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Abstract We present and computationally evaluate a variant of the fast gra-7

dient method by Nesterov that is capable of exploiting information, even if8

approximate, about the optimal value of the problem. This information is9

available in some applications, among which the computation of bounds for10

hard integer programs. We show that dynamically changing the smoothness11

parameter of the algorithm using this information results in a better conver-12

gence profile of the algorithm in practice.13
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1 Introduction16

One of the crucial components of solution algorithms for mixed integer linear17

programs (MILP) is the computation of tight bounds upon the optimal value18

of the problem. Although the solution of the continuous relaxation (CR) of the19

MILP, usually strengthened by valid inequalities, is often the method of choice,20

forming a Lagrangian relaxation (LR) and (approximately) solving the corre-21

sponding Lagrangian dual (LD) can be preferable in some cases. This is true in22

particular when the LR decomposes into several smaller subproblems (e.g., [8,23

9] and the references therein). The LD is typically a non-smooth problem, and24

it is usually solved by algorithms of two different families: subgradient methods25

(SM) [6,9,14] and bundle methods (BM) [7,8,10]. The former are easier to26
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implement and their iteration cost is dominated by the function computation,27

whereas the latter are more complex and require the solution of a (potentially,28

costly) subproblem at each iteration; however, they have better convergence29

in practice. The right trade-off depends on many factors, among which the re-30

quired (relative or absolute) accuracy; the numerical experiments of [9] show31

that SM can be competitive, in a prototypical application, provided that a32

substantial amount of tuning is performed to choose the many algorithmic pa-33

rameters. Among SM, the primal-dual variants (PDSM) [12] are particularly34

attractive because they have much fewer parameters to tune. However, their35

practical performance might be worse than that of other variants. The analysis36

in [9] seems to indicate that one of the factors at play is that most SM, but37

not PDSM, can incorporate external information about the optimal value of38

the problem (in particular, for the selection of the stepsize). Hence, exploiting39

this information might be useful computationally.40

This work provides an initial step towards that goal by analyzing a differ-41

ent, but related, family of non-smooth optimization algorithms, that of fast42

gradient methods (FG) [1,2,3,11,13], that have efficiency estimates of the or-43

der O(1/ε)—with ε the required absolute accuracy—whereas the complexity44

of any black-box non-smooth method is at best O(1/ε2). The downside is that45

FG require an explicit modification of the oracle, which might negatively im-46

pact the total running time. In the standard version, FG do not exploit any47

knowledge on the optimal value. However they have one crucial smoothness48

parameter that is naturally related with the current distance (on the value49

axis) from the optimum. We propose a simple scheme, in two variants, for50

dynamically managing the smoothness parameter to exploit (approximate)51

information on the optimal value, showing that this leads to a significant im-52

provement of the convergence profile of the approach. We test the variant on53

two different LD of a hard MILP. The approach could be useful in several54

other applications particularly suited to FG, such as imaging [1,4].55

2 The method56

We study approaches for the numerical solution of the problem57

f∗ = min
{
f(λ) = f̂(λ) + max{ 〈Bλ, z〉 − φ(z) : z ∈ Z } : λ ∈ Λ

}
(1)

where Λ ⊆ Rn is closed and convex, and f : Rn → R is a proper convex58

nondifferentiable function due to the inner maximization (being φ continuous59

and convex on the bounded closed convex set Z and B a linear operator),60

while f̂ ∈ C1,1. The idea of FG methods is to make (1) smooth by defining61

fµ(λ) = f̂(λ) + max{ 〈Bλ, z〉 − φ(z)− µr2(z) : z ∈ Z } , (2)

which is a smooth lower approximation of f if the prox-function r2(z) ≥ 0
is continuous and strongly convex on Z. The smoothness parameter µ > 0
connects the minima of f and fµ, so appropriately managing µ one can apply
a fast gradient approach to fµ and obtain an approximate solution to (1).
This approach has been successfully applied in machine learning, data mining,
inverse problems, and imaging [1,4], and has inspired further research [2,3,
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11]. The FG is based on two prox-functions, that for simplicity we take as
r1(λ) = ‖λ− λ̄‖2/2 and r2(z) = ‖z − z̄‖2/2, λ̄ and z̄ being the centers. Since
Z is bounded, max{ r2(z) : z ∈ Z } ≤ R2 < ∞; therefore, fµ(λ) ≤ f(λ) ≤
fµ(λ) + µR2, which implies that any method minimizing fµ over Λ leads to
an approximate solution of (1) if µ↘ 0. Given the (unique) optimal solution

