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Abstract. The Perspective Relaxation (PR) is a general approach for constructing tight ap-
proximations to Mixed-Integer NonLinear Problems with semicontinuous variables. The PR of
a MINLP can be formulated either as a Mixed-Integer Second-Order Cone Program, provided
that the original objective function is SOCP-representable, or as a Semi-Infinite MINLP. We
show that under some further assumptions—rather restrictive, but satisfied in several practical
applications—the PR of Mixed-Integer Quadratic Programs can also be reformulated as a piece-
wise linear-quadratic problem of roughly the same size of the standard continuous relaxation.
Furthermore, if the original problem has some exploitable structure, this is typically preserved in
the reformulation, allowing to construct specialized approaches for solving the PR. We report on

implementing these ideas on two MIQPs with appropriate structure: a sensor placement problem
and a Quadratic-cost (single-commodity) network design problem.

1. Introduction

Semi-continuous variables are very often found in models of real-world problems such as distribu-
tion and production planning problems [7, 10], financial trading and planning problems [8], and
many others [1, 11, 12]. These are variables which are constrained to either assume the value 0,
or to lie in some given polyhedron P ; when 0 belongs to P , one incurs in a fixed cost to allow the
variable to have a nonzero value. We will consider Mixed-Integer NonLinear Programs (MINLP)
with n semi-continuous variables xi ∈ R

mi for each i ∈ N = {1, . . . , n}. Assuming that each
Pi = {xi : Aixi ≤ bi} is compact, and therefore {xi : Aixi ≤ 0} = {0}, each xi can be modeled by
using an associated binary variable yi, leading to problems of the form

min g(z) +
∑

i∈N fi(xi) + ciyi (1.1)

Aixi ≤ biyi i ∈ N (1.2)

(x, y, z) ∈ O , y ∈ {0, 1}n , x ∈ R
m , z ∈ R

q (1.3)

where all fi and g are closed convex functions, z is the vector of all the “other” variables, and
O ⊆ R

m+n+q (with m =
∑

i∈N mi) represents all the “other” constraints of the problem.
It is known that the convex hull of a (possibly disconnected) domain such as {0} ∪ P can be

conveniently represented in a higher-dimensional space, which allows to derive disjunctive cuts for
the problem [14]; this leads to defining the Perspective Reformulation of (1.1)—(1.3) [5, 7]

min
{

g(z) +
∑

i∈N yifi(xi/yi) + ciyi : (1.2) , (1.3)
}

(1.4)

whose continuous relaxation is significantly stronger than that of (1.1)—(1.3), and that therefore
is a more convenient starting point to develop exact and approximate solution algorithms [7, 8,
10, 12]. However, an issue with (1.4) is the high nonlinearity in the objective function due to
the added fractional term. Two alternative reformulations of (1.4) have been proposed: one as
a Mixed-Integer Second-Order Cone Program [15, 3, 12] (provided that the original objective
function is SOCP-representable), and the other as a Semi-Infinite MILP [7]. In several cases,
the latter outperforms the former in the context of exact or approximate enumerative solution
approaches [9], basically due to the much higher reoptimization efficiency of active-set (simplex-
like) methods for Linear and Quadratic Programs w.r.t. the available Interior Point methods for
Conic Programs. However, both reformulations of (1.4) require the solution of substantially more
complex continuous relaxations than the original formulation of (1.1)—(1.3); furthermore, they
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may spoil the valuable structure of the problem, such as the presence of network constraints.
We show that, under some further assumptions, the PR of a Mixed-Integer Quadratic Program
can also be reformulated as a piecewise linear-quadratic problem of roughly the same size of
the standard continuous relaxation; this new reformulation is obtained by projecting each pair
of variables (xi, yi) onto the subspace of the variables xi, as discussed in Section 2. Moreover,
if the original problem has some exploitable structure, then this structure is preserved in the
reformulation, thus allowing to construct specialized approaches for solving the PR. We apply this
approach to a Sensor Placement problem (Section 3) and to a Quadratic-cost (single-commodity)
network design problem (Section 4), reporting numerical experiments comparing state-of-the-art,
off-the-shelf MIQP solvers with the new specialized solution approach (Section 5).

