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Abstract

Interior Point (IP) algorithms for Min Cost Flow (MCF) problems have been shown to be com-
petitive with combinatorial approaches, at least on some problem classes and for very large
instances. This is in part due to availability of specialized crossover routines for MCF; these
allow early termination of the IP approach, sparing it with the final iterations where the KKT
systems become more difficult to solve. As the crossover procedures are nothing but combi-
natorial approaches to MCF that are only allowed to perform few iterations, the IP algorithm
can be seen as a complex “multiple crash start” routine for the combinatorial ones. We report
our experiments about allowing one primal-dual combinatorial algorithm to MCF to perform as
many iterations as required to solve the problem after being warm-started by an IP approach.
Our results show that the efficiency of the combined approach critically depends on the accurate
selection of a set of parameters among very many possible ones, for which designing accurate
guidelines appears not to be an easy task; however, they also show that the combined approach
can be competitive with the original combinatorial algorithm, at least on some “difficult” in-
stances.
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1. Introduction

The Min Cost Flow (MCF) problem is the following Linear Program (LP)

min { cx : Ex = b , 0 ≤ x ≤ u } , (1)

where E is the node-arc incidence matrix of a network G = (N,A), c is the vector of arc costs,
u is the vector of arc upper capacities, b is the vector of node deficits, and x is the vector
of flows. This problem has a huge set of applications, either in itself or—more often—as a
submodel of more complex and demanding problems. This is testified by the enormous amount
of research that has been invested in defining efficient solution algorithms for MCF, either by
specializing LP algorithms, such as the simplex method, to the network case, or by developing
ad-hoc approaches [1].

Interior Point (IP) methods for Linear Programming have grown a well-established reputa-
tion as efficient algorithms for large-scale problems. Specialized IP algorithms for MCF, using
iterative approaches for the solution of the “core” KKT systems which represent the critical
computational task, have been shown [17, 16, 15] to be competitive with “combinatorial” ap-
proaches, like primal-dual [3] cost-scaling [10] algorithms or simplex methods [12, 1], albeit not
on all problem classes and especially for very large instances. In [16], for instance, a dual IP ap-
proach was consistently outperforming the primal-dual combinatorial code RELAXT-3 [4] on four
problems classes on 13, was competitive for graphs of large size on other two classes, but it was
slower (sometimes by a high margin) on the seven remaining classes. In [15], a more advanced
primal-dual IP approach is shown to be competitive with the primal-dual cost-scaling combina-
torial code CS [10] for very large graphs on two problem classes on seven, while being constantly
outperformed on the other five. In both papers, simplex-based methods like NETFLO [12] and
CPLEX NETOPT 4.07 were shown to be, in general, less competitive with the IP methods, being
outperformed almost always at least as the size of the network increases.

Closely examining the results (e.g., Table 3 in [16]) reveals that an important contribution
to the overall efficiency of the IP approach is provided by the specialized crossover routines
that can be implemented for MCF algorithms. These attempt to construct an optimal (non
necessarily basic) solution out of the information provided by the IP approach; if successful, the
whole algorithm is stopped. This actually happens relatively early in the optimization process,
sparing the IP approach with several of the final iterations and therefore substantially improving
its performances, since:

• IP approaches typically perform “few” iterations, so avoiding a handful of iterations al-
ready provides a consistent relative decrease of the running times;

• the “core” KKT system becomes more and more ill-conditioned, and therefore difficult to
solve by iterative approaches, as the IP algorithm nears an optimal solution;

• the KKT system can be approximately solved during the IP algorithm, thereby making
iterative methods an attractive option, but the required accuracy has to be increased as
the IP algorithm nears an optimal solution.

Because crossover procedures are typically simplex-like approaches restricted to only a few (pos-
sibly one) iterations [13, 2], one may restate the above observations as: in the MCF case, the
“continuous” IP approach is useful to quickly providing an extremely good starting point to a
simplex algorithm, which then exploits the combinatorial structure of the problem to quickly
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“finish it off”. In other words, the efficiency of IP approaches is due to their capacity of quickly
identifying information which the simplex algorithm can use to reach an optimal solution without
a combinatorial explosion of pivot moves.

