
Decomposition in Large-Scale Optimization:
Old Ideas and New Developments

Antonio Frangioni

Dipartimento di Informatica, Università di Pisa

Cagliari

January 29 – 30, 2015

Outline

1 Block-Structured (Integer) Linear Programs

2 Dual decomposition (Dantzig-Wolfe/Lagrangian/Column Generation)

3 The Integer Case (B&C vs. B&P)

4 Primal decomposition (Benders’/Resource)

5 Conclusions (I)

6 Stabilization

7 Disaggregated Model

8 Easy Components

9 Structured Decomposition

10 Conclusions

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 2 / 81

Block-Structured Programs

(Challenging) applications of Integer Linear Programming are
large-scale: millions of variables/constraints

Good news: all large-scale problems are block-structured

Usually several nested forms of structure, but two main ones:

E1

Ek

A

…
E2 E1

Ek

…
E0

block-diagonal staircase-structured
≡ complicating constraints ≡ complicating variables

Relaxing constraints / fixing variables yields independent subproblems

=⇒ much easier because of size and/or structure (integrality, . . .)

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 3 / 81

Example I: Two-stage Stochastic (Integer) Linear Programs

Problems involving decisions over time and uncertainty

First-stage (here-and-now) decisions x , constraints E0x ≤ b0

Set S of scenarios, realization known only after deciding x

Recourse decisions ys , different for each scenario s ∈ S ,
constraints E s

0x + Esys ≤ bs

Minimize here-and-now cost plus average cost of reserve actions

min
{
c0x +

∑
s∈S πscsys : E0x ≤ b0 , E

s
0x + Esys ≤ bs s ∈ S

}
Extends to multi-stage (structure repeats “fractally” into each Es)

Often other structures inside E , network a common one

Extends to other risk measures (CVaR, . . .), integer variables, . . .

Many applications: energy [0], water, logistics, telecom, finance, . . .

[0] Tahanan, van Ackooij, F., Lacalandra “Large-scale Unit Commitment under uncertainty” 4OR 2015

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 4 / 81

(Very) Classical decomposition approaches I: primal

Structure =⇒ use decomposition approaches

Here-and-now decisions are naturally complicating

Main idea: define the (expected, nonlinear) value function

v(x) = c0x +
∑

s∈S πs min
{
csys : Esys ≤ bs − E s

0x
}

decomposes =⇒ “easy” to compute (but can be ∞)

Construct Benders’ reformulation [1]

min
{
v(x) : E0x ≤ b0

}
a much smaller but nonlinear equivalent problem

A “complicated” function that can be evaluated at each x

Can use appropriate algorithms to solve it [2]

[1] Benders “Partitioning procedures for solving mixed-variables programming problems” Numerische Mathematik 1962

[2] Kelley “The Cutting-Plane Method for Solving Convex Programs” J. of the SIAM, 1960

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 5 / 81

(Very) Classical decomposition approaches II: dual

Alternative approach: introduce artificial complicating constraints

min c0x +
∑

s∈S πscsys (1)

E0x ≤ b0

E s
0xs + Esys ≤ bs s ∈ S

xs = x s ∈ S (2)

Relax (2) into (1) with multipliers λs , Lagrangian function [3]

f (λ) = min c0x +
∑

s∈S πscsys +
∑

s∈S λs(x − xs)
E0x ≤ b0

E s
0xs + Esys ≤ bs s ∈ S

decomposes =⇒ “easy” to compute

The Lagrangian dual max{ f (λ) } equivalent to the problem
(not necessarily much smaller, |λ| = |x ||S | may be ≈ |y |)
Can still be solved by [2]

[3] Geoffrion “Lagrangean relaxation for integer programming” Mathematical Programming Study 1974

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 6 / 81

Example II: Multicommodity Network Design

Graph G = (N,A), multicommodity network design model

min
∑

k∈K
∑

(i , j)∈A dkckij x
k
ij +

∑
(i , j)∈A fijyij (3)∑

(i , j)∈A

xkij −
∑

(j ,i)∈A

xkji =

{
1 if i = sk

1 if i = tk

0 otherwise
i ∈ N , k ∈ K (4)

∑
k∈K dkxkij ≤ uijyij (i , j) ∈ A (5)

xkij ∈ [0, 1] (i , j) ∈ A , k ∈ K (6)

yij ∈ {0, 1} (i , j) ∈ A (7)

K ≡ commodities ≡ (sk , tk , dk) (not completely generic)

Pervasive structure in most of combinatorial optimization

Many applications: logistic, transportation, telecom, energy, . . .

Many sources of structure =⇒ the paradise of decomposition [4,5]

[4] Ford, Fulkerson “A Suggested Computation for Maximal Multicommodity Network Flows” Management Science 1958

[5] Dantzig, Wolfe “The Decomposition Principle for Linear Programs” Operations Research 1960

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 7 / 81

Classical decomposition approaches

Benders’ decomposition [1] of linking variables:

design (y) variables are “naturally” linking if uij large

Benders’ cuts are metric inequalities defining the multiflow feasibility

Linking variables can be artificially added if not present

dkxkij ≤ ukij ,
∑

k∈K ukij ≤ uij

(“resource decomposition”) [6]

Lagrangian relaxation [3] of linking constraints:

(5): =⇒ flow (shortest path) relaxation (integrality property ≡ “easy”)

(4): =⇒ knapsack relaxation (only one integer variable per problem)

others possible

Let’s see how they work

[6] Kennington, Shalaby “An Effective Subgradient Procedure for Minimal Cost Multicomm. Flow Problems” Man. Sci. 1977

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 8 / 81

Dual decomposition, a.k.a.
Dantzig-Wolfe decomposition

Lagrangian Relaxation
Column Generation

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 9 / 81

Block-diagonal Linear Program

Block-diagonal LP (linking constraints)

(Π) max { cx : Ax = b , x ∈ X = { x : Ex ≤ d } }

X =
⊗

k∈K X k = { xk : E kxk ≤ dk }

|K | is large so, (Π) is very large

We know how to efficiently optimize upon X , for two reasons:

a bunch of (many, much) smaller problems instead of a large one

the X k may have structure (shortest path, knapsack, . . .)

We could efficiently solve (Π) if linking constraints removed:
how to exploit it?

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 10 / 81

Dantzig-Wolfe reformulation

Dantzig-Wolfe reformulation (temporarily assume X compact):
X convex =⇒ represent it by points

X =
{
x =

∑
x̄∈X x̄θx̄ :

∑
x̄∈X θx̄ = 1 , θx̄ ≥ 0 x̄ ∈ X

}
then reformulate (Π) in terms of the convex multipliers θ

(Π)

max c

(∑
x̄∈X x̄θx̄

)
A
(∑

x̄∈X x̄θx̄
)

= b∑
x̄∈X θx̄ = 1 , θx̄ ≥ 0 x̄ ∈ X

How many points? Only the vertices V ⊂ X of X are required

Could this ever be a good idea? Actually, it could:
polyhedra may have few faces and many vertices . . . or vice-versa

n-cube |xi | ≤ 1 ∀ i 2n faces 2n vertices

n-co-cube
∑

i |xi | ≤ 1 2n faces 2n vertices

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 11 / 81

Dantzig-Wolfe decomposition ≡ Column Generation

Except, most often the number of vertices is too large

 AX = bAX = b
 e = 1 e = 1

 Ax = bAx = b
 Ex dEx d

AX = bAX = b
 e = 1 e = 1

linear program with (exponentially) many columns

But, efficiently optimize over X =⇒ generate vertices (≡ columns)

B ⊂ X (small), solve restriction of (Π) with X → B, i.e.,

(ΠB)

max c

(∑
x̄∈B x̄θx̄

)
A
(∑

x̄∈B x̄θx̄
)

= b∑
x̄∈B θx̄ = 1 , θx̄ ≥ 0 x̄ ∈ B

“master problem” (B small, not too costly)

If B contains the “right” columns, x∗ =
∑

x̄∈B x̄θ∗x̄ optimal for (Π)

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 12 / 81

Dantzig-Wolfe decomposition ≡ Lagrangian relaxation

How do I tell if B contains the “right” columns? Use duality

“Abstract” view of the master problem:

(ΠB) max { cx : Ax = b , x ∈ conv(B) }

Has a (linear) dual, (partial) dual optimal solution y∗ of Ax = b

Feed y∗ to pricing problem (a.k.a. Lagrangian relaxation)

(Πy∗) max { (c − y∗A)x : x ∈ X } [+ y∗b]

(the whole of X , not B, but we can do it efficiently)

If primal optimal solution x̄ (≡ column) of (Πy∗) has
negative reduced cost (c − y∗A)(x∗ − x̄), use it to enlarge B

