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Abstract

We study 0-1 reformulations of the Network Loading problem, a capacitated network design problem

which is usually modeled with general integer variables to represent design decisions on the number

of facilities to install on each arc of the network. The reformulations are based on the multiple

choice model, a generic approach to represent piecewise linear costs using 0-1 variables. This model

is improved by the addition of extended linking inequalities, derived from variable disaggregation

techniques. We show that these extended linking inequalities for the 0-1 model are equivalent to the

residual capacity inequalities, a class of valid inequalities derived for the model with general integer

variables. This result yields three strategies to compute the same lower bound on the optimal value

of the problem: 1) A Dantzig-Wolfe (DW) approach applied to the model with general integer

variables; 2) A cutting-plane algorithm based on the residual capacity inequalities; 3) A Structured

DW method that solves the 0-1 reformulation with extended linking inequalities by variables and

constraints generation.

Keywords: Capacitated Network Design, Network Loading, Reformulation, Dantzig-Wolfe De-

composition
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The Network Loading problem (NL) can be described as follows. Given a directed network

G = (N,A), where N is the set of nodes and A is the set of arcs, we must satisfy the communication

demands between several origin-destination pairs, represented by the set of commodities K. For

each commodity k, we denote by dk the positive demand that must flow between the origin O(k)

and the destination D(k). While flowing along an arc (i, j), a communication consumes some of the

arc capacity; the capacity is originated by installing on some of the arcs any number of facilities.

Installing one facility on arc (i, j) provides a positive capacity uij at a (nonnegative) cost fij; a

nonnegative routing cost ck
ij also has to be paid for each unit of commodity k moving through

arc (i, j) ∈ A. The problem consists in minimizing the sum of all costs, while satisfying demand

requirements and capacity constraints.

We define nonnegative flow variables xk
ij , which represent the fraction of the flow of commodity

k on arc (i, j) ∈ A, i.e., dkxk
ij is the flow of commodity k on arc (i, j). We also introduce general

integer design variables yij, which define the number of facilities to install on arc (i, j). The problem

can then be formulated as follows:

min
∑

k∈K

∑

(i,j)∈A

dkck
ijx

k
ij +

∑

(i,j)∈A

fijyij, (1)

∑

j∈N

xk
ij −

∑

j∈N

xk
ji =







1, if i = O(k),
− 1, if i = D(k),

0, if i 6= O(k), D(k),
∀ i ∈ N, k ∈ K, (2)

∑

k∈K

dkxk
ij ≤ uijyij, ∀ (i, j) ∈ A, (3)

0 ≤ xk
ij ≤ 1, ∀ (i, j) ∈ A, k ∈ K, (4)

yij ≥ 0, ∀ (i, j) ∈ A, (5)

yij integer, ∀ (i, j) ∈ A. (6)

We will denote this model as I.

Since fij ≥ 0, we have yij ≤
⌈∑

k∈K dk

uij

⌉

= Tij for each arc (i, j). It follows that the problem can

be reformulated with 2
∑

(i,j)∈A Tij auxiliary variables using the sets Sij = {1, . . . , Tij}:

ys
ij =

{

1, if yij = s,

0, otherwise,
∀ s ∈ Sij, (7)

xs
ij =

{ ∑

k∈K dkxk
ij , if yij = s,

0, otherwise,
∀ s ∈ Sij . (8)
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We can then write the problem as above, but with the additional constraints:

yij =
∑

s∈Sij

sys
ij, ∀(i, j) ∈ A, (9)

∑

k∈K

dkxk
ij =

∑

s∈Sij

xs
ij, ∀(i, j) ∈ A, (10)

(s− 1)uijy
s
ij ≤ xs

ij ≤ suijy
s
ij, (i, j) ∈ A, s ∈ Sij, (11)

∑

s∈Sij

ys
ij ≤ 1, (i, j) ∈ A, (12)

ys
ij ≥ 0, (i, j) ∈ A, s ∈ Sij, (13)

ys
ij integer, (i, j) ∈ A, s ∈ Sij. (14)

We will denote this model as B.

Note that we can remove constraints (5) and (6), but also constraints (3), which are implied by

(9) and (11). Consequently, we can project out variables yij and obtain a formulation expressed

only in terms of the auxiliary binary variables ys
ij, in addition to the flow variables. This formulation

corresponds to the so-called multiple choice model [2], which can also be derived by interpreting

the problem as a Multicommodity flow formulation with piecewise linear costs, each segment of the

corresponding cost function on any given arc representing the number of facilities to install on this

arc. Using this interpretation, one can also derive two other textbook formulations for piecewise

linear cost function, the so-called incremental and convex combination models [2]. These three

formulations are not only equivalent in terms of IP, but also as LP, and they all provide the same

approximation, which corresponds to the lower convex envelope of the cost function. As in [3], we

study the multiple choice model, as it lends itself nicely to the addition of simple valid inequalities

derived from variable disaggregation techniques.

