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Abstra
tWe present a new approa
h, requiring the solution of a SemiDe�nite Program, for de
omposingthe Hessian of a nonseparable Mixed-Integer Quadrati
 problem to permit using perspe
tive
uts to improve its 
ontinuous relaxation bound. The new method favorably 
ompares with apreviously proposed one requiring a minimum eigenvalue 
omputation.Key words: Mixed-Integer Quadrati
 Programs, Valid Inequalities, SemiDe�nite Programming,Portfolio Optimization





3.1. Introdu
tionWe 
onsider Mixed-Integer Quadrati
 Programs (MIQP) of the formmin xTQx+ qx+ 
yAx+By � bliyi � xi � uiyi ; yi 2 f0; 1g i = 1; : : : ; n (1)where Q is positive semide�nite (denoted by Q � 0); that is, ea
h xi is a semi-
ontinuousvariable whose domain is the (dis
onne
ted) set 0 [ [li; ui℄, and/or one pays a �xed-
harge 
ost
i whenever xi 6= 0. A
tually, these ideas 
an be extended to more general 
ases where severalx variables depend on the same y and the linking 
onstraints are di�erent, but for the sake of
larity of the present dis
ussion the above simple form is more appropriate.When Q is diagonal, the 
ontinuous relaxation of (1) 
an be strengthened by using perspe
tive
uts [3℄, a simple family of disjun
tive 
uts whi
h operate on the obje
tive fun
tion. These arefa
es of the epigraph of the 
onvex envelope of the obje
tive fun
tion on the set fliyi � xi �uiyi ; yi 2 f0; 1gg, whi
h 
an be separated at the feasible (fra
tional) point (x�i ; y�i ) by thesimple 
losed formula vi � ( 2Qii�xi + qi )xi + ( 
i �Qii�x2i )yi (2)where �xi = x�i =y�i and vi is the variable representing the obje
tive fun
tion value. Despite thelow dimensionality of the fa
es that they represent, perspe
tive 
uts (2) signi�
antly improvethe eÆ
ien
y of enumerative approa
hes to (MIQP)s with stru
ture (1).Using perspe
tive 
uts 
ru
ially requires the obje
tive fun
tion to be separable among theblo
ks; however, a simple reformulation te
hnique was proposed in [3℄ for nonseparable problemswhi
h moves \the nonseparable part" of the obje
tive fun
tion to newly introdu
ed variables,leaving a separable obje
tive fun
tion to whi
h (2) 
an then be applied. In this paper, we
ompare two di�erent ways for de
omposing the obje
tive fun
tion: 
omputing the minimumeigenvalue of Q, as done in [3℄, and a more 
ostly pro
edure whi
h requires the solution ofa SemiDe�nite Program. We show that, at least on instan
es of the Mean-Varian
e problemin portfolio optimization, the new pro
edure signi�
antly improves the quality of the obtainedlower bounds and the overall solution time.2. The reformulation te
hniqueIn order to apply perspe
tive 
uts to (1) with a non-diagonal Q, one 
an sele
t any non-negativediagonal D 2 Rn�n su
h that Q�D � 0 and 
onsider the following equivalent formulation:min xTDx+ zT (Q�D)z + qx+ 
yAx+By � b ; z = xliyi � xi � uiyi ; yi 2 f0; 1g i = 1; : : : ; n (3)Model (3) allows dire
t appli
ation of perspe
tive 
uts, and retains most of the stru
ture of theoriginal problem by introdu
ing a 
opy of the x variables and assigning it all the non-separabilityin the obje
tive fun
tion. Intuitively, the \larger" D|the \fra
tion" of the obje
tive fun
tionthat is re
e
ted on the separable 
osts|is, the more perspe
tive 
uts 
ould be expe
ted toimprove the lower bound; thus, pro
edures have to be devised for (eÆ
iently) �nding a \large" D.In [3℄ the Minimum Eigenvalue (ME) approa
h was proposed: D = �minI, �min being theminimum eigenvalue of Q. This requires Q to be stri
tly positive de�nite, for otherwise �min =0) D = 0.



