 51.45 55.86 | 0.45 13449 137.41
18.74 67.24 1115.22 99.96 177.40| 1.10 126.29 163.88
19.98 84.33 303.29 112.71 187.37 | 0.34 28.92 42.71
7.89 82.64 583.52 259.65 309.74 | 0.42 32.77 40.60
38.09 230.79 1952.75 325.33  690.30 | 0.99 80.05 108.94
586.07 459.49 3586.63 738.23 1266.87 | 2.19 233.40 1789.08

@ Cplex accuracy is 1e-12, except for barrier where is 1e-10
@ Decomposition approaches tested with both 1e-6 and 1e-12

e DE trounces the best of Cplex (primal network) by an order of
magnitude, all the rest by much more, at the same accuracy
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Computational results — strong formulation — tuning

Cplex DE
static dynamic | static dynamic
54 10 44 32
315 54 233 48
1539 112 | 1234 29

Comparison of static and dynamic constraint handling

DE PDE DD FA-1 FA-2
iter gap iter gap iter gap|time iter gap
2980 2e-2 2714 2e-1 1990 2e-1| 410 14880 9e-7
2896 6e-2 3720 7e-2 7351 2e-1|1855 11141 3e-6
8370 2e-2 5061 5e-2 10918 1le-1(1254 9035 2e-6
5618 3e-2 2148 4e-2 5203 8e-2|1732 12940 1le-6

(Partial) results for the strong formulation

e Dynamic (lazy) constraints handling is necessary (even for Cplex)

@ Even allowing long running time, PDE, DD, and FA-1 have the

chance of a snowball in hell
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Computational results — strong formulation — more tuning

@ To be efficient, you have to let information accumulate!

e Optimal setting: maximum |B| = 50 - | K|, constraints violation

checked at every iteration, constraints never removed

o Experiments: |B| =20 - |K|, constraints checked every 10 iterations

and removed if x; = 0 for 20 consecutive iterations

opt
time it gap

31.69 77 le-7
4753 30 3e-7
28.98 24 2e-7
65.31 20 3e-8

@ No, no, no!

@ The “combinatorial tail” have to start soon, it is easily destroyed

841 T7e-7
1585 3e-4
726 4e-7
20 3e-8

194 1e-6
159 3e-7
65 le-6
78 5e-7
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Computational results — strong formulation — accuracy

le-6 le-8 le-10 le-12
time f add iter gap| time iter gap| time iter gap| time f add iter
31.69 0.05 0.96 77 le-7| 57.73 143 4e-9| 62.07 170 3e-11| 63.78 0.11 1.10 181

4753 0.04 2.04 30 3e-7| 51.22 33 2e-9| 51.37 33 51.38 0.05 2.06 33
28.98 0.07 2.70 24 2e-7| 29.15 25 29.15 25 29.16 0.07 2.74 25
65.31 0.14 6.58 20 3e-8| 65.67 21 65.68 21 65.69 0.15 6.61 21
2593 0.04 0.89 47 8e-8| 28.28 51 3e-9| 32.00 57 32.00 0.06 0.93 57
27.97 0.09 1.48 36 4e-7| 55.43 51 4e-10| 56.01 52 1le-11| 56.28 0.12 1.60 52
20.80 0.09 1.80 21 2e-8| 20.84 21 2e-9| 25.69 24 25.69 0.11 1.84 24
132.60 0.24 10.03 23 8e-8|132.74 23 132.76 23 132.78 0.24 10.09 23

247 0.06 0.48 26 2e-10| 2.47 26 2e-10| 257 27 3e-12| 2.66 0.06 0.49 27
24591 0.26 4.18 59 1e-7|295.56 72 4e-9|333.22 84 2e-11|337.38 0.39 4.54 86
283.71 0.43 7.24 39 7e-8|442.56 55 2e-9|506.83 63 5e-12|507.52 0.71 7.78 63
241.84 0.52 11.85 24 2e-11|241.88 24 2e-11|241.92 24 2e-11|253.59 0.55 11.98 25

@ Four accuracy settings: 1e-6, 1e-8, 1e-10, le-12

@ Not quite as spectacular as in the weak case, but
double precision in < double time

@ “add” = time for checking constraints > time for f computation!