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 13 / 81

Geometry of Dantzig-Wolfe/Column Generation

 Ax = b Ax = b

c
c y*A

c − y∗A separates conv(B) ∩ Ax = b from all x ∈ X better than x∗

Thus, optimizing it allows finding new points (if any)

Issue: conv(B) ∩ Ax = b must be nonempty

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 14 / 81

Geometry of Dantzig-Wolfe/Column Generation

 Ax = b Ax = b

c
c y*A

c − y∗A separates conv(B) ∩ Ax = b from all x ∈ X better than x∗

Thus, optimizing it allows finding new points (if any)

Issue: conv(B) ∩ Ax = b must be nonempty

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 14 / 81

Geometry of Dantzig-Wolfe/Column Generation

 Ax = b Ax = b

c
c y*A

c − y∗A separates conv(B) ∩ Ax = b from all x ∈ X better than x∗

Thus, optimizing it allows finding new points (if any)

Issue: conv(B) ∩ Ax = b must be nonempty

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 14 / 81

The Lagrangian dual

Dual of (ΠB):

(∆B)
min

{
yb + v : v ≥ (c − yA)x x ∈ B

}
= min

{
fB(y) = max { cx + y(b − Ax) : x ∈ B }

}
(note: x ∈ B “constraints index”)

fB = lower approximation of “true” Lagrangian function

f (y) = max { cx + y(b − Ax) : x ∈ X }

“easy” computability of f (y) the only requirement

Thus, (∆B) outer approximation of the Lagrangian dual

(∆) min
{
f (y) = max { cx + y(b − Ax) : x ∈ X }

}
that is equivalent to (Π)

Dantzig-Wolfe decomposition ≡ Cutting Plane approach to (∆) [2]

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 15 / 81

Geometry of the Lagrangian dual

y

f

x2

y*

fBx3
x4

x1

x5

x6
v*

v∗ = fB(y∗) lower bound on v(ΠB)

Optimal solution x̄ gives separator between (v∗, y∗) and epi f

(cx̄ ,Ax̄) = new row in (∆B) (subgradient of f at y∗)

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 16 / 81

Geometry of the Lagrangian dual

y

f

x2

y*

fBx3
x4

x1

x5

x6

v∗ = fB(y∗) lower bound on v(ΠB)

Optimal solution x̄ gives separator between (v∗, y∗) and epi f

(cx̄ ,Ax̄) = new row in (∆B) (subgradient of f at y∗)

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 16 / 81

Geometry of the Lagrangian dual

y

f

x2 fB

x3
x4

x1

x5

x6

v∗ = fB(y∗) lower bound on v(ΠB)

Optimal solution x̄ gives separator between (v∗, y∗) and epi f

(cx̄ ,Ax̄) = new row in (∆B) (subgradient of f at y∗)

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 16 / 81

The Integer Case:
relationships with B&C

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 17 / 81

A Structured Integer Program

What if our problem has X = { x ∈ Zn : Ex ≤ d } combinatorial

(Π̄) max { cx : Ax = b , x ∈ X }

If we can still efficiently optimize over X , due to size (decomposition)
and/or structure (integrality), nothing changes

What are we solving? Obviously, a (possibly tight) relaxation

(Π̄X) max { cx : Ax = b , x ∈ conv(X) }

Often does not solve (Π̄), but gives (good) bounds
=⇒ Branch & Bound with DW/Lagrangian/CG ≡ Branch & Price

Branching nontrivial: may destroy subproblem structure
=⇒ branch on x (but (ΠB) is on θ)

Note: { x ∈ Rn : Ex ≤ d } = conv(X) (integrality) is bad
=⇒ bound not better than standard linear relaxation

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 18 / 81

Alternative: a Good Formulation for X

(Under mild assumptions) conv(X) is a polyhedron =⇒
conv(X) =

{
x ∈ Rn : Ẽ x ≤ d̃

}
There are good formulations for the problem

Except, practically all good formulations are too large

 Ex d~ ~Ex d~ ~Ex d~ ~Ex d~ ~ Ex dEx d Ax = bAx = b Ax = bAx = b

Very few exceptions (integrality property ≈ networks)

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 19 / 81

Alternative: a Good Formulation for X

(Under mild assumptions) conv(X) is a polyhedron =⇒
conv(X) =

{
x ∈ Rn : Ẽ x ≤ d̃

}
There are good formulations for the problem

Except, practically all good formulations are too large

 Ex d~ ~Ex d~ ~Ex d~ ~Ex d~ ~ Ex dEx d Ax = bAx = b Ax = bAx = b

Very few exceptions (integrality property ≈ networks)

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 19 / 81

Row generation/polyhedral approaches

The good news is: rows can be generated incrementally

 Ax = b Ax = b

 Ex d

 Ax = b A

 Ex d

 Ax A Ax A
c

Relevant concept: separator

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 20 / 81

Row generation/polyhedral approaches

The good news is: rows can be generated incrementally

 Ax = b Ax = b

 Ex d

 Ax = b A

 Ex d

 Ax A Ax A
c

Relevant concept: separator

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 20 / 81

Row generation/polyhedral approaches

The good news is: rows can be generated incrementally

 E1x d1 E1x d1

 Ax = b

 E1x d1E d

 Ax = b
c

Relevant concept: separator

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 20 / 81

Branch & Cut

R = (small) subset of row(indice)s, ERx ≤ dR reduced set

Solve outer approximation to (Π̄)

(Π̄R) max { cx : Ax = b , ERx ≤ dR }

feed the separator with primal optimal solution x∗

Separator for (several sub-families of) facets of conv(X)

Several general approaches, countless specialized ones

Most often separators are hard combinatorial problems themselves
(though using general-purpose MIP codes is an option)

May tail off, branching useful far before having solved (Π̄X)

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 21 / 81

Branch & Cut vs. Branch & Price

Which is best?

Row generation naturally allows multiple separators

Very well integrated in general-purpose solvers

(but harder to exploit “complex” structures)

Column generation naturally allows very unstructured separators

Simpler to exploit “complex” structures

(but much less developed software tools)

Column generation is row generation in the dual

Then, of course, Branch & Cut & Price

(nice, but software issues remain and possibly worsen)

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 22 / 81

Primal decomposition, a.k.a.
Benders’ decomposition
Resource decomposition

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 23 / 81

Staircase-structured Linear Program

Staircase-structured LP (linking variables)

(Π) max { cx + ey : Ax + By ≤ b , Ex ≤ d }

Ax + By ≤ b ≡ Akx + Bkyk ≤ bk k ∈ K

|K | is large so, (Π) is very large

We know how to efficiently solve if x is fixed, for two reasons:

a bunch of (many, much) smaller problems instead of a large one

the Bk may have structure (shortest path, knapsack, . . .)

We could efficiently solve (Π) if linking variables fixed:
how to exploit it?

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 24 / 81

Benders’ reformulation

Benders’ reformulation: use value function

(B) max
{
cx + v(x) = max{ ey : By ≤ b − Ax } : Ex ≤ d

}
then use duality to reformulate the inner problem

v(x) = min
{
λ(b − Ax) : λ ∈ Λ = {λ : λB = e , λ ≥ 0 }

}
The polyhedron Λ does not depend on x , reformulate by points

(B) max
{
cx + v : v ≤ λ(b − Ax) λ ∈ Λ , Ex ≤ d

}
How many points? Only the vertices V ⊂ Λ of Λ are required

Of course, in general the vertices are (exponentially) many
but we can generate them solving the problem v(x)

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 25 / 81

Benders’ decomposition

Select (small) B ⊂ V , solve master problem

(BB)
max

{
cx + v : v ≤ λ(b − Ax) λ ∈ B , Ex ≤ d

}
= max

{
cx + vB(y) = min{ λ(b − Ax) : λ ∈ B } , Ex ≤ d

}
(again, λ ∈ B “constraints index”)

vB = lower approximation of “true” value function v

Find (primal) optimal solution x∗, compute v(x∗), rinse & repeat

Benders’ decomposition ≡ Cutting Plane approach to (B) [2]

Spookily similar to the Lagrangian dual, ain’t it?