4.However, assuming tr(D)|the sum of the diagonal elements of D|to be a relevant metri
,�nding the \largest" possible D 
an be dire
tly 
ast as the following dual pair of SemiDe�nitePrograms (SDP) max n Pni=1 di : Q�Pni=1 di(eieTi ) � 0 ; d � 0 omin n tr(QX) : diag(X) � e ; X � 0 o (4)where e is the ve
tor of all ones and ei is the i-th ve
tor of the 
anoni
al base of Rn ; 
learly, thisSDP approa
h 
an produ
e a nonzero D even if �min = 0. One might had 
hosen di�erent 
ost
oeÆ
ients for the di variables in order to re
e
t di�erent relevan
e of having a large quadrati

oeÆ
ient for ea
h xi in (3); in want of sensible rules for 
omputing those weights, for our
omputational results we have used unitary 
osts. Problems (4) 
an be easily solved by any ofthe several available SDP 
odes. Furthermore, the 
onstraint d � 0 may be redundant (it wassu
h on all the instan
es of our test bed); eliminating it from the primal turns the dual probleminto min n tr(QX) : diag(X) = e ; X � 0 o (5)whi
h is usually faster to solve and 
an be ta
kled by some approa
hes, su
h as the spe
tralbundle method, whi
h require 
onstant tra
e of the variable.For both SDP and ME, in order to avoid that Q�D turns out not to be positive semide�nitedue to numeri
al errors, we subtra
ted from D (hen
e, added to Q � D) a matrix "I for asuitably 
hosen \small" " > 0.3. Computational resultsWe have tested the in
uen
e of ME and SDP on the overall eÆ
ien
y of a B&C approa
husing perspe
tive 
uts to nonseparable (MIQP); as in [3℄, we have applied it to instan
es of theMean-Varian
e (MV) problem with minimum and maximum buy-in thresholds, whi
h ismin�xTQx ���� ex = 1 ; �x � � ;liyi � xi � uiyi ; yi 2 f0; 1g i = 1; : : : ; n � (6)where �i, li and ui are respe
tively the expe
ted unitary return and the minimum and maximumbuy-in thresholds for asset i, Q is the varian
e-
ovarian
e matrix and � is the desired level ofreturn. Several alternative forms of portfolio sele
tion problems have been proposed in theliterature (e.g., [1℄ and many others), many of whi
h are diÆ
ult due to some form of dis
retede
isions [5℄. Our 
hoi
e of model (6) is motivated by the fa
t that it is quite simple but ratherdemanding for general-purpose (MIQP) solvers; this is due to the fa
t that the root node gapsof the 
ontinuous relaxation are huge (
f. Table 2, 
olumn \Cplex/r.gap") and that it has veryfew 
onstraints with no stru
ture, so that the 
lassi
al polyhedral approa
hes to improve thelower bounds [2℄ are ine�e
tive. However, its simpli
ity also means that simple MIP-roundingheuristi
s usually �nd good solutions if the lower bounds are reasonably tight. Thus, (6) is anideal 
andidate for testing the e�e
t of di�erent ways for sele
ting D, as these only in
uen
e thelower bounds produ
ed by perspe
tive 
uts.For our tests, we have generated 30 (MV) instan
es for ea
h value of n2f200; 300; 400g:Q has been generated using the well-known random generator of [6℄, while �, li and ui hasbeen uniformly drawn at random from intervals [0:002; 0:01℄, [0:075; 0:125℄ and [0:375; 0:425℄,



5.respe
tively. For ea
h value of n, we have generated three di�erent set of matri
es Q. The\+" set has been generated with the same parameters as in [3℄, whi
h turn out to produ
ematri
es that are strongly diagonally dominant: indeed, their average dominan
e index Si =(Qii �Pj 6=i jQij j)=Qii is around 0:6. In order to evaluate the e�e
t of diagonal dominan
e onthe proposed pro