2. A piecewise description of the convex envelope

Here we analyze the properties of the Perspective Reformulation under three further assumptions
on the data of the original problem (1.1)—(1.3):

A1) each xi is a single variable (i.e., mi = 1) and each Pi is a bounded real interval [0, ui];
A2) the variables yi only appear each in the corresponding constraint (1.2), i.e., the “other”

constraints O do not concern the yi;
A3) all functions are quadratic, i.e., fi(xi) = aix

2
i + bixi (and since they are convex, ai ≥ 0).

While these assumptions are indeed restricting, they are in fact satisfied by most of the applications
of the PR reported so far [7, 8, 11, 3, 12]. Since in this paragraph we will only work with one block
at a time, to simplify the notation in the following we will drop the index “i”. We will therefore
consider the (fragment of) Mixed-Integer Quadratic Program (MIQP)

min
{

ax2 + bx + cy : 0 ≤ x ≤ uy , y ∈ {0, 1}
}

(2.1)

and its Perspective Relaxation

min
{

f(x, y) = (1/y)ax2 + bx + cy : 0 ≤ x ≤ uy , y ∈ {0, 1}
}

. (2.2)

The basic idea behind the approach is to recast (2.2) as the minimization over x ∈ [0, u] of

z(x) = miny f(x, y) = bx + miny

{

(1/y)ax2 + cy : 0 ≤ x ≤ uy , y ∈ [0, 1]
}

. (2.3)

It is well-known that z(x) (partial minimization of a convex function) is convex; furthermore, due
to the specific structure of the problem z(x) can be algebraically characterized. In particular, due
to convexity of f(x, y), the optimal solution y∗(x) of the inner optimization problem in (2.3) is
easily obtained by the solution ỹ = ỹ(x) (if any) of the first-order optimality conditions of the
unconstrained version of the problem, i.e., ∂f(x, y)/∂y = c − ax2/y2 = 0. In fact, if ỹ is feasible
for the problem, then it is optimal (y∗(x) = ỹ); otherwise, y∗(x) is the projection of ỹ over the
feasible region, i.e., the extreme of the interval nearer to ỹ (this is where assumption A1 is used).
Thus, by developing the different cases, one can construct an explicit algebraic description of
z(x) = f(x, y∗(x)).

We start by rewriting the constraints in (2.3) as

(0 ≤) x/u ≤ y ≤ 1 (2.4)

(since u ≥ x ≥ 0 ⇒ x/u ≥ 0). We must now proceed by cases:

1) If c ≤ 0, then ỹ is undefined: the derivative is always negative. Thus, there is no global
minima of the unconstrained problem, and therefore y∗(x) = 1, yielding

z(x) = ax2 + bx + c (2.5)

2) Instead, if c > 0 then ỹ = x
√

a/c (note that we have used x ≥ 0, c > 0, a ≥ 0). In general,
two cases can arise:
2.1) ỹ ≤ x/u ⇔ u ≤

√

c/a ⇔ y∗(x) = x/u ⇒
z(x) =

(

b + au + c/u
)

x (2.6)

2.2) 0 ≥ ỹ ≥ x/u ⇔ u ≥
√

c/a. This gives two further subcases

∗ (u ≥) x ≥
√

c/a (≥ 0) ⇒ ỹ ≥ 1 ⇒ y∗(x) = 1,

∗ 0 ≤ x ≤
√

c/a (≤ u) ⇒ ỹ ≤ 1 ⇒ y∗(x) = ỹ,
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finally showing that z(x) is the piecewise linear-quadratic function

z(x) =

{ (

b + 2
√

ac
)

x if 0 ≤ x ≤
√

c/a

ax2 + bx + c if
√

c/a ≤ x ≤ u.
(2.7)

Note that (2.7) is continuous and differentiable even at the (potential) breakpoint

x =
√

c/a, and therefore convex (as expected).

In all the cases, z(x) is a convex differentiable piecewise-quadratic function with at most 2 pieces.

3. A sensor placement problem

Consider the problem of optimally placing a set N = {1, . . . , n} of sensors to cover a given area,
where deploying one sensor has a fixed cost plus a cost that is quadratic in the radius of the surface
covered [1]. The problem, which is shown to be NP-hard in [2], can be written as

min
{

∑

i∈N ciyi +
∑

i∈N aix
2
i :

∑

i∈N xi = 1 , 0 ≤ xi ≤ yi , yi ∈ {0, 1} i ∈ N
}

(3.1)

Since we can assume ci > 0 (for otherwise yi can surely be fixed to 1), in the continuous relaxation
of this problem the “design” variables yi can be projected onto the xi; that is, the yi variables
can be eliminated since at optimality yi = xi. Such a problem can be solved in O(n log n) by
Lagrangian relaxation [1]; however, the bound can be weak, yielding to a large number of nodes in
the enumeration tree and to a large computational time. We can improve on the bound by using
the convex envelope of the single blocks of the objective function; as outlined in Section 2, we can
compute this bound by means of a single minimization involving the piecewise-linear-quadratic
functions (2.6)-(2.7). Hence, we can rewrite the problem in the form

min
{

∑m
j=1 bjχj +

∑m
j=1 djχ

2
j :

∑m
j=1 χj = 1 , χj ∈ [0, αj ] j = 1, . . . , m

}

(3.2)

where m ≤ 2n and the coefficients bj and dj are as follows:

• if
√

ci/ai ≥ 1 then only one new variable χj is generated with coefficients bj = aiui+ci/ui,
dj = 0, and αj = ui;

• if
√

ci/ai < 1 then two new variables χj1 and χj2 are generated such that xi = χj1 + χj2

with bj1 = 2
√

aici, dj1 = 0, αj1 =
√

ci/ai for the first variable and bj1 = 2
√

aici, dj1 = ai,

αj1 = 1 −
√

ci/ai for the second variable.

This problem can be easily solved in O(m log m) = O(n log n) with the same algorithm mentioned
for the continuous relaxation of (3.1).

4. Quadratic-cost network design

A directed graph G = (N, A) is given; for each node i ∈ N a deficit bi ∈ R is given indicating the
amount of flow that the node demands (negative deficits indicate source nodes). Each arc (i, j) ∈ A
can be used up to a given maximum capacity uij paying a fixed cost cij . Otherwise, no cost is
due if (i, j) is not installed but flow cannot pass through the arc. Additionally, if xij units of flow
are sent through an installed arc (i, j), a quadratic flow cost bijxij + aijx

2
ij is also incurred. The

problem is to decide which arcs to install and how to route the flow in such a way that demands
are satisfied and the total (installing + routing) cost is minimized. The problem can be written as

min
∑

(i,j)∈A cijyij + bijxij + aijx
2
ij

∑

(j,i)∈A xji −
∑

(i,j)∈A xij = bi i ∈ N

0 ≤ xij ≤ uijyij , yij ∈ {0, 1} (i, j) ∈ A

(4.1)

This network design problem is NP-hard, since it is a generalization of the sensor placement
problem described in Section 3. A recent application of this general model in a Facility Location
setting is given in [11, 12].

Again, since cij > 0 (for otherwise yij can surely be fixed to 1), in the continuous relaxation of
(4.1) the design variables yij can be projected onto the xij ; that is, at optimality yij = xij/uij.
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The resulting problem can be efficiently solved by means of (convex) Quadratic Min-Cost Flow
(QMCF) algorithms; however, the bound provided by the continuous relaxation is usually weak.