While for general LPs the simplex method is the only possible efficient combinatorial com-
panion, for MCF other alternatives exist; indeed, as previously recalled, simplex-like approaches
are typically outperformed by primal-dual combinatorial ones. This suggested us to experiment
with the following generalization of the above idea: combine an IP method and a combina-
torial (non-simplex) algorithm for MCF problems, using the former to produce warm-starting
information for the latter.

Thus, the aim of our study is to verify whether there are choices of the many forms of IP
algorithm, and their many algorithmic parameters, such that the combined process is more
effective than the original combinatorial approach. We show by extensive experiments that,
at least for one primal-dual algorithm, the results critically depend on the accurate selection
of some parameters among very many possible choices, for which designing accurate guidelines
appears not to be an easy task. However, the results also show that the hybrid approach can
be better than the original one, especially on some classes of “difficult” instances.

The structure of the paper is the following: in Section 2 the basic ingredients of IP algorithms
are briefly recalled, and the relevant algorithmic issues are discussed, focusing in particular on
the MCF case. In Section 3, primal-dual approaches to MCF are rapidly sketched, and the
way in which information can be exchanged between an IP approach and a primal-dual one
is discussed. In Section 4 the results of a computational experience, aimed at assessing the
effectiveness of the hybrid method, are presented, and conclusions are drawn.

2. Interior Point algorithms

Interior Point algorithms for MCF can be described by considering (1) together with its dual

max { yb − wu : yE + z − w = c , z, w ≥ 0 } , (2)

where y, z and w are respectively the dual variables of the flow conservation constraints Ex = b,
the dual slacks and the dual variables of the box constraints x ≤ u. Different IP algorithms can
be constructed, which all start from a “slackened” version of the KKT optimality conditions of
the above pair of dual problems: this comprises, other than the usual primal and dual feasibility
conditions, the following approximated form of the complementary slackness conditions

xijzij = µ (uij − xij)wij = µ (i, j) ∈ A (3)

were µ ≥ 0 is a parameter. The parametric solution to the system defines the central path, a
continuous trajectory which, as µ tends to 0, converges to a “central” pair of primal and dual
optimal solutions.

Path-following (also known as barrier) algorithms attempt to reach close to these optimal
solutions by following the central path; this is done by performing a damped version of New-
ton’s iteration applied to the (nonlinear) slackened KKT system for some value of µ, and then
reducing µ to attain (fast) global convergence. These algorithms can be divided into primal,
dual or primal-dual depending on the fact that only the primal solution, only the dual solution,
or both at the same time are modified during the Newton step. Several variants of the above
methods have been defined. For instance, in Mehrotra’s predictor-corrector [14] variant of the
primal-dual method, multiple iterations of the Newton approach are performed to compute the
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next direction at every IP iteration. Conversely, in affine variants of the IP algorithms the
formulae for the Newton direction are taken as the limit for µ → 0 of the formulae in the
path-following case; this makes computations slightly faster (due to the reduction of constant
factors, not of the asymptotic complexity) and eliminates µ from the formulae, thereby avoiding
the problem of tuning its decrease, possibly at the cost of some numerical stability. A more
detailed description of IP algorithms is clearly outside the scope of the present paper; the in-
terested reader can consult the extensive literature on the subject, comprised many recent LP
textbooks, e.g., [18, 19].

2.1. Solving the core systems

Remarkably, all the formulae for all the variants of the IP method boil down to a set of linear
operations plus one (or more) solution(s) of a “core” linear system of the form

(EΘET )∆y = d , (4)

where Θ and d are respectively an m × m diagonal matrix (m = |A|) with positive entries
and a vector of R

n (n = |N |), both depending on the current iteration and on the specific
IP variant chosen. The solution of (4) typically represents by far the main computational
burden of the IP algorithms. General-purpose LP solvers typically use direct methods, such
as the Cholesky factorization, to solve (4); however, for structured LPs—like MCF—iterative
approaches, such as Preconditioned Conjugate Gradient (PCG) methods, have shown to be
competitive [5, 17, 16, 15], provided that appropriate preconditioners are employed.