Except, constraints are now attached to dual solutions λ +

v(x) =∞ =⇒ feasibility cut (extreme ray of Λ, details omitted)

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 26 / 81

Benders’ decomposition for Integer Programs

Staircase-structured ILP (integer linking vriables)

(Π̄) max { cx + ey : Ax + By ≤ b , x ∈ X }

X = { x ∈ Zn : Ex ≤ d } combinatorial

Nothing changes . . . except (BB) now is combinatorial =⇒ hard

However (BΛ) now is equivalent to (Π̄) =⇒ no branching needed
(unless for solving (BB)) =⇒ no Branch & Benders’

However, everything breaks down if y integer:
there is no (workable) dual of an Integer Program

Can do with “approximated” duals (strong formulations, RLT, . . .)
but equivalence lost =⇒ branching again

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 27 / 81

Conclusions
(Part I)

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 28 / 81

Conclusions (part I)

Structured (Integer) Linear Programs are challening

However, structure can be exploited by reformulation + duality

Two different approaches, “primal” and “dual”

Different twists, different conditions to work

who is complicating (constraints vs. variables), but
tricks can be used to create the desired structure

who is reformulated (subproblem vs. master problem)

where integer variables are (subproblem vs. master problem)

where branching is done (subproblem vs. master problem)

For linear programs, Lagrange is Benders’ in the dual

Both boil down to the Cutting Plane algorithm [2]

55 years old, does it work well? We’ll see tomorrow

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 29 / 81

Stabilization

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 30 / 81

Issue with the Cutting Plane approach: instability

y∗k+1 can be very far from y∗k , where fB is a “bad model” of f

f

fB

y*k y*k+1

. . . as a matter of fact, infinitely far

(ΠB) empty ≡ (∆B) unbounded ⇒ Phase 0 / Phase 1 approach

More in general: { y∗k } is unstable, has no locality properties ≡
convergence speed does not improve near the optimum

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 31 / 81

Issue with the Cutting Plane approach: instability

y∗k+1 can be very far from y∗k , where fB is a “bad model” of f

f

fB

y*k y*k+1

. . . as a matter of fact, infinitely far

(ΠB) empty ≡ (∆B) unbounded ⇒ Phase 0 / Phase 1 approach

More in general: { y∗k } is unstable, has no locality properties ≡
convergence speed does not improve near the optimum

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 31 / 81

The effects of instability

What does it mean?

a good (even perfect) estimate of
dual optimum is useless!

frequent oscillations of dual values

“bad quality” of generated columns

=⇒ tailing off, slow convergence

Upper bound (dual)

Lower bound (primal)

The solution is pretty obvious: stabilize it

Gedankenexperiment: starting from known dual optimum,
constrain duals in a box of given width

width time iter. columns
∞ 4178.4 % 509 % 37579 %

200.0 835.5 20.0 119 23.4 9368 24.9
20.0 117.9 2.8 35 6.9 2789 7.4

2.0 52.0 1.2 20 3.9 1430 3.8
0.2 47.5 1.1 19 3.7 1333 3.5

Works wonders! . . .

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 32 / 81

The effects of instability

What does it mean?

a good (even perfect) estimate of
dual optimum is useless!

frequent oscillations of dual values

“bad quality” of generated columns

=⇒ tailing off, slow convergence

Upper bound (dual)

Lower bound (primal)

The solution is pretty obvious: stabilize it

Gedankenexperiment: starting from known dual optimum,
constrain duals in a box of given width

width time iter. columns
∞ 4178.4 % 509 % 37579 %

200.0 835.5 20.0 119 23.4 9368 24.9
20.0 117.9 2.8 35 6.9 2789 7.4

2.0 52.0 1.2 20 3.9 1430 3.8
0.2 47.5 1.1 19 3.7 1333 3.5

Works wonders! . . .
A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 32 / 81

Stabilizing DW/Lagrange/CG

. . . if only we knew the dual optimum! (which we don’t)

Current point ȳ , box of size t > 0 around it

Stabilized dual master problem [7]

(∆B,ȳ ,t) min
{
fB(ȳ + d) : ‖ d ‖∞ ≤ t

}
(8)

Corresponding stabilized primal master problem

(ΠB,ȳ ,t) max { cx+ȳ z−t‖ z ‖1 : z = b−Ax , x ∈ conv(B) } (9)

i.e., just Dantzig-Wolfe with slacks

When f (ȳ + d∗) < f (ȳ), move ȳ = ȳ + d∗ (“serious step”)

Uses just LP tools, relatively minor modifications

How should one choose t?

Does this really work?

[7] Marsten, Hogan, Blankenship “The Boxstep Method for Large-scale Optimization” Operations Research 1975

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 33 / 81

Computational results of the boxstep method (pds7)
!"#$

%&'()*

*(+,

*(+-

*(+.

*(+/

*(+0

(+, *(1

*(.

*(2

345

pds7

Page 1

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

1e3
1e4
1e5
INF

Pure multicommodity flow instance (no y)

Left = distance from final dual optimum

right = relative gap with optimal value

Stabilized with (fixed) different t, un-stabilized (t =∞)

One can clearly over-stabilize

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 34 / 81

Computational results of the boxstep method (pds18)
!"#$%

&'()*$

$)+,

$)+-

$)+.

$)+/

$)+%

$)+$,

$)0

$).

$)1

234

!"#$%

&'()*$

$)+,

$)+-

$)+.

$)+/

$)+0

$)+$

$)12

$)1$

$)10

$)1/

$)/

$).

$)-

345

All cases show a “combinatorial tail” where convergence is very quick

t = 1e3: “smooth but slow” until the combinatorial tail kicks in
a short-step approach not unlike subgradient methods [8]

t =∞: apparently trashing along until some magic threshold is hit

“intermediate” t work best, but pattern not clear

[8] Camerini, Fratta, Maffioli “On Improving Relaxation Methods by Modified Gradient Techniques” Math. Prog. Study 1975

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 35 / 81

Computational results of the boxstep method (pds30)
!"#$%

&'()*+

+),%

+),-

+),.

+),/

+),0

+),+%

+),+-

+),+.

+)$

+).

+)1

234

+)5/

+)51

+)5.

+)5$

+)5-

+)5+

+),%

+),+

+),-

+),$

+)$

+).

+)1

234

!"#$%

&'()*+

+),-

+),.

+),/

+),$

+),0

+),+

+)1%

+)1+

+)10

+)1$

+)$

+)/

+).

234

t = 1e5: initially even worse than t =∞ but ends up faster

Clearly, some on-line tuning of t would be appropriate

Perhaps a different stabilizing term would help? Why not [9]

(∆B,ȳ ,t) min
{
fB(ȳ + d) + 1

2t ‖ d ‖
2
2

}
“Because it’s not LP” =⇒ a different duality need be used

[9] Lemaréchal “Bundle Methods in Nonsmooth Optimization” in Nonsmooth Optimization vol. 3, Pergamon Press, 1978

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 36 / 81

Generalized stabilization

General stabilizing term D, stabilized dual problem

(∆ȳ ,D) φD(ȳ) = min
{
f (ȳ + d) +D(d)

}
(10)

with proper D, φD has same minima as f but is “smoother”

Stabilized primal problem = Fenchel’s dual of (∆ȳ ,D)

(Πȳ ,D) min
{
f ∗(z)− zȳ +D∗(−z)

}
(11)

where f ∗(x) = maxz{ xz − f (z) } the Fenchel’s conjugate of f

For our dual f , a generalized augmented Lagrangian

max
{
cx + ȳ(b − Ax)−D∗(Ax − b) : x ∈ conv(X)

}
(12)

A “primal” exists even for a non-dual f : v(Π) = −f ∗(0) = v(∆) for

(Π) max{ −f ∗(z) : z = 0 }

General theory exist [10], but never mind

[10] F. “Generalized Bundle Methods” SIAM Journal on Optimization 2002

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 37 / 81

Classical stabilizing terms

z

d1/t

zt1/t

dd

D

z

t

D D

D* D* D*

D = 1
2t ‖ · ‖

2
2

D∗ = 1
2 t‖ · ‖

2
2

D = 1
t ‖ · ‖1

D∗ = IB∞(1/t)

D = IB∞(t)

D∗ = t‖ · ‖1

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 38 / 81

A 5-piecewise-linear function

Trust region on ȳ + small penalty close + much larger penalty farther [11]

d++-

+-

+- D

- s

+
+

-

+- +-

-

D*

Slightly simplified version: only 3 pieces.

d++-

+-

D

- s

+

+

-

+-

-

D*

[11] Ben Amor, Desrosiers, F. “On the choice of explicit stabilizing terms in column generation” Discrete Applied Math. 2009

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 39 / 81

A 5-piecewise-linear master problem

(ΠB,ȳ ,D)

max c
(∑

x̄∈B x̄θx̄
)
−ȳ (s− + w− − w+ − s+)
+γ−s− + δ−w− + δ+w+ + γ+s+

A
(∑

x̄∈B x̄θx̄
)

+s− + w− − w+ − s+ = b∑
x̄∈B θx̄ = 1 , θx̄ ≥ 0 x̄ ∈ B

0 ≤ s− ≤ ζ− , 0 ≤ s+ ≤ ζ+

0 ≤ w− ≤ ε− , 0 ≤ w+ ≤ ε+

Same constraints as (ΠB), 4 slack variables for each constraint

Many parameters: widths Γ± and ∆±, penalties ζ± and ε±,
different roles for small and large penalties