These techniques are based on the addition of the following extended auxiliary variables:

xks
ij =

{

xk
ij , if yij = s,

0, otherwise,
∀ s ∈ Sij . (15)

In terms of linear equations, these variables are defined as follows:

xk
ij =

∑

s∈Sij

xks
ij , ∀(i, j) ∈ A, k ∈ K, (16)

xs
ij =

∑

k∈K

dkxks
ij , ∀(i, j) ∈ A, s ∈ Sij . (17)
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The following extended linking constraints

xks
ij ≤ ys

ij, ∀(i, j) ∈ A, k ∈ K, s ∈ Sij (18)

are then redundant in the IP, but not in the LP relaxation of model B; we will denote the resulting

extended model as B+.

We will now compare the different models and some of their relaxations. We will denote as

F (M), conv(F (M)) and LP (M), the feasible set, its convex hull and the LP relaxation, respectively,

of any given model M . In our analysis, we will consider the Lagrangian relaxation of the flow

conservation equations (2). The resulting Lagrangian subproblem and Lagrangian dual for any

model M will be denoted as LS(M) and LD(M), respectively. Finally, we will say that two models

are equivalent if their optimal values are the same, for any values of the costs (we only require that

all costs are nonnegative).

We first give without proofs a series of obvious equivalencies between the models.

Proposition 1 I and B+ are equivalent.

Proposition 2 LS(I) and LS(B+) are equivalent.

Proposition 3 LD(I) and LD(B+) are equivalent.

Now, we turn our attention to the LP relaxations of the two formulations and compare them

with the Lagrangian relaxation of the flow conservation equations.

Proposition 4 F (LP (LS(B+))) = conv(F (LS(B+))).

Proof: See Croxton, Gendron, Magnanti (2004) [3].

From standard Lagrangian duality theory, we then immediately obtain the following result.

Proposition 5 LP (B+) and LD(B+) are equivalent.

With respect to formulation I, we know an explicit description of conv(F (LS(I))) [4]. Indeed,

is is sufficient to add the so-called residual capacity inequalities to F (LP (LS(I))) to obtain the

convex hull. Let I+ be the model obtained by appending to I the residual capacity inequalities.

The next two results follow immediately from the convex hull result of [4].

Proposition 6 F (LP (LS(I+))) = conv(F (LS(I))).
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Proposition 7 LP (I+) and LD(I) are equivalent.

The following Theorem is then an immediate consequence of Propositions 3, 5 and 7.

Theorem 8 LP (B+) and LP (I+) are equivalent.

Thus, the improvement in the LP relaxation bound provided by the extended formulation B+

is equivalent to the addition of the residual capacity inequalities to formulation I.

It is interesting to contrast the three possible ways that we now have to obtain the same lower

bound on the optimal value of the problem:

• Apply the Dantzig-Wolfe approach to the original model I, that is, solve – by variables

generation – an LP with exponentially many variables and “few” constraints.

• Apply a cutting-plane algorithm [5, 1] to solve formulation LP (I+) (the separation problem

for the residual capacity inequalities is solvable in polynomial time [1]), that is, solve – by

constraints generation – an LP with exponentially many constraints and “few” variables.

• Apply a Structured DW approach to formulation LP (B+), that is, solve – by variables and

constraints generation – an LP with a pseudo-polynomial number of both variables and con-

straints.

The details of implementing a Structured DW approach, as well as computational experiments

comparing these three strategies will be reported at the conference.

References

[1] Atamturk, A., Rajan, D., On Splittable and Unsplittable Flow Capacitated Network Design

Arc-Set Polyhedra, Mathematical Programming 92, 315-333, 2002.

[2] Croxton, K.L., Gendron, B., Magnanti, T.L., A Comparison of Mixed-Integer Programming

Models for Non-Convex Piecewise Linear Cost Minimization Problems, Management Science

49, 1268-1273, 2003.

[3] Croxton, K.L., Gendron, B., Magnanti, T.L., Variable Disaggregation in Network Flow Prob-

lems with Piecewise Linear Costs, Publication CRT-2004-05, Centre for Research on Trans-

portation, Montreal, 2004.

5



[4] Magnanti, T.L., Mirchandani, P., Vachani, R., The Convex Hull of Two Core Capacitated

Network Design Problems, Mathematical Programming 60, 233-250, 1993.

[5] Magnanti, T.L., Mirchandani, P., Vachani, R., Modeling and Solving the Two-Facility Capac-

itated Network Loading Problem, Operations Research 43, 142-157, 1995.

6