The most widely used preconditioners are subgraph-based ones, which select a large-weight
“triangulated” subgraph S of G—the arc weights being the diagonal elements of Θ—so that
the restricted matrix ESΘSET

S is very easy to invert; possible classes of triangulated graphs are
trees [16, 15, 11] or “Brother-connected trees” [8]. These preconditioners usually tend to become
more and more efficient as the IP algorithm proceeds, since the IP solution tend to more and
more closely resemble a basic solution; hence, the arc weights Θ tend to “concentrate” on the
arcs of the basic tree, which are easily selected by the preconditioner, so that the total weight of
the columns not “covered” by the preconditioner tend to become negligible. On the other hand,
(4) become more and more ill-conditioned, and therefore difficult to solve, as the IP algorithm
proceeds, partly counterbalancing the positive effect of the better preconditioner. Furthermore,
while (4) can be only approximately solved during the IP algorithm, thereby making iterative
methods an especially attractive option, the required accuracy has to be increased as the IP
algorithm nears an optimal solution. The combination of all these effects results in complex
fluctuations of the “difficulty” of (4), with some sequences of IP iterations, especially—but not
only—towards the end of the IP algorithm, showing relatively “hard” systems to solve. Samples
of this behavior can be seen in Table 1, where we report some data about the number of iterations
required to solve problems of two different sizes for three different classes of networks; the exact
details about the networks are not relevant here, and they will be explained in Section 4. For each
network type and size, we report seven rows corresponding to the systems solved at IP iterations
0, 1, k/4, k/2, 3k/4, k − 1 and k, where k is the index of the last iteration and 0 is the system
solved for the crash-start (see Section 2.3); this is a significant sample of the systems solved
during the IP algorithm. The table clearly shows that significant variations on the difficulty of
solving (4) by an iterative approach have to be expected, especially towards the end of the IP
algorithm.
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Table 1: PCG iterations at various stages of the IP process
goto grid net

12.8 12.256 12.8 12.256 12.8 12.256

0 135 379 22 8 15 7
1 40 10 17 8 14 8

k/4 65 107 17 11 12 10
k/2 42 96 36 13 16 13

3k/4 23 67 27 14 11 14
k-1 17 30 10 17 6 18

k 17 30 2 18 6 19

2.2. Crossover

Early termination of IP methods can be obtained by means of “crossover” procedures: as the IP
method converges towards an optimal solution, information can be extracted about the set of
active (primal and dual) constraints at optimality, thereby being finally able to build an optimal
base. For general LPs, crossover procedures have been primarily developed for two different
purposes:

• being able to show that the algorithm can be finitely stopped attaining an “exact” optimal
solution in polynomial time;

• being able to combine IP approaches with traditional simplex methods, in order to exploit
the superior reoptimization capabilities of the latter which are especially crucial e.g. in
Branch & Bound algorithms.

That is, for the general LP case the crossover procedure is not perceived as an “early termination”
rule: the IP algorithm is brought at convergence with very high precision (say, 1e-8 relative)
and the crossover is only performed if the additional features of a basic solution (comprised the
more accurate precision of, say, 1e-12 relative) are required.

However, for MCF the situation is different: in [16, 15], the IP approach is always stopped
by the crossover rather than by the standard stopping rules of the IP algorithm. This is also
due to the fact that for MCF a “simplex crossover” similar to that of general LP [13, 2] is
very cheap: as mentioned in the previous paragraph, the maximum-weight spanning tree of G
with arc weights Θ, which is already computed by the preconditioners, towards termination
provides, possibly with minimal variations, a primal and dual feasible basis for MCF. Being so
inexpensive, the procedure can be repeated at every iteration (of the final sequence), discarding
the results if feasibility is not achieved.

Furthermore, for MCF “non simplex” crossover procedures have also been presented; these
are strongly related to primal-dual combinatorial algorithms for the problem, and therefore they
will be discussed later on.

2.3. Crash start of the IP algorithms

Like every iterative approach, IP algorithms require a starting point (“crash solution”) to initiate
with. This has to be a primal solution x for a primal method, a dual solution (y, z, w) for a
dual method, or both for a primal-dual method. Since the IP algorithms naturally cope with
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infeasibilities, these do not need to be primal or dual feasible. Not much is said, in the literature,
about how to choose these solutions: (many different variants of) simple formulae are reported
as “working”, with little or no discussion of the alternatives. This may be due to the fact
that IP algorithms—especially primal-dual ones—are generally very robust, so that their overall
performances are only marginally impacted by this choice.