Applying the results of Section 2 to (4.1), a Separable Convex-cost NonLinear MCF problem
is obtained, where the flow cost function on each arc is a piecewise linear-quadratic convex cost
function. In turn, this can be rewritten as a QMCF problem

min
∑

(i,j)∈A′ b′ijχij + a′

ijχ
2
ij

∑

(j,i)∈A′ χji −
∑

(i,j)∈A′ χij = bi i ∈ N

0 ≤ χij ≤ u′

ij (i, j) ∈ A′

(4.2)

on a graph G′ = (N, A′) with the same node set and at most 2 times the number of arcs. For each of

the original arcs (i, j), at most two “parallel” copies are constructed. If uij ≤
√

cij/aij (case 2.1),
then only one representative of (i, j) is constructed in G′, with b′ij = bij + aijuij + cij/uij, a′

ij = 0

and u′

ij = uij . Instead, if uij <
√

cij/aij (case 2.2) then two parallel copies of the arc (i, j) have

to be constructed in G′: the first has b′ij = bij + 2
√

aijcij , a′

ij = 0, and u′

ij =
√

cij/aij , while the

second has b′ij = bij +2
√

aijcij , a′

ij = aij , and u′

ij = uij −
√

cij/aij . For this kind of “partitioned”
NonLinear MCF problems—where some of the arcs have strictly convex cost functions, while the
other have linear cost functions—specialized algorithms have been proposed [6]. In general, any
algorithm for Convex (Quadratic) MCF problems (e.g., [4]) can be used. While codes implementing
these algorithms are either not available or not very efficient in practice, the off-the-shelf solver
Cplex turns out to be quite efficient in solving these convex QMCFs.

5. Computational Results

In order to assess the behaviour of the Projected Perspective Reformulation technique we imple-
mented it on the two problems discussed in sections 3 and 4 within a specialized B&B where the
perspective relaxation is solved by computing the projection z(p) as in (2.6)-(2.7). We considered
the reformulations (3.2) and (4.2) and, for their solution, we applied the specialized O(n log n)
algorithm for the Sensor Placement problem and the Cplex quadratic solver, respectively. We
compared the new approach (denoted as P2/R) against the following ones:

• a B&C on the PR (2.2) using the Semi-Infinite MILP formulation (denoted as P/C for
Perspective Cut method);

• a B&C on the PR (2.2) using the MI-SOCP formulation (denoted as CPLEX-SOCP);
• a standard B&C on the continuous relaxation (2.1) (denoted as CPLEX).

These three alternative methods have all been implemented by means of Cplex B&C solver. In
particular, the P/C method has been coded with a cut-callback function. All the algorithms
have been coded in C++, compiled with GNU g++ 4.0.1 (with -O3 optimization option) and ran
on an Opteron 246 (2 GHz) computer with 2 Gb of RAM, under Linux Fedora Core 3.

We generated 180 random instances of the Sensor Placement problem, grouped in 6 classes with
30 instances each. The first 4 classes contain instances with either 2000 or 3000 sensors and have
either high or low quadratic costs. In the former (“h”) , fixed costs are uniformly chosen in the
interval [1, n] while quadratic costs are uniformly chosen in the interval [n, Cmax], where Cmax ∈
{10n, 20n, 30n}. In the latter (“l”), fixed costs are randomly generated in the interval [n, Bmax],
where Bmax ∈ {10n, 20n, 30n}, while quadratic costs are randomly generated in the interval [1, n].
The last two classes are generated starting from random instances of the Partition problem,
according to the NP-hardness proof for the Sensor Placement problem in [2]. We considered 2000
and 3000 Partition items ranging in the intervals [100,1000], [500,1000], [1,100000]. Table 1
reports the obtained results.

For the Network Design Problem we generated 360 problems, grouped into 12 classes with 30
instances each, as follows:

- the underlying flow networks with 1000, 2000, or 3000 nodes have been generated by
netgen [13], where: (i) the minimum arc cost is 1 and the maximum is randomly generated
between 10 and 100, (ii) the total supply bs is randomly generated between 100 and 1000,
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name P2/R CPLEX
time nodes av. t/n time nodes av. t/n gap