edure, we have also modi�ed the parameters in order to produ
e a \0" setwith average Si � 0, and a \�" set with average Si � �0:5. The data required for reprodu
ingthe instan
es is available upon request by the authors.For our experiments we have used the B&C approa
h using perspe
tive 
uts des
ribed in [3℄.Some aspe
ts of the approa
h are nonstandard, due to the 
uts being applied to the obje
tivefun
tion, but this is immaterial for the issue at stake here, so we need not dis
uss them; theinterested reader is referred to the original paper for further details. We also 
ompared theapproa
h with the general-purpose B&C algorithm of Cplex 9.1; for both 
odes, a global timelimit of 10000 se
onds was set. The experiments were performed on a PC with an Opteron 246pro
essor and 2Gb RAM, running Linux. All the 
odes were 
ompiled with g

 4.0 and -O3optimizations. Our B&C 
ode uses Cplex 9.1 to solve the 
ontinuous relaxations at ea
h nodeof the enumeration tree.In Table 1 we report some data that des
ribes the average results of the initialization phasealone. Columns \dmax", \dmin" and \davg" report the ratio between, respe
tively, the maximum,minimum and average element of the diagonal of D obtained by SDP and �min used by ME. Allother 
olumns report the time (in se
onds) required for 
omputing D. For ME, we have usedthe eig() fun
tion of the open-sour
e pa
kage o
tave 2.1; more eÆ
ient methods may exist,but, as it will be 
lear shortly, there is little point in improving upon this. For SDP, we havetested all open-sour
e solvers listed at C. Helmberg's SDP page [4℄ whi
h 
ould be 
ompiled asstand-alone appli
ations and linked to our B&C 
ode; this restri
ted the 
hoi
e to CSDP 4.9,DSDP 5.6, SBmethod 1.1.3, SDPA 6.0 and SDPLR 1.02. For ea
h approa
h, 
olumns \�" and\=" report the time for solving (4) and (5), respe
tively; SBmethod 
an only solve the latterproblem. ME CSDP DSDP SDPA SDPLR SBdmax dmin davg � = � = � = � = =200+ 1.96 0.97 1.47 0.13 3.12 2.98 1.86 0.10 1.81 0.29 3.71 2.23 23.772000 1.93 0.90 1.41 0.13 3.03 2.99 1.87 0.10 1.68 0.29 3.72 2.79 16.39200� 1.86 0.87 1.37 0.13 3.00 2.95 1.86 0.10 1.62 0.40 2.30 2.19 16.58300+ 1.97 0.97 1.47 0.23 10.54 9.84 4.92 0.26 5.33 0.73 13.20 5.02 69.133000 1.93 0.91 1.42 0.23 10.91 9.55 4.99 0.26 4.97 0.71 8.58 9.08 46.01300� 1.69 0.89 1.29 0.23 10.91 9.62 5.10 0.26 5.11 0.72 5.67 5.53 41.82400+ 1.98 0.97 1.47 0.39 31.03 29.28 10.56 0.52 5.02 1.40 17.48 21.60 146.074000 1.93 0.93 1.43 0.39 37.24 31.27 10.86 0.52 11.46 1.37 21.80 11.93 94.62400� 1.87 0.89 1.38 0.39 36.77 31.61 10.75 0.52 11.10 1.38 15.10 21.11 90.07Table 1: Comparison of SDP and ME initializationsOn these instan
es, SDP �nds a D whose diagonal elements are on average signi�
antlylarger than �min, although the ratios uniformly de
rease as Q be
omes less and less diagonallydominant. For doing so, it takes signi�
antly longer than ME if the standard problem (4) issolved, but only very marginally longer|at least if DSDP 5.6 is used|if (5) is solved instead; areasonable approa
h would then be to attempt solving (5) �rst, and revert to (4) if the optimalsolution turns out not to be nonnegative.Besides, the running times of the initialization are hardly signi�
ant when one 
onsiders the



6.overall B&C approa
h, as shown in Table 2. Columns \nodes" and \time" report respe
tivelythe total number of explored nodes and the total time (in se
onds) for the B&C approa
h, while
olumns \r.gap", \p.gap" and \d.gap" report respe