z∗µ(λ) of (2), ∇fµ(λk) = ∇f̂(λk) + z∗µ(λk)B; it can be seen [13, Theorem 1]
that ∇fµ is Lipschitz continuous with constant Lµ = M + ‖B‖2/µ, where M

is the Lipschitz constant of ∇f̂ . For any µ, the FG approach to minimizing fµ
is based on arbitrarily selecting a sequence of weights υk such that υ0 ∈ (0, 1]

and υ2k ≤ ∆k =
∑k
i=0 υi for k ≥ 1, and solving the two problems

πk = arg min
{
〈∇fµ(λk), λ− λk〉+ Lµ‖λ− λk‖2/2 : λ ∈ Λ

}
(3)

ζk = arg min
{
Lµr1(λ) +

∑k
i=0 υi[ fµ(λi) + 〈∇fµ(λi), λ− λi〉 ] : λ ∈ Λ

}
(4)

Then, with ιk+1 = υk+1/∆k+1, the next iterate is computed as λk+1 = ιk+1ζk+62

(1− ιk+1)πk (with λ0 = λ̄). We now reproduce the convergence analysis of [13]63

replacing the requirement that Λ is bounded, which does not hold in our64

application, with f∗ = f(λ∗) > −∞, so that R1 = r1(λ∗) < ∞. As in the65

original development we take υk = (k + 1)/2, so that ∆k = (k + 1)(k + 2)/4.66

Proposition 1 Under the assumptions (i) f∗ = f(λ∗) > −∞, (ii) R1 <67

∞ and (iii) M = 0, for any ε > 0 by setting µ = ε/(2R2) the inequality68

f(πk)− f∗ ≤ ε is satisfied in at most k + 1 = 4‖B‖
√
R1R2/ε iterations.69

Proof By [13, Theorem 2], for any k ≥ 0 we have70

∆kfµ(πk) ≤ min
{
Lµr1(λ) +

∑k
i=0 υi[ fµ(λi) + 〈∇fµ(λi), λ− λi〉 ] : λ ∈ Λ

}
,

and from both convexity and ∆k =
∑k
i=0 υi it follows that71

∆kfµ(πk) ≤ min
{
Lµr1(λ) +

∑k
i=0 υifµ(λ) : λ ∈ Λ

}
≤ LµR1 +∆kfµ(λ∗) .

Using Lµ = M+‖B‖2/µ we get ∆kfµ(πk) ≤ (M+‖B‖2/µ)R1+∆kfµ(λ∗), and72

therefore fµ(πk) − fµ(λ∗) ≤ (1/∆k)
(
M + ‖B‖2/µ

)
R1. The fact that fµ ≤ f73

implies that fµ(λ∗) ≤ f∗. In addition, f(λ) ≤ fµ(λ) + µR2 holds for any λ74

and, hence, in particular for πk, yielding75

f(πk)− f∗ ≤ (1/∆k)
(
M + ‖B‖2/µ

)
R1 + µR2 .

One can then use ∆k = (k + 1)(k + 2)/4 and find the value of µ minimizing76

the right-hand side above; this gives µ = (2‖B‖
√
R1/R2)/(k + 1), whence77

0 ≤ f(πk)− f∗ ≤ 4
(
MR1/(k + 1) + ‖B‖

√
R1R2

)
/(k + 1) ≤ ε

from which the desired result immediately follows. ut
The minimization problems (3)–(4) actually reduce to closed-form formulæ78

