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Abstract

Lagrangian Relaxation (LR) algorithms are among the most successful approaches for solving
large-scale hydro-thermal Unit Commitment (UC) problems; this is largely due to the fact that
the Single-Unit Commitment (1UC) problems resulting from the decomposition, incorporating
many kinds of technical constraints such as minimum up- and down-time requirements and time-
dependent startup costs, can be efficiently solved by Dynamic Programming (DP) techniques.
Ramp constraints have historically eluded efficient exact DP approaches; however, this has
recently changed [18]. We show that the newly proposed DP algorithm for ramp-constrained
(1UC) problems allows to extend existing LR approaches to ramp-constrained (UC); this is not
obvious since the heuristic procedures typically used to recover a primal feasible solution are not
easily extended to take ramp limits into account. However, dealing with ramp constraints in the
subproblems turns out to be sufficient to provide the LR heuristic enough guidance to produce
good feasible solutions even with no other modification of the approach; this is due to the
fact that (sophisticated) LR algorithms to (UC) duly exploit the primal information computed
by the Lagrangian Dual, which in the proposed approach is ramp feasible. We also show by
computational experiments that the LR is competitive with those based on general-purpose
Mixed-Integer Program (MIP) solvers for large-scale instances, especially hydro-thermal ones.

Key words: Hydro-Thermal Unit Commitment, Ramp Limits, Lagrangian Relaxation.
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1. Introduction

The short-term Unit Commitment (UC) problem in hydro-thermal power generation systems
requires to optimally operate a set of hydro—possibly cascade connected—and thermal gener-
ating units, over a given time horizon (typically one day or one week), in order to satisfy a
forecasted energy demand at minimum total cost. The generating units are subject to some
technical restrictions, depending on their type and characteristics; for hydro units typical con-
straints concern the discharge rate, spillage limits, reservoir storage and effect on downstream
units. As for the thermal units, they must usually satisfy minimum up- and down-time con-
straints and upper and lower bounds over the produced power when the unit is operational,
besides having complex power production and start-up costs. Closely representing the actual
operating behavior of generating units within mathematical optimization models is crucial for
being able to effectively coordinate the production of the generating system taking into account
each unit’s characteristics [27], which is of increasing importance in the ongoing liberalization
of the electricity market in many countries [19]. Indeed, while the (UC) problem in the form
treated in this paper originated from the era of monopolistic producers, it has numerous appli-
cations even in the liberalized regime; furthermore, algorithmic approaches developed for the
“classical” (UC) problem can usually be easily extended to forms of the problem arising in a
market environment [19, 9].

Despite having attracted the interest of researchers for over 30 years, (UC) still cannot be con-
sidered a well-solved problem for all practical sizes and operating environments; this should not
be surprising, since it is a large-scale, Mixed-Integer NonLinear Program (MINLP). Despite the
ever-increasing availability of cheap computing power and the advances in off-the-shelf software
for MINLP, solving (UC) by general-purpose software, even using the most advanced approaches
available, is not feasible when the number of units [17] and/or the length of the time horizon
[18] grows large. Recently, an interesting approach has been devised where the nonlinearities
in the problem are approximated by means of piecewise-linear functions, so that (UC) can be
approximated by a Mixed-Integer Linear Program (MILP), for which more efficient general-
purpose solvers are available [10, 11, 24]. This approach may provide good results especially
for low- to mid-size instances, while specialized approaches are still required for very-large-scale
instances, or when very fast running times are required by the operational environment; this is
also confirmed by the results reported in §6 of the present paper.

Among the most efficient specialized algorithmic approaches for (UC), Lagrangian Relaxation
(LR) methods [2, 6, 7, 8, 14, 23, 28] surely play a major role. These approaches exploit the
spatial structure of the problem, that is, the fact that removing the constraints that tie the
different units together, one obtains a set of disjoint Single-Unit Commitment (1UC) problems,
requiring to optimally operate one single (hydro or thermal) unit over the time horizon. These
problems are typically easily solvable by network flow techniques—for hydro units—or Dynamic
Programming (DP) techniques—for thermal units.

However, the success of LR methods critically depend on two factors:

• being able to optimally solving the (1UC) problems efficiently;

• being able to turn the infeasible solution(s) produced at each step of the approach into
“good”, feasible ones.

In turn, both these depend on the specific details of the operational constraints of the generating
units that are represented in the mathematical model; each time that new constraints have
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to be included in the model, a (usually, nontrivial) modification is required to the solution
method to (1UC) (e.g., [21, 22, 12]), and possibly of the heuristic used to produce feasible
solutions. Thus, here appears the typical trade-off between the accuracy of the mathematical
models employed and the efficiency of the corresponding solution process. For hydro units, for
instance, it is customary to assume a linear relationship between the discharged water and the
generated power, disregarding the nonlinearities corresponding to the variation of the water
head and the minimum discharge necessary to keep the turbines operational; these assumptions
are reasonable when dealing with short term operation, and dramatically simplify the hydro
(1UC) problems. For thermal units, it is usually assumed that the dynamic of the generating
plant does not pose restrictions (other than on maximum and minimum power levels) on the
amount of power generated at each time period of the time horizon; unfortunately, this is not
realistic for large units or if the time periods are to be taken small (e.g., 15 minutes), since
then ramp constraints need to be considered. These limit the maximum increase or decrease of
generated power from one time period to the next, reflecting the thermal and mechanical inertia
that has to be overtaken in order for the unit to increase or decrease its output. Unfortunately,
ramp constraints complicate the structure of thermal (1UC) problems, rendering the classical
DP approaches unusable; this is due to the fact that the variables representing the power output
at different time periods are no longer independent once that commitment (on/off) decision has
been taken. Four approaches have been proposed in the literature to overcome this difficulty:

• Discretizing the power variables space one may keep using a standard DP procedure [5, 4];
however, the computational burden increases as the granularity of the discretization is
decreased, and the obtained solution is in general an approximated one.