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 67 / 81



Computational results — strong formulation

Cplex DE FA-2 FA-V
primal dual net. barr.|1e-6 1e-12| time f add it gap|time f add it gap
12 10 15| 32 410 12 7 14880 9e-7 0.6 0.5 875
64 61 71| 48 1855 19 16 11141 3e-6 1.2 1.2 842
139 132 157 29 1254 32 20 9035 le-6 2.3 2279
559 531 587| 65 1732 100 67 12940 le-6 5.1 5.0 760
46 43 60| 26 322 12 10 10320 1le-6 09 113871
147 144 209 28 294 15 9 5300 le-6 2.1 24831
509 478 648 21 5033 169 155 27231 le-6 45 54794
2329 2302 2590| 133 3122 192 169 14547 1le-6 8.6 10.6 760
196 156 304 2 344 20 12 7169 le-6 2.0 2.3827
926 862 1174 2256 111 118 17034 2e-5 5.0 6.1 869
2542 3272 5475 192 249 15061 3e-6 9.2 13.0 817
11156 11675 11683 11863 349 413 13953 le-6 16.7 24.1 765

e Fa—V: a FA with volume algorithm, quick but too coarse

@ Sep = 100 for FA-2, Sep = 10 for FA-V: computing x* by convex
combination much faster, bottleneck for DD

@ More than an order of magnitude to Cplex as |A| and/or |K| grows
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Last comment: similar ideas

@ Nonlinear multicommodity routing:
min{ S jeats (3= (6), ye 0,14 |
with classical (convex) Kleinrock delay function
@ Decomposes into |K| flows + |A| simple convex subproblems
@ Specialized models of |A| convex functions using the conjugate

@ Specialized treatment of these “easy” C? functions with
Newton model instead of the cutting-plane model [21]

@ Substantially improved performances

[21] Lemaréchal, Ororou, Petrou “A bundle-type algorithm for routing in telecommunication data networks” Computational
Optimization and Applications 2009
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Structured Decomposition
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Structured Decomposition

e Came out for a different (still multicommodity) problem [22]

@ D-W = reformulation of X always in the same form ...
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Structured Decomposition

e Came out for a different (still multicommodity) problem [22]

@ D-W = reformulation of X always in the same form ...
or not, as we have already seen. But we can do better:

e Assumption 1: alternative Formulation of “easy” set
X:{X:C0 : F0§*y}
e Assumption 2: B subset of rows and columns, padding with zeroes
Mels <y = T[0s,0] <~y
:>XB:{X:CBGB : rBGBS'YB}gX

e Assumption 3: easy update of rows and columns
Given B, x € X, x ¢ Xg, it is “easy” to find B' D B
(= T, i) such that 3 B” D B’ such that X € Xp.

[22] F., Gendron “0-1 reformulations of the multicommodity capacitated network design problem” Discrete Applied Math. 2009
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The Structured Dantzig-Wolfe Algorithm

@ Structured master problem = structured model

(Ng) max{cx:Ax:b,x:CBQB, rBeBS’YB}
fa(y) = max{ (c —yA)x+xb : x=Cgllp, Tglp < 75 }
( initialize B );
repeat

( solve (Mg) for x*, y* (duals of Ax = b); v* = cx* );
X =argmin { (c —y*A)x : xe X };
( update B as in Assumption 3 );

until v* < cx + y*(b — AX)

o Finitely terminates with an optimal solution, even if (proper) removal
from B is allowed, X is non compact and B = () at start (Phase 0)

@ The subproblem to be solved is identical to that of DW
@ Requires (= exploits) extra information on the structure

@ Master problem with any structure, possibly much larger
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Stabilizing the Structured Dantzig-Wolfe Algorithm

@ Exactly the same as stabilizing DW: stabilized master problem
(AgyD) min{ fg(y +d)+D(d) }
except fz is a different model of f (not the cutting plane one)
e Even simpler from the primal viewpoint [23]:
max{cx—i—?z—D*(z) i z=Ax—b, x=Cglg, lgos SVB}
e With proper choice of D, still a(sparsely structured) Linear Program
@ Dual optimal variables of “z = Ax — b" still give d*, ...