Large penalties ζ± easily make (∆B,ȳ ,D) bounded =⇒ no Phase 0

3-pieces: either large penalty =⇒ small moves, or
small penalty =⇒ instability

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 40 / 81

A 5-piecewise-linear master problem

(ΠB,ȳ ,D)

max c
(∑

x̄∈B x̄θx̄
)
−ȳ (s− + w− − w+ − s+)
+γ−s− + δ−w− + δ+w+ + γ+s+

A
(∑

x̄∈B x̄θx̄
)

+s− + w− − w+ − s+ = b∑
x̄∈B θx̄ = 1 , θx̄ ≥ 0 x̄ ∈ B

0 ≤ s− ≤ ζ− , 0 ≤ s+ ≤ ζ+

0 ≤ w− ≤ ε− , 0 ≤ w+ ≤ ε+

Same constraints as (ΠB), 4 slack variables for each constraint

Many parameters: widths Γ± and ∆±, penalties ζ± and ε±,
different roles for small and large penalties

Large penalties ζ± easily make (∆B,ȳ ,D) bounded =⇒ no Phase 0

3-pieces: either large penalty =⇒ small moves, or
small penalty =⇒ instability

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 40 / 81

Some computational results

Comparing unstabilized, 5-piecewise and 3-piecewise penalty functions

State-of-the-art GenCol code, large-scale, difficult MDVS instances
(only root relaxation times)

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

time CG 139 177 235 159 3138 3966 3704 1742 3685 3065
PP-3 80 84 103 70 1173 819 1440 1143 1787 2283
PP-5 33 36 38 28 482 335 946 572 1065 2037

iter CG 117 149 200 165 408 524 296 186 246 247
PP-3 82 92 104 75 181 129 134 145 144 189
PP-5 47 47 49 45 93 64 98 83 86 150

mpt CG 88 125 165 105 1679 2004 1955 925 1984 1743
PP-3 44 47 60 42 572 399 740 543 858 1351
PP-5 13 16 17 10 189 128 428 257 542 1326

5-pieces better than 3-pieces, 5-then-3 even better

Quadratic more “stable”, but optimized 5-pieces always better
(quadratic has far less parameters, easier but less flexible)

All this with fixed parameters, on-line adjustment possible (?)
A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 41 / 81

On unboundedness and early termination

A ray r of X : x ∈ X =⇒ x + λr ∈ X for infinitely large λ

(c − yA)r > 0 =⇒ f (y) =∞ =⇒ constraint cr ≤ y(Ar) in the dual

(∆) min{ f (y) : y ∈ Y }
where facets of Y are dynamically generated like ordinary columns
(constraint = column with a 0 in the convexity constraint)

One might even hide the convexity constraint:

Ax̄ →
[
Ax̄ , 1

]
, b →

[
b , 1

]
;

Ignoring the special role of v (just another y)

Advantage: everything is a constraint

This is a bad idea!

Approximate stabilization = testing for decrease in f -value, but
when a ray is generated, f (ȳ + d∗) = +∞

Convexity constraints are good: invent them if they are not there

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 42 / 81

On unboundedness and early termination

A ray r of X : x ∈ X =⇒ x + λr ∈ X for infinitely large λ

(c − yA)r > 0 =⇒ f (y) =∞ =⇒ constraint cr ≤ y(Ar) in the dual

(∆) min{ f (y) : y ∈ Y }
where facets of Y are dynamically generated like ordinary columns
(constraint = column with a 0 in the convexity constraint)

One might even hide the convexity constraint:

Ax̄ →
[
Ax̄ , 1

]
, b →

[
b , 1

]
;

Ignoring the special role of v (just another y)

Advantage: everything is a constraint

This is a bad idea!

Approximate stabilization = testing for decrease in f -value, but
when a ray is generated, f (ȳ + d∗) = +∞

Convexity constraints are good: invent them if they are not there

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 42 / 81

On unboundedness and early termination

A ray r of X : x ∈ X =⇒ x + λr ∈ X for infinitely large λ

(c − yA)r > 0 =⇒ f (y) =∞ =⇒ constraint cr ≤ y(Ar) in the dual

(∆) min{ f (y) : y ∈ Y }
where facets of Y are dynamically generated like ordinary columns
(constraint = column with a 0 in the convexity constraint)

One might even hide the convexity constraint:

Ax̄ →
[
Ax̄ , 1

]
, b →

[
b , 1

]
;

Ignoring the special role of v (just another y)

Advantage: everything is a constraint

This is a bad idea!

Approximate stabilization = testing for decrease in f -value, but
when a ray is generated, f (ȳ + d∗) = +∞

Convexity constraints are good: invent them if they are not there

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 42 / 81

Bundle vs. Proximal Point

Same computational setting as before

Comparing the same stabilization (5-piecewise)
with (BP) or without (PP) early termination

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

time CG 139 177 235 159 3138 3966 3704 1742 3685 3065
PP 33 36 38 28 482 335 946 572 1065 2037
BP 26 28 35 21 295 257 639 352 545 1505

iter CG 117 149 200 165 408 524 296 186 246 247
PP 47 47 49 45 93 64 98 83 86 150
BP 37 43 44 36 57 53 59 49 51 101

mpt CG 88 125 165 105 1679 2004 1955 925 1984 1743
PP 13 16 17 10 189 128 428 257 542 1326
BP 10 14 15 10 100 70 329 206 334 983

Stabilization works well, approximate stabilization works better

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 43 / 81

Stabilization for Integer Master Problems (Benders’)

Stabilized master problem easy to do: with trust region

(BB,x̄ ,t) min
{
vB(x) : ‖ x − x̄ ‖∞ ≤ t , x ∈ X

}
pretty identical to (8) (no dual, though)

For X ⊆ {0, 1}n, local branching constraint∑
i : x̄i=1(1− xi) +

∑
i : x̄i=0 xi ≤ t

However, when solved for one x̄ only a local optima (nonconvex)
=⇒ have to increase t until t = n (∞)

Silver lining: reverse box ‖ x − x̄ ‖∞ ≥ t (nonconvex) now easy

Different idea possible: level stabilization [12]

(BB,x̄ ,l) min
{
‖ x − x̄ ‖∞ : vB(x) ≤ l , x ∈ X

}
(13)

Pros and cons: (13) can be solved inexactly, l somewhat easier to
manage than t and need not go ∞, (13) larger (more difficult?),
no reverse box, . . . early days (no results to show)

[12] van Ackooij, F., de Oliveira “Inexact stabilized Benders decomposition approaches to chance-constrained problems with
finite support” working paper 2015

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 44 / 81

Disaggregated Model

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 45 / 81

Dantzig-Wolfe and Multicommodity flows

Dantzig-Wolfe reformulation (only flows, no y)

S = { (extreme) flows s = [x̄1,s , . . . , x̄k,s] }

min
∑

s∈S
(∑

k∈K
∑

(i , j)∈A ckij x̄
k,s
ij

)
θs∑

s∈S
(∑

k∈K x̄k,sij − uij
)
θs ≤ 0 (i , j) ∈ A∑

s∈S θs = 1 , θs ≥ 0 s ∈ S

Another possibility: X = X 1 × X 2 × . . .× X |K | =⇒
conv(X) = conv(X 1)× conv(X 2)× . . .× conv(X |K |)

In practice: a different multiplier θks for each x̄k,s , with∑
s∈S θ

k
s = 1 k ∈ K

(clearly, previous case is θks = θhs , h 6= k)

Use more (convexity) constraints in the master problem

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 46 / 81

Disaggregated Multicommodity flows

Simple scaling leads to arc-path formulation:

p ∈ Pk = { sk–tk paths }, cp cost, fp(= dkθks) flow, P = ∪k∈KPk

min
∑

p∈P cpfp∑
p∈P : (i , j)∈p fp ≤ uij (i , j) ∈ A∑
p∈Pk fp = dk k ∈ K

fp ≥ 0 p ∈ P

Disaggregated formulation: more columns but sparser, more rows

Much more efficient than aggregated formulation [13]

Master problem size ≈ time increases, but convergence speed
increases a lot ≡ consistent improvement

[13] Jones, Lustig, Farwolden, Powell “Multicommodity Network Flows: The Impact of Formulation on Decomposition”
Mathematical Programming 1993

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 47 / 81

Disaggregated decomposition

Easily extended to any decomposable X [14]

Stabilized versions immediate

1.E-06

1.E-05

1.E-04

1.E-03

Iterations

Aggr.
Disaggr.

R
el

at
iv

e
G

ap

[14] Borghetti, F., Lacalandra, Nucci “Lagrangian Heuristics Based on Disaggregated Bundle Methods for Hydrothermal Unit
Commitment” IEEE Transactions on Power Systems 2003

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 48 / 81

More Disaggregated Versions

That was true 20 years ago with |K | ≈ 10, still true if |K | ≈ 10000?

Aggregation is arbitrary, then why “all or nothing”?