• Approximating the cost function with a piecewise-linear (convex) function one may use the
DP approach of [13], in turn based on the efficient algorithm the Single-Unit Economic

Dispatch (1ED) problems with ramp constraints of [3, 26]; however, the computational
burden increases with the accuracy of the approximation (the number of linear pieces in
the cost function), and the obtained solution is in general an approximated one.

• Solving (1UC) problems only approximately, e.g., by using two-stage Lagrangian tech-
niques as in [20], where ramp constraints are dualized and the corresponding Lagrangian
multipliers updated (keeping those of the system balance constraints fixed) until a solution
that is ramp-feasible is attained; however, the computational burden increases as multiple
solutions of each (1UC) are required for each LR iteration, and the obtained solution is in
general an approximated one.

• Using general-purpose, off-the-shelf Mixed-Integer Quadratic Programming (MIQP) solvers
for solving (1UC) in alternative to DP approaches. This has the advantage of allowing
incorporation of several other constraints in the formulation, e.g. related to the electrical
market; since MIQP effective solvers have only recently become available, this approach
has usually been coupled to approximation of the cost function by a piecewise-linear (con-
vex) function, thus making (1UC) solvable by a more common MILP solver [1]. However,
the solution time for general-purpose solvers (as it should be expected) grows very rapidly
with the size of the instance, making this approach unusable for longer time horizons [18],
even if a state-of-the-art MIQP solver is used.

Recently, a DP algorithm for thermal (1UC) with ramping constraints has been proposed [18]
that can solve to optimality problems on a time horizon of n time periods in O(n3) for convex
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cost functions whose unconstrained minimum can be found in O(1), such as the quadratic ones
typically used in operational settings. The algorithm solves thermal (1UC) problems with a
very general definition of ramping constraints and complex, time-dependent startup costs. In
this paper, we report on the use of that algorithm within LR approaches to (UC). We show that
the increased complexity of the (1UC) subproblems—w.r.t. O(n2) of the case without ramp
constraints—does not represent a serious computational bottleneck for this class of approaches.
Also, we show that existing LR approaches that duly use the primal information provided by the
Lagrangian Dual (e.g. [14, 8]) are fairly “resistant” to the introduction of ramp constraints, once
these are properly taken into account in the Lagrangian subproblem. This is not obvious, since
the heuristic procedures typically used to recover a primal feasible solution are not easily ex-
tended to take into account ramp constraints. Yet, solving ramp-constrained (1UC) subproblems
turns out to be sufficient to provide the LR heuristic enough guidance to produce good feasible
solutions even with no other substantial modification of the approach, due to the fact that the
primal information computed by the Lagrangian Dual always remains ramp-feasible. To the best
of our knowledge, this is the first LR approach that has been shown capable of solving—very
large-scale—(UC) problems with ramp constraints with exact solution of the (1UC) subproblems
and without any form of approximation of either the power production levels or the objective
function. We show on a set of realistic thermal and hydro-thermal instances that the proposed
approach consistently obtains much better solutions than a comparable approach solving non-
ramp-constrained (1UC) problems. Also, we show that good quality solutions are obtained in a
small fraction of the time required for the same task by state-of-the-art, general-purpose MIQP
technology. Using a MILP (approximate) formulation within a general-purpose MIQP solver
turns out to be, for a somewhat surprising reason, much more efficient than using the MIQP
formulation on exactly the same solver; however, the LR approach still looks competitive for
large-scale instances, especially hydro-thermal ones.

2. The UC model

Consider a set P of thermal units and a set H of hydro cascades, each comprising one or
more basin units, and let T = {1, . . . , n} be the set of time periods defining the time horizon
(the time period “0” will be used for indicating the initial conditions of the power system).
Introducing status and power production variables of the thermal units, ui

t and pi
t, respectively,

with i ∈ P, t ∈ T , the objective function of (UC), representing the total power production cost
to be minimized, has the form

∑

i∈P

ci(pi,ui) =
∑

i∈P

(

ci(ui) +
∑

t∈T

ci
t(p

i
t)

)

; (1)

that is, while the power production cost at each hour is typically approximated via a (convex)
quadratic separable form (neglecting for instance the so called valve points, see e.g. [27]) in
the pi

t variables. In this paper, we allow the cost function to be nonseparable per hour due
to time-dependent start-up costs, whose exact form has no impact on the proposed approach
and is not reported here for the sake of notational simplicity; the interested reader can refer to
[18] for a detailed discussion of the form of start-up cost which can be accommodated by the
proposed algorithmic framework. The constraints of (UC) can be partitioned into three sets:
local constraints for thermal units, local constraints for hydro units, and global (system wide)
constraints.
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• Local constraints for thermal units: for each thermal unit i ∈ P , let τ i
+ and τ i

− be re-
spectively the minimum up- and down-time requirements, ∆i

+ and ∆i
− be respectively the

maximum ramp-up and ramp-down rates, p̄i
min and p̄i

max be respectively the maximum
and minimum power output of unit when operating in steady state, and l̄i and ūi be the
maximum power that can be produced by the unit in the time period where it is commit-
ted or decommitted, respectively. Then, the local constraints corresponding to each unit
i ∈ P are

p̄i
minui

t ≤ pi
t ≤ p̄i

maxui
t t ∈ T (2)

pi
t ≤ pi

t−1 + ui
t−1∆

i
+ + (1 − ui

t−1)l̄
i t ∈ T (3)

pi
t−1 ≤ pi

t + ui
t∆

i
− + (1 − ui

t)ū
i t ∈ T (4)

ui
t ≥ ui

r − ui
r−1 t ∈ T , r ∈ [t − τ i

+, t − 1] (5)

ui
t ≥ 1 − ui

r−1 − ui
r t ∈ T , r ∈ [t − τ i

−, t − 1] (6)

ui
t ∈ {0, 1} t ∈ T (7)

Note that we assume knowledge of the complete state of each unit prior to the beginning
of the current operation, that is, its commitment ui

0, the generated power pi
0; for the sake

of minimum up- and down-time constraints (5), (6), it is also necessary to know how long
it has been on or off at time period 0.

