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Abstract—The paper presents a simple and effective 

Lagrangian relaxation approach for the solution of the optimal 
short-term unit commitment problem in hydrothermal 
power-generation systems. The proposed approach, based on a 
disaggregated Bundle method for the solution of the dual 
problem, with a new warm-starting procedure, achieves accurate 
solutions in few iterations. The adoption of a disaggregated 
Bundle method not only improves the convergence of the 
proposed approach but also provides information that are 
suitably exploited for generating a feasible solution of the primal 
problem and for obtaining an optimal hydro scheduling. A 
comparison between the proposed Lagrangian approach and 
other ones, based on sub-gradient and Bundle methods, is 
presented for a simple yet reasonable formulation of the 
Hydrothermal Unit Commitment problem. 

Index Terms—Power generation operation, Hydrothermal unit 
commitment, Power generation dispatch, Lagrangian Relaxation, 
Bundle methods. 

I.  NOMENCLATURE 

I  set of indexes of available thermal units ( I : 
number of thermal units; i: thermal unit index). 

B set of indexes of river basins ( B : number of 
river basins; b: basin unit index). 

H, Hb set of indexes of all available hydro units and 
those in river basin b, respectively, ( H : 
number of hydro units, bH : number of hydro 
units in river basin b; h: hydro unit index). 

'
hH  set of indexes of available upstream hydro units 

in river basin b directly above hydro unit h 
( '

hH : number of hydro units; h’: upstream 
hydro unit index). 

T  set of time periods in the optimization horizon 
( T : number of time periods; t: time period 
index). 

D  T -dimensional vector of load demands Dt in 
each period t. 

R  T -dimensional vector of the required operating 
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spinning reserves Rt in each period t. 
u I -rows T -columns matrix, whose rows are 

the T -dimensional arrays ui of the 0-1 
variables ui,t indicating the commitment state of 
thermal unit i during period t. 

pI I -rows T -columns matrix, whose rows are 
the T -dimensional arrays pi of production 
levels pi,t of thermal unit i during each period t. 

pH H -rows T -columns matrix, whose rows are 
the T -dimensional arrays ph of production 
levels ph,t of hydro unit h during each period t. 

,  ,  i i hp p p  minimum/maximum outputs of the units. 
,  u d

i iτ τ  minimum up- and down-times of thermal units. 
,i tc   per hour operating cost of committed thermal 

unit i at period t, as a quadratic function of 
production level pi,t. 

, ,,  i t h tr r   operating reserve contributions that can be 
supplied by the units during period t as a 
function of their production levels. 

,
u
i ts  start-up cost which is charged whenever thermal 

unit i is committed at the beginning of period t. 
It can depend on the number of periods that the 
unit has been down. 

,h tw , ,h ta , ,h ts  water discharge rate, net inflow rate and spillage 
of reservoir h during period t. 

nt length of period t. Summation tt T
n

∈�  is equal 
to the optimization horizon. 

',h hτ  water transport delay from hydro unit h’ to 
reservoir h. 

,h tV  storage volume of the reservoir of hydro unit h 
at the end of period t, limited between a 
maximum hV  and a minimum hV  value. 

,in ,end , h hV V  storage volumes of reservoir h at the beginning 
and at the end of the optimization horizon, as 
given by a long-term hydro-scheduling. 

II.  INTRODUCTION 
HIS paper deals with the solution of short-term 
unit commitment (UC) problems in hydrothermal 

power-generation systems. Obtaining good schedules of 
electric power generating units over a daily to weekly time 
horizon can considerably reduce the production costs, which is 
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of increasing importance in the ongoing liberalization of the 
electricity market in many countries [1]. 

The optimization model dealt with in this paper takes into 
account the main operating constraints and physical 
characteristics of a hydrothermal power generation system. 
The relevant mathematical formulation consists of a 
large-scale mixed-integer non-linear optimization problem 
(e.g. [2]). 

The solution approach that is most widely used at present is 
Lagrangian relaxation (e.g. [3-24]), due also to its ability to 
include more detailed system representation than would be 
possible with other techniques [1]. In the Lagrangian 
relaxation (LR) approach, the problem is decomposed into 
independent single-unit problems by relaxing the coupling 
constraints, and the corresponding (Lagrangian) dual problem 
is solved seeking for the optimal multipliers of the relaxed 
constraints. Heuristics are then used to obtain a feasible 
schedule. 

Different non-differentiable optimization methods have 
been proposed for the solution of the Lagrangian dual. The 
correct choice of the method is critical both for the efficiency 
of the lower bound computation and for the quality of the 
primal solution obtained. The first approaches have used 
sub-gradient methods (e.g. [3-6]) that require low computing 
effort per iteration, but have also low convergence 
characteristics. Recently, LR approaches have been presented 
based on dynamically constrained [7] and Interior-Point 
Cutting-Plane methods [8], and Bundle methods in different 
variants: aggregated, disaggregated (e.g. [9-16]) and 
reduced-complexity ones [17]. In order to overcome the 
non-differentiability of the Lagrangian function, Augmented 
Lagrangian (AL) approaches (e.g. [18-21]) have also been 
used. In this case, however, the AL is not directly separable 
between production units. It is well known (e.g. [25,26]) that 
generalized Bundle methods are just approximated Augmented 
Lagrangians. 