Partition C = (C1,C2, . . . ,Ch) of K , partially aggregated model f CB
with h components f iB, each the sum over one Ci

Basically, θks = θhs only for each (h, k) ∈ Ci × Ci

Exploring the trade-off between master problem size =⇒
time and iterations, subproblem time remains the same

Aggregation index η ∈ [0, 1]:

h = |C | = max
{⌈

(1− η)|K |
⌉
, 1
}

0 = fully disaggregated, 1 = fully aggregated

How to choose the commodities in each Ci? In general open problem,
here just group commodities with “close original names”

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 49 / 81

Even More Disaggregated Versions

But what is a commodity, anyway?

Modeler’s view: a product, origin-destination, stream of packets, . . .

Algorithm’s view: all that can be bunched together

Commodity-independent data ≡ bunch commodities with same origin

Why is that? Because you can solve a unique SPT for all of them
(which is because SPT has a funny auto-separability property)

From a modeling viewpoint, there is no reason to
(can always recover the original solution, less variables)

This impact how the master problem is formulated [14] . . .

or not: the Master Problem can be freely reformulated

Aggregation index η ∈ [−1, 0]: K the number of OD pairs,

h = |C | = max
{ ⌈
− η|K |

⌉
, |K |

}
−1 = ODP formulation, 0 = DSP formulation [14]

Again, commodities in a Ci just have “close destination node names”

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 50 / 81

Even More Disaggregated Versions

But what is a commodity, anyway?

Modeler’s view: a product, origin-destination, stream of packets, . . .

Algorithm’s view: all that can be bunched together

Commodity-independent data ≡ bunch commodities with same origin

Why is that? Because you can solve a unique SPT for all of them
(which is because SPT has a funny auto-separability property)

From a modeling viewpoint, there is no reason to
(can always recover the original solution, less variables)

This impact how the master problem is formulated [14] . . .
or not: the Master Problem can be freely reformulated

Aggregation index η ∈ [−1, 0]: K the number of OD pairs,

h = |C | = max
{ ⌈
− η|K |

⌉
, |K |

}
−1 = ODP formulation, 0 = DSP formulation [14]

Again, commodities in a Ci just have “close destination node names”

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 50 / 81

(Preliminary, η ≥ 0) Computational Results

Generalized Bundle code using D∗t = ‖ · ‖1 (boxstep)

Latest Cplex as Master Problem Solver

Efficient implementation: overhead due to subgradient handling
significant

Limited effect of stabilization (not much need)

(Reasonably) efficient subproblem solution with MCFClass

http://www.di.unipi.it/optimize/Software/MCF.html

Many instances, some old, some new, from

http://www.di.unipi.it/optimize/Data/MMCF.html

Results for η < 0 still brewing, but these significant enough already

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 51 / 81

Computational Results: Planar & Grid Instances

0 0.2 0.4 0.6 0.8 1
time it. time it. time it. time it. time it. time it.

grid7 2.5 12 2.91 13 2.39 15 2.12 14 2.62 18 285.76 1169
grid8 18.52 18 18.33 19 21.05 20 25.61 23 42.36 33 *** 3848
grid9 36.04 15 45.94 16 60.54 18 85.99 20 189.92 32 *** 2862

grid10 54.51 15 61.40 16 77.96 17 104.18 18 233.07 24 *** 3848
grid12 61.64 11 61.24 10 65.44 11 71.81 11 148.89 13 *** 2862
grid14 433.64 11 388.76 11 289.13 12 230.66 11 259.22 12 *** 2862

planar100 2.16 14 1.96 13 1.42 13 2.36 13 2.74 15 25.49 1400
planar150 25.75 17 29.11 17 28.77 17 30.44 19 35.49 23 *** 68896
planar300 21.34 13 22.86 14 23.54 14 24.12 15 24.71 14 1292.09 2967
planar500 15.27 11 14.75 11 13.91 11 12.71 12 10.84 11 197.62 317

Large, nasty instances (you’ll see later)

*** = out of time limit (6400 seconds): all for η = 1, clearly worst

Results somewhat erratic, but clearly η = 0 not always best

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 52 / 81

Computational Results: Goto & Mnetgen Instances

0 0.2 0.4 0.6 0.8 1
time it. time it. time it. time it. time it. time it.

Goto6-100 1.05 25 1.33 30 1.39 35 1.67 44 1.40 69 16.09 926
Goto6-400 1.45 15 1.59 17 1.76 19 2.40 22 5.79 32 60.53 1272
Goto6-800 2.41 12 2.54 14 2.85 15 3.62 17 9.24 25 134.42 1709
Goto8-10 2.96 75 4.57 104 6.14 137 7.68 164 18.12 301 45.29 722

Goto8-100 3.43 21 4.86 27 4.98 31 5.58 45 13.73 79 388.32 2114
Goto8-400 5.88 16 8.13 18 11.03 20 14.68 23 24.86 36 582.66 2690
Goto8-800 3.12 11 3.30 12 4.53 13 6.34 15 10.32 20 82.93 729

128-32 17.66 57 27.64 76 23.54 91 31.09 128 32.92 222 294.03 2753
128-32 57.23 46 66.04 59 63.66 70 79.97 92 108.53 169 1337.79 5296
128-64 95.45 34 125.27 43 126.71 50 147.25 65 174.81 108 1750.57 3741

128-128 5.68 109 5.73 109 8.08 158 12.34 209 24.09 437 25.22 449
256-8 31.65 140 45.55 183 77.50 252 94.51 276 289.69 635 1020.79 1826

256-16 146.37 148 181.38 219 244.79 271 404.15 381 885.73 704 1856.84 2175
256-32 400.59 117 510.74 163 640.14 200 1081.34 299 1666.35 480 2740.50 2615
256-64 563.66 86 744.93 113 1108.17 143 1624.06 196 1834.86 293 2670.98 1821

. . . although in some cases η = 0 can be (almost) uniformly best

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 53 / 81

Computational Results: Waxman & Rmnet Instances
0 0.2 0.4 0.6 0.8 1

time it. time it. time it. time it. time it. time it.
W-50 1.43 3 0.17 3 0.11 3 0.07 3 0.03 3 0.04 9

W-100-6 1.53 2 0.20 2 0.13 2 0.09 2 0.04 2 0.06 10
W-100-10 1.34 3 0.38 3 0.32 3 0.27 3 0.22 3 0.70 15

W-100 1.50 2 2.10 2 1.37 2 0.98 2 0.72 2 1.06 7
W-150-6 2.44 2 2.30 2 1.81 2 1.20 2 0.63 2 4.54 44

W-150-10 1.23 3 0.83 3 0.66 3 0.60 3 0.14 2 0.48 4
W-150 3.23 3 4.74 3 3.17 3 2.70 3 0.67 3 4.49 9

4-8-11-100 0.56 5 1.31 5 0.83 5 0.58 5 0.40 5 0.31 8
4-8-12-200 1.31 5 2.07 5 1.64 5 1.18 5 1.06 5 0.45 6
4-8-13-200 5.88 7 11.11 7 9.31 8 6.54 8 6.00 9 9.70 62
4-8-14-400 55.62 7 75.70 7 39.81 8 27.77 8 15.59 9 19.89 62
7-6-11-100 1.00 6 2.27 6 2.42 6 2.29 6 1.22 7 5.38 54
7-6-12-500 1.80 5 3.08 5 3.62 5 3.23 5 1.80 5 1.64 8
7-6-13-500 4.56 5 8.85 5 7.34 5 5.86 5 4.48 6 11.96 30

7-6-14-1000 30.29 5 35.54 5 27.04 5 24.58 5 12.57 6 30.26 38

. . . or (almost) uniformly worst (save for η = 1)

but often strange things happen (η = 1 can even be best)
A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 54 / 81

Easy Components

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 55 / 81

Decomposition of Fixed-Charge Multicommodity

Multicommodity flow + arc design costs fij (yij ∈ {0, 1})
S = extreme points of y (2|A| vertices of the unitary hypercube):

min
∑

p∈P cpfp +
∑

s∈S
(∑

(i ,j)∈A fij ȳ
s
ij

)
θs∑

p∈P : (i ,j)∈p fp ≤ uij
∑

s∈S ȳ
s
ijθs (i , j) ∈ A∑

p∈Pk fp = dk k ∈ K

fp ≥ 0 p ∈ P∑
s∈S θs = 1 , θs ≥ 0 s ∈ S

Standard (weak) formulation used in Lagrangian approaches [15]

Are you sure you’re sane? Arguably not:

replacing a 2n formulation with a 2n one!

