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Abstract

Delay-Constrained Routing (DCR) problems require to route a new flow in a com-
puter network subject to worst-case end-to-end delay guarantees. The delay of
a packet flow has three components, one of which is the “queueing delay”, that
depends on the scheduling algorithm implemented by the routers of the network.
When flows are not independent of each other, i.e., admitting a new flow changes
the delay of the existing ones, admission control policies are necessary to ensure
that existing flows do not become latency-unfeasible. It has been recently shown
that admission control runs contrary to the usual objective function employed in
these models, i.e., minimization of the reserved rates, significantly worsening net-
work performance. In this paper we investigate the phenomenon and propose a
heuristic way to overcome the problem.
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1 Admissible Delay-Constrained Routing

Nowadays, many Internet applications (e.g., industrial IoT, virtual/augmented
reality) require stringent Quality of Service (QoS) guarantees, notably a maxi-
mum end-to-end Worst-case Delay (WCD). The WCD depends on the packet
scheduling algorithm used at each link and can be bounded by enforcing a
minimum rate at each link traversed by the application flow. This gives rise
to a family of Delay-Constrained Routing (DCR) problems [2], which seek to
simultaneously define the route and the rates on each link for a new flow, so
that its WCD stays below a predefined deadline.

In DCR problems, a packed-switched network is modeled as a directed
graph G = (N,A); nodes are routers, and arcs are the links interconnecting
them. Packets passing through each node i ∈ N/arc (i, j) ∈ A experience a
fixed node/link delay ni/lij and a variable queuing delay at the nodes, which
depends on all the flows Q simultaneously active in the network, as well as on
the scheduling algorithm that the routers employ. Each q ∈ Q is characterized
by a path in G (which, for notational simplicity, we will denote by q as well)
and reserved rates rqij for all (i, j) ∈ q; the latter are the main driver of the
schedulers’ algorithms, as described in details below. An upper bound on the
WCD of each packet can be computed if the arrivals F q(t) of the flow over
the time t are bounded. The standard assumption is that F q(t+ τ)−F q(t) ≤
σq + ρqτ has to hold for all t and τ ≥ 0, where σq and ρq are the known burst
and the rate of the flow, respectively. One can then ensure that a proper choice
of the paths and the reserved rates guarantees that each packet of a flow will
be received within the given deadline δq. The Admissible Delay-Constrained
Routing (ADCR) problem then considers a “new” flow to be routed in G
(from a source s to a destination d, with given burst σ, arrival rate ρ, and
deadline δ) along with the existing ones, and seeks one feasible s-d path p and
the corresponding reserved rates at each of its arcs, so that both the new flow
and all the existing ones meet their deadlines. Because the total amount of
reserved rates on an arc is limited, it is natural to aim for the smallest possible
reserved rates in order to “leave more room” available.

A crucial part of developing ADCR models, discussed at length in [4] and
only succinctly recalled here, is the description of the delay that the flows
experience. Other than on the (fixed) flows q ∈ Q and their (fixed) reserved
rates rqij, and on the scheduling algorithm implemented by the routers, the de-
lay depends also on the choices made for the new flow, i.e., the chosen s-d path
p in G and its reserved rates rij for each arc (i, j) ∈ p. To describe the delay
formulæ we will use the following notation: P (i, j) = { q : (i, j) ∈ q } ⊆ Q



is the set of existing paths traversing arc (i, j), which leads to partitioning
A = A′ ∪ A′′, where A′ contains the arcs (i, j) that are “empty” (P (i, j) = ∅)
and A′′ those that contain at least one flow. For the scheduling algorithms
to provide guarantees it is necessary to assume that each arc is not oversub-
scribed, i.e., rij ≤ wij−r̄ij, where wij is the link capacity and r̄ij =

∑
q∈P (i,j) r

q
ij

(≥ 0) is the total reserved rate of all the existing flows traversing link (i, j).
Most schedulers share the link capacity proportionally among the flows, based
on their reserved rate. Hence, a flow’s guaranteed rate on each (i, j) ∈ p is
given by gij = (wijrij)/(r̄ij + rij). It is easy to see that rij ≤ gij ≤ wij: the
upper bound is achieved when r̄ij = 0 (≡ (i, j) ∈ A′), i.e., p is the only path
traversing (i, j), whereas the lower bound when r̄ij + rij = wij, i.e., the arc
is fully subscribed. Under the assumption that the minimum guaranteed rate
among all links of p is at least as large as the traffic injection rate, i.e., gij ≥ ρ
for all (i, j) ∈ p, the WCD is finite; ensuring that each packet meets the
deadline δ can then be expressed by the WCD constraint