This paper presents a simple yet effective LR approach for 
the hydrothermal UC problem, fitted by a Lagrangian heuristic 
that exploits the information provided by solving the dual 
problem with a proximal Bundle method, and by a 
“warm-starting” procedure that improves both convergence 
and quality of the solutions. One of the main points of the 
proposed approach is the adoption of a disaggregated bundle 
method. The aim of this paper is to show the influence of the 
Lagrangian optimization procedure on the performance of the 
Lagrangian heuristic. In particular, we underline the 
importance of using disaggregated methods and of exploiting 
the available primal information. 

In the next section, Section III, a mathematical formulation 
of the problem is given. This is followed, in Section IV, by a 
description of the LR approach and of the solution of the dual 
problem by aggregated and disaggregated Bundle methods. In 
Section V the proposed Lagrangian heuristics and 
warm-starting procedure for hydrothermal UC are presented. 
In Section VI, by means of computational results, we examine 
the impact of the proposed heuristics both on the convergence 
characteristics of aggregated and disaggregated Bundle 
methods for solving the dual problem, and on the quality of the 
obtained UC. 

III.  PROBLEM FORMULATION 
Modeling of UC is very diverse, due to the different types 

of thermal generation (conventional, nuclear, combined-cycle, 
heat and power cogeneration, etc.) and of hydro generation 
(with pump-storage plants that can be hydraulically coupled 
and subjected to very different natural and manmade 
constraints), to the presence of transmission constraints, 
emission constraints, etc [27]. 

The present analysis of the behavior of the proposed 
Lagrangian heuristics has been carried out on the following 
formulation of the hydrothermal UC problem, which takes into 
account the main operating constraints and the physical 
characteristics of the power generation system, usually 
considered for the problem of interest (e.g. [2]). In particular, 
we consider a power system of T  thermal units and B  river 

basins, each with bH  hydro units. The aim is to determine 
the hydrothermal UC that minimizes the sum of operating 
costs ,i tc  and start-up costs ,

u
i ts  of committed thermal units 

( ) ( ) ( ), , , ,, , , ,
min min  ,

I H I H

u
i t i t i t i t i I

i I t T
u c p s C

∈ ∈

� �⋅ + =� ���u p p u p p
u u p  (1) 

and satisfies the forecasted demands D and operating spinning 
reserve R1 (global constraints), 

, , ,i t i t h t t
i I h H

u p p D t T
∈ ∈

⋅ + = ∀ ∈� �  (2) 

, , ,i t i t h t t
i I h H

u r r R t T
∈ ∈

⋅ + ≥ ∀ ∈� �  (3) 

without violating physical and operating constraints of the 
generation units, disregarding network and emission 
constraints. The considered operating constraints for each 
thermal unit i and time period t are 

, , ,

and  constraints.
i t i i t i t i

d u
i i

u p p u p

τ τ

⋅ ≤ ≤ ⋅
 

If the time step is chosen particularly small with 
comparison of the slow dynamical response of some thermal 
power plants, the outputs of slow unit i is limited by the so-
called ramp-rate constraints: 

, , , 1 ,
d u
i i t i t i t i t ip u p u t T−∆ ≤ ⋅ − ⋅ ≤ ∆ ∀ ∈  (5) 

where d
i∆  and u

i∆  are the maximum decrease and increase, 
respectively, in the output of unit i in one time period. Taking 
into account these constraints within the Lagrangian 
framework can be done, by suitably modifying the solution of 
the thermal generator subproblem, as suggested in [4,36]. 
Alternatively, in [14] the adoption of a “system ramp 
multiplier” is proposed, whose updating can be carried out, 
                                                           
1 Spinning reserve is the difference between the maximum output of all 
running units and the current output. However, some of this reserve can be 
non-available within the required time frame due to ramping constraints. The 
part of spinning reserve that is available is called the operating spinning 
reserve [27]. For a unit k, the operating spinning reserve ,k tr  can be expressed 
as [4] 

, , ,min( , )k t k t k k k tr p p pε= + ∆ −  

where i
ε∆  is the maximum amount of emergency power that can be provided 

within the required short interval of time. 
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e.g. with bundle methods. Frequently disregarded (e.g. 
[5,6,10,13,19,24])2, these constraints do not affect the 
exposition and development of our approach and, for the sake 
of simplicity, are not considered in the following. 

The generation of hydroelectric power plants reduces the 
power demand that must be fulfilled by the costly thermal 
production. The electrical output of a hydro power plant 
depends on the water discharge, the head (which can be 
expressed as a function of the reservoir volume) and the 
efficiency of the hydraulic turbine (which is also a function of 
the water discharge and the head). The operating points are 
restricted by minimal and maximal water discharges. In 
paragraph V.A a Lagrangian heuristic is proposed that results 
to be particularly efficient when ph,t is assumed to be a linear 
function of water discharge wh,t and independent of the water 
head, assumption frequently considered reasonable in the 
literature on the subject (e.g. [2,13,23,24]). Hydro production 
is represented by following simplified model that, for each 
hydro unit h of reservoir network b and for each time period t, 
takes into account the hydraulic continuity equations to 
compute the reservoir storages, the storage, discharge rate and 
spillage limits, and the initial and ending storage constraints: 

( ) ( )', ',
'

, , 1 , , , ', ',
'

,

,

,

,in ,end

0
 and  constraints

h h h h

h

h t h t t h t h t h t h t h t
h H

h h t h

h h t h

h t h

h h

V V n a w s s w

V V V

S s S

w W
V V

τ τ− − −
∈

� �
− = ⋅ − − + +� �

� �� �

≤ ≤

≤ ≤

≤ ≤

�

 (6) 
The model described by (6) contains an energy constraint 

since the energy produced by the hydro plants in basin b at the 
end of the optimization horizon is limited by the total amount 
of available water to be discharged. This is of interest because, 
as already observed in the literature [18,23,24] and further 
discussed in section V of this paper, energy constraints are one 
of the main reasons of oscillating behavior of traditional 
Lagrangian relaxation algorithms. 

