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AbstratWe present a new approah, requiring the solution of a SemiDe�nite Program, for deomposingthe Hessian of a nonseparable Mixed-Integer Quadrati problem to permit using perspetiveuts to improve its ontinuous relaxation bound. The new method favorably ompares with apreviously proposed one requiring a minimum eigenvalue omputation.Key words: Mixed-Integer Quadrati Programs, Valid Inequalities, SemiDe�nite Programming,Portfolio Optimization





3.1. IntrodutionWe onsider Mixed-Integer Quadrati Programs (MIQP) of the formmin xTQx+ qx+ yAx+By � bliyi � xi � uiyi ; yi 2 f0; 1g i = 1; : : : ; n (1)where Q is positive semide�nite (denoted by Q � 0); that is, eah xi is a semi-ontinuousvariable whose domain is the (disonneted) set 0 [ [li; ui℄, and/or one pays a �xed-harge osti whenever xi 6= 0. Atually, these ideas an be extended to more general ases where severalx variables depend on the same y and the linking onstraints are di�erent, but for the sake oflarity of the present disussion the above simple form is more appropriate.When Q is diagonal, the ontinuous relaxation of (1) an be strengthened by using perspetiveuts [3℄, a simple family of disjuntive uts whih operate on the objetive funtion. These arefaes of the epigraph of the onvex envelope of the objetive funtion on the set fliyi � xi �uiyi ; yi 2 f0; 1gg, whih an be separated at the feasible (frational) point (x�i ; y�i ) by thesimple losed formula vi � ( 2Qii�xi + qi )xi + ( i �Qii�x2i )yi (2)where �xi = x�i =y�i and vi is the variable representing the objetive funtion value. Despite thelow dimensionality of the faes that they represent, perspetive uts (2) signi�antly improvethe eÆieny of enumerative approahes to (MIQP)s with struture (1).Using perspetive uts ruially requires the objetive funtion to be separable among thebloks; however, a simple reformulation tehnique was proposed in [3℄ for nonseparable problemswhih moves \the nonseparable part" of the objetive funtion to newly introdued variables,leaving a separable objetive funtion to whih (2) an then be applied. In this paper, weompare two di�erent ways for deomposing the objetive funtion: omputing the minimumeigenvalue of Q, as done in [3℄, and a more ostly proedure whih requires the solution ofa SemiDe�nite Program. We show that, at least on instanes of the Mean-Variane problemin portfolio optimization, the new proedure signi�antly improves the quality of the obtainedlower bounds and the overall solution time.2. The reformulation tehniqueIn order to apply perspetive uts to (1) with a non-diagonal Q, one an selet any non-negativediagonal D 2 Rn�n suh that Q�D � 0 and onsider the following equivalent formulation:min xTDx+ zT (Q�D)z + qx+ yAx+By � b ; z = xliyi � xi � uiyi ; yi 2 f0; 1g i = 1; : : : ; n (3)Model (3) allows diret appliation of perspetive uts, and retains most of the struture of theoriginal problem by introduing a opy of the x variables and assigning it all the non-separabilityin the objetive funtion. Intuitively, the \larger" D|the \fration" of the objetive funtionthat is reeted on the separable osts|is, the more perspetive uts ould be expeted toimprove the lower bound; thus, proedures have to be devised for (eÆiently) �nding a \large" D.In [3℄ the Minimum Eigenvalue (ME) approah was proposed: D = �minI, �min being theminimum eigenvalue of Q. This requires Q to be stritly positive de�nite, for otherwise �min =0) D = 0.