when either Λ = Rn or Λ = Rn+. Indeed, in the first case πk = π̄k = λk −79

∇fµ(λk)/Lµ and ζk = ζ̄k = λ̄−
∑k−1
i=0 υi∇fµ(λi)/Lµ, while in the second case80

πk = max{ 0 , π̄k } and ζk = max{ 0 , ζ̄k }. Furthermore, the simple recursive81

formula dk = ιk∇fµ(λk) + (1 − ιk)dk−1 = (1/∆k)
∑k
i=0 υi∇fµ(λi), whose82

correctness is easily verified by induction, can be used to avoid keeping all83
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the gradients to compute ζk, thereby making each iteration inexpensive. The84

analysis therefore suggests to keep µ fixed to a value directly proportional to85

the desired absolute error ε. Because typically one wants to specify relative86

tolerances εr instead, the practical implementation must be akin to87

µ = εr|fref |/(2R2) (5)

where fref is some reference value providing an estimate of f∗. In some appli-88

cations a lower bound flb ≤ f∗ is available that can be used as fref . However,89

knowledge of flb could be put to even better use. Indeed, µ is proportional to90

ε, and the algorithm basically performs steps of 1/Lµ = µ/‖B‖2 (if M = 0)91

along the direction dk, as recalled above. Therefore, a small value of µ, neces-92

sary to attain a high accuracy, leads to small steps when one if “far” from f∗.93

It would therefore be intuitively attractive to have larger values of µ early on94

and reduce it as the algorithm proceeds. Availability of flb suggests the rule95

µk = max{ f bestk − flb , εr|flb| }/(2R2) , (6)

where f bestk = min{ f(λi) : i ≤ k }. It is clear that such a modification still96

yields a convergent algorithms. Indeed, one could choose a finite sequence97

{εi} → ε and iteratively run the algorithm with fixed εi until that accuracy98

is attained, then move to the next value; this is obviously still convergent.99

Knowledge of flb just allows to change εi at every iteration rather than waiting100

for the number of iterations estimated by Proposition 1. In the next section we101

show that (6) actually improves the convergence rate of the algorithm when102

flb is accurate, and can be modified to handle the case when it is not.103

3 Application to Multicommodity Network Design104

The fixed-charge multicommodity capacitated network design problem (FC-
MCND) is a general network design problem with many applications (see [5,
8,9] and the references therein). Efficiently computing tight lower bounds on
its optimal value is crucial for solution approaches, and Lagrangian techniques
have been shown to be competitive. In [9], gradient-like approaches have been
thoroughly analysed, showing how the availability of lower bounds on the
optimal value improves the efficiency of solution approaches that can make use
of this information. We aim at verifying if an analogous phenomenon occurs for
FG, that can also be applied to FC-MCND as briefly described here. The data
of FC-MCND is a directed graph G = (N,A), where Fi and Bi respectively
denote the set of outbound and inbound arcs of node i ∈ N , and a set of
commodities K. Each k ∈ K has a deficit vector bk = [bki ]i∈N that denotes
the net amount of flow asked at each node. Each arc (a+, a−) = a ∈ A can
only be used if the corresponding fixed cost fa > 0 is paid, in which case the
mutual capacity ua > 0 bounds the total amount of flow on a, while individual
capacities uka bound the flow of commodity k. The routing cost cka has to be
paid for each unit of commodity k moving through a. A formulation is

min
∑
k∈K

∑
a∈A c

k
ax

k
a +

∑
a∈A faya (7)∑

a∈Fi
xka −

∑
a∈Bi

xka = bki i ∈ N , k ∈ K (8)∑
k∈K x

k
a ≤ uaya a ∈ A (9)
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xka ≤ ukaya a ∈ A , k ∈ K (10)

0 ≤ xka ≤ uka a ∈ A , k ∈ K (11)

ya ∈ {0, 1} a ∈ A (12)
Two classical approaches for deriving lower bounds on its optimal value are the105

flow relaxation (FR) and the knapsack relaxation (KR). In the former one re-106

laxes constraints (9)–(10) with multipliers λ = [α , β] = [ αa , β
k
a ]a∈A , k∈K ≥107

0. This yields the objective function108

min
∑
k∈K

∑
a∈A( cka + αij + βka )xka +

∑
a∈A( fa − αaua −

∑
k∈K u

k
aβ

k
a )ya

whose minimization subject to the remaining (8), (11)–(12) reduce to |K|109

single-commodity linear minimum cost network (MCF) problems plus |A| triv-110

ial single-variable integer problems. Applying FG means adding to (7) the term111