• Local constraints for hydro cascade units: each cascade h ∈ H is composed by a set H(h)
(possibly containing only one element) of individual hydro units; for each j ∈ H(h), vari-
ables qj

t , vj
t and wj

t represent respectively discharged water, the volume of the reservoir and
the spilled water at time period t ∈ T . Constants v̄j

min and v̄j
max represents respectively

the minimum and maximum volume for the reservoir, q̄j
max represents the technical maxi-

mum of discharged water (the technical minimum is assumed to be zero in order to avoid
nonlinearities in the model), while w̄j

t represents the natural inflows at time period t ∈ T .
Finally, let S(j) be the (possibly empty) set of the immediate predecessors of unit j—those
whose discharge and spillage reaches j without passing through other reservoirs—and tkj

be the water time delay from plant k ∈ S(j) to the basin feeding plant j. Then, the local
constraints corresponding to each unit j ∈ H(h) are:

0 ≤ qj
t ≤ q̄j

max t ∈ T (8)

v̄j
min ≤ vj

t ≤ v̄j
max t ∈ T (9)

vj
t − vj

t−1 = w̄j
t − wj

t − qj
t +

∑

k∈S(j)

(

qk
t−tkj

+ wk
t−tkj

)

t ∈ T (10)

Note that, in order for the balance equations (10) to be well-defined, we assume knowledge
of the volume of each reservoir at time period t = 0, as well as water discharged and
spilled at all time periods prior to t = 1 for which the water is still arriving to one of the
downstream basins (i.e., those k ∈ S(j) such that t < tkj).

• Global constraints: for each time period t ∈ T , let d̄t be the forecasted load to be satisfied,
and for each hydro unit j let αj be the power-to-discharged-water efficiency (assumed
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constant, again to avoid nonlinearities); then, the system-wide constraints—linking the
different units among themselves—are:

∑

i∈P

pi
t +

∑

h∈H

∑

j∈H(h)

αjqj
t = d̄t t ∈ T (11)

We refer to (UC) as the problem of minimizing (1) subject to constraints (2)—(11). This is
a large-scale, mixed-integer nonlinear program; however, it should be noted that when the ui

t

variables are fixed, the remaining Economic Dispatch (ED) problem is a linearly constrained
convex problem, hence easily solvable. For future reference, we will denote the set defined by
constraints (2)—(7) for a given thermal unit i ∈ P as U i, and the set defined by constraints
(8)—(10) for a given hydro cascade h ∈ H by Hh.

We remark that several of the (widely accepted) simplifying assumptions in the above model
can be relaxed without hindering the applicability of the proposed approach; in particular,
more sophisticated models of hydro cascades, e.g., taking into account nonlinear effects of the
water head on the power-to-discharged-water efficiency and/or nonzero technical minima for
discharged water, could be used at the cost of more difficult hydro subproblems and (ED)s.
Conversely, thermal units are modeled in a fairly sophisticated way, and the approach can be
easily extended (cf. [18]) to handle issues such as:

• Data dependent on the time period t, i.e., different ramp limits ∆i
t+ and ∆i

t− or start-up
and shut-down power output l̄it and ūi

t for each t ∈ T , modeling, e.g., the reaction to
varying operating parameters such as the external temperature.

• Data dependent on the history of the unit, i.e., different ramp limits, start-up and shut-
down power output, maximum and minimum power levels, and even (coefficients of the)
cost function according to how long the unit has remained consecutively committed before
the current time period.

• Different discretization intervals for commitment and power variables, e.g., power pro-
duction levels to be specified for each quarter of hour of the time horizon whereas the
commitment decisions can only be changed hourly.

Thus, the UC model here considered is well-suited for being employed in a free market regime,
both at the stage where GenCos need to optimize their production schedule once that their own
load profile has been established by the market procedures, and within approaches for computing
optimal bidding strategies [19, 9].

3. The Lagrangian relaxation

The LR approach is based on dualizing each of the coupling constraint (11) via a Lagrangian
multiplier λt, thereby forming the Lagrangian Relaxation of (UC)

L(λ) =
∑

i∈P

φ1
i (λ) +

∑

h∈H

φ2
h(λ) +

∑

t∈T

λtd̄t (12)

where

φ1
i (λ) = min

{

ci(pi,ui) − λpi : (pi,ui) ∈ U i
}

φ2
h(λ) = min

{

− λ
∑

j∈H(h) αjqj : [qj ]j∈H(h) ∈ Hh
}
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Is is well known (e.g., [16]) that for each λ ∈ R
n, L(λ) gives a lower bound on the optimal

value of (UC). Therefore, one is interested in the λ
∗ such that this lower bound is the best

(maximum), i.e., in the optimal solution of the Lagrangian Dual of (UC):

max { L(λ) : λ ∈ R
n } . (13)

Since L(·) is a non differentiable function, proper algorithms must be chosen for solving (13);
bundle methods [15], particularly in their disaggregated variant [2], have been repeatedly re-
ported to be quite efficient in solving (13), much more so [8] than alternative algorithms such
as subgradient methods [4, 28].

However, solving (13) is not, in general, enough to solve (UC); even for λ = λ
∗, the optimal

solution to (12) is not guaranteed to—and will not in general—satisfy the relaxed constraints
(11). Therefore, a number of Lagrangian heuristics have been devised that attempt to convert
the (sequence of) infeasible solution(s) provided by (13) in a (sequence of) feasible, hopefully
“good”, one(s). Roughly speaking, there are two possible ways for doing this:

• either combinatorial heuristics are run at every step of the iterative solution of (13), thus for
several different values of λ, that use the infeasible optimal solution of the corresponding
(12) to produce a feasible solution for (UC);

• or the Lagrangian problem is modified with further terms that try to enforce feasibility of
the obtained solutions.