However, even if this is true in the “standard” context, crash formulae are set to have a
much larger impact in our application, since the IP algorithm is (very) early terminated, and
therefore it may not have time enough to “neutralize” a bad choice of the initial solutions. Thus,
we resorted to collecting all proposals of crash solutions we could find and testing all possible
combinations. In general, the primal solution x, the dual solution y and the dual slacks (z,w)
can be chosen almost independently, although there are cross-dependencies: typically (z,w)
are chosen after y in order to have yE + z − w = c. We now report on the variants that we
implemented and tested.

Dual crash. For the y variables, the following four rules have been proposed:

D1) y = 0,

D2) y = (EET )−1Ec,

D3) y = b‖c‖∞/‖b‖∞,

D4) y = (EET )−1(2τb + E(c − τu)),

where τ is a fixed parameter. Rule D2 amounts at choosing as y those that give the (orthogonal
complement of the) projection of c on the Ex = 0 subspace, while D4, known as (the dual part
of) “Mehrotra’s rule”, chooses y as the dual solution of the unconstrained problem min { cx +
(τ/2)(||x||2 + ||u−x||2) : Ex = b }; the other two rules are just “quick and dirty” initializations.
After having fixed y, the vector c̄ = c − yE is the residual of the dual constraints that need to
be zeroed if a dual feasible solution is sought for; this is typically used in the formulae for x
and (z,w).

Primal crash. For the x variables, the following five rules have been proposed:

P1) xij = τuij ,

P2) xij = τuij if c̄ij ≥ 0, xij = (1 − τ)uij otherwise,

P3) x = ET (EET )−1b,

P4) x = 1
2τ

(τu − c̄),

P5) xij =
2µuij

2µ+c̄ijuij+κij
, where κij =

√

(2µ)2 + (c̄ijuij)2 if c̄ij ≤ 0 and its opposite otherwise,

where τ > 0 is fixed. Rule P3 just amounts at finding the least-norm solution of Ex = b, rule P4
is the “primal part” of rule D4, while rule P5 is obtained by asking that x, z and w satisfy the
slackened complementary slackness conditions, except Ex = b, for the given value of µ; the first
two rules are just “quick and dirty” initializations. For all the cases where x is not guaranteed
to be bound-feasible (x ≤ u), each of the above formulae can be modified (as in P2 with τ < 1)
in order to make it so, thus nearly doubling the number of alternatives.

Dual slack crash. For (z,w), the following three rules have been proposed:

S1) if c̄ij ≥ 0 then wij = σ and zij = c̄ij + σ, otherwise zij = σ and wij = σ − c̄ij ,



8.

S2) zij = σ/xij , wij = σ/(uij − xij),

S3) zij =
2µ+c̄ijuij+κij

2uij
, wij = µzij/(uijzij − µ), where κij is as in rule P5,

where σ is fixed. Rule S3 is the dual slack part of rule P5, while the first two rules are just
“quick and dirty” initializations; note that not all of the above formulae produce a dual feasible
solution.

3. Primal-dual algorithms for MCF

In the following, we briefly describe the characteristics of primal-dual algorithms for MCF that
are relevant to our application; for a more detailed description, the reader is referred to [1]
and [4].

Any m-vector x such that 0 ≤ xij ≤ uij for each (i, j) ∈ A is a pseudoflow ; given x, gi(x) =
bi −

∑

(i,j)∈A xij +
∑

(j,i)∈A xji is the surplus of node i ∈ N w.r.t. x, i.e., the violation of the
flow conservation constraints in (1). The surplus of a set S ⊆ N w.r.t. x is the sum of the
surpluses of the nodes in S, and the total surplus of x is the sum of the positive surpluses of
the nodes in G; x is a flow if and only if it satisfies all the flow conservation constraints, i.e., its
total surplus is zero.