2000-h 0.39 1 0.39 1020.51 223293 0.01 4.03

2000-l 0.09 1 0.09 101.58 3713 0.03 0.00

3000-h 0.92 1 0.92 1057.09 144406 0.01 7.18

3000-l 0.21 1 0.21 270.49 5724 0.05 0.00

PTN-2000 0.43 1 0.43 1018.13 4149 0.25 2.98

PTN-3000 1.02 1 1.02 1008.42 568 1.79 3.14

name P/C CPLEX - SOCP
time nodes av. t/n time nodes av. t/n gap

2000-h 47.74 924 30.43 1066.02 507 2.11 207.04

2000-l 17.02 1 17.02 49.32 38 7.60 0.00

3000-h 91.24 88 74.09 1069.73 332 3.24 412.54

3000-l 40.27 1 40.27 135.95 72 12.08 0.00

PTN-2000 94.30 6 56.93 23.79 1 23.80 0.00

PTN-3000 202.63 6 114.72 53.74 1 53.74 0.00

Table 1. Results for the Sensor Placement problem

and (iii) the minimum arc capacity is 0.05bs and the maximum arc capacity is randomly
generated in the interval [0.2bs, 0.4bs];

- the fixed costs which are either low or high with respect to the linear costs generated by
netgen, i.e., cij is uniformly generated either in [0.5bij, bij ] (“l”) or in [3bij , 10bij] (“h”);

- the quadratic costs which are either low or high with respect to the linear costs generated
by netgen, i.e., aij is uniformly generated either in [3bij , 10bij] (“l”) or in [100bij, 1000bij]
(“h”).

Table 2 reports the obtained results.

name P2/R CPLEX
time nodes av. t/n time nodes av. t/n gap

1000-h-h 0.05 1 0.05 108.80 35630 0.28 0.00

1000-h-l 0.31 5 0.05 1037.63 324447 0.01 0.02

1000-l-h 0.05 1 0.05 163.67 46685 0.18 0.00

1000-l-l 0.32 5 0.05 1046.89 304305 0.01 0.01

2000-h-h 0.10 1 0.10 690.09 101868 0.11 0.00

2000-h-l 45.42 278 1.10 1031.75 141485 0.01 0.06

2000-l-h 0.09 1 0.09 858.22 131954 0.03 0.00

2000-l-l 8.78 63 0.10 1036.79 140877 0.01 0.04

3000-h-h 0.15 1 0.15 1041.96 88541 0.01 0.00

3000-h-l 71.02 269 0.17 1051.93 73591 0.01 0.12

3000-l-h 0.15 1 0.15 988.74 89209 0.12 0.00

3000-l-l 19.05 79 0.16 1062.45 85878 0.01 0.04

name P/C CPLEX - SOCP
time nodes av. t/n time nodes av. t/n gap

1000-h-h 17.03 3 10.14 967.30 26 62.86 0.01

1000-h-l 5.89 25 0.38 79.17 46 16.98 0.00

1000-l-h 8.89 4 4.60 620.77 21 38.62 0.00

1000-l-l 4.68 22 0.33 30.46 63 17.37 0.00

2000-h-h 57.09 7 13.84 895.70 8 207.60 0.01

2000-h-l 51.60 348 0.72 252.98 36 27.65 0.00

2000-l-h 42.3 6 16.57 525.35 9 63.35 0.00

2000-l-l 20.60 131 0.51 252.82 193 40.02 0.00

3000-h-h 117.30 11 18.90 564.41 2 407.97 0.01

3000-h-l 140.47 584 1.39 366.95 27 36.76 0.00

3000-l-h 101.18 12 12.01 372.16 4 89.53 0.01

3000-l-l 45.43 153 0.89 292.41 83 62.39 0.00

Table 2. Results for Network Design problems
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For our experiments we fixed a time limit of 1000 seconds. All problems where solved at op-
timality within this time limit with the P2/R and the P/C methods, therefore we do not report
the gap at termination for them. For all methods, we report the running time in seconds, the
number of B&B nodes and the average time for node. As expected from previous results [7, 9],
the P/C method overcomes CPLEX B&C algorithm both with standard and SOCP formulations.
However, the newly proposed P2/R approach significantly overcomes the P/C method. This is
mainly because of the much faster specialized solution methods used for the relaxations, which
significantly reduces the effort required at each node. Furthermore, P/C approximates the true
perspective relaxations by means of a finite number of cutting planes, thereby introducing some
(small) approximation errors; these seem to cause the generation of more B&C nodes w.r.t. the
“exact” solutions provided by P2/R.
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