Most approaches from the literature belong to the first group; it is outside the scope of the present
paper to describe them in detail, the interested reader being referred, e.g., to [2, 4, 8, 7, 14, 28].
These approaches suffer from the drawback that the combinatorial heuristic ran at each iteration
is dependent on the exact details of the model to be solved, and may be difficult to adapt to
different situations; this motivated the development of the second group of approaches, where
a further quadratic term (either an Augmented Lagrangian one [6] or a proximal one [12]) is
added to the problem to try to enforce feasibility of the obtained solutions. Since the quadratic
term may make the Lagrangian relaxation harder to solve, approximate solution via sequential
linearization may have to be employed.

It is relevant for the present context that all the most recent and efficient approaches, both
of the first [8, 14] and of the second [6, 12] type, make use of the continuous primal informa-
tion generated by the solution of (13). In fact, it is well-known that the Lagrangian Dual of
a problem with convex objective function and nonconvex feasible set is equivalent to the con-

vexified relaxation of the problem where the original objective function is optimized over the
intersection of the convex hull of the (integer) solutions of the LR and the relaxed constraints.
Most importantly, this equivalence is computational in the sense that basically all algorithms for
solving the Lagrangian Dual either naturally compute, or can be modified to do so, a solution to
the convexified relaxation [16]. In particular, bundle methods applied to (13) compute at each
iteration a continuous solution that satisfies all constraints (2)—(9), and that pretty rapidly
becomes almost feasible w.r.t. the relaxed constraints (11). This continuous, almost feasible
solution is very useful to drive the heuristic search for integer, entirely feasible solutions to (UC),
as described in more details in §5.

The LR approach has proven to be capable of solving non ramp-constrained large-scale (UC)
problems with a provable high degree of accuracy in relatively short time. However, extending
the approach to ramp constraints requires, in principle, three steps:
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i) solving (possibly approximately) ramp-constrained (1UC) subproblems;

ii) modifying the heuristics in order to take into account the ramping constraints while fixing
the commitment ui

t variables;

iii) solving ramp-constrained Economic Dispatch problems at each iteration to recover the pi
t

and qj
t variables once that the ui

t variables have been (heuristically) fixed.

Of those, (i) has only been made possible—without approximations or an excessive growth of the
computational burden—by the development in [18], while (iii) is trivial in that it only requires
to add some linear constraints to the classical (ED) formulation. As for the point (ii), the
rationale behind the “augmented” approaches [6, 12] was exactly to provide a general substitute
for specialized combinatorial heuristics in order to avoid the problem.

The aim of this paper is to show that point (ii) is—at least for ramp constraints, but pos-
sibly also in other cases—much less of a problem than often perceived, that is, the combi-
natorial heuristics originally developed for (UC) without ramp constraints are efficient in the
ramp-constrained case also, only provided that ramp-constrained (1UC) (and, obviously, ramp-
constrained (ED)s) are solved. This should not be too surprising considering that, when a
ramp-constrained (12) is solved, the latest combinatorial heuristics construct the feasible solu-
tions using, as starting points, two solutions—an integer infeasible one and the continuous almost
feasible one—that are both ramp-feasible. Hence, ramp-constrained (1UC) provide—through
the ramp-feasibility of the primal solutions, as well as through better dual multipliers—the stan-
dard LR heuristic with enough guidance to produce good feasible solutions even with no other
modification of the approach.

4. Solving the (1UC) problem

In this section we briefly sketch the algorithm of [18] for solving the ramp-constrained (1UC)
problem. We assume that each term ci

t in (1) is a “simple” convex function, in the sense that
unconstrained minimization of ci

t can be carried upon in O(1). Then, the overall cost function
ci of (1) is the sum of ci

t plus a start-up cost function that only depends (but possibly in
sophisticated ways) on how long the unit has been turned off. Because we are only interested
in one unit at a time, for notational simplicity in the remainder of the section we will drop the
superscript i.

The approach of [18] is a DP procedure, that is, it requires the computation of a shortest
path in a suitable acyclic directed state space graph. Following an idea originally proposed in
[13], the state space graph comprises a node for all pairs (h, k) for h, k ∈ T and k ≥ h, plus a
source s and a sink d. Each state (h, k) represents the unit being turned on at time period h
(i.e., being uncommitted at time period h − 1), and being turned off again at time period k;
clearly, all states that correspond to operations violating the minimum up-time requirements are
not constructed. The graph has arcs between any node (h, k) and (r, q) such that it is feasible
to turn on the unit at time instant r given that it has been turned off at time instant k; each
of these arcs are labeled with the start-up cost of the unit at time instant r. There are also
arcs from the source s to all nodes (h, k) compatible with the initial state of the unit; finally,
there is a zero-cost arc from each node to the sink d. Clearly, every s − d path on this graph
represents a feasible solution to (1UC), arc costs representing the contribution of start-up costs
to the objective function; fixed generating costs, if any, can also be easily included as node costs.
It is now necessary to compute, for each node (h, k), the optimal contribution of the variable
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generating costs, that depend on the pt variables. This requires the solution of the Economic

Dispatch with ramp constraints problem for the interval [h, k], that is, the minimization of (the
continuous part of) (1) subject to (2)—(7) if all ut variables for t /∈ [h, k] are fixed to zero

and all those for t ∈ [h, k] are fixed to one; we will denote this problem as (EDhk). Since all
the binary variables are fixed, this is an optimization problem with convex objective function
and linear constraints, hence easily solvable. By assigning its optimal objective function value
z∗hk = z(EDhk) to the corresponding node, the (node plus arc) cost of each s − d path on the
graph is that of the feasible solution it represents. Thus, (1UC) can be solved with a visit of a
graph with O(n2) nodes and O(n4) arcs, once that all the data has been computed; exploiting
some structural properties of the state-space graph, the complexity of the visit can be reduced
to O(n3) [18].