µ
∑
a∈A[ (ya − ȳa)2 +

∑
k∈K(xka − x̄ka)2 ]/2 (13)

with arbitrary x̄ and ȳ, yielding fµ(λ) = f0 +
∑
k∈K f

k
µ(λ)+

∑
a∈A f

a
µ(λ) with

f0 =−
∑
a∈A µ[ (ȳa)2 +

∑
k∈K(x̄ka)2 ]/2

fkµ(λ) =−min
{∑

a∈A[ c̄kax
k
a + µ(xka)2/2 ] : (8) , (11)

}
(14)

faµ(λ) =−min
{
f̄aya + µy2a/2 : (12)

}
(15)

where c̄ka = cka + αa + βka − µx̄ka and f̄a = fa − αaua −
∑
k∈K u

k
aβ

k
a − µȳa; (14)112

is now a (convex, separable) quadratic MCF problem, which is still efficiently113

solvable, albeit less so in practice than the linear version. In order to apply FG114

the R2 constant has to be computed by maximizing (13) over (8), (11)–(12),115

which is a hard problem. Yet it decomposes in |K|+ |A| independent subprob-116

lems, the latter being single-variable ones. For the remaining part we use the117

linear upper approximation of (xka − x̄ka)2 given by the gradient computed at118

xa = uka/2, i.e., R2 ≤ (
∑
k∈K R

k
2 +

∑
a∈A max{ ȳ2a , (1− ȳa)2 } )/2 with119

Rk2 =
∑
a∈A(x̄ka)2 + max

{ ∑
a∈A(uka/2− x̄ka)xka : (8) , (11)

}
.

In the KR, one rather dualizes the flow conservation constraints (8) with mul-120

tipliers λ = [λki ]i∈N,k∈K ; this yields the objective function121

min
∑
a∈A

[ ∑
k∈K(cka + λka+ − λ

k
a−)xka + faya

]
+
∑
i∈N

∑
k∈K λ

k
i b
k
i

whose minimization subject to (9)–(12) reduce to |A| independent continu-
ous knapsack problems (KP). Applying FG corresponds again to adding (13),
leading to fµ(λ) = f0 +

∑
a∈A f

a
µ(λ) with

f0 =−
∑
i∈N

∑
k∈K λ

k
i b
k
i − µ

∑
a∈A( ȳ2a +

∑
k∈K(x̄ka)2 )/2

faµ(λ) =−min { ( ga(λ) + fa − µȳa )ya : (12) }
ga(λ) = min

{∑
k∈K [ c̄kax

k
a + µ(xka)2/2 ] :

∑
k∈K x

k
a ≤ ua , (11)

}
(16)

being c̄ka = cka+λka+−λ
k
a−−µx̄

k
a. Now the crucial part is the quadratic KP (16),122

which is still easy to solve. Again, estimating the constant R2, i.e., maximising123

the convex (13) over the feasible region, is not so. However, by the same token124

we maximise a linear upper approximation by solving the continuous KP125

ḡa(λ) = max
{∑

k∈K(uka/2− x̄ka ) :
∑
k∈K x

k
a ≤ ua , (11)

}
and using ḡa(λ) similarly to ga(λ) to provide an upper estimate to R2.126
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4 Numerical experiments127

The FG method has been developed in C++, compiled with GNU g++ 4.4.5128

(with -O3 optimization option) and ran on an Opteron 6174 processor (2.2129

GHz) with 32 GB of RAM, under a i686 GNU/Linux operating system. The130

solvers for quadratic MCF (14) and KP (16) are available thanks to the131

MCFClass and CQKnPClass projects, respectively, available at132

http://www.di.unipi.it/optimize/Software/MCF.html133

http://www.di.unipi.it/optimize/Software/CQKnP.html134

The numerical experiments have been performed on 80 randomly generated135

instances already used in several papers [8,9], and available at136

http://www.di.unipi.it/optimize/Data/MMCF.html#Canad .137

The purpose of the testing is to compare the static rule (5) proposed in138

[13] with the dynamic rule (6) making use of flb. To compare different al-139

gorithms we report convergence charts plotting the obtained relative gap,140

(f bestk − f∗)/|f∗|, against both iteration and time. As in [9], the time charts141