IV.  SOLUTION METHODOLOGY 

A.  Lagrangian relaxation approach 
By relaxing the system demand and spinning reserve 

requirements, (2) and (3) respectively, through Lagrangian 
multipliers ,  D Rt tλ λ , the following dual function is obtained: 

( )
, , ,

, ,

, , ,

min

( )
b

I H

b

D t i t i t h tt
t T i I b B h H

D R

R t i t i t h tt
t T i I b B h H

C D u p p

L
R u r r

λ

λ

∈ ∈ ∈ ∈

∈ ∈ ∈ ∈

� �+ ⋅ − ⋅ −� �
� �= � �

� �� �+ − ⋅ −� 	� �

 �� 

⋅

� � ��

� � ��
u p p

λ ,λ (7) 

subject to constraints (4) and (6). Dual function (7) exhibits a 
disaggregated structure: 

                                                           
2 As mentioned in [27], for modern units and UC problems with a one-hour 
time step, these constraints are not of concern since these units can cross the 
entire operating domain within much less than one time step. 

( ) ( ) ( )

( )

, , ,D R i D R b D R
i I b B

D t R tt t
t T

L L L

D Rλ λ

∈ ∈

∈

= +

+ ⋅ + ⋅

� �

�

λ λ λ λ λ λ

 (8) 

where, for thermal unit i 

( ) ( ), , , , ,, min min
i i

i D R i t i t D i t R i t i tt t
t T

L u c p r sλ λ
∈

� �� �= ⋅ − ⋅ − ⋅ +� �� �
	 
� �

�u p
λ λ  (9) 

subject to constraints (4), and for hydro basin b 

( ) , ,, min
h

b b

b D R D h t R h tt t
t T h H h H

L p rλ λ
∈ ∈ ∈

� �
� �= − ⋅ + ⋅
� �
� �

� � �p
λ λ  (10) 

subject to constraints (6). 
Therefore, the LR approach decomposes the primal 

problem (1)-(6) into I + B  independent sub-problems, each 
one associated with a thermal unit and a hydro basin. In the 
solution of sub-problems (9) and (10), the values of λD and λR 
are those as obtained from the current dual Lagrangian 
iteration. The solution method depends on the nature of the 
unit considered. In our UC formulation, the hydro sub-problem 
(10) is a linear model and any linear programming solver can 
be used. The inner minimization of thermal sub-problem (9) is 
a convex problem, which in our case permits closed-form 
solutions [2], while the outer is a mixed integer quadratic 
problem that is solved by means a forward dynamic 
programming (FDP), taking into account both the start-up 
prices and minimum up/down time constraints. Typically, the 
FDP requires a significant computational time. In [6] a 
procedure is suggested to reduce the number of states at each 
stage of the dynamic programming. Moreover, when 
Lagrangian multipliers of successive iterations are not too 
different, a significant speed improvement can be obtained by 
exploiting the ui solution obtained at the previous Lagrangian 
iteration to compute an upper bound on the cost of the optimal 
solution and prune partial solutions with costs greater than the 
upper bound. This can be achieved if all the values associated 
to the nodes of the FDP are made non-negative, by subtracting 
their minimum value from each of them. 

The optimal values * *
D Rλ , λ  of the Lagrange multipliers are 

obtained by the solution of the Lagrangian dual 

, 
* max  ( , )

D R
R DL L

≥
=

λ λ 0
λ λ . (11) 

L* provides a lower bound on the optimal value of the 
objective function ( ), IC u p  of the primal problem (1)-(6) 
[28], and the difference between these two values is called 
duality gap. As a by-product of the process of maximizing L, a 
schedule { }, ,I Hu p p  is obtained from the solution of problem 

(7) with *
D D=λ λ , *

R R=λ λ . In general, this schedule does not 
satisfy constraints (2)-(3) and, therefore, techniques for 
computing a near-optimal schedule have to be implemented. 
These techniques are called Lagrangian heuristics. 

The optimal value of the objective function of the primal 
problem will not be equal to L*. At each iteration, by denoting 
with LB the available highest value of L and with UB the 
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available lowest value of ( ), IC u p , i.e. lower bound and 
upper bound of the sought optimal value respectively, the 
quality of the solution can be indicated by the relative duality 
gap RDG= ( ) /UB LB LB− . The smaller this value, the greater 
the quality of the available UC. 

B.  Bundle methods for solving the Lagrangian dual 
Due to the problem formulation, the dual function 

( ),D RL λ λ  is non-differentiable, however it is concave and its 
sub-gradients with respect to the Lagrangian multipliers can be 
easily calculated: the t-th element of the sub-gradient vector 

( )D Dg λ  with respect to Dλ  is 

( ) , , ,      D D t i t i t h tt
i I h H

g D u p p
∈ ∈

= − ⋅ −� �λ . (12) 

and the t-th element of the sub-gradient vector ( )R Rg λ  with 
respect to Rλ  is 

( ) , , ,  R R t i t i t h tt
i I h H

g R u r r
∈ ∈

= − ⋅ −� �λ  (13) 

In the following, we simplify the notation by denoting 
[ ],D R=λ λ λ , ( ) ( )( ) ,D D R R� �= � �g λ g λ g λ  and [ ]=G D,R . 

At iteration k of a Bundle method, the dual function has 
been evaluated at k multiplier vectors 0 1k −λ λ� , and the 
corresponding values of the dual function, 0 1( ) ( )kL L −λ λ� , 

and of the subgradients, 0 1( ) ( )k −g λ g λ� , have been stored to 
form a bundle, denoted with β. The bundle is used to construct 
an upper approximation of ( )L λ , the cutting plane (CP) model 

{ }'CP ( ) min ( ) ( ) ( )k j j j
j

L L
β∈

= + ⋅ −λ λ g λ λ λ . (14) 

where the prime indicates transpose. This approximation is 
tight at least in every point jλ . 

Now, the idea would be to maximize the known function 

CPL  instead of the unknown function L  and to use resultant 

vector kλ  as the next iterate. A major drawback of this 
approach is that CPL  may be unbounded above, especially in 

the first iterations. Moreover, CPL  will be a poor 

approximation of L if kλ  is “too far” from the points jλ . In 
order to overcome these drawbacks, we follow the so-called 
proximal Bundle method [26], namely a current point λ  is 
selected (typically the one in the bundle that provides the 
greatest value of L), and the following quadratic problem is 
solved to find kλ  

2

,

1max  
2k k

k k
kv

v
α

� �− −� �⋅� �λ
λ λ  (15) 

subject to 
'( ) ( )         k j j kv jδ β≤ + ⋅ − ∀ ∈g λ λ λ  (16) 

where '( ) ( ) ( ) ( )j j j jL Lδ = + ⋅ − −λ g λ λ λ λ  (known as 

linearization error), 2⋅  is the Euclidean norm, and kα  is a 

positive parameter called trust-region parameter, as it suggests 
how far from λ , model CPL  can be accepted as an 
approximation of L . This is illustrated by Fig. 1: practically, a 
quadratic penalty term has been added to CPL  to discourage 

choosing kλ  far from λ . 

α1 α2
 α3

1 −λ λ

CPL

L 

2 −λ λ 3 −λ λ

λ

 
Fig. 1.  Impact of parameter α: 1 2 3,  ,  λ λ λ  represent the solutions of 
problem (15)-(16) for three different values of α (α1<α2<α3). 

Several important issues must be addressed in order to 
implement an efficient Bundle algorithm: among these, the 
dynamic choice of parameter α at each iteration, the rules for 
updating current point λ , and the stopping criteria for the 
iterative algorithm. The procedure successfully proposed in 
[29] for the solution of Multicommodity Flow problems has 
been applied here to deal with these issues: at each iteration, 
the predicted increase kv  is compared with the obtained 

increase ( ) ( )k kL L L∆ = −λ λ  and the current point is moved 

to kλ  only if a sufficient increase has been obtained. If kδ  is 
“small”, then the addition of g to the bundle is expected to 
consistently improve the accuracy of the CP model, otherwise 
α is decreased, forcing the next tentative point to be closer to 
λ , where the CP model is hopefully accurate enough. The 
resulting algorithm is very stable and no special tuning for the 
update of the α parameter has been required. 

Since the dual function ( )L λ  exhibits a disaggregated 
structure, disaggregated Bundle approaches have been 
proposed for solving the Lagrangian dual [12,16]. The 
aggregated CP model CP ( )kL λ  is replaced with the sum of 
I + B  CP models, one for each thermal unit i and river basin 

b. Equation (15) is replaced by 
2 '

, ,

1max  
2k k k

I B

k k k
i b k

i I b B
v v

α∈ ∈

� �+ − − + ⋅� �⋅� �
� �

λ v v
λ λ λ G  (17) 

subject to 
' ( ) ( ) ,   k j j k

i i iv j i Iδ β≤ + ⋅ − ∀ ∈ ∀ ∈g λ λ λ  (18) 
'( ) ( ) ,   k j j k

b b bv j b Bδ β≤ + ⋅ − ∀ ∈ ∀ ∈g λ λ λ  (19) 
where vectors gi and gb are the subgradients of Li and Lb 
respectively, i.e. from Eq. (9) and (10) , , ,( ) [ , ]i t i t i tg p r= − −λ  

and , , ,( ) [ , ]
b b

b t h t h t
h H h H

g p r
∈ ∈

= − −� �λ , and 

'

'

( ) ( ) ( )  ( )

( ) ( ) ( ) ( )

j j j j
i i i i
j j j j

b b bb

L L

L L

δ

δ

⋅

⋅

= + − −

= + − −

λ g λ λ λ λ

λ g λ λ λ λ
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The basic structure of the disaggregated algorithm remains 
similar to the structure of the aggregated one. It must be noted 
that each iteration in the solution of (17)-(19) is heavier than in 
(15); on the other hand, the sum of I + B  CP models is a 
much better description of ( )L λ  than the aggregated CP 
model. Therefore, the disaggregated Bundle method is 
convenient if, as in our case (see the numerical results of 
Section VI), the longer computational time needed for each 
iteration is compensated by the strong reduction of the number 
of iterations required to converge to optimality [16]. 

C.  Lagrangian heuristics for the UC of thermal units 
As the solution of the dual problem does not produce a 

primal feasible solution, Lagrangian heuristics have to be 
implemented in order to modify this solution into a feasible 
UC. 

In the literature (e.g. [4,5]), several heuristics have been 
proposed that can be applied independently of the method used 
to compute the solution of the dual problem. The output of 
these heuristics is a feasible matrix *u , which satisfies global 
constraints (2)-(3). A solution of the primal problem, (1)-(6), is 
computed by solving, for the given *u , the Economic Dispatch 
Problem (EDP), which is a convex quadratic problem in the 
considered UC formulation. 

However, in some cases, the feasible schedules obtained by 
adopting these techniques may significantly differ from the 
optimal solution. To overcome this issue, in [22] integer 
programming techniques are developed for refining the UC 
solution obtained from solving the dual problem, by using the 
schedules generated by the different iterations of the 
Lagrangian method. 

In the proposed approach, the use of such a refining yet 
complex procedure is avoided by the adoption of a Bundle 
method for solving the dual problem, which is characterized by 
high-quality convergence characteristics and provides also 
valuable information for generating a nearly optimal feasible 
solution to the primal problem. By suitably exploiting such 
information by the Lagrangian heuristic, as described in the 
following, the quality of the obtained UC may not need further 
refinement. 

It is well known (e.g. [12,25,30]) that Bundle methods 
provide a way for solving, together with (11), also the 
following relaxed version of (1)-(6): 

( ), , , ,
, ,
min

u
I

u
i t i t i t i t

i I t T

u c p s
∈ ∈

� �⋅ +� ���
u s p��

� �  (20) 

subject to 

( ) ( ){ }

, , ,

, , ,

, , ,

, conv , :   

constraints equivalent to (6)

i t i t h t t
i I h H

i t i t h t t
i I h H

i t i i t i t i

i i i i i i

u p p D t T

u r r R t T

u p p u p

U i I

∈ ∈

∈ ∈

⋅ + = ∀ ∈

⋅ + ≥ ∀ ∈

⋅ ≤ ≤ ⋅

∈ ∈ ∀ ∈

� �

� �

u s u s u

� �

� �

� �

��

 (21) 

where ( ){ }conv , :i i i iU∈u s u  indicates the convex hull of the 

set Ui of commitment schedules ui (and the corresponding 
start-up costs si) that satisfy d

iτ  and u
iτ constraints. In fact, at 

each iteration k and j β∀ ∈ , nonnegative multipliers j
iθ  and 

j
bθ  can be found, at no extra cost, from the solution of (17)-

(19), such that 1j
ij

θ =� , 1j
bj

θ =� , and the "convexified 

solution" , ,
j j

i t i i tj
u uθ= ⋅�� , , ,

j j
i t i i tj

s sθ= ⋅��  and 

, ,
j j

h t b h tj
p pθ= ⋅�� , for bh H∈ , converge to an optimal solution 

of (20)-(21). In the aggregated case, at every iteration k, all the 
multipliers j

iθ  and j
bθ , i I∀ ∈  and b B∀ ∈ , have the same 

value jθ  that can be found, at no computational cost, by the 
solution of (15)-(16). 

The solution u�  does not, in general, satisfy constraints (2) 
and (3), except at the last Lagrangian iteration, but it typically 
becomes almost feasible with respect to these constraints very 
rapidly. Being it fractional (i.e. , [0,1]i tu ∈� ), u�  is not a feasible 
schedule, but each element ,i tu�  of the matrix can be interpreted 
as the “probability” for unit i to be committed at period t. As 
shown in [12,30], use of this matrix to define priority lists of 
the thermal units, in some different possible ways, turns out to 
produce good solutions. In our approach, we have extended 
this idea by making combined use of “probabilities” and costs: 
more specifically we use the ratio between ,i tu�  and 

( ), , , ,i t i t i t i tu c p s⋅ +� �  in order to define the priority list of the 
thermal units, used in the Lagrangian heuristic to find a 
feasible schedule. Also a shutdown heuristic has been 
implemented (as in [12]), trying to shutdown units whenever 
possible, using a reversed priority list. As shown in Section VI, 
this improves the overall performance of the algorithm and the 
quality of the obtained schedules. 

The following section presents an extension of the 
above-described Lagrangian heuristic to the case of 
hydrothermal UC. Moreover, details of a warm-start procedure 
specific for the proposed approach will be given. 

V.  LAGRANGIAN HEURISTIC FOR HYDROTHERMAL 
UC AND WARM-START PROCEDURE 

A.  Lagrangian heuristics for the hydrothermal case 
The LR heuristics described for thermal units cannot be 

directly applied to hydro units due to energy constraints (6) 
that couple the hydro unit schedules along the whole 
optimization horizon. 

To find a feasible solution, an option is to fix the hydro 
schedule, as obtained from the current dual solution, 
subtracting it from the demand and reserve profiles, and then 
to apply the heuristics only to the thermal unit schedules. 
However this approach is, in general, inefficient. The main 
reason of failure can be illustrated by the following simple 
numerical example of UC of two thermal units, with linear cost 
functions, and two hydro units, located in different hydro 
valleys, over a two time periods with constant demand: 

( ) ( ){ }
2

1, 1, 2, 2,, ,
1

min 10 100 50 200
I H

t t t t
t

u p u p
=

⋅ + + ⋅ +�u p p
 (e1) 
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subject to 
2 4

, ,
1 3

300 1,2i t h t
i h

p p t
= =

+ = =� �  (e2) 

,50 250 1,2 1,2i tp i t≤ ≤ = =  (e3) 

,1 ,2

, ,

50 3, 4

0 50 3, 4 1,2
h h

h t h t

w w h
p w h t
+ ≤ =

≤ = ≤ = =
 (e4) 

For both hydro units h=3 and h=4, if 1 2λ λ≠  the solutions 
of (10) subject to constraints (e4) are ,1 50hp =  and ,2 0hp = , if 

1 2λ λ> ; while they become ,1 0 hp =  and ,2 50hp = , if 

1 2λ λ< . Therefore, tiny differences in the multipliers 
determine two very different hydro schedules, due to the 
energy constraint. Using any one of these two solutions forces 
the commitment of the second and more expensive thermal 
unit, with 2 2min 1 1,max( ) ( )C p C p> , for one period, while a less 
expensive hydro schedule exists that allocates the available 
energy equally in every hour and avoids the use of the second 
unit. 

To solve this kind of oscillating behavior of the LR 
algorithm, Augmented Lagrangian approaches (e.g. [18]) and 
nonlinear approximation methods [23] have been proposed. A 
modified version of the heuristic presented in [5] is adopted in 
[24] to modify the hydro schedule. 

In this paper we consider an alternative Lagrangian 
heuristic that avoids the modification of the linear model of 
hydro units. The idea is to use the convexified hydro schedule 

Hp�  as a replacement for schedule Hp  given by the current 
dual solution, in order to evaluate the demand and reserve 
profiles that have to be met by thermal units. The LR heuristics 
based on the use of fractional matrix u�  is then applied to find 
a feasible thermal schedule. 

The thermal part of the UC problem is strongly 
non-convex, on the contrary the considered hydro model is 
convex, besides being linear. Therefore, Hp�  is a feasible 
hydro schedule at each iteration, while, being fractional, u�  is 
not, in general, a feasible thermal schedule even at the last 
iteration. This shows the importance of using a disaggregated 
Bundle method, since it detaches the convex hydro component 
of the problem from the non-convex thermal one, leading to a 
zero gap solution for the former. 

The heuristic procedure is applied to the dual solutions at 
each, but the first, Lagrangian iterations, since, as already 
observed (e.g. [4]), there is no guarantee that the best feasible 
UC is found from the optimal dual solution. 

B.  Warm-starting procedure 
A warm-starting procedure is important to compute good 

initial estimates of Lagrangian multipliers 0λ , which are the 
starting point for the Bundle method. This improves the 
convergence of the algorithm by providing both a good 
solution of the Lagrangian dual and an upper-bound to the CP 
models. 

The proposed warm-start procedure is based on the 
solution of a relaxed version of problem (1)-(6), where u is 

replaced by a matrix û , whose values are no longer integer 
variables (i.e. [ ],ˆ 0,1i tu ∈ ), and constraints u

iτ  and d
iτ  are 

formulated in the following linear form, for each thermal unit i 
and time period t: 

,, , , 1

,, , 1 ,

ˆ ˆ ˆ 1...min( )

ˆ ˆ ˆ1 1...min( )

u
i t r i t i t i

d
i t r i t i t i

u u u r T t

u u u r T t

τ

τ
+ −

+ −

≥ − ∀ = −

≤ − + ∀ = −
 (22) 

This problem is quadratic and convex, and its solution by 
an interior-point algorithm provides the dual optimal 
multipliers associated with coupling constraints (2) and (3) 
that are used as 0

Dλ  and 0
Rλ  respectively. 

Moreover, the same warm-start procedure calculates the 
initial values of subgradients 0( )ig λ  and 0( )bg λ , of (18) and 
(19), which are added to the bundle to build the CP models at 
the following iterations. However, for the calculation of 

0( )ig λ , matrix û  must be replaced by a matrix of type u , 
feasible for the Lagrangian dual, i.e. with binary values that 
satisfy also the original u

iτ  and d
iτ  constraints. For this 

purpose, in the proposed warm-start procedure a priority-list 
heuristic (as in [4]) has been applied. Since the hydro model is 
linear, the hydro schedule evaluated by the above-mentioned 
relaxed version of the primal problem is already feasible and 
can be directly used to calculate 0( )bg λ . The efficiency of the 
warm-starting procedure is manly due to this aid in the 
construction of the bundle used by the CP models at the 
following iterations for the solution of the Lagrangian dual. 
The CP models have also an impact on the behavior of the 
proposed LR heuristics, since, as already described, they 
provide the convexified solutions u�  and Hp� , starting points 
for the LR heuristic. 

Also, the impact of the proposed warm-start procedure is 
enhanced by the adoption of the Bundle method in a 
disaggregated form. In fact, as already mentioned, since the 
hydro schedule calculated by the warm-start procedure is given 
directly by the solution of the proposed relaxed version of the 
primal problem, in general, it results a very good estimate of 

Hp� . Conversely, as it will be illustrated in the next section, the 
impact of the proposed warm start procedure is very limited if 
an aggregated Bundle method is adopted. 
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VI.  NUMERICAL RESULTS 

A.  Implementation of the algorithms 
This section presents some results obtained by a prototype 

version of the code that was implemented in AMPL [31], an 
algebraic modeling language for mathematical programming. 
A major advantage is the availability of a set of drivers that 
allows the use of solvers for the linear and quadratic problems 
of the proposed LR approach, i.e. (10), (17), the relaxed 
version of the primal problem in the warm-start procedure and 
the EDP (primal problem (1)-(6) with matrix u known as 
computed by the heuristic procedure). Several solvers have 
been successfully used (CPLEX 6.0 [32], LOQO 4.05 [33] and 
MOSEK 2.0 [34]).3 

B.  Instances description. 
The code has been used to perform a number of studies to 

assess the characteristics of the proposed approach. The data 
of the various hydrothermal systems are generated, starting 
from various test cases proposed in the literature, by a 
statistical procedure described in [35]. This procedure allows 
assessing the efficiency of the algorithm under different, 
reasonable, conditions. Instances have been considered with a 
small or large number of units, with prevalence of units of 
large size or of small size, with different percentages of hydro 
production, with thermal units characterized by similar or very 
different costs. Also the influence of the load demand can be 
analyzed, by generating high and low demands as well as flat 
or bumpy load profiles. 

In the following, the results obtained with the proposed LR 
approach relevant to a test case with 45 thermal units and 20 
hydro units on a 24-hours horizon are presented. The 
considered load profile is shown in Fig. 44. The results are also 
compared with those obtained by using different methods for 
the solution of the Lagrangian dual and different Lagrangian 
heuristics. Similar behaviors of the algorithms have been 
observed for all the considered instances. 

C.  Comparative results and analysis 
The analysis regards: 1) the convergence characteristics of 

different methods in the solution of the Lagrangian dual and 2) 
the impact of Lagrangian heuristics for the modification of the 
dual solution in a feasible UC. 

1) Convergence of the Lagrangian dual solution 
Fig. 2 presents the values of dual function L, at the various 

iterations, obtained by using the proposed approach, based on 
disaggregated Bundle method with the proposed Lagrangian 
heuristic and warm-start procedure, and four algorithms that 
implements the following methods (all methods, but method 4, 
use, as starting point, the values of multipliers λλλλ0 evaluated by 
the warm-start procedure): 
d1 subgradient method (as in [4]); 
d2 aggregated Bundle method; 
d3 proposed approach, without including in the bundle the 

                                                           
3 A C++ object oriented version of the code, which implements the same 
proposed procedure, is currently under development. While in the prototype 
version of the code, each basin is assumed to contain exactly one unit, this 
constraint is relaxed in the new version. 
4 The complete set of input data is available from the authors. 

values of 0( )g λ  calculated by the warm-start procedure; 
d4 disaggregated Bundle method as method d3, but starting 

with all the multipliers λλλλ0 set to zero. 

 
Fig. 2.  Behavior of the dual function L through the Lagrangian 
iterations, as computed by using the proposed approach and four 
other methods (d1, d2, d3 and d4) described in the text. Normalized 
values are obtained by dividing the values of L by the obtained 
maximum value. 

Fig. 2 shows that, although Bundle methods are typically 
not ascent approaches, i.e., improvement in the dual value at 
each iteration in general cannot be guaranteed, the proposed 
warm-start procedure makes the Bundle method to behave 
essentially as an ascent algorithm. Thus, the warm-start 
procedure avoids the typical large fluctuations in the dual 
function values and, as early theoretically described, improves 
the convergence speed. Avoiding large fluctuations is 
beneficial also to the speed of the FDP algorithm, as 
mentioned in paragraph IV. As expected, the number of 
iterations obtained with disaggregated Bundle methods is 
always lower than that obtained with the aggregated one. 

2) Impact of the Lagrangian heuristics 
Fig. 3 presents the values of the objective function of the 

primal problem (1), at the various iterations, obtained using 
the proposed approach and four algorithms that implements 
the following methods (all using, as starting point, the values 
of multipliers λ0 evaluated by the warm-start procedure and, 
for the thermal units, the Lagrangian heuristic based on the 
convexified matrix u� ): 
p1 no modification of the hydro schedule obtained from the 

dual solution given by an aggregate Bundle method; 
p2 proposed Lagrangian heuristic and aggregate Bundle 

method to obtain the dual solution; 
p3 no modification of the hydro schedule obtained from the 

dual solution given by a disaggregate Bundle method; 
p4 proposed approach, without including in the bundle the 

values of 0( )g λ  calculated by the warm-start procedure. 
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Fig. 3  Behavior of the objective function C through the Lagrangian 
iterations, as computed by using the proposed approach and others 
methods (p2, p3 and p4) described in the text. Normalized values are 
obtained by dividing the values of C by the obtained minimum value. 

Fig. 3 does not show the results of method p1, because of 
its failure in reaching a solution. Indeed we have observed that 
by using the current hydro schedule as given by the solution of 
the Lagrangian dual, in many cases a feasible solution cannot 
be reached. The methods p2 and p4 give practically the same 
final result, but the disaggregate approach requires a lower 
number of iterations. Fig. 3 shows also the impact of the 
proposed warm-start procedure that provides at the first 
iteration a primal solution only about 2.3% greater than the 
final result. Moreover, the inclusion in the bundle of the initial 
subgradients, evaluated by the warm-start procedure, improves 
both the convergence characteristics and the final result of the 
proposed approach. We can observe that this combination 
improves its primal values practically at each iteration and 
ours calculations have shown that this is a typical behavior for 
most of the considered instances. 