σ

min{ gij : (i, j) ∈ p}
+

∑
(i,j)∈p

( θij + lij + ni ) ≤ δ ,(1)

where θij is the link latency experienced by the flow when traversing the arc
(i, j), whose exact form depends on the scheduling algorithm employed. Up
until [4], θij has always been computed under the “pessimistic” assumption
gij = rij ∀(i, j) ∈ p, which logically implies that (i, j) ∈ A′′. Delay for-
mulæ obtained under the “pessimistic” assumption are referred to as bound
estimates, as opposed to the more accurate worst-case estimates employing
the exact formulæ based on the guaranteed rates. The latter are exact, but
make the models somewhat more complex, while the former still compute
safe upper bounds on the WCD. The formulæ for θij for four main classes
of schedulers are summarized in the following table, where P ij = |P (i, j)|,
rminij = min{ rqij : q ∈ P (i, j) }, and L is the maximum packet length in the
network:
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The key fact about Strictly, Weakly Rate-proportional (SRP, WRP), Group-
and Frame-based (GB, FB) schedulers of the above table are:

(i) SRP has the smallest latency, and WRP outperforms FB. GB can be
expected to have a large latency, too, due to the multiplying constants.
However, SRP schedulers are more complex than WRP, GB or FB, which
allows a network engineer to select different trade-offs between complexity
and latency [4].

(ii) Except for the bound SRP formula and the GB one (that, to the best of
our knowledge, does not have a worst-case version), all formulæ introduce
dependences among flows, for several reasons: if r̄ij increases, the guar-
anteed rate decreases, moreover the term P ij depends on all the flows,
and so does rminij . For bound-SRP and GB instead, a flow’s latency only
depends on its own reserved rate.

(iii) All the above latency expressions are non-linear, but can be expressed by
Second-Order Cone constraints.

Due to point (ii) above, in general routing the new flow p in the network
increases the delay of any existing flow q that shares with p at least one arc.
To ensure that the existing flows remain delay-feasible without changing their
routing or reserved rates, admission control constraints need be put in place.
Those constraints guarantee that the increase in delay due to the new flow
does not exceed the delay slack of each existing flow q, which has the general
expression

δ̄q = δq − σq

gqmin
−
∑

(i,j)∈q(lij + ni + θ(rqij)) ,(2)

where θ(rqij) depends on the scheduler as illustrated in the table. Denoting
by ∆θ(rij) the increase in delay due to the new flow passing through (i, j),
whose form again depends on the type of scheduler, the general expression of
the Admission Control Constraint (ACC) for an existing flow q has the form∑

(i,j)∈q ∆θ(rij) ≤ δ̄q .(3)

In particular, ∆θ(rij) does not depend on the existing flow q (whose contribu-
tion is entirely counted into δ̄q), but only on the reserved rate of the new flow.
Constraints (3) may be either linear or nonlinear depending on the scheduler
class. However, they can always be expressed within a MI-SOCP. What will
be relevant for our arguments is that the choice between bound and worst-case
formulæ can be made independently between the WCD constraint (1) for the
new flow and the ACC (3) for the existing ones. That is, while intuitively one
would either use bound formulæ in both, or worst-case ones in both, nothing
prevents mixing the two. As we shall see, this is actually beneficial.



2 Admission Control Performance Analysis

In [4] it has been shown that all models solution times are compatible with
real-time use in a realistic environment; thus, in [5] the impact on network
performance of using different scheduler classes was evaluated. Here we com-
plete the study in two respects: a) we also test worst-case formulæ, which was
not done therein, and b) we propose a way to improve the “robustness” of the
approach, and therefore the network performance, based on properly mixing
the two sets of latency formulæ.

The need for point b) is illustrated by Figure 1 for a number of real-world
IP network topologies. On each, traffic simulations were performed following
the guidelines of [3,5]. In the figure, the horizontal axis is the load of the
system (average number of new flow requests per second, considering that
each flow lasts one second in average), whereas the vertical axis is the blocking
probability, i.e., the ratio of rejected flows over the total number of requests.
In each simulation a different model is used to choose the feasible routing and
rates (or prove that there is none); the model is a combination of scheduling
algorithm (among SRP, GB, WRP and FB), latency formula in the WCD
constraint (1) for the new flow (either “B”, for bound, or “W”, for worst-
case), and latency formula in the ACC (3) (again, either “B” or “W”). All
the models were solved by Cplex 12.6, ran with default parameters, in short
time [4], hence the only relevant fact is their effect on network performance.