A dual solution y of MCF is also called a vector of node potentials; this is the “essential”
part of any dual solution, since, given y, the “best possible” z and w are z = [c − yE]+ and
w = [yE − c]+, where [·]+ denotes the non-negative part (any other feasible value of z,w
corresponds to a larger value of the objective function). Defining the reduced cost of arc (i, j)
as c̄ij = cij − yEij = cij − yi + yj = zij −wij (i.e., the residual of the dual constraints, cf. § 2.3),
one can develop a different form of “slackening” of the optimality conditions of MCF w.r.t. (3);
given a scalar µ ≥ 0, a primal-dual pair (x, y) satisfies the µ-complementary slackness conditions
(µ-CS for short) if x is a pseudoflow and there holds

xij < uij ⇒ −µ ≤ c̄ij 0 < xij ⇒ c̄ij ≤ µ (i, j) ∈ A

Primal-dual methods for the solution of MCF problems consider at each iteration a preflow x
and a vector of potentials y satisfying µ-CS. This defines a residual graph Gy = (N,Ay) which
contains only balanced arcs, i.e., such that |c̄ij | ≤ µ; these are the only arcs where the flow can
be changed without violating µ-CS, as all the other arcs are either “active” (c̄ij > µ ⇒ xij = 0)
or “inactive” (c̄ij < −µ ⇒ xij = uij).

Then, the approaches alternate between a primal and a dual phase. In the primal phase,
max-flow-type computations are used to send flow on the arcs of Gy from nodes with positive
surplus to nodes with negative surplus. If a flow x′ is found, that is, the surplus of all nodes
is driven to zero, then x′ is a µ-optimal solution for MCF; if µ is not small enough already, it
is reduced to some value µ′ < µ. This causes some previously balanced arcs to become either
inactive or active, i.e., their flow to be set to either the lower or the upper bound, in order to
satisfy µ′-CS; in turn, this creates some new “imbalanced” nodes (with nonzero surplus), and
the process is iterated.

If, instead, it is not possible to bring the surplus of all nodes to zero, then the max-flow-type
computation identifies a new pseudoflow x′ and a subset S of nodes whose surplus (w.r.t. x′) is
larger than the residual capacity (w.r.t. x′) of the arcs in the cut (S,N \S). The set S identifies
an ascent direction in the dual space, and triggers a dual phase where, by simultaneously in-
creasing the potentials of all nodes i ∈ S by a proper quantity τ , and leaving all other potentials
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unchanged, a solution y′ with better value of the dual objective function is attained; if the cut is
not saturated, the flow of the balanced arcs in the cut is adjusted (set to either the lower or the
upper bound) in order to satisfy µ-CS. A proper choice of the stepsize τ creates new “balanced”
arcs, thus allowing to return to the primal phase.

Algorithms that work with a variable µ are said of the cost-scaling type, while µ is kept fixed to
zero in unscaled techniques; furthermore, different methods (augmenting paths or push-relabel
computations) can be used for the primal phase.

3.1. Crossover with the RelaxIV solver

The RelaxIV solver implements an unscaled primal-dual algorithm [3] which use augmenting
paths techniques—using all arcs with zero reduced cost—to push flow from nodes with positive
surplus to nodes with negative surplus. The code implements checks for early termination of the
primal phase (the max-flow computation), in order to avoid performing flow operations as soon
as a dual ascent direction is found, that is, when it becomes clear that no feasible flow exists
that satisfies 0-CS with the current vector of potentials y.

For our experiments, we used a C++ version of the RelaxIV solver, developed within the
MCFClass project [6]. The solver, which is a fairly straightforward port of the original FORTRAN
code, has shown to be quite effective in several applications (e.g., [7]). A distinctive feature of
our C++ version is the implementation of full reoptimization capabilities, i.e., the ability of re-
using the information associated with the obtained optimal solution of an instance to speed-up,
often very significantly [9], the solution of a new instance that is obtained by “few” changes of
the original one. This is possible due to the fact that the RelaxIV solver can start from any pair
(x, y) satisfying 0-CS, making it an ideal candidate for implementing a hybrid IP/combinatorial
approach.

In fact, the alternative crossover procedure for IP algorithms proposed in [16] is nothing but a
primal step of a primal-dual algorithm; the residual graph Gy (corresponding to the current IP
dual solution y) is constructed, and a feasible flow is sought for in that graph; if it is found, then
it is an optimal solution for the MCF problem, and the IP algorithm can be terminated. Since
seeking for a feasible flow only requires a very fast max-flow computation, this can be done at
every IP iteration (of the final sequence), simply discarding the result in case no feasible solution
is found; this is reported [16] to be more successful than the simplex-based crossover in several
instances. Hence, once again the—successful—crossover procedure is nothing but one step of
an existing—efficient—combinatorial approach to MCF; in particular, a primal-dual algorithm
where no “dual” step is allowed. This clearly suggests to extend the approach by simply leaving
the primal-dual method free to perform dual steps, too, if necessary.

Thus, we have modified RelaxIV in such a way that it accepts an externally provided primal-
dual pair (x, y) for constructing its starting solution. The potentials y can be directly used
since, as previously remarked, the best possible corresponding z and w can be easily obtained;
actually, this is not even required by the code. By contrast, the primal solution x may have to
be modified in order to satisfy 0-CS; however, this is very easy. First, if x is not a pseudoflow it
can be made so by setting xij = max { 0 , min { uij , xij } }. Then, 0-CS can be easily attained
by setting xij = uij if c̄ij < 0, xij = 0 if c̄ij > 0, and leaving all other values unchanged. Because
the x variables provided by an early stopped IP method, especially a dual one, may not be very
significant, it is also possible to use x = 0 (eventually adjusted according to the reduced cost)
instead. This can be seen as an alternative initialization phase with respect to the one originally
provided by the code, based on simple one-node dual moves, that is consequently skipped.
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A useful characteristic of RelaxIV in this context is that it is virtually a “zero parameter” code;
once the initialization is done, in whatever way, the algorithm requires no other special setting.
This contrasts with scaling-type approaches, where at the very least the possibly critical decision
about the initial value of the scaling parameter µ has to be taken, adding at least another degree
of freedom to the system.

4. Computational Results

In this section, we present the results of a large-scale computational test aimed at assessing the
effectiveness of the hybrid IP/combinatorial approach.

4.1. Testing environment

For our tests, we used a “generic” by-the-book IP code that we developed. The code is contained
in a C++ class, IPClass, and implements all the variants of IP algorithm alluded to in Section 2,
comprised all the crash-start rules. The code is generic in that the base class does not provide any
means for solving the core systems, demanding this to derived classes where all the information
about the structure of the coefficient matrix is hidden; this allows to easily implement specialized
IP algorithms for linear programs with special structure, such as MCF. IPClass also provides
support for approximate solution of the core systems (4), which is crucial if iterative approaches
are to be used. In fact, as shown, e.g., in [16, 11], rather “crude” solutions of (4) can be used
to provide improvement directions at the initial iterations of the IP method, provided that the
accuracy is properly increased as the optimal solution is approached. This requires a nontrivial
exchange of information between the IP solver and the PCG algorithm.

For MCF, we developed a PCG-based solver of the core systems (4) that can use several
different subgraph-based preconditioners, as described in [8]. This is used within IPClass to
obtain a (family of) specialized IP algorithm(s) to MCF. Clearly, no crossover is used in this
context, since the obtained (primal and) dual solution are passed to the RelaxIV solver, as
described in the previous paragraph.

We performed our tests on a PC with an Athlon MP 2400+ and 1Gb RAM, running Linux.
The code was compiled using the GNU g++ compiler version 3.3, using standard optimization
option “-O2”.

4.2. Test instances

For our tests, we selected five well-known random generators of MCF problems: goto (GridOn-
TOrus), gridgen, gridgraph, mesh, and netgen. We also implemented a complete random
generator for complete graphs. Apart from the latter and netgen, which produces graphs with
random topology, all the other generators produce mesh-type graphs with different character-
istics. goto and mesh generate toroidal mesh graphs where each node is connected to all arcs
upon a certain distance (decided in the input parameters); however, while goto produces in-
stances with a single source and a single destination “far away” from each other, mesh generates
a circulation problem (with all-0 node deficits) with negative cost arcs. gridgraph generates
instances similar to goto except on a regular 2-dimensional grid plus random arcs. gridgen also
constructs grid graphs where arcs are directed in alternate directions in each row and column.
For goto, gridgen, mesh and netgen we generated several families of instances named genk.d,
where gen is the specific generator, n ≈ 2k is the number of nodes and d is the average density.
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For complete and gridgraph we generated instances named genk, where k has the same mean-
ing as above. In each family, 5 different instances were generated by simply changing the seed of
the pseudo-random number generator; in the tables below, all the results have to be intended as
the average over the five instances of the same family. Source code for the generators is widely
available; however, it can also be requested, together with the parameters for reproducing the
instances, to the authors.