. . . and with very long, dense rows

[15] Crainic, F., Gendron “Bundle-based Relaxation Methods for Multicommodity Capacitated Fixed Charge Network Design
Problems” Discrete Applied Mathematics 2001

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 56 / 81

Fixed-Charge Multicommodity: even more disaggregated

The unitary hypercube is a cartesian product: why not S ij = {0, 1}?

yij −→ 0 · θij ,0 + 1 · θij ,1 , θij ,0 + θij ,1 = 1 , θij ,0 ≥ 0 , θij ,1 ≥ 0.

yij ∈ [0 , 1]

(no, . . . really?!)

Arc-path formulation with original arc design variables

min
∑

p∈P cpfp +
∑

(i , j)∈A fijyij∑
p∈P : (i , j)∈p fp ≤ uijyij (i , j) ∈ A∑
p∈Pk fp = dk k ∈ K

fp ≥ 0 p ∈ P
yij ∈ [0, 1] (i , j) ∈ A

Only generate the right variables

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 57 / 81

Fixed-Charge Multicommodity: even more disaggregated

The unitary hypercube is a cartesian product: why not S ij = {0, 1}?

yij −→ 0 · θij ,0 + 1 · θij ,1 , θij ,0 + θij ,1 = 1 , θij ,0 ≥ 0 , θij ,1 ≥ 0.

yij ∈ [0 , 1] (no, . . . really?!)

Arc-path formulation with original arc design variables

min
∑

p∈P cpfp +
∑

(i , j)∈A fijyij∑
p∈P : (i , j)∈p fp ≤ uijyij (i , j) ∈ A∑
p∈Pk fp = dk k ∈ K

fp ≥ 0 p ∈ P
yij ∈ [0, 1] (i , j) ∈ A

Only generate the right variables

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 57 / 81

Is it always this easy?

No: what if one had, say,∑
(i , j)∈A yij ≤ r ?

Design (y) subproblem can no longer be disaggregated

But, one could write the arc-path formulation in that case, too

And could add that constraint to the master problem

Can this be stabilized? Of course it can [16]

[16] F., Gorgone “Bundle methods for sum-functions with “easy” components: applications to multicommodity network design”
Mathematical Programming? 2013

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 58 / 81

Stabilized decomposition with “easy components”

f Lagrangian function of structured optimization problem

(Π) max
{
c1x1 + c2(x2) : x1 ∈ X 1 , G (x2) ≤ g , A1x1 +A2x2 = b

}
i.e., f (y) = f 1(y) + f 2(y)(−yb) where

f 1(ȳ) = max
{

(c1 − ȳA1)x1 : x1 ∈ X 1
}

“easy for some reason” (efficient but “totally obscure” black box)

f 2(ȳ) = max
{
c2(x2)− (ȳA2)x2 : G (x2) ≤ g

}
“easy because a compact convex formulation is known”

Usual approach: disregard differences

Better idea: treat “easy” components specially

In practice: insert “full” description of f 2 in the master problem

Master problem size may increase (at the beginning), but
“perfect” information is known

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 59 / 81

Stabilized decomposition with “easy components”

f Lagrangian function of structured optimization problem

(Π) max
{
c1x1 + c2(x2) : x1 ∈ X 1 , G (x2) ≤ g , A1x1 +A2x2 = b

}
i.e., f (y) = f 1(y) + f 2(y)(−yb) where

f 1(ȳ) = max
{

(c1 − ȳA1)x1 : x1 ∈ X 1
}

“easy for some reason” (efficient but “totally obscure” black box)

f 2(ȳ) = max
{
c2(x2)− (ȳA2)x2 : G (x2) ≤ g

}
“easy because a compact convex formulation is known”

Usual approach: disregard differences

Better idea: treat “easy” components specially

In practice: insert “full” description of f 2 in the master problem

Master problem size may increase (at the beginning), but
“perfect” information is known

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 59 / 81

“Easy components” in formulæ

Dual master problem: abstract form

(∆B,ȳ ,D) min
{
b(ȳ + d) + f 1

B (ȳ + d) + f 2(x̄ + d) +D(d)
}

Primal master problem: abstract form

(ΠB,ȳ ,D) max

c1x1 + c2(x2) + ȳ z −D∗(−z)

z = b − A1x1 − A2x2

x1 ∈ conv(B) , x2 ∈ X 2

and implementable form

(ΠB,ȳ ,D) max

c1

(∑
x̄1∈B x̄1θx̄1

)
+ c2(x2) + ȳ z −D∗(−z)

z = b − A1

(∑
x̄1∈B x̄1θx̄1

)
− A2x2∑

x̄1∈B θx̄1 = 1 , G (x2) ≤ g

(14)

Barring some details (do not translate f 1
B), everything works.

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 60 / 81

Extensions, details

Multiple easy/hard components: trivial

Constrained case: y ∈ Y = { y : Hy ≤ h }

(ΠB,ȳ ,D) max

c1

(∑
x̄1∈B x̄1θx̄1

)
+ c2(x2) + ωh + ȳ z −D∗(−z)

z = b + ωH − A1

(∑
x̄1∈B x̄1θx̄1

)
− A2x2∑

x̄1∈B θx̄1 = 1 , G (x2) ≤ g , ω ≥ 0

Global lower bound l ≤ min f : (c2 and G linear)

(ΠB,ȳ ,D) max

c1

∑
x̄1∈B

x̄1θ
′
x̄1

+ c2x
′
2 − l(1− ρ) + ȳ z −D∗(−z)

z = ρb − A1

∑
x̄1∈B

x̄1θ
′
x̄1
− A2x

′
2∑

x̄1∈B θ
′
x̄1

= ρ , Gx ′2 ≤ ρg , θ′ ≥ 0 , ρ ∈ [0, 1]

(θ = θ′/ρ, x2 = x ′2/ρ)

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 61 / 81

Computational results

Several possible options:
fully aggregated (FA)

partly disaggregated with easy y (PDE)

disaggregated with difficult y (DD)

disaggregated with easy y (DE)

Stabilizing terms: ‖ · ‖∞, ‖ · ‖2
2 only for (FA) (exploiting [17])

With (strong) or without (weak) forcing constraints

0 ≤ ckij ≤ ukijyij (i , j) ∈ A , k ∈ K

(very many, so dynamic generation [18,19] needed)

http://www.di.unipi.it/optimize/Data/MMCF.html#Canad

group 1 2 3 4 5 6 7 8 9 10 11 12
|N| 20 20 20 20 30 30 30 30 50 50 50 50
|A| 300 300 300 300 600 600 600 600 1200 1200 1200 1200
|K | 100 200 400 800 100 200 400 800 100 200 400 800

[17] F. “Solving semidefinite quadratic problems within nonsmooth optimization algorithms” Computers & O.R. 1996

[18] F., Lodi, Rinaldi “New approaches for optimizing over the semimetric polytope” Mathematical Programming 2005

[19] Belloni, Sagastizábal “Dynamic Bundle Methods” Mathematical Programming 2009

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 62 / 81

Computational results – weak formulation

DE PDE DD FA-1 FA-2
time f iter time f iter gap time f iter gap time f iter gap time f iter gap
0.04 0.00 5 0.03 0.01 6 557 2.54 6200 1e-7 979 3.97 9105 1e-3 7.64 0.75 2383 1e-7
0.08 0.01 6 0.08 0.01 12 772 2.94 3153 6e-3 1000 4.43 4772 3e-2 14.24 1.37 1931 6e-9
0.25 0.01 7 0.57 0.12 52 1e-7 739 2.79 1365 2e-7 862 10.57 5579 3e-3 12.66 1.99 1117 5e-7
0.64 0.03 7 1.06 0.23 50 3e-7 1000 2.27 482 9e-3 1000 14.49 3201 8e-3 42.38 7.74 1714 7e-7
0.10 0.01 7 0.30 0.03 39 665 4.92 5799 4e-3 945 6.15 7538 8e-3 4.12 0.50 834 3e-7
0.25 0.02 10 1.81 0.21 122 498 3.37 1899 7e-8 808 9.76 5599 3e-3 6.36 1.06 664 1e-6
0.45 0.04 8 20.56 1.93 483 2e-7 1000 1.81 415 2e-2 1000 2.58 638 5e-2 134.49 15.00 3795 6e-7
1.10 0.08 9 5.17 1.09 120 1e-7 1000 3.48 378 2e-2 1000 10.08 1134 4e-2 126.29 26.19 2905 8e-7
0.34 0.02 11 34.80 0.78 449 5e-9 1000 1.39 746 5e-3 1000 2.23 1205 4e-2 28.92 2.77 1630 1e-6
0.42 0.05 9 2.39 0.26 89 1000 6.23 1647 3e-2 1000 8.51 2343 5e-2 32.77 5.26 1414 8e-7
0.99 0.10 11 16.03 2.34 271 1e-7 1000 6.18 717 2e-2 1000 11.31 1321 4e-2 80.05 16.48 1848 8e-7
2.19 0.18 10 124.38 13.95 811 6e-7 1000 5.05 278 2e-2 1000 14.63 838 6e-2 233.40 50.47 2851 8e-7

relative accuracy = 1e-6, maximum running time = 1000 seconds

all things being equal, ‖ · ‖2
2 trounces ‖ · ‖∞

PDE better than DD, DE demolishes everything else

Master problem time largely preponderant (no trick like [20])