The results for “BB” models confirm the expectations: SRP outperforms
WRP which outperforms FB, with GB being largely the worst. The differ-
ences between the three are significant. However, the results of “WW” models
are somewhat counter-intuitive. In particular SRP-WW performs much worse
than SRP-BB, even at low loads, despite guaranteed rates being, in general,
larger than reserved rates, especially if the network is lightly loaded. Further-
more, the *-WW models perform very close to each other, with SRP-WW not
being any better (and sometimes visibly worse) than the others.

The latter phenomena (for “BB” models) have already been reported in
[5], where they are found to be due to a “conceptual mismatch” between
the objective function and the ACC. Indeed, when a flow is admitted, its
rates are computed based on the current state of the network. Because the
objective function minimizes the cost of rate allocation, the smallest possible
rates are selected. Given that rates and delays are inversely proportional, the
selected (smallest) rates are those that produce the largest possible feasible
delay : in other words, when a flow is admitted, its delay slack (2) is always
zero. Therefore, unless some flow disappears later on, any new flow that



attempts to use the same links will increase the WCD of any existing flow: but
because the WCD is already at its maximum, even a fractional improvement
is impossible. Thus, new flows may be found to be impossible to route not
because there is not enough rate to support them, but because they would
disrupt the current flows (i.e., because of the ACC). This indicates that, when
ACC is in place, it is necessary to over-allocate rates, to introduce some extra
slack which will allow later flows to use the same arcs. Of course a trade-off
shows here, where too much slack takes away precious rate and therefore may
again increase the blocking probability, but too little a slack has a similar
effect. In [5] it was proposed to simply decrease the deadline δ by a small
percentage in the WCD constraint (1), thus forcing the model to over-allocate
the rates and thereby protect the flow from subsequent increases of the WCD.
However, getting the “right” percentage was found to be nontrivial, and in
particular it was highly dependent on the specific network topology.

In this paper we explore a different way to protect flows from the latency
increase due to the new flows. In a nutshell, the basic observation is that bound
formulæ already over-estimate the WCD experienced by a flow, producing a
more conservative resource allocation than strictly necessary, i.e., a nonzero
delay slack if the WCD is evaluated with the worst-case ones. Hence, one
may use bound formulæ in (1) for the new flow, but worst-case ones in the
ACC of the existing ones. This forces the models to (over-)allocate the rates
when admitting a flow, but uses the exact WCD when evaluating whether or
not a flow is, later on, disrupted by a new flow request. The corresponding
“BW” models do not need any parameter tuning. As shown in Figure 1,
the performance of WRP-BW and FB-BW is very close to that of SRP-BB,
despite using less complex schedulers, that in general require larger rates to
achieve the same WCD, and much better than that of the corresponding “BB”
or “WW” models. We remark that there is no SRP-BW model because when
a flow is admitted using SRP-B formulæ, its WCD is independent from the
other flows, and therefore there is no ACC. The running time of the “BW”
models is comparable with the others’ (which is hardly surprising since they
are somewhat simpler than “WW” ones [4]), and therefore not an issue.

3 Conclusions and Future Research

To conclude, this paper improves on [5] showing that one can actually use
“cheaper” schedulers, e.g. WRP and FB ones, and obtain network perfor-
mance similar to (or even better than) those of the more costly SRP ones.
However, doing so requires using the exact WCD formulæ instead of the



bounds employed so far in the literature. Furthermore, it requires doing so
“carefully”; in particular, using the exact WCD for both rate allocation for
a new flow, and ACC for the existing ones, leads to too small (zero) delay
slacks, and therefore to non-robust solutions. A simple, yet effective way to
avoid that is to construct models properly mixing the two types of formulæ,
which (at least on all the instances in our test set) attains good network per-
formance without any need for hard-to-tune robustness parameters. The topic
deserves future investigations. It would be useful to define a proper concept
of admission control robustness and possibly to remove the assumption that
all existing flows maintain the same path and rate allocation, thus introduc-
ing the possibility of recourse actions, as described e.g. in [1,6] for different
applications. This, however, requires that the recourse actions be actually
implemented in the context of packed-based computer networks, where some
flows are sensitive to even minor QoS disruptions (e.g., real-time applications
like equipment control). Finding the right compromise between flexibility and
network stability may lead to a significant improvement in the network per-
formance.
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Figure 1. Blocking probability for all topologies, � = 0.2 and � = 3 MTUFig. 1. Blocking probability for all topologies
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