However, computing the node costs requires the solution of O(n2) convex problems, each with
up to n variables. Hence, solving (EDhk) efficiently—or, more to the point, solving all the
O(n2) of them efficiently—is crucial. Indeed, the main contribution of [18] is the proposal of an
efficient dynamic programming algorithm that can solve all O(n2) Economic Dispatch problems
in O(n3) for cost functions whose unconstrained minimization is O(1), i.e., given by a closed
formula, such as the quadratic ones. The algorithm is based on the fact that, defining zhk(p̄) to
be the optimal solution value of (EDhk) if the further constraint pk = p̄ is imposed, one has a
constructive way to compute zh(k+1) given zhk. In particular, one can prove [18] the following
fact:

Proposition 4.1. The function zhk is finite-valued only in v + 1 intervals [m0,m1], [m1,m2]
. . . [mv,mv+1], with v ≤ 2(k − h), in which

zhk(p̄) = zj(p̄) if p̄ ∈ [mi,mi+1] for i = 0, . . . , v

where each function zj is the sum of at most k − h + 1 functions ct for t ∈ {h, h + 1, . . . , k}.

The proof of the above proposition is constructive, and provides an algorithm for explicitly
computing zh(k+1) given the piecewise representation of zhk (the case zhh is trivial). The over-
all complexity of the procedure depends on the actual form of the functions ct; for quadratic
functions, all the problems (EDhh), (EDh(h+1)), . . . , (EDhk) can be solved in O((k−h)2), hence
solving all the O(n2) (ED) problems is O(n3). Note that this complexity is only for computing
the optimal objective function values; however, the optimal solutions of all the (EDhk) problems
corresponding to all nodes in the optimal path are also needed. Those solutions are easily found
with a “backward pass”, using the available information constructed in the “forward pass”: the
(both primal and dual) optimal solution of any (EDhk) can be found in O(k − h), so comput-
ing the optimal solution to (1UC), in terms of the power variables, once the “upper” dynamic
programming procedure is computed, is O(n). Thus, with the approach of [18] one can solve
(1UC), for the quadratic case, in O(n3) overall.

5. The combinatorial heuristic

Here we briefly recall the combinatorial heuristic, proposed in [8], which is ran at each step of
the iterative method used to solve (13). The heuristic uses as starting points the current value of
the Lagrangian multipliers λ̄, the corresponding optimal solution s̄ = [p̄, ū, q̄] of (12)—in which
ū is integral and constraints (2)—(10) are satisfied, but (11) are not—and the “convexified”
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solution s̃ = [p̃, ũ, q̃] produced by the bundle approach, where ũ is not integral, constraints
(2)—(10) are satisfied and constraints (11) are typically almost satisfied. Then, the following
three steps are performed:

i) the “convexified” hydro power production q̃ is considered as fixed, and the total power
demand is decreased accordingly;

ii) a greedy-type heuristic is used to set a commitment status û of the thermal units in order
to try to guarantee that the remaining power demand can be satisfied;

iii) finally, the actual power production [p̂, q̂] of thermal and hydro units is determined by
solving the Economic Dispatch problem (1)—(11) for the fixed value û of the commitment
variables; note that (ED) is large-scale convex quadratic program, hence theoretically
“easy” but still relatively costly to solve in practice.

This heuristic is motivated by the fact that adjusting the commitment status of thermal units is
relatively simple because the commitment decision at time t directly impacts only commitment
decisions in a small set of time instants centered on t, depending on the minimum up- and down-
time constraints, while changing the power output of some hydro units at a certain time instant
potentially impacts the hydro power output of the units in all the time horizon. However, once
the combinatorial decisions have been taken, the remaining continuous problem (which, however,
is not guaranteed to have a feasible solution) is “easy”. In particular, the greedy heuristic at
step (ii) checks for each time period t whether the residual demand

d̃t = d̄t −
∑

h∈H

∑

j∈H(h)

αj q̂j
t

can be satisfied by the active thermal units in the integral solution ū by simply checking that it
belongs to the range [ū−

t , ū+
t ], where

ū−
t =

∑

i∈P

p̄i
minūi

t ū+
t =

∑

i∈P

p̄i
maxūi

t .

If d̃t > ū+
t , then the time period t is said undercommited, while if d̃t < ū−

t it is said overcommitted ;
in either case, the solution ū has to be modified by turning some units on or off at t. For this
purpose, a priority list of units is formed to decide which ones are more “promising” at any
given time instant; the list is based on a combination of the Lagrangian cost of turning on the
unit and on the “convexified” commitment status ũi

t of the unit, interpreted as a “probability”
that the unit i should be on at time period t in the optimal solution.

We remark that this is only one of the several possible implementations of the algorithmic
scheme; several others are presented and compared in [8], showing that the one just described is
usually the best. Furthermore, the heuristic has been developed for the non-ramp-constrained
case: the definition of ū−

t and ū+
t does not take into account the ramping constraints, and

therefore may trick the heuristic into concluding that a time period is “feasible” while in actuality
it is not because, due to ramping, the maximum (minimum) amount of power that can actually
be produced in t, given the chosen commitment, is smaller (larger) than ū+

t (ū−
t ).