tively the root node gap, the gap of the bestprimal solution and that of the best lower bound attained at the end of the enumerative pro
ess(in per
entage); a blank entry 
orresponds to a gap less than 0.01%|the optimality toleran
eof the B&C. As in the previous table, results are averaged on all 10 instan
es of ea
h 
lass. Wehave avoided to report 
olumn \time" for Cplex sin
e it never terminated before the time limit,as well as 
olumns \p.gap" for our B&C approa
h, using either SDP or ME, be
ause it almostnever attained a primal solution farthest from 0.01% from optimality; the only ex
eption are\400�" instan
es, upon whi
h ME attained an average primal gap slightly larger than 0.1% dueto a single instan
e terminating with a gap of 0.12%. Note that, to be on the safe side, theSDP time 
omprises that for solving (4) with SDPA 6.0|so the a
tual time 
ould be (slightly)redu
ed by using (5) instead|while the ME time does not in
lude the (anyway, negligible)initialization phase. SDP ME Cplextime nodes d.gap r.gap time nodes d.gap r.gap nodes p.gap d.gap r.gap200+ 164 1.2e+4 1.14 904 7.7e+4 6.48 1.9e+7 0.14 45.33 85.632000 161 1.1e+4 2.14 320 2.8e+4 6.10 8.5e+6 0.38 51.27 84.47200� 1902 1.3e+5 3.65 3306 2.6e+5 0.02 6.69 8.9e+6 0.24 42.09 78.88300+ 818 2.9e+4 4.54 2061 9.3e+4 5.62 4.0e+6 0.41 64.68 92.013000 856 2.7e+4 1.97 1715 7.1e+4 6.28 3.6e+6 0.43 59.91 87.87300� 1709 5.2e+4 2.68 2797 9.4e+4 0.05 7.04 3.0e+6 0.53 45.11 78.77400+ 2264 7.0e+4 4.79 4756 1.1e+5 0.10 6.15 1.9e+6 1.03 61.47 89.064000 4378 7.2e+4 0.10 2.29 7421 1.6e+5 0.16 6.53 1.5e+6 1.18 68.68 90.03400� 6311 1.0e+5 0.23 3.06 6901 1.4e+5 0.36 6.49 1.5e+6 1.60 65.88 88.47Table 2: Results of the three B&C approa
hesAs already seen in [3℄, the standard 
ontinuous relaxation has huge root node gaps, usually inthe 80-90% range, that are only redu
ed to the 40-70% range within 10000 se
onds of the stan-dard B&C; while the MIP rounding heuristi
s of Cplex obtain relatively good primal solutions,these problems are unsolvable to optimality with standard means. With ME diagonalization,perspe
tive 
uts 
lose the root node gap to a more manageable 5-8%; this allows to solve mostof the smallest instan
es, but it is not enough for the largest ones. There also is a 
lear trendbetween dominan
e of Q and e�e
tiveness of the perspe
tive 
uts approa
h; indeed, ME 
ouldnot solve two \�" instan
es for both n = 200 and n = 300, while for n = 400 it 
ould not solve3, 5 and 6 instan
es of 
lass \+", \0" and \�", respe
tively.The trend is 
learly present for SDP, too: while the \better" D allows to solve all smallerinstan
es and all \400+" ones, 3 and 6 instan
es of 
lass \4000" and \400�", respe
tively,remained unsolved. However, the bound improvements due to the SDP diagonalization|testi�edby the further redu
tion of the root node gaps|signi�
antly improve the overall performan
esof the B&C approa
h: SDP solves more problems, it is faster on those that are solved, andobtains better dual gaps on those that are not, than ME.Our results 
learly show that, despite the 
ost of solving (4), the SDP approa
h is signi�
antlymore eÆ
ient than the ME one; for all our instan
es, by solving (5) instead, the extra e�e
tive-ness of perspe
tive 
uts 
ould also be obtained at basi
ally no extra 
ost. An interesting issuethat still remains open is the development of di�erent weighting s
hemes for the di variablesin (4) whi
h further improve the quality of the obtained bounds.
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