[20] Cappanera, F. “Symmetric and asymmetric parallelization of a cost-decomposition algorithm for multi-commodity flow
problems” INFORMS Journal on Computing 2003

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 63 / 81

Computational results – weak formulation – accuracy

Cplex DE FA-2
primal dual barrier p.net. d.net. auto 1e-6 1e-12 1e-6 1e-12

0.30 0.13 8.73 0.18 0.23 0.36 0.04 0.04 7.64 7.74
0.89 0.90 21.25 0.58 1.95 2.40 0.08 0.08 14.24 14.37
3.04 10.22 76.24 2.24 16.32 25.44 0.25 0.26 12.66 13.13
8.21 16.56 151.14 4.62 27.58 44.79 0.64 0.64 42.38 49.18

1.09 4.98 42.57 0.74 6.88 10.62 0.10 0.10 4.12 4.19
3.28 24.68 135.57 2.77 29.46 69.86 0.25 0.26 6.36 7.94

53.25 22.58 417.10 8.96 51.45 55.86 0.45 0.45 134.49 137.41
18.74 67.24 1115.22 10.56 99.96 177.40 1.10 1.10 126.29 163.88

19.98 84.33 303.29 3.92 112.71 187.37 0.34 0.35 28.92 42.71
7.89 82.64 583.52 18.60 259.65 309.74 0.42 0.42 32.77 40.60

38.09 230.79 1952.75 15.85 325.33 690.30 0.99 0.99 80.05 108.94
586.07 459.49 3586.63 51.71 738.23 1266.87 2.19 2.19 233.40 1789.08

Cplex accuracy is 1e-12, except for barrier where is 1e-10

Decomposition approaches tested with both 1e-6 and 1e-12

DE trounces the best of Cplex (primal network) by an order of
magnitude, all the rest by much more, at the same accuracy

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 64 / 81

Computational results – strong formulation – tuning

Cplex DE
static dynamic static dynamic

54 10 44 32
315 54 233 48

1539 112 1234 29
2789 458 2227 65

Comparison of static and dynamic constraint handling

DE PDE DD FA-1 FA-2
time iter gap time iter gap time iter gap time iter gap time iter gap

32 77 1e-7 1000 2980 2e-2 1000 2714 2e-1 1000 1990 2e-1 410 14880 9e-7
48 30 3e-7 3000 2896 6e-2 3000 3720 7e-2 3000 7351 2e-1 1855 11141 3e-6
29 24 2e-7 9000 8370 2e-2 9000 5061 5e-2 9000 10918 1e-1 1254 9035 2e-6
65 20 3e-8 27000 5618 3e-2 27000 2148 4e-2 27000 5293 8e-2 1732 12940 1e-6

(Partial) results for the strong formulation

Dynamic (lazy) constraints handling is necessary (even for Cplex)

Even allowing long running time, PDE, DD, and FA-1 have the
chance of a snowball in hell

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 65 / 81

Computational results – strong formulation – more tuning

To be efficient, you have to let information accumulate!

Optimal setting: maximum |B| = 50 · |K |, constraints violation
checked at every iteration, constraints never removed

Experiments: |B| = 20 · |K |, constraints checked every 10 iterations
and removed if xi = 0 for 20 consecutive iterations

opt 20 · |K | Rmv = 20 Sep = 10
time it gap time it gap time it gap time it gap

31.69 77 1e-7 289.41 841 7e-7 104.60 218 2e-7 72.96 194 1e-6
47.53 30 3e-7 3000.76 1585 3e-4 1564.82 803 4e-5 363.67 159 3e-7
28.98 24 2e-7 1125.93 726 4e-7 2585.05 796 1e-6 141.61 65 1e-6
65.31 20 3e-8 81.33 20 3e-8 17415.68 2121 8e-5 669.34 78 5e-7

No, no, no!

The “combinatorial tail” have to start soon, it is easily destroyed

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 66 / 81

Computational results – strong formulation – accuracy

1e-6 1e-8 1e-10 1e-12

time f add iter gap time iter gap time iter gap time f add iter

31.69 0.05 0.96 77 1e-7 57.73 143 4e-9 62.07 170 3e-11 63.78 0.11 1.10 181
47.53 0.04 2.04 30 3e-7 51.22 33 2e-9 51.37 33 51.38 0.05 2.06 33
28.98 0.07 2.70 24 2e-7 29.15 25 29.15 25 29.16 0.07 2.74 25
65.31 0.14 6.58 20 3e-8 65.67 21 65.68 21 65.69 0.15 6.61 21

25.93 0.04 0.89 47 8e-8 28.28 51 3e-9 32.00 57 32.00 0.06 0.93 57
27.97 0.09 1.48 36 4e-7 55.43 51 4e-10 56.01 52 1e-11 56.28 0.12 1.60 52
20.80 0.09 1.80 21 2e-8 20.84 21 2e-9 25.69 24 25.69 0.11 1.84 24

132.60 0.24 10.03 23 8e-8 132.74 23 132.76 23 132.78 0.24 10.09 23

2.47 0.06 0.48 26 2e-10 2.47 26 2e-10 2.57 27 3e-12 2.66 0.06 0.49 27
245.91 0.26 4.18 59 1e-7 295.56 72 4e-9 333.22 84 2e-11 337.38 0.39 4.54 86
283.71 0.43 7.24 39 7e-8 442.56 55 2e-9 506.83 63 5e-12 507.52 0.71 7.78 63
241.84 0.52 11.85 24 2e-11 241.88 24 2e-11 241.92 24 2e-11 253.59 0.55 11.98 25

Four accuracy settings: 1e-6, 1e-8, 1e-10, 1e-12

Not quite as spectacular as in the weak case, but
double precision in ≤ double time

“add” = time for checking constraints � time for f computation!

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 67 / 81

Computational results – strong formulation
Cplex DE FA–2 FA–V

primal dual net. barr. 1e-6 1e-12 time f add it gap time f add it gap

12 10 11 15 32 64 410 12 7 14880 9e-7 3 0.6 0.5 875 9e-3
64 53 61 71 48 51 1855 19 16 11141 3e-6 6 1.2 1.2 842 2e-2

139 114 132 157 29 29 1254 32 20 9035 1e-6 12 2.3 2.2 796 3e-2
559 456 531 587 65 66 1732 100 67 12940 1e-6 26 5.1 5.0 760 4e-2

46 39 43 60 26 32 322 12 10 10320 1e-6 6 0.9 1.1 871 8e-3
147 132 144 209 28 56 294 15 9 5300 1e-6 12 2.1 2.4 831 9e-3
509 301 478 648 21 26 5033 169 155 27231 1e-6 26 4.5 5.4 794 3e-3

2329 1930 2302 2590 133 133 3122 192 169 14547 1e-6 51 8.6 10.6 760 4e-2

196 131 156 304 2 3 344 20 12 7169 1e-6 12 2.0 2.3 827 3e-3
926 708 862 1174 246 337 2256 111 118 17034 2e-5 29 5.0 6.1 869 1e-2

2706 2167 2542 3272 284 508 5475 192 249 15061 3e-6 58 9.2 13.0 817 2e-2
11156 8908 11675 11683 242 253 11863 349 413 13953 1e-6 109 16.7 24.1 765 2e-2

Fa–V: a FA with volume algorithm, quick but too coarse

Sep = 100 for FA–2, Sep = 10 for FA–V: computing x∗ by convex
combination much faster, bottleneck for DD

More than an order of magnitude to Cplex as |A| and/or |K | grows

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 68 / 81

Last comment: similar ideas

Nonlinear multicommodity routing:

min
{ ∑

(i , j)∈A
yij

1−yij : (3)− (6) , y ∈ [0, 1]|A|
}

with classical (convex) Kleinrock delay function

Decomposes into |K | flows + |A| simple convex subproblems

Specialized models of |A| convex functions using the conjugate

Specialized treatment of these “easy” C 2 functions with
Newton model instead of the cutting-plane model [21]

Substantially improved performances

[21] Lemaréchal, Ororou, Petrou “A bundle-type algorithm for routing in telecommunication data networks” Computational
Optimization and Applications 2009

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 69 / 81

Structured Decomposition

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 70 / 81

Structured Decomposition

Came out for a different (still multicommodity) problem [22]

D-W ≡ reformulation of X always in the same form . . .

or not, as we have already seen. But we can do better:

Assumption 1: alternative Formulation of “easy” set

X =
{
x = Cθ : Γθ ≤ γ

}
Assumption 2: B subset of rows and columns, padding with zeroes

ΓBθ̄B ≤ γB =⇒ Γ
[
θ̄B , 0

]
≤ γ

=⇒ XB =
{
x = CBθB : ΓBθB ≤ γB

}
⊆ X

Assumption 3: easy update of rows and columns

Given B, x̄ ∈ X , x̄ /∈ XB, it is “easy” to find B′ ⊃ B

(=⇒ ΓB′ , γB′) such that ∃ B′′ ⊇ B′ such that x̄ ∈ XB′′ .