4.However, assuming tr(D)|the sum of the diagonal elements of D|to be a relevant metri,�nding the \largest" possible D an be diretly ast as the following dual pair of SemiDe�nitePrograms (SDP) max n Pni=1 di : Q�Pni=1 di(eieTi ) � 0 ; d � 0 omin n tr(QX) : diag(X) � e ; X � 0 o (4)where e is the vetor of all ones and ei is the i-th vetor of the anonial base of Rn ; learly, thisSDP approah an produe a nonzero D even if �min = 0. One might had hosen di�erent ostoeÆients for the di variables in order to reet di�erent relevane of having a large quadratioeÆient for eah xi in (3); in want of sensible rules for omputing those weights, for ouromputational results we have used unitary osts. Problems (4) an be easily solved by any ofthe several available SDP odes. Furthermore, the onstraint d � 0 may be redundant (it wassuh on all the instanes of our test bed); eliminating it from the primal turns the dual probleminto min n tr(QX) : diag(X) = e ; X � 0 o (5)whih is usually faster to solve and an be takled by some approahes, suh as the spetralbundle method, whih require onstant trae of the variable.For both SDP and ME, in order to avoid that Q�D turns out not to be positive semide�nitedue to numerial errors, we subtrated from D (hene, added to Q � D) a matrix "I for asuitably hosen \small" " > 0.3. Computational resultsWe have tested the inuene of ME and SDP on the overall eÆieny of a B&C approahusing perspetive uts to nonseparable (MIQP); as in [3℄, we have applied it to instanes of theMean-Variane (MV) problem with minimum and maximum buy-in thresholds, whih ismin�xTQx ���� ex = 1 ; �x � � ;liyi � xi � uiyi ; yi 2 f0; 1g i = 1; : : : ; n � (6)where �i, li and ui are respetively the expeted unitary return and the minimum and maximumbuy-in thresholds for asset i, Q is the variane-ovariane matrix and � is the desired level ofreturn. Several alternative forms of portfolio seletion problems have been proposed in theliterature (e.g., [1℄ and many others), many of whih are diÆult due to some form of disretedeisions [5℄. Our hoie of model (6) is motivated by the fat that it is quite simple but ratherdemanding for general-purpose (MIQP) solvers; this is due to the fat that the root node gapsof the ontinuous relaxation are huge (f. Table 2, olumn \Cplex/r.gap") and that it has veryfew onstraints with no struture, so that the lassial polyhedral approahes to improve thelower bounds [2℄ are ine�etive. However, its simpliity also means that simple MIP-roundingheuristis usually �nd good solutions if the lower bounds are reasonably tight. Thus, (6) is anideal andidate for testing the e�et of di�erent ways for seleting D, as these only inuene thelower bounds produed by perspetive uts.For our tests, we have generated 30 (MV) instanes for eah value of n2f200; 300; 400g:Q has been generated using the well-known random generator of [6℄, while �, li and ui hasbeen uniformly drawn at random from intervals [0:002; 0:01℄, [0:075; 0:125℄ and [0:375; 0:425℄,



5.respetively. For eah value of n, we have generated three di�erent set of matries Q. The\+" set has been generated with the same parameters as in [3℄, whih turn out to produematries that are strongly diagonally dominant: indeed, their average dominane index Si =(Qii �Pj 6=i jQij j)=Qii is around 0:6. In order to evaluate the e�et of diagonal dominane onthe proposed proedure, we have also modi�ed the parameters in order to produe a \0" setwith average Si � 0, and a \�" set with average Si � �0:5. The data required for reproduingthe instanes is available upon request by the authors.For our experiments we have used the B&C approah using perspetive uts desribed in [3℄.Some aspets of the approah are nonstandard, due to the uts being applied to the objetivefuntion, but this is immaterial for the issue at stake here, so we need not disuss them; theinterested reader is referred to the original paper for further details. We also ompared theapproah with the general-purpose B&C algorithm of Cplex 9.1; for both odes, a global timelimit of 10000 seonds was set. The experiments were performed on a PC with an Opteron 246proessor and 2Gb RAM, running Linux. All the odes were ompiled with g 4.0 and -O3optimizations. Our B&C ode uses Cplex 9.1 to solve the ontinuous relaxations at eah nodeof the enumeration tree.In Table 1 we report some data that desribes the average results of the initialization phasealone. Columns \dmax", \dmin" and \davg" report the ratio between, respetively, the maximum,minimum and average element of the diagonal of D obtained by SDP and �min used by ME. Allother olumns report the time (in seonds) required for omputing D. For ME, we have usedthe eig() funtion of the open-soure pakage otave 2.1; more eÆient methods may exist,but, as it will be lear shortly, there is little point in improving upon this. For SDP, we havetested all open-soure solvers listed at C. Helmberg's SDP page [4℄ whih ould be ompiled asstand-alone appliations and linked to our B&C ode; this restrited the hoie to CSDP 4.9,DSDP 5.6, SBmethod 1.1.3, SDPA 6.0 and SDPLR 1.02. For eah approah, olumns \�" and\=" report the