It would be possible (although nontrivial) to try to adapt the heuristic to take into account
somewhat ramp rates. Furthermore, one may go the route of [6, 12] and avoid the heuristic
altogether; finally, the two approaches may be combined. However, the purpose of this paper is
to show that the information about ramp rates “embedded” into s̄ and s̃ is enough to provide the
heuristic, with no modification, enough guidance to produce (good quality) feasible solutions.
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6. Computational Experiences

In this section we present some numerical results aimed at showing the efficiency and the effec-
tiveness of the proposed approach. Our algorithm has been coded within a C++ commercial
code, PowerSchedO . All tasks are implemented by custom-written routines except the solu-
tion of the ED—a large-scale, linearly constrained convex quadratic program—in step (iii) of the
heuristic, for which the commercial solver Mosek was used. All the results have been obtained
on an Opteron 246 (2 GHz) computer with 2 GigaBytes of RAM, running Linux Fedora Core 3.

For our tests, we have randomly generated several sets of realistic pure thermal and hydro-
thermal instances, with number of thermal units ranging from 20 to 200 and number of hydro
units ranging from 10 to 100, on a daily problem (n = 24). The generator produces a generating
set with “small”, “medium” and “large” thermal units in realistic proportions; the character-
istics of each unit are then randomly generated within a set of realistic parameters, depending
on the type of the unit. Ramping restrictions are also randomly generated within realistic
measures, resulting in large units to require between two and three hours to ramp from the
technical minimum to the technical maximum. All the instances have time-invariant start-up

costs; this is a “worst case” situation for the new approach, in that the new DP procedure
requires O(n3) regardless to the fact that start-up costs are time-dependent or time-invariant,
while the “classical” DP is O(n2) in the former case, but only O(n) in the latter. Furthermore,
introducing time-dependent startup costs in the MIQP formulation increases the number of
continuous variables and constraints (although not the number of binary variables [25]) in the
model, thereby making it more difficult to solve, while—apart from the possible effect on the
DP procedure—time-dependent startup costs are basically handled for free in the LR approach.
The (UC) instances are freely available at

http://www.di.unipi.it/optimize/Data

6.1. Impact of the new DP procedure on the LR approach

We first analyze the impact of the newly proposed DP procedure by comparing two versions of
the LR approach, identical except for the fact that one uses the ramp-constrained DP of [18]
and the other uses the “classical” DP disregarding ramps.

The results are displayed in Table 1. In the Table, column “p” reports the total number of
thermal generating units, while column “h” reports the total number of hydro units. The first
half of the table, with h = 0, is therefore composed by “pure thermal” instances; each row
reports averaged results of 5 instances of the same size. Columns “RCDP” report results for
the LR approach using the ramp-constrained DP, while columns “UDP” report results for the
LR approach using the standard unconstrained DP. In both cases, column “time” reports the
required running time (in seconds), column “iter” reports the total number of iterations of the
bundle method used to solve (13)—that is, the number of times that the heuristic is attempted—
, column “sol” reports the total number of feasible solutions found and column “gap” reports
the obtained gap (in percentage)

best feasible solution − best lower bound

best lower bound
× 100;

the number in parenthesis next to the gap, if any, is the number of instances in that group for
which no feasible solution at all has been found, so that the reported gap is the average among
those for which at least a solution was found. Note that we have used the best overall lower
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bound for computing the gap, as opposed to the best lower bound produced by each single
algorithm, so that any difference in gaps is only due to the quality of the obtained feasible
solutions. For UDP, column “∆lb” reports the gap (in percentage) between the obtained lower
bound and that of RCDP; the latter is always higher because the Lagrangian Relaxation is
“more constrained”, and the Lagrangian Dual is solved to optimality.

RCDP UDP
p h time iter sol gap time iter sol gap ∆lb

20 0 8 189 34 0.44 6 202 1 11.30(3) 2.49
50 0 17 195 33 0.26 16 247 1 5.25 (3) 1.48
75 0 30 206 33 0.38 22 278 1 9.25 2.38

100 0 46 213 21 0.48 29 285 1 8.69 2.21
150 0 72 277 23 0.20 54 341 1 7.66 2.31
200 0 134 317 67 0.06 78 369 1 8.53 2.46
20 10 16 162 159 0.22 7 206 3 3.80 1.50
50 20 41 165 146 0.07 16 231 6 0.63 1.19
75 35 89 209 166 0.02 28 274 5 1.73 1.19

100 50 135 218 143 0.04 38 301 1 1.86 1.27
150 75 222 223 164 0.01 71 318 1 4.10 (1) 1.20
200 100 353 244 192 0.05 90 305 2 4.38 1.25

Table 1: Comparison of the two different DP approaches

It is clear from the table that RCDP is much more effective than UDP. On pure thermal
instances it obtains much smaller gaps—always at least one order of magnitude smaller, and up
to three orders of magnitude smaller in the largest instances—and it is always capable of finding
at least a feasible solution, while UDP fails to solve several of the smallest instances. This is
clearly explained by looking at column “sol”: while RCDP finds feasible solutions at least once
in roughly ten dual iterations, UDP only finds on average one solution during all the course of
the algorithm. This is not surprising, since the heuristic in UDP has absolutely no information
about ramp constraints, that only come up in the solution of the ED problem, when the critical
(binary) decisions have already been taken; on the contrary, RCDP benefits from much more
accurate information coming from the ramp-constrained Lagrangian subproblems. This also
explains why UDP is faster (though never more than a factor of two): it is not due to the extra
cost of the DP procedure, that is negligible in the context of the overall approach, but rather
to the fact that UDP solves a much smaller number of ED problems, which are rather costly.
Clearly, the extra time required by RCDP is very well-spent in this case, especially considering
the much higher robustness of the approach; the fact that RCDP also improves the lower bound,
most often to the tune of more than 2%, is also a nice extra effect of using the more sophisticated
DP procedure.