4.3. Preliminary experiments

It is clear from the previous discussion that there are very many possible options for implement-
ing the extended crossover idea; these comprise at least:

• which variant of IP algorithm (primal, dual, or primal-dual) is used;

• whether or not an affine variant is used;

• for the primal-dual method, if Mehrotra’s predictor-corrector strategy is used, and if so,
how many “multiple centrality corrections” are performed;

• how many iterations of the IP method are performed before switching to the combinatorial
approach;

• which of the applicable crash-start rules are used, and how their parameters (τ , σ, µ, . . . )
are chosen;

• whether or not the pseudoflow x is used to warm-start the combinatorial approach together
with the node potentials y.

Even restricting some of the above choices by heuristic decision (e.g., always setting τ = 0.5 in
the primal crash formulae Px and testing only two different values for σ in the dual slack crash
formulae Sx) led us to more than 7000 variants. Furthermore, several other possibilities could
have been tested. The selection of the preconditioner for solving (4) has been done according to
the guidelines set forth in [8], but those guidelines have been developed for the complete solution
of MCF via an IP approach rather than for performing only a few IP iterations. However, further
increasing the degrees of freedom of the system would have lead to an unmanageable number
of alternatives. Thus, we performed our computational tests focusing our attention only on the
above parameters.

The computational experiments were performed in two phases. In the preliminary phase, a
significant subset of the instances were tested with all possible variants of extended crossover,
in order to find out the most promising alternatives. The detailed results of this phase cannot
clearly be reported here in full; collecting and analyzing the data was a very long and intensive
process, whose results can be briefly described as follows:

• the solution of the IP approach often provides useful information to the combinatorial
algorithm (leading to a decrease of its running time) very early, possibly as early as the
crash start phase;

• the dual and primal-dual method, in their non-affine variants, are typically much better
than the primal method at providing warm starts; for the predictor-corrector, the cost of
more than one centrality correction is not worth the effect on the quality of the obtained
warm start;
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• due to the high iteration cost of the IP approach, only very few IP iterations can be
performed in order to obtain an overall competitive hybrid approach (although exceptions
exist, as discussed below);

• the impact of the crash formulae is indeed significant; this should be expected in view of
the above point;

• using the pseudoflow x provides little benefit, but it does no harm, either.

Perhaps the most important result from the preliminary phase, however, was the extreme diffi-
culty in selecting a small set of “best” parameters. Many variants are dominated, often signifi-
cantly, by other variants for some families of instances, while dominating them on other families.
Finally, we resorted to selecting four variants which showed the best compromise between per-
formances on all families; these differ for using the dual or the primal-dual algorithm and using
the combination P1 + S1 or P5 + S3 for the primal and dual slack crash formulae, while all
performing one iteration of the IP approach, using formula D1 for the dual crash variables1,
and passing the pseudoflow x as a part of the warm-start. We remark that, by our experiments,
performing one IP iteration is, at large, better than performing none, i.e., only relying on the
crash formulae; thus, the IP machinery indeed helps in obtaining good starting solutions.

The experiments on the full set of instances were finally performed only on these four variants.
We stress that this choice consistently underestimates the best performances attainable on some
of the families; in particular, for goto instances considerably better results can be obtained by
allowing the IP algorithm to run for a much larger number of iterations, as described in the next
paragraph.

4.4. Final experiments

The results of the final set of experiments is reported in Table 2 for all families except those
obtained with the goto generator, and in Table 3 for the latters. In all tables, column RIV
reports the solution time in seconds of the standard RelaxIV solver. In Table 2, columns D-11
and D-53 report the solution time for the hybrid approach using the dual IP approach and crash
formulae P1 + S1 and P5 + S3, respectively, and analogously for columns PD-11 and PD-53
for the primal-dual method. In Table 3, column PD reports the solution time for the hybrid
approach using the primal-dual IP approach and P5 + S3, since this variant is found to be
the most efficient on this family of instances. All other parameters are set as described in the
previous paragraph, except for the number of IP iterations for the results of Table 3, that is set
to 8 instead of 1 as in all other cases, since this resulted in a very significant improvement of
the efficiency of the hybrid approach.