for different instances become almost indistinguishable when the horizontal142

axis represents the normalized time, i.e., the running time divided by the143

product |A| · |K|. This is illustrated in the right part of Figure 1 (in the left144

one, the horizontal axis represents iterations) where convergence charts are145

separately reported, averaged on small instances (|A| ≤ 300), medium ones146

(300 < |A| ≤ 600) and large ones (|A| > 600): the individual lines are barely147

distinguishable among them and with the total average. The normalized time148

plots are a bit more apart from each other, which is reasonable because (14)149

and (16) are “complex” subproblems that cannot be expected to scale linearly150

with size, but still the difference is not large. As this consistently happens in151

all cases, in the following, we only report the global average.152
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Fig. 1 Partly disaggregated results for dynamic µ with flb = f∗

We start by discussing the KR. In Figure 2 and 3 we report the (average) con-153

vergence plots for the static rule (5) and the dynamic rule (6) when the lower154

bound is “accurate”, i.e., flb = f∗ and, respectively, εr = 1e−4 and εr = 1e−6.155

As before, on the left side we plot the gap against the number of iterations,156

and on the right side against normalised time. To better put the results in157

perspective we also report results for two highly tuned version of the subgradi-158

ent algorithm applied to the standard (non-smoothed) Lagrangian dual, using159
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volume deflection and, respectively, FumeroTV (SVF) and colorTV (SVC)160

stepsize rules, with the best algorithmic parameters found in [9]. Because we161

know a (tight) bound on the optimal value, we can stop all variants as soon162

as an accurate enough solution has been found, i.e., f bestk − f∗ ≤ εr|f∗|.163
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Fig. 2 Results for the KR with flb = f∗ and εr = 1e−4
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Fig. 3 Results for the KR with flb = f∗ and εr = 1e−6

The figures clearly show that the dynamic rule (6) significantly outperforms164

the static one (5). In particular, the convergence plots show a first “flat” leg165

where progress is slow; comparing Figure 2 and Figure 3 (purposely plotted166

in identical horizontal scale) shows that the flat leg for (5) with εr = 1e−6 is167

much longer than with εr = 1e−4. This is somewhat unsettling, in that the168

final desired accuracy should not, in principle, influence the convergence speed169

at the beginning; yet it does for the static rule. The dynamic one attains, after170

a shorter flat leg, a remarkably linear convergence rate which is (correctly)171

not influenced by the value of εr. The FG with dynamic rule is roughly com-172

petitive with the subgradient variants (which also exploit knowledge of f∗ for173

computing the stepsize) for εr = 1e−4, despite having to solve a more complex174

Lagrangian problem. The convergence profile of subgradient methods is con-175

siderably more erratic than that of the FG. Furthermore, they are basically176

incapable of attaining accuracy greater than εr = 1e−4 (and not even that for177

SVF), whereas the FG has no issues to get to εr = 1e−6, and likely beyond.178

However, the picture is different when flb � f∗, as Figure 4 and 5 show.179

There we use the significantly worse estimate for flb = f∗−0.1|f∗| (denoted as180

“10%f∗” for short). The result is that the dynamic rule “flattens out” far from181

the required accuracy, basically ceasing to converge. This is due to the fact182

that in (6) µk only becomes small if f bestk approaches flb, which cannot happen183
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because flb � f∗. Hence, µ is never set to the value required for attaining an184

accurate solution, and the FG basically stalls. Note that in the figures we plot185

two different versions of the static rule (5): (5’) uses fref = flb, while (5”) uses186

fref = f bestk . The first option turns out to be preferable, but both versions187

show the “flat leg” that grows longer as the required accuracy increases.188

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06

G
A

P

1e-08 1e-06 1e-04 1e-02 1e+00

(6)
(17)
(5’)
(5”)
SVF
SVC

Fig. 4 Results for the KR with flb = 10%f∗ and εr = 1e−4
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Fig. 5 Results for the KR with flb = 10%f∗ and εr = 1e−6