The results of hydro-thermal instances confirm those of the pure thermal case. Hydro-thermal
instances are easier to solve for LR approaches, since the flexibility of hydro units allow the
system to react better to changes of the demand, possibly without requiring (too many) thermal
units to switch state. This is testified by the much smaller gaps, by the much larger fraction
of dual iterations that actually produce a feasible solution, and by the fact that—barring an
occasional (150, 75) instance—even UDP consistently finds feasible solutions. However, the
gaps obtained by RCDP are in this case most often better than those of UDP by three orders of
magnitude, and (with a comparable number of dual iterations) the former finds feasible solutions
in the hundreds, while the latter only finds a few of them. Due to the much smaller number
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of ED solved, UDP is also roughly three times faster than RDCP; however, the latter never
requires more than 6 minutes even for the largest instances, and the obtained solutions are of
excellent quality.

6.2. Comparison with a general-purpose MIQP solver

We now present results comparing the LR using the ramp-constrained DP of [18] with an ap-
proach using state-of-the-art, general-purpose MIQP technology. For this, we simply passed the
MIQP formulation (1)—(11) to the commercial solver Cplex 9.1.

The results are displayed in Table 2. For RCDP, the results of Table 1 are reported, albeit
limited to the pure thermal cases for reasons to become clear shortly. Columns “Cplex MIQP”
reports results obtained by the MIQP solver Cplex 9.1. The code was ran with a time limit
of one hour, which is already unrealistic in most production environments; however, none of
the instances were solved to optimality within that time. Thus, we report in column “first” the
(average) time required by the MIQP solver for finding any integer solution, in column “best”
the time required for finding its best solution, and in column “eqv” the time required for finding
a solution with equivalent or better quality than the best one found by RCDP (counting one
hour if this never happens). Finally, columns “gap” and “∆lb” have the same meaning as for
UDP in Table 1.

RCDP Cplex MIQP

p time iter sol gap first best eqv gap ∆lb
20 8 189 34 0.44 24 2229 858 0.29 -0.14
50 17 195 33 0.26 249 1491 2563 0.22 0.34
75 30 206 33 0.38 447 1514 2195 0.10 0.44

100 46 213 21 0.48 940 2327 1236 0.13 0.47
150 72 277 23 0.20 2348 2483 3280 0.24(1) 0.42
200 134 317 67 0.06 3600 3600 3600 * (5) 0.44

Table 2: Comparing the LR and a MIQP solver

The Table shows that, given enough time, the MIQP approach may deliver more accurate
solutions than the LR approach on smaller-size instances. For very small instances (p = 20)
this is true both for the lower bound and for the upper bound, while for instances with p up
to 100 the lower bound is always dominated by the Lagrangian one, while the upper bound
may be better. However, this comes at a hefty cost in terms of time, as Cplex takes anywhere
between 25 and 150 times the running time of RDCP to deliver solutions of the same quality
(even when it succeeds in doing this); we should also remark that RDCP may—and typically
does—find its best solution way before the actual termination of the approach. Furthermore,
the MIQP solver requires a long time just to find any feasible solution (possibly of bad quality),
which is unacceptable in many operating environments. Finally, for p > 100 it may fail to find
a feasible solution at all within an hour of running time; this always happens for the largest
instances (p = 200), which are, incidentally, those that are better solved by the LR approach.
We have therefore avoided to report the results of Cplex for hydro-thermal instances, since the
much larger size of the formulation (for the same number of thermal units) make it even less
efficient at solving these instances.
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6.3. Comparison with a general-purpose MILP solver

During the first revision of this paper, an anonymous referee suggested us to test the approx-
imated MILP formulation of [10]; this is obtained from (1)—(11) by replacing the quadratic
terms in the objective function by a (convex) piecewise-linear approximation. While the num-
ber of pieces in the approximation is in general arbitrary, we used a four-piece approximation as
suggested in [10] (the interested reader is referred to the original paper for details); this results
in a MIP with roughly 4 times the number of continuous variables and more constraints than
the original quadratic formulation, but without quadratic terms in the objective function.

We were initially doubtful about the possible effectiveness of this formulation, since we were
going to solve it with the very same general-purpose solver, Cplex 9.1, thus most of the so-
phisticated techniques (preprocessing, branching rules, valid inequalities, . . . ) available to the
MILP solver were also available in the MIQP case, too. Hence, the only fundamental difference
between the two cases seemed to be whether a Quadratic Program (QP) or a Linear program
(LP) was solved at each relaxation instead; since most often a QP can be solved in no more
than three times the time it takes to solve an LP of the same size, we expected nothing more
than an improvement of at most a factor of three in the running times, even less since the
MILP formulation is significantly larger than the MIQP one. However we followed the advice
of the referee, and the actual results, reported in Table 3 proved us blatantly wrong. Columns
“RCDP” have the same meaning as in the previous paragraphs; the results are however different
since, having been obtained over an year after the previous ones, a more advanced and efficient
version of the code was used, with a significant part of the performance improvements being
due to using a more recent version of Mosek (version 5 vs. version 3.2). Columns “Cplex MILP”
reports results obtained by the MILP solver Cplex 9.1; as in [10], the code was instructed to
stop as soon as a relative gap of 0.5% or less is attained, and it always managed to achieve this
result. We could mention at this point that, being the piecewise-linear approximation of the
objective function an upper estimate, the lower bounds computed by the MILP solver are not,
in general, valid for the “true” problem, so the estimate of the relative gap is approximated.
Columns “time” and “gap” have the same meaning as in the other cases, columns “ftime” and
“gap” report respectively the time it takes to generate the first integer feasible solution (the
column being empty if the time is very small, so that Cplex does not correctly report it) and
its relative gap, column “nodes” reports the number of visited nodes in the enumeration tree
and, finally, column “LPs” reports the total number of LP solved; this is much larger than the
number of nodes because Cplex 9.1 employs a sophisticated “Branch & Cut” approach where
valid inequalities are automatically derived and added to the formulation to improve the lower
bound.