The results in the tables clearly show that the hybrid algorithm may provide significantly
better results than RelaxIV, with improvements ranging from a few percentage points (e.g.,
mesh15.40) to 50% (grid16.8, net14.8). On goto instances, where IP approaches typically
perform well [16, 15] (despite the “difficulty” of the core systems [8]) while RelaxIV is slower [9],
improvements range from a factor of 3 to an impressive factor of 35, even for relatively small
instances. However, the results also show that the improvements are not uniform; on several
families, the hybrid approach is at best on par or marginally slower than RelaxIV, although it

1Rule D2 provides significantly better potentials but requires the solution of one extra system (4) with all arc
weights equal, that can be very costly to solve in some cases as shown by the goto instances in Table 1.
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Table 2: Comparison of the hybrid approach versus RelaxIV
problem D-11 D-53 PD-11 PD-53 RIV

grid8.32 0.024 0.020 0.022 0.024 0.020
grid8.64 0.064 0.070 0.070 0.072 0.070
grid12.8 1.036 0.870 0.874 0.870 0.933
grid12.64 5.644 5.470 5.542 5.594 5.460
grid12.256 16.41 16.46 16.75 16.51 15.09
grid16.8 32,72 31,75 31,67 32.06 73.78

complete2 0.010 0.006 0.008 0.010 0.010
complete4 0.712 0.758 1.022 1.024 0.650

ggraph10 0.430 0.428 0.450 0.448 0.290
ggraph12 5.224 5.234 5.226 5.240 4.214
ggraph14 8.180 8.174 8.188 8.188 8.433

net8.32 0.018 0.020 0.020 0.014 0.010
net12.8 0.718 0.728 0.726 0.720 0.790
net12.64 3.580 3.590 3.596 3.604 2.540
net12.256 11.35 11,38 11.58 11.64 9.56
net14.8 4.724 4.774 4.812 4.740 7.370
net14.64 14.27 14.38 14.60 14.62 13.82

mesh14.8 3.288 3.286 3.322 3.340 2.940
mesh14.40 15.24 14.37 14.45 14.46 11.88
mesh14.64 18,00 17.41 17.56 17.59 15.98
mesh15.40 83.41 83.61 83.69 83.82 88.67
mesh15.64 85.78 88.60 89.12 89.21 96.41
mesh17.10 158.91 158.77 159.10 159.25 130.82

should be remarked again that significantly better results could be obtained by allowing instance-
based setting of the parameters. Also, there does not seem to be any obvious relationship between
the characteristics of the instances (graph topology, size, density, . . . ) and the relative efficiency
of the hybrid approach versus RelaxIV. Hence, further research is required in order to make
hybrid IP/combinatorial approaches routinely usable for solution of MCF problems. Yet, the
consistently positive results that can be obtained on some instances show that the approach
deserves further development.

4.5. Conclusion

Combining Interior-Point and “combinatorial” approaches for the solution of Linear Programs
is a very well-established technique; without crossover, the usefulness of IP algorithms would
be severely limited in several contexts. For general LPs, the only combinatorial approach that
can be paired with IP algorithms is the simplex method; however, for structured LPs like MCF,
other specialized combinatorial companions can be used instead. By combining the strengths of
the different algorithms—the fast global convergence of IP methods with the extreme speed of
“local” optimization moves of combinatorial approaches—better results could be obtained.

Our results show that this is indeed true in some relevant cases. However, they also show that
a delicate tuning of the several possible options (IP algorithm employed, crash start formula and
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Table 3: Hybrid approach versus RelaxIV: goto instances
problem PD RIV

goto8.8 0.05 0.15
goto8.16 0.11 0.81
goto8.32 0.22 2.35
goto12.8 12.82 65.32
goto12.64 129.88 4718.60
goto12.256 5782.43 25203.44

parameters, number of iterations, . . . ) is required, which makes hybrid approaches currently
unsuitable for general-purpose, “fire-and-forget” MCF solvers. The need for developing accurate
and dependable guidelines about when switching between the IP algorithm and its “combina-
torial companion” brings about some issues at the frontier between IP algorithms for MCF [8]
and the study of warm-starts for combinatorial algorithms to MCF [9], namely: are there met-
rics that allow to measure how good, say, a primal-dual pair (x, y) is as a warm start to some
combinatorial MCF approach? and, is there some variant of IP algorithm that is particularly
well-suited for rapidly producing such good solutions? We believe that further investigation on
these issues could bring results of interest in their own right, as well as allowing to implement
effective general-purpose hybrid IP/combinatorial MCF solvers.
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