@ How to move y, handle t, handle 3: basically as in [10], actually
even somewhat simpler because B is inherently finite
e Funnily, aggregation B = BU { x* } is also possible, up to
B ={x*} = “poorman” method

although clearly contrary to the spirit of S2DW

[23] F., Gendron “A Stabilized Structured Dantzig-Wolfe Decomposition Method” Mathematical Programming 2013
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Structured Decomposition for Multicommodity Flows

@ All nice and well, but how can we come up with a x = C7?
@ Surprisingly simple: use the node-arc formulation

e Start with “empty graph”, find paths: if a node/arc is missing, add it

Intermediate formulation between node-arc and arc-path

Would seem to generalize to many other network-structured problems

@ Current implementation heavily relies on Cplex preprocessor
it may be preferable to do the path splitting by hand

@ Current implementation is not stabilized at all
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(Preliminary) Computational results

@ Ad-hoc code (including in general Bundle nontrivial, but possible)

No stabilization (but probably none needed)

Still using Cplex as main driving force
e Comparing also against direct use of Cplex (tuned)

Exactly the same subproblem solver (FiOracle)

Surely can be improved a lot (e.g. explicit graph operations)

Same instances, same machine
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Computational Results: Planar & Grid Instances

0 * SDW Cplex
time it. time it.
grid7 25 12 2.12 14
gridg| 18.52 18 19

23.81

grid9 15| 36.04 15| 193.53 12
grid10 15| 5451 15| 596.83 13
grid12 11| 61.24 10| 881.37 11
grid14 (433.64 11 11/6086.84 11
planarl00| 2.16 14 13 2.66 8
planar150 17| 25.75 17| 183.94 11

planar300 13| 21.34 13| 112.87 9
planar500| 15.27 11 [ONSH# 11| 25.16 7

@ *** — out of time limit (6400 seconds): Cplex clearly worst

o SDW seldom competitive here, although much better than Cplex

@ 7 = 0 not a bad choice overall, but not necessarily best
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Computational Results: Goto & Mnetgen Instances
SDW Cplex
time |t time

Goto6-100
Goto6-400
Goto6-800
Goto8-10
Goto8-100
Goto8-400
Goto8-800
128-32
128-32
128-64
128-128
256-8
256-16
256-32
256-64

@ SDW is not often the best, but it is never the worst
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Computational Results: Waxman [& Rmnet] Instances

0 0.8 =*| SDW | Cplex

time it.| time it.|time it.| time

W-50 032 7| 1.12
W-100-6 039 7
W-100-10 1.11 6
W-100 0.86 2
W-150-6 293 6
W-150-10 354 4
W-150 214 3

e Er ... Rmnet not ready yet, sorry (preliminary | said)

@ When few paths (= iterations) are required, SDW can’t help much

Still better than using Cplex directly, though
@ Often better than standard decomposition with non-optimal 7

Results on other applications much more promising [22,23,24]

[24] F., Finardi, Scuzziato “Decomposition Approaches to Large-Scale Stochastic Unit-Commitment Problems” working paper
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Conclusions
(for good, this time)
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Conclusions and (a lot of) future work

@ Decomposition methods (DW, Benders') old ideas, well-understood
@ Yet, by-the-book decomposition is often not effective enough
@ Many possible ideas to improve on the standard approach

@ Substantial issue: what works is “large” master problems
so that “combinatorial tail" kicks in very quickly =
o Large master problem time
e “Unstructured” master problems = general-purpose solvers
o “Complicated” = costly stabilizing functions (]| - [|3)

o Need to find modern equivalent of [17] to exploit the structure of an
unstructured problem (perhaps less contradictory than is sounds [25])

@ Other important idea: inexact solution of the subproblems [12]
@ Huge challenge: make these techniques mainstream

@ A possible way: automatic reformulation tools [26]

[25] Kiwiel “An alternating linearization bundle method for . ..and nonlinear multicommodity flow problems” Math. Prog. 2013
[26] F., Perez Sanchez “Transforming mathematical models using declarative reformulation rules” LNCS 6683, 2011
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