The table shows that the MILP approach is remarkably efficient in obtaining good quality
solutions for UC instances, dramatically more so than the MIQP one. A close inspection of
the solution logs revealed us that the difference mainly lies in the effectiveness of the primal

heuristic, i.e., the (unknown) approach used within the Cplex solver to construct a feasible
integer solution out of the continuous one produced by the relaxation. In fact, while in the
MIQP case the solution, if at all produced, had at least initially abysmal gaps (to the tune of
7%), the very first solution produced by the MILP solver quite often, although not always, has
a very small gap (much less than 1%); even when the first solution is not satisfactory, the MILP
solver would typically find a very good one shortly thereafter.

The reasons of this dramatic difference in the effectiveness of the primal heuristics in the MIQP
and MILP case is not very clear to us; perhaps it can be due to the fact that the continuous
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RCDP Cplex MILP

p h time gap iter time gap ftime fgap nodes LPs
10 0 0.75 0.99 187 0.95 0.33 1.18 0 23
20 0 1.83 0.46 189 3.72 0.36 1.00 0 23
50 0 4.84 0.28 195 21.93 0.21 15.98 0.36 0 25
75 0 9.41 0.34 206 56.31 0.20 47.08 1.62 10 59

100 0 14.74 0.33 213 94.09 0.17 69.75 2.18 16 76
150 0 21.20 0.17 277 218.69 0.12 177.35 6.58 16 115
200 0 34.80 0.09 317 267.78 0.09 247.12 1.85 6 87
20 10 1.76 0.39 170 93.53 0.21 0.59 140 258
50 20 6.36 0.06 160 17.98 0.06 17.98 0.06 0 60
75 35 15.01 0.04 198 96.86 0.11 96.86 0.11 170 300

100 50 24.74 0.04 209 130.86 0.06 130.86 0.06 180 266
150 75 37.41 0.02 189 467.62 0.06 467.62 0.06 300 554
200 100 50.91 0.01 175 427.71 0.05 427.71 0.05 205 321

Table 3: Comparing the LR and a MILP solver

solution generated by the MIQP code is not, usually, a vertex of the feasible polyhedron, and
therefore may be “more fractional” than the one generated by the MILP code. This may con-
ceivably impact on the performances of the heuristic, which typically uses rounding techniques
and therefore greatly benefits from having very many variables already set to integer values.
Whatever the reason, the MILP approach has proved capable to obtaining very good quality
solutions to even the largest instances in times not exceeding 8 minutes.

On the pure thermal instances, the MILP code consistently outperforms the LR as far as the
quality of the solutions is concerned; however, the gap between the two narrows as the size
of the instances increase, and for the largest instances the two approaches provide solutions of
comparable quality. Furthermore, the LR approach is always faster, with the speedup increasing
as the size of the instances does and reaching one order of magnitude. Also, column “ftime”
reveals that the first feasible solution is obtained very late, sometimes right before termination;
thus, there does not seem to be a way to improve on these running times, not even by accepting
the very first solution produced (which, as column “fgap” indicates, can be of very bad quality).

This trend is even clearer for hydro-thermal instances. There, for all instances with p > 20
the MILP code stops as soon as the first solution is obtained; unlike the pure thermal case, that
solution invariably turns out to be of very good quality. However, unlike the pure thermal case
the LR approach almost always provides solutions of even better quality than the MILP, and
requires much less time to do so, with a speedup of up to a factor of 12 on the largest instances.
So, while the MILP approach is highly competitive w.r.t. the LR one on small- to mid-size
instances, especially pure thermal ones, when running time is not much of a concern, the LR
approach still is the method of choice for very-large-scale instances, especially hydro-thermal
ones, when a fast response time is required.

7. Conclusions and directions for future work

In this paper, we have proposed a Lagrangian Relaxation (LR) approach for solving large-
scale hydro-thermal Unit Commitment (UC) problems with ramp constraints on the thermal
generating units. The keys of the effectiveness of the approach are the efficient algorithm for
Single-Unit Commitment (1UC) problems with ramp constraints recently proposed in [18], that
exactly solves the Lagrangian subproblems without resorting to any form of approximation, and
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the sophisticated heuristics for producing an integer ramp-feasible and demand-feasible solution
out of the two infeasible ones (the integer demand-infeasible and the continuous demand-almost-
feasible) computed by the LR approach. Despite the fact that the heuristic has been developed
for problems without ramping constraints, and does not take them into account, solving ramp-
constrained subproblems turns out to be sufficient for solving with high provable accuracy very-
large-scale realistic instances in reasonable computational time on low-end hardware.

Our approach is competitive with using general-purpose MIP technology, especially Mixed-
Integer Quadratic Program solvers. Using the approximated formulation of [10] turns out to
provide consistent improvements, up to the point that the resulting MILP approach may be
preferable to the LR one on small- to mid-size instances, especially pure thermal ones; however,
the LR approach still is the method of choice for very-large-scale instances, especially hydro-
thermal ones, when a fast response time is required. Furthermore, our LR approach could be
improved in at least three ways:

• by improving the heuristic in order to take into account ramp constraints directly in the
logic of the greedy approach, as opposed to only indirectly by the use of ramp-constrained
starting solutions;

• by using an “augmented” approach a-la [6, 12] in alternative to, or in combination with,
the combinatorial heuristic;

• by embedding the whole process in a Branch&Bound approach, like that of Cplex, in order
to refine both the upper and the lower bound at the cost of a longer running time.

A different line of research involves increasing the accuracy of the employed mathematical models
of hydro and thermal units to improve the real-life quality of the obtained solution, for instance
by taking into account reserve constraints, i.e., reserving spare capacity on the active thermal
units in order to be able to cope with the inherent uncertainty of the load and system failures.
These constraints are necessary in a monopolistic context, and may be useful in a liberalized
regime since extra available capacity is a valuable commodity that is normally traded in a
separated market. Incorporating reserve constraints in the “classical” (UC) problem is usually
not difficult; indeed, they are often considered in the literature [8]. However, extending our
approach to reserve-constrained versions of (UC) is not straightforward, and it will be the
subject of a future work.
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