time for solving (4) and (5), respetively; SBmethod an only solve the latterproblem. ME CSDP DSDP SDPA SDPLR SBdmax dmin davg � = � = � = � = =200+ 1.96 0.97 1.47 0.13 3.12 2.98 1.86 0.10 1.81 0.29 3.71 2.23 23.772000 1.93 0.90 1.41 0.13 3.03 2.99 1.87 0.10 1.68 0.29 3.72 2.79 16.39200� 1.86 0.87 1.37 0.13 3.00 2.95 1.86 0.10 1.62 0.40 2.30 2.19 16.58300+ 1.97 0.97 1.47 0.23 10.54 9.84 4.92 0.26 5.33 0.73 13.20 5.02 69.133000 1.93 0.91 1.42 0.23 10.91 9.55 4.99 0.26 4.97 0.71 8.58 9.08 46.01300� 1.69 0.89 1.29 0.23 10.91 9.62 5.10 0.26 5.11 0.72 5.67 5.53 41.82400+ 1.98 0.97 1.47 0.39 31.03 29.28 10.56 0.52 5.02 1.40 17.48 21.60 146.074000 1.93 0.93 1.43 0.39 37.24 31.27 10.86 0.52 11.46 1.37 21.80 11.93 94.62400� 1.87 0.89 1.38 0.39 36.77 31.61 10.75 0.52 11.10 1.38 15.10 21.11 90.07Table 1: Comparison of SDP and ME initializationsOn these instanes, SDP �nds a D whose diagonal elements are on average signi�antlylarger than �min, although the ratios uniformly derease as Q beomes less and less diagonallydominant. For doing so, it takes signi�antly longer than ME if the standard problem (4) issolved, but only very marginally longer|at least if DSDP 5.6 is used|if (5) is solved instead; areasonable approah would then be to attempt solving (5) �rst, and revert to (4) if the optimalsolution turns out not to be nonnegative.Besides, the running times of the initialization are hardly signi�ant when one onsiders the



6.overall B&C approah, as shown in Table 2. Columns \nodes" and \time" report respetivelythe total number of explored nodes and the total time (in seonds) for the B&C approah, whileolumns \r.gap", \p.gap" and \d.gap" report respetively the root node gap, the gap of the bestprimal solution and that of the best lower bound attained at the end of the enumerative proess(in perentage); a blank entry orresponds to a gap less than 0.01%|the optimality toleraneof the B&C. As in the previous table, results are averaged on all 10 instanes of eah lass. Wehave avoided to report olumn \time" for Cplex sine it never terminated before the time limit,as well as olumns \p.gap" for our B&C approah, using either SDP or ME, beause it almostnever attained a primal solution farthest from 0.01% from optimality; the only exeption are\400�" instanes, upon whih ME attained an average primal gap slightly larger than 0.1% dueto a single instane terminating with a gap of 0.12%. Note that, to be on the safe side, theSDP time omprises that for solving (4) with SDPA 6.0|so the atual time ould be (slightly)redued by using (5) instead|while the ME time does not inlude the (anyway, negligible)initialization phase. SDP ME Cplextime nodes d.gap r.gap time nodes d.gap r.gap nodes p.gap d.gap r.gap200+ 164 1.2e+4 1.14 904 7.7e+4 6.48 1.9e+7 0.14 45.33 85.632000 161 1.1e+4 2.14 320 2.8e+4 6.10 8.5e+6 0.38 51.27 84.47200� 1902 1.3e+5 3.65 3306 2.6e+5 0.02 6.69 8.9e+6 0.24 42.09 78.88300+ 818 2.9e+4 4.54 2061 9.3e+4 5.62 4.0e+6 0.41 64.68 92.013000 856 2.7e+4 1.97 1715 7.1e+4 6.28 3.6e+6 0.43 59.91 87.87300� 1709 5.2e+4 2.68 2797 9.4e+4 0.05 7.04 3.0e+6 0.53 45.11 78.77400+ 2264 7.0e+4 4.79 4756 1.1e+5 0.10 6.15 1.9e+6 1.03 61.47 89.064000 4378 7.2e+4 0.10 2.29 7421 1.6e+5 0.16 6.53 1.5e+6 1.18 68.68 90.03400� 6311 1.0e+5 0.23 3.06 6901 1.4e+5 0.36 6.49 1.5e+6 1.60 65.88 88.47Table 2: Results of the three B&C approahesAs already seen in [3℄, the standard ontinuous relaxation has huge root node gaps, usually inthe 80-90% range, that are only redued to the 40-70% range within 10000 seonds of the stan-dard B&C; while the MIP rounding heuristis of Cplex obtain relatively good primal solutions,these problems are unsolvable to optimality with standard means. With ME diagonalization,perspetive uts lose the root node gap to a more manageable 5-8%; this allows to solve mostof the smallest instanes, but it is not enough for the largest ones. There also is a lear trendbetween dominane of Q and e�etiveness of the perspetive uts approah; indeed, ME ouldnot solve two \�" instanes for both n = 200 and n = 300, while for n = 400 it ould not solve3, 5 and 6 instanes of lass \+", \0" and \�", respetively.The trend is learly present for SDP, too: while the \better" D allows to solve all smallerinstanes and all \400+" ones, 3 and 6 instanes of lass \4000" and \400�", respetively,remained unsolved. However, the bound improvements due to the SDP diagonalization|testi�edby the further redution of the root node gaps|signi�antly improve the overall performanesof the B&C approah: SDP solves more problems, it is faster on those that are solved, andobtains better dual gaps on those that are not, than ME.Our results learly show that, despite the ost of solving (4), the SDP approah is signi�antlymore eÆient than the ME one; for all our instanes, by solving (5) instead, the extra e�etive-ness of perspetive uts ould also be obtained at basially no extra ost. An interesting issuethat still remains open is the development of di�erent weighting shemes for the di variablesin (4) whih further improve the quality of the obtained bounds.
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