[22] F., Gendron “0-1 reformulations of the multicommodity capacitated network design problem” Discrete Applied Math. 2009

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 71 / 81

Structured Decomposition

Came out for a different (still multicommodity) problem [22]

D-W ≡ reformulation of X always in the same form . . .

or not, as we have already seen. But we can do better:

Assumption 1: alternative Formulation of “easy” set

X =
{
x = Cθ : Γθ ≤ γ

}
Assumption 2: B subset of rows and columns, padding with zeroes

ΓBθ̄B ≤ γB =⇒ Γ
[
θ̄B , 0

]
≤ γ

=⇒ XB =
{
x = CBθB : ΓBθB ≤ γB

}
⊆ X

Assumption 3: easy update of rows and columns

Given B, x̄ ∈ X , x̄ /∈ XB, it is “easy” to find B′ ⊃ B

(=⇒ ΓB′ , γB′) such that ∃ B′′ ⊇ B′ such that x̄ ∈ XB′′ .

[22] F., Gendron “0-1 reformulations of the multicommodity capacitated network design problem” Discrete Applied Math. 2009

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 71 / 81

The Structured Dantzig-Wolfe Algorithm

Structured master problem ≡ structured model

(ΠB) max
{
cx : Ax = b , x = CBθB , ΓBθB ≤ γB

}
fB(y) = max{ (c − yA)x + xb : x = CBθB , ΓBθB ≤ γB }

〈 initialize B 〉;
repeat

〈 solve (ΠB) for x∗, y∗ (duals of Ax = b); v∗ = cx∗ 〉;
x̄ = argmin { (c − y∗A)x : x ∈ X };
〈 update B as in Assumption 3 〉;

until v∗ < cx̄ + y∗(b − Ax̄)

Finitely terminates with an optimal solution, even if (proper) removal
from B is allowed, X is non compact and B = ∅ at start (Phase 0)

The subproblem to be solved is identical to that of DW

Requires (=⇒ exploits) extra information on the structure

Master problem with any structure, possibly much larger

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 72 / 81

Stabilizing the Structured Dantzig-Wolfe Algorithm

Exactly the same as stabilizing DW: stabilized master problem

(∆B,ȳ ,D) min
{
fB(ȳ + d) +D(d)

}
except fB is a different model of f (not the cutting plane one)

Even simpler from the primal viewpoint [23]:

max
{
cx + ȳ z −D∗(z) : z = Ax − b , x = CBθB , ΓBθB ≤ γB

}
With proper choice of D, still a(sparsely structured) Linear Program

Dual optimal variables of “z = Ax − b” still give d∗, . . .

How to move ȳ , handle t, handle B: basically as in [10], actually
even somewhat simpler because B is inherently finite

Funnily, aggregation B = B ∪ { x∗ } is also possible, up to

B = { x∗ } ≡ “poorman” method

although clearly contrary to the spirit of S2DW

[23] F., Gendron “A Stabilized Structured Dantzig-Wolfe Decomposition Method” Mathematical Programming 2013

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 73 / 81

Structured Decomposition for Multicommodity Flows

All nice and well, but how can we come up with a x = Cθ?

Surprisingly simple: use the node-arc formulation

Start with “empty graph”, find paths: if a node/arc is missing, add it

Intermediate formulation between node-arc and arc-path

Would seem to generalize to many other network-structured problems

Current implementation heavily relies on Cplex preprocessor

it may be preferable to do the path splitting by hand

Current implementation is not stabilized at all

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 74 / 81

(Preliminary) Computational results

Ad-hoc code (including in general Bundle nontrivial, but possible)

No stabilization (but probably none needed)

Still using Cplex as main driving force

Comparing also against direct use of Cplex (tuned)

Exactly the same subproblem solver (FiOracle)

Surely can be improved a lot (e.g. explicit graph operations)

Same instances, same machine

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 75 / 81

Computational Results: Planar & Grid Instances

0 * SDW Cplex
time it. time it. time it. time

grid7 2.5 12 2.12 14 1.29 9 54.73
grid8 18.52 18 18.33 19 23.81 12 1745.65
grid9 36.04 15 36.04 15 193.53 12 ***

grid10 54.51 15 54.51 15 596.83 13 ***
grid12 61.64 11 61.24 10 881.37 11 ***
grid14 433.64 11 230.66 11 6086.84 11 ***

planar100 2.16 14 1.42 13 2.66 8 43.90
planar150 25.75 17 25.75 17 183.94 11 4239.98
planar300 21.34 13 21.34 13 112.87 9 5127.74
planar500 15.27 11 10.84 11 25.16 7 ***

*** = out of time limit (6400 seconds): Cplex clearly worst

SDW seldom competitive here, although much better than Cplex

η = 0 not a bad choice overall, but not necessarily best

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 76 / 81

Computational Results: Goto & Mnetgen Instances
0 = * SDW Cplex
time it. time it. time

Goto6-100 1.05 25 0.60 11 0.67
Goto6-400 1.45 15 2.42 14 14.22
Goto6-800 2.41 12 5.54 15 64.09

Goto8-10 2.96 75 0.11 8 0.11
Goto8-100 3.43 21 1.45 14 5.63
Goto8-400 5.88 16 11.12 17 105.13
Goto8-800 3.12 11 17.23 18 326.01

128-32 17.66 57 3.90 6 0.32
128-32 57.23 46 15.08 6 0.87
128-64 95.45 34 32.66 7 1.61

128-128 5.68 109 0.25 5 0.05
256-8 31.65 140 0.80 6 0.07

256-16 146.37 148 4.97 6 0.28
256-32 400.59 117 23.95 6 1.07
256-64 563.66 86 61.45 7 1.69

SDW is not often the best, but it is never the worst

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 77 / 81

Computational Results: Waxman [& Rmnet] Instances

0 0.8 = * SDW Cplex
time it. time it. time it. time

W-50 1.43 3 0.03 3 0.32 7 1.12
W-100-6 1.53 2 0.04 2 0.39 7 1.20

W-100-10 1.34 3 0.22 3 1.11 6 3.14
W-100 1.50 2 0.72 2 0.86 2 22.49

W-150-6 2.44 2 0.63 2 2.93 6 33.82
W-150-10 1.23 3 0.14 2 3.54 4 10.38

W-150 3.23 3 0.67 3 2.14 3 52.21

Er . . . Rmnet not ready yet, sorry (preliminary I said)

When few paths (= iterations) are required, SDW can’t help much

Still better than using Cplex directly, though

Often better than standard decomposition with non-optimal η

Results on other applications much more promising [22,23,24]

[24] F., Finardi, Scuzziato “Decomposition Approaches to Large-Scale Stochastic Unit-Commitment Problems” working paper

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 78 / 81

Conclusions
(for good, this time)

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 79 / 81

Conclusions and (a lot of) future work

Decomposition methods (DW, Benders’) old ideas, well-understood

Yet, by-the-book decomposition is often not effective enough

Many possible ideas to improve on the standard approach

Substantial issue: what works is “large” master problems
so that “combinatorial tail” kicks in very quickly =⇒

Large master problem time

“Unstructured” master problems =⇒ general-purpose solvers

“Complicated” =⇒ costly stabilizing functions (‖ · ‖2
2)

Need to find modern equivalent of [17] to exploit the structure of an
unstructured problem (perhaps less contradictory than is sounds [25])

Other important idea: inexact solution of the subproblems [12]

Huge challenge: make these techniques mainstream

A possible way: automatic reformulation tools [26]

[25] Kiwiel “An alternating linearization bundle method for . . . and nonlinear multicommodity flow problems” Math. Prog. 2013

[26] F., Perez Sanchez “Transforming mathematical models using declarative reformulation rules” LNCS 6683, 2011

A. Frangioni (DI — UniPi) Decomposition in Large-Scale Optimization Cagliari 2015 80 / 81

Visit Pisa in September!
Come to AIRO 2015

A 2
I 0
R 1
O 5

A 2
I 0
R 1
O 5

	Block-Structured (Integer) Linear Programs
	Dual decomposition (Dantzig-Wolfe/Lagrangian/Column Generation)
	The Integer Case (B&C vs. B&P)
	Primal decomposition (Benders'/Resource)
	Conclusions (I)
	Stabilization
	Disaggregated Model
	Easy Components
	Structured Decomposition
	Conclusions