A possible approach to remedy this drawback of the dynamic rule is to observe189

that, when flb − f∗, the convergence rate becomes very nearly linear on a190

doubly-logarithmic scale from a certain iteration ı̂ onwards. In other words,191

experimentally192 [
log
(

(f(λi)− f∗)/f∗ )− log
(

(f(λı̂)− f∗)/f∗ )
]
/[ log( i )− log( ı̂ ) ] = −α

holds with quite good accuracy for all i larger than a properly chosen ı̂. This
immediately suggests the empiric formula

µk = max{min{ (fı̂ − flb)(̂ı/k)α , (f bestk − flb) } , εr|flb| }/(2R2) (17)

for dynamically adjusting µ when flb might not be an accurate estimate of193

f∗. The parameters α = 1.2 and ı̂ = 10 are easily derived from the (average)194

convergence plot for flb = f∗, and used uniformly for all instances (being195

the convergence plots almost identical). Figures 2 and 3 show that the new196

dynamic strategy (17), albeit not as efficient as (6) with the accurate estimate197

of f∗, is still consistently superior to the static strategy (5). Furthermore, it is198

resilient to rather inaccurate estimates of f∗; indeed, it is by far the preferable199

option in Figures 4 and 5.200

The results for the FR are analogous, with a few differences. First of all, the201

quadratic MCF solvers had numerical issues with small values of µ, preventing202
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Fig. 6 Results for the FR with flb = f∗ and εr = 1e−4
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Fig. 7 Results for the FR with flb = 10%f∗ and εr = 1e−4

us to reliably obtain runs for εr = 1e−6, which is why we only report results203

for εr = 1e−4. Second, according to [9], the best subgradient variant for this204

problem rather uses a Polyak stepsize rule (SVP). Finally, using the actual205

value of ‖B‖ corresponding to (14)–(15) actually led to a surprisingly slow206

convergence. We (basically, by chance) discovered that using ‖B‖ = 1 instead207

recovered a much faster convergence. While this suggests that the FG may208

benefit from some tuning, exploring this issue is out of the scope of the present209

paper. Therefore, in Figures 6 and 7, we mainly report the results of the three210

rules when using ‖B‖ = 1, denoted by (5), (6) and (17), while only plotting211

in Figure 6, the results of the original rule (6) to show how much worse the212

performances are (those of the other rules are similarly degraded).213

All in all, the results closely mirror those of the KR. The subgradient method214

is considerably faster than FG, more so than in the KR, which is not surprising215

because quadratic MCFs now have to be solved; however, it struggles to reach216

εr = 1e−4 accuracy. The dynamic rule (6) is preferable when flb = f∗, but it217

stalls far from the required accuracy when the lower bound is not accurate, in218

which case the dynamic rule (6) is preferable. In general, the static rule (5),219

in both variants, is less effective than the dynamic ones. The exception is at220

the end of the convergence plot in Figure 7; however, this corresponds to the221

case where the desired accuracy has already been attained, but the FG is not222

capable of stopping (quickly) because the lower bound is not accurate enough.223

Only in that final phase the static strategy outperforms the dynamic one.224

5 Conclusion225

We have devised a simple rule for dynamically adjusting the crucial smoothness226

parameter µ in the fast gradient approach. The rule exploits information about227
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the optimal value of the problem to significantly improve the convergence228

properties of the method, at least in practice on our test instances. The rule229

is very effective when the estimate is tight, but it can also be adapted to230

work when the estimate is loose. This requires tuning two parameters, which231

in our experience seems to be easy. The proposed modification is therefore232

interesting for all the applications where bounds on the optimal value are233

readily available, as it happens, e.g., in integer optimization. Besides possibly234

proving useful for various applications that can benefit from FG approaches,235

we hope that our result stimulates research into finding ways for exploiting236

information about the optimal function value in the related, although different,237

primal-dual subgradient methods (PDSM) [12] that do not require modifying238

the function computation to work. The inability to exploit this information239

has been identified as a potential weakness in PDSM [9], which limits the240

applicability of this otherwise interesting—both for its performances and for241

being almost parameter-free—class of subgradient algorithms. Our results on242

FG seem to indicate that this line of research could bear interesting fruits.243
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