Unlike classical subgradient algorithms, Bundle methods 
possess effective stopping criteria that allow to prove that the 
current solution is optimal within a specified tolerance, and 
therefore to terminate the search. An alternative stopping 
criterion is to stop when RDG reaches a desired value; 
however, since the obtained RDG depends on both the dual 
optimization process and the Lagrangian heuristic, as well as 
on the inherent duality gap, we used the standard stopping 
criteria of the Bundle method with a tolerance equal to 1e-6. If 
a stopping criterion of RDG<1% is used, the solution is usually 
found in four or five iterations. 

 
Fig. 4.  Total load profile (dashed lines) and part covered by thermal 
production, as calculated by using the proposed modification of the 
dual hydro schedule (thick solid line) and without modification, i.e., 
p3 method, (thin solid line). Normalized values are obtained by 
dividing the load values by the maximum value. 

Fig. 4 shows the load profile together with the part of the 
load that has to be covered by the production of the thermal 
units, obtained in the best UC of Fig. 2 found by the proposed 
method and by method p3. This figure shows that using the 
proposed Lagrangian heuristic for the hydro schedule the 
thermal units have to satisfy a flatter load profile. This allows 
the thermal generation park working at lower marginal costs. 
Table I summarizes the results obtained in two other cases: 
case 1 with 75 thermal and 45 hydro units, and case 2 with 105 
thermal and 75 hydro units, over a 24-hours horizon. The best 
RDG values and the number of iterations required to reach 
them are reported for the proposed approach and for the other 
methods. The impact of the proposed heuristic for the 
modification of the dual hydro schedule is also shown. A 
maximum number of iterations equal to 150 has been set. 

With all the methods used for the solution of the 
Lagrangian dual, the computation of the Lagrangian function 
takes more than 90% of the computational time; therefore, the 
total time is almost linear with the number of iterations. For 
the considered cases, the average computational time required 
by each iteration of the disaggregate Bundle method is only 
about 3-4% larger than that of the aggregated Bundle method. 
Such an increase is largely compensated by the strong 
reduction of the number of the required iterations. 

As shown in Table I, without applying the proposed 
TABLE I - BEST RDG VALUES AND NUMBER OF ITERATIONS REQUIRED TO REACH THEM  

Case 1 Case 2 
Method for 

the dual 
Modification of the dual 

hydro schedule* 
RDG 

% 
No. of 

iterations 
Method for 

the dual 
Modification of the dual 

hydro schedule* 
RDG 

% 
No. of 

iterations 
d1 no FAIL 150 d1 no 5.3657 150 
d2 no 4.3105 143 d2 no 4.3105 148 
d3 no 4.5275 21 d3 no 4.5275 21 
d2 Yes 0.5403 150 d2 yes 0.4544 150 
d3 Yes 0.5234 26 d3 yes 0.4556 24 
d4 Yes 0.5648 39 d4 yes 0.4534 41 

Proposed approach 0.3895 24 Proposed approach 0.2454 23 
* as described in Section V.A. 
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warm-start procedure and if the hydro schedule is not modified 
as described in Section V.A, the disaggregated Bundle method 
gives solutions of quality often lower than the aggregate one. 
This result is in agreement with those presented in [30]. The 
adoption of the proposed Lagrangian heuristic to modify the 
hydro schedule leads to a substantial improvement in the 
quality of the primal solutions; in this case disaggregated 
Bundle methods prove more efficiency than aggregate ones 
both in the convergence characteristics and in the quality of the 
primal solution. This fact is enhanced by the adoption of the 
proposed warm-start procedure. 

VII.  CONCLUSIONS 
In this paper, a Lagrangian Relaxation approach for the 

solution of hydrothermal UC problems has been presented. 
The proposed approach solves the dual problem through a 
disaggregated Bundle method; the feasible solution for the 
primal problem is computed by a heuristic procedure that 
exploits available information given by the Bundle algorithm. 

Some problems arising in solving the dual problem in 
presence of linearly modeled components such as hydro units 
have been described in the paper, which have been solved by 
using a convexified hydro schedule generated at each iteration 
by the Bundle method. This greatly improved the quality of the 
primal solutions found. 

A relaxation of the primal problem is also proposed to be 
used to warm-start the Bundle algorithm. This makes the 
Bundle method to behave essentially as an ascent algorithm, 
avoiding the typical large fluctuations in the dual function 
values and therefore being beneficial to the convergence 
characteristics, to the quality of the feasible primal solutions 
generated by the Lagrangian heuristic and to the speed of the 
dynamic programming required to handle the operational 
constraints of the thermal units. 

The proposed approach has been applied to a hydrothermal 
UC problem, assuming a linear hydro system model; clearly, 
additional research is needed to extend the proposed 
Lagrangian heuristic to more complex hydro system 
representations. 

The overall results obtained by the implemented 
Lagrangian relaxation approach are of very good quality and 
they are reached within few iterations. We feel that the 
proposed method could be of help for the solution of UC of 
hydrothermal power generation systems in the uncertain 
environment of the competitive electricity markets. 

Also, although we have performed our experiments with a 
proximal Bundle method and for a relatively simple version of 
the UC problem, the results are expected to be of interest even 
for similar Lagrangian optimization procedures (e.g. [7,8,17]), 
and more complex versions of the UC problem.  
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