
 
 

  
Abstract-- The paper deals with the solution of the optimal 

short-term unit commitment (UC) problem in an electric power 
system. The optimization model takes into account the main 
operating constraints and physical characteristics of the power 
generation system. A comparison between Lagrangian heuristics 
and Tabu Search techniques on different classes of realistic 
instances is presented. Such a comparison is aimed at highlighting 
the strong features and the weaknesses of each technique, in view 
of their application in computer models for competitive electricity 
markets in progressive evolution. The comparison may provide 
insights for the construction of hybrid techniques that 
incorporate the best of both approaches. 
 

Index Terms— Lagrangian Relaxation, Optimization methods, 
Power generation dispatch, Tabu Search, Unit commitment 

I. NOMENCLATURE 
I  number of units. 
T  number of time periods. 
D  T-dimensional vector of the load demands in 

each period t in the scheduling horizon. 
ui  T-dimensional array of the 0-1 variables ui,t 

indicating the ‘status’ of unit i in time period t, 
i.e., whether unit i is committed in period t or 
not. 

pi  T-dimensional array of the amount of power pi,t 
that the unit i is producing in period t; 

, ,( , )i i t i tc u p   per hour thermal generation cost of unit i as a 
function of MW provided, if committed, at 
current period t. The function is here assumed a 
quadratic function. 

( )titii uus ,1, ,−  start-up cost which is charged whenever the unit 
is committed. In general, this cost depends on 
how long the unit has been uncommitted. 

min
ip , max

ip   minimum and maximum output  of unit i. 
u
iτ , d

iτ   minimum up and down times of unit i. 
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II. INTRODUCTION 
HIS paper deals with the solution of the optimal short-
term unit commitment (UC) problem in an electric power 
system. Obtaining good schedules can considerably reduce 

the production costs, which is of increasing importance in the 
ongoing liberalization of the electricity market in many 
countries. Further, optimization models can assist market 
operators in determining which generators will be committed, 
and consequently paid, and this results in a great incentive to 
implement fair processes for choosing from alternative near-
optimal solutions [1]. 

The optimization model considered in this paper takes into 
account the main operating constraints and physical 
characteristics of the power generation system [2]. The 
relevant mathematical formulation consists of a large-scale 
mixed-integer non-linear non-convex optimization problem. 

Efficient Lagrangian-based heuristics have been proposed in 
the literature, where the problem is decomposed into 
independent single-unit problems by relaxing the constraint 
that the sum of the generated powers must equal the required 
load (e.g. [3-6]). Heuristics are then used to obtain a feasible 
schedule. Such an approach is referred to in the literature as 
Lagrangian relaxation (LR) method [7]. 

Different algorithms are available for the solution of the 
Lagrangian dual. The correct choice of the algorithm is critical 
both for the efficiency of the lower bound computation and for 
the quality of the primal solution obtained. In particular, since 
the dual exhibits a disaggregate structure, aggregate and 
disaggregate bundle approaches can be used (e.g. [3,4]), 
together with classical subgradient methods (e.g. [5,6]). With 
the proper choice, these techniques allow to efficiently obtain 
provable almost-optimal solutions, with relative gaps most 
often smaller than 1%. 

More recently, Tabu Search (TS) approaches have been 
proposed for the solution of unit commitment problems (e.g. 
[8,9]). Tabu Search techniques [10] start in general by a 
feasible solution of the problem, and then iteratively improve 
it by using local search. In the case of the UC, the starting 
solution is an initial schedule indicating the status (on/off) of 
the units in each time interval, and can be generated using 
several types of greedy heuristics. The local search move 
upgrades this schedule, possibly improving the objective 
function, by switching on/off one of the units at a time in one 
or more periods. As soon as a local optimum is reached, i.e., 

Lagrangian Relaxation and Tabu Search 
Approaches for the Unit Commitment Problem 

A. Borghetti, A. Frangioni, F. Lacalandra, A. Lodi, S. Martello, C. A. Nucci, A. Trebbi 

T

Power Systems Unit




 
 

no improving move can be performed, several escaping actions 
are settled up based on the acceptance of uphill moves with 
anticycle mechanisms. The anticycle mechanism is guaranteed 
by partially storing each move in a “tabu” list, thus identifying 
admissible and inadmissible moves. Fast convergence to good 
solutions is achieved by the method in very short computing 
times. 

In this paper, we compare Lagrangian heuristics and Tabu 
Search techniques on several different classes of realistic 
instances. This comparison is aimed at highlighting the strong 
points and the weaknesses of each technique, in an attempt to 
evaluate their usefulness for the solution of the next generation 
of UC models. In addition, the comparison provides insights 
for the construction of hybrid techniques that incorporate the 
best of both approaches. 

III. PROBLEM FORMULATION 
The comparison is carried out on the following classical 

formulation of the UC problem, which takes into account the 
main operating constraints and the physical characteristics of 
the power generation system. In particular, we consider a 
power system of I thermal units. 

The aim is to determine the optimal commitment that 
satisfies the forecasted demands D without violating physical 
and operating constraints of the generation equipment and 
demand specifications. The objective function to be minimized 
is the sum of thermal generation costs and start-up costs, i.e., 

 ( ) ( ) ( ), , , 1 ,, ,1 1
min , , min  ,

I T

i i t i t i i t i t
i t

c u p s u u C−
= =

� �
� �+ =� �� �

	 

��u p u p

u p  (1) 

subject to initial conditions and subject to the system demand 
constraints and individual unit constraints. The system demand 
constraints require that the sum of all thermal generation 
should equal the (estimated) system demand at each hour, i.e., 
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The individual unit constraints that are considered are 
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Reserve requirement and power flow network constraints 
and losses have not been included in the model, since this is 
beyond the scope of the paper. 

IV. LAGRANGIAN-RELAXATION METHODS 

A. Lagrangian relaxation approach 
The Lagrangian relaxation approach allows decomposing 

the primal problem (1)-(3) into I independent sub-problems, 
each ones associated with each unit. By relaxing the system 
wide demand requirements (i.e., the “coupling” constraints) 
through Lagrangian multipliers, the following dual function is 
obtained 

 ( ) ( ) ,, 1 1
min ,

T I

t t i t
t i

L c D pλ
= =
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subject to constraints (3). λt, with t=1,…,T, are Lagrangian 
multipliers. The dual function is rearranged as 
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where, for unit i 
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subject to constraints (3). 
Problems (6) are I sub-problems, one for each unit, that 

need to be solved. Since dual function (5) exhibits a 
disaggregate structure, this approach allows the separation of 
the problem into I uncoupled sub-problems associated with 
each unit. To solve each sub-problem (6), the values of λ are 
considered assigned, at first, as well as the values of the 0-1 
decision-variables ui. It follows that this sub-problem, for each 
unit i, becomes  

  ( ) , , ,
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i

T

i i i t i t t i t
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subject to upper/lower limits specified in equation (3) (without 
the minimum up/down constraints). 

The solution of Problem (7) gives the values of power 
productions pi. To find the optimal values for the decision 
variables ui, subproblem (6) is solved using the values of pi in 
a forward dynamic programming algorithm, taking into 
account the start-up prices and the minimum up/down time 
constraints. 

In order to find the optimal values of multipliers λλλλ, the 
following dual problem is solved 
 

0
* max  ( )L L

≥
=

λ
λ  (8) 

L* provides a lower bound on the optimal objective value of 
the primal problem (1)-(3) [7]. As a by-product of the process 
of maximizing L we obtain the optimal Lagrange multipliers λ* 
and a system schedule {u,p} resulting from the solution of the 
Lagrangian relaxation for λ = λ*. Unfortunately, often this 
system schedule does not satisfy constraints (2) and, therefore, 
a heuristic approach for computing a near-optimal schedule 
has to be implemented [5,6]. 

The output of the heuristic algorithm is a feasible matrix u: 
then, a solution of the primal problem (1)-(3), for the given u, 
is computed by solving the so-called Economic Dispatch 
Problem (EDP). This solution constitutes an upper bound of 
the optimal objective value of the primal problem (1)-(3). 

Since, at each iteration, the algorithm maintains both the 
available highest lower bound (LB) and the lowest upper 
bound (UB), then the solution can be considered reached as 
soon as the relative duality gap ( ) /UB LB LB−  becomes 
smaller than a specified value (able to guarantee that the 



 
 

optimality has been reached). 
The following three paragraphs briefly describe 

- a bundle method, implemented to update multipliers λ at 
each iteration, in order to solve problem (8); 

- a Lagrangian heuristic adopted to compute a feasible 
schedule from the solution of problem (8), exploiting the 
unique features of the bundle approach; 

- the procedure used to calculate the initial value of the 
Lagrangian multipliers (λ1). 

B. Bundle methods for updating the Lagrangian multipliers 
The subgradient g(λ) of L(λ) with respect to Lagrangian 

multipliers λ is a T-vector. The t-th element is 

 ( ) ,
1

     
I

t t i t
i

g D p
=

= − �λ  (9) 

At iteration k, the bundle method accumulates multipliers 
λ1, ..., λk, subgradients g(λ1), ..., g(λk) and dual function values 
L(λ1), ..., L(λk) in a bundle =β < λk, g(λk), L(λk)>. With this 
bundle, L(λ) is upper approximated with the following cutting 
plane (CP) model 

 CP
1

( ) min [ ( ) ( ) ' ( )]j j j
k j k

L L
≤ ≤

= + ⋅ −λ λ g λ λ λ  (10) 

where ( ) 'jg λ  is the transpose vector of ( )jg λ . 

This approximation is tight at least in every point jλ . As 
described in [11], the method tries to maximize the known 
function CP

kL instead of the unknown function L  and to use the 

maximum as the next iteration. At iteration k, let λ  be the so 
called current point, i.e. the T-vector of λ values yielding the 
highest LB currently available, and let 

( ) ( ) ' ( ) ( )j j j jL L L⋅∆ = + − −λ g λ λ λ λ ; then, the trial point at 

the next iteration 1k +λ , that maximizes CP
kL , is computed by 

the solution of the following linear problem 

 ,
max  

subject to ( ) ' ( ) 1
v

j j

v

v L j k≤ ∆ + ⋅ − ∀ ≤ ≤
λ

g λ λ λ
. (11) 

A major drawback of this approach is that (11) may be 
unbounded, especially in the first iterations. Moreover the 
cutting plane model will be a poor approximation of L if 1k +λ  

results to be too far from λ . 
In order to overcome these drawbacks, the objective 

function of problem (11) is penalized by a quadratic term that 
discourages choosing 1k +λ far from λ ; i.e., problem (11) is 
transformed into 
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v

j j

v

v L j k
α
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λ
λ λ

g λ λ λ
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where ⋅  is the Euclidean norm and α is a positive parameter. 
Problem (12) is a quadratic problem, which is always 
bounded. 

Several important issues must be addressed in order to 
implement an efficient bundle algorithm: among these, the 
dynamic choice of parameter α at each iteration, the rules for 
updating of current point λ  and the stopping criteria for the 
iterative algorithm [11].  

As previously observed, the dual function )(λL exhibits a 
disaggregate structure; therefore, a disaggregate bundle 
approach has been also implemented by replacing the 
aggregated CP model CP ( )kL λ  with the sum of I CP models, 
one for each unit i, and by replacing (12) with 

 ,

,
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where the t-th element of vector g i is , ,( )i t i tg p= −λ  and 

, ( ) ( ) ' ( ) ( )i j i j i j j iL L L⋅∆ = + − −λ g λ λ λ λ . The basic structure 

of the disaggregate algorithm remains similar to the structure 
of the aggregate one. 

The sum of I disaggregated CP models is a much better 
description of ( )L λ  than (10). Therefore, the longer 
computational time needed to solve problem (13) than (12) is 
largely compensated by the strong reduction in the number of 
iterations required to converge to optimality.  

C. Lagrangian Heuristic 
As already pointed out, in the case of UC, the solution of the 

dual problem (8) may not produce a feasible solution; hence, a 
heuristic procedure has to be implemented in order to obtain a 
feasible schedule for the units. 

In the literature on the subject (e.g. [5,6]), some techniques 
have been proposed that can be applied independently of the 
method used to compute the solution of the dual problem. 
However, the feasible schedules obtained by adopting these 
techniques may be quite distant from the optimal solution. 

By solving the dual problem by a bundle method, without an 
extra computational effort, a “convexified” solution of the 
original problem is also available [12,13]. This solution is a 
matrix with the same dimensions of matrix u, whose elements 
ui,t∈[0,1] can be interpreted as the “probability” for unit i to be 
committed at period t. Making use of this matrix, a new 
heuristic procedure has been implemented, which includes also 
a following “shutdown” phase, trying to uncommit units that 
are not really needed. Such a heuristic procedure results in 
significantly improving the overall performance of the 
algorithm. 

D. Preconditioning procedure 
A preconditioning procedure is also implemented, in order 

to compute the initial value of the Lagrangian multipliers 1λ  
and to improve the convergence of the bundle method. This 
procedure is described in the following paragraphs. 



 
 

First, a continuous relaxed version of problem (1)-(3) is 
solved, which consists on relaxing the binary variables, 
neglecting start-up costs and formulating the min up/down 
time constraints (3b) in a linear form as follows 
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  (14) 

The computed lagrangian multipliers of such a problem are 
used as 1λ  and the resulting continuous matrix û  ( ,i tu ∈[0,1]) 
is used, instead of u� , in the heuristic procedure described in 
section C, in order to compute an integer feasible schedule for 
each unit. By using this feasible solution, the subgradients 
values of each disaggregated CP model are computed. These 
subgradients are added to bundle β, improving the 
convergence of the method. 

Figure 1a) shows the values of dual function L computed at 
each iteration, during the solution of the 10-unit UC problem 
of [14]. Although typically non-differentiable methods are not 
ascent approaches, i.e., improvement in the dual value at each 
iteration cannot be guaranteed, the extra information obtained 
with the implemented preconditioning procedure makes the 
bundle method to behave essentially as an ascent algorithm. 

Thus, this preconditioning procedure avoids the typical 
large fluctuations in the dual function values and results to be 
beneficial also to the quality of the feasible primal solutions 
generated by the heuristic as shown in Fig. 1b).  

It must be noted that this warm-start and preconditioning 
procedure results to be effective only if the bundle method 
makes use of the disaggregated model. 

V. TABU-SEARCH METHODS 
Classical approximation algorithms start from a feasible 

solution, frequently obtained by executing a simple greedy 
algorithm, and then iteratively generate new solutions through 
moves, i.e., through modifications of the current solution. The 
set of solutions that a move can produce from a given one 
constitutes its neighborhood. Whenever a solution improving 
the current one is found, this is stored as the new current 
solution, and the search proceeds by exploring its 
neighborhood. As soon as no solution in the neighborhood of 
the current one can improve it, the search terminates. This 
approach is known as local search. The main drawback of this 
strategy is that it can be trapped in a local optimum, without 
possibility of exploring other (more promising) regions of the 
solution space. 

Modern heuristic techniques overcome the above 
disadvantage by occasionally accepting moves that produce 
solutions worse than the current one, in the hope that the 
exploration of their neighborhood may produce better 
solutions or lead to a better region. This strategy is the base of 
the so-called metaheuristic algorithms. 

The most popular metaheuristic technique is nowadays Tabu 
Search (see, e.g., [10]). Let x* denote the best solution found 
so far, and x the current solution. The general Tabu Search 

strategy is to always execute the best move, i.e., to accept as 
new current solution the best neighbor of x, say x’, even if it is 
worse than x (uphill move). In practice, the algorithm 
alternates a local search to obtain a local optimum and, once 
this has been reached, a worsening move. Performing a new 
local search on the neighborhood of x’ could however produce 
a return to x. In order to avoid such a behavior, the algorithm 
stores information on the more recent moves in a Tabu List, 
which is used to prohibit execution of moves leading to 
recently explored solutions. Hence, in practice, the local 
search phase is usually followed by a series of uphill moves, 
until a non-tabu downhill move allows starting a new local 
search. Obviously, whenever a move produces a solution 
better than the incumbent one, x* is updated. See Figure 2 for 
an illustrative representation of the process. 

Our Tabu Search algorithm for the solution of UC problems 
can be outlined as follows (see [15] for more details): 
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Fig. 1. a) Normalized values of dual function L and b) normalized values 
of the total production costs of the associated feasible schedules, 
computed at each iteration, for the 10-unit UC of [14]. 



 
 

 
1. find an initial feasible solution x; 
 x* := x; 
 counter := 0; did_not_improve := 0; 
 do 
  counter ++; did_not_improve ++; 
2. x’ := best non-tabu solution in the neighbourhood of x; 
 if cost(x’) < cost(x*) then  
  x* := x’; 
  did_not_improve := 0 
 endif ; 
    x := x’ 

while (counter ≤ max_counter) and  
          (did_not_improve ≤ max_not_improve) 
 

The initialization of Step 1 is obtained by executing two 
heuristic algorithms. The first one starts by committing all 
units in all time periods. It then determines, among the time 
intervals for which (2) is violated, the one for which 

,
1

I

i t t
i

p D
=

−�  is a maximum, and uncommits units until (2) is 

satisfied. The process is iterated until the solution becomes 
feasible. The second algorithm, dual with respect to the 
previous one, starts by uncommitting all units in all time 
periods. It then determines, among the time intervals for which 

(2) is violated, the one for which ,
1

I

i t t
i

p D
=

−�  is a minimum, 

and commits units until (2) is satisfied. The process is iterated 
until the solution becomes feasible. The best of the two 
solutions is finally selected. 

The neighborhood exploration of Step 2 is performed in 
three different sub-steps. In order to describe them, let the 
current solution x be represented by the 0-1 matrix u 

characterized, as in the previous sections, by one row for each 
unit i and one column for each period t. An entry (i,t) of value 
0 (1) corresponds to a time period t in which unit i is 
uncommitted (committed). Step 2.1 in the neighborhood 
exploration implies the generation of a complete set of trial 
solutions, i.e., solutions obtained by manipulating in all the 
“acceptable” ways (see below for a precise definition of 
acceptable) the sequences of 0’s and 1’s in the rows of the 
matrix representing x. These trial solutions are feasible just 
with respect to the minimum up and down times of the unit, 
while their feasibility with respect to constraints (2) is tested in 
Step 2.2. Finally, each fully feasible solution certified by Step 
2.2 is evaluated in Step 2.3 (possibly, by solving the associated 
EDP), and the best non-tabu solution is chosen as x’. 

In order to complete the description, it remains to discuss 
the Tabu List. A unique Tabu List is maintained, which stores 
the time period indices t and k corresponding to the start and 
end, respectively, of the considered sequence of 0’s or 1’s, and 
the unit i of the sequence. A move is prohibited if it involves a 
vector j, k, i contained in the Tabu List. 

Concerning the tuning of the parameters, which is usually a 
heavy task in the design of metaheuristic algorithms, in this 
case we have just three parameters to play with, namely the 
length of the Tabu List, say l, the maximum number of 
iterations without any improvement of x*, max_not_improve, 
and the maximum number of overall iterations, max_counter. 
The last two parameters determine the stopping condition of 
the algorithm: as soon as either max_not_improve iterations 
have been performed without improving x*, or max_counter 
iterations in total have been executed, the computation is 
terminated. 

Preliminary computational experiments suggested for the 
three parameters the following values: l = 28, 
max_not_improve = 1000, and max_counter = 5000. These 
values turn out to be on average quite robust.  

VI. NUMERICAL RESULTS 

A. Implementation of the algorithms 
The Lagrangian relaxation algorithm was implemented in 

the algebraic modeling language for mathematical 
programming called AMPL [16]. A major advantage of the 
modular structure resulting with the AMPL implementation is 
the ability to use a library of solvers. In this paper the CPLEX 
[17] solver has been used to solve problems (12) (or (13)) and 
the EDP, i.e. the primal problem (1)-(3) with matrix u known 
as computed by the heuristic procedure. 

The Tabu Search algorithm was implemented in ANSI C. 
The aim of the computational section is to show the 

capability of these different approaches to cope with UC 
instances. More sophisticated implementations would 
obviously improve the quality of the results. As discussed in 
the following, this is one of the topics of a further research 
program aimed at integrating the presented methodologies 
within a single framework. 
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Fig. 2.  Neighborhood search in Tabu Search algorithms. 



 
 

B. Instances description. 
These software packages have been used to perform a 

number of numerical studies to assess the characteristics of the 
two approaches. 

In the following section, the results obtained for 11 different 
UC problems will be presented. 

The reference case is a 10-unit 24-hour UC problem, whose 
parameters of the cost functions 2( )i i i ic p a b p c p= + ⋅ + ⋅  are 
published in [14]. The other ten UC test cases are generated 
from the reference with the aim to assess the influence of the 
various parameters of the problem on the behavior of the two 
different approaches. In particular, Cases 2 and 3 are used to 
show the influence of the number of units, Cases 4 to 7 the 
influence of the size of the units, Cases 8 to 11 the influence of 
different demand profiles. 

Cases 2 and 3 are 50-unit problems, generated from the data 
of the reference case by repeating 5 times the generating units. 
The cost function parameters of the 5 sets of units of Case 2 
are randomly generated according to a normal distribution 
with mean value equal to the relevant value of the unit 
parameters of the reference case and standard deviation 
parameter a, b and c equal to 100, 5 and 0.0001 respectively. 
All the 5 sets of unit parameters of Case 3 are taken equal to 
the relevant value of the unit parameters of the reference case. 

Cases 4 and 5 are 10-unit problems, generated from the data 
of the reference case by considering only the units with maxp  
lower and higher than the relevant median value, respectively. 
The cost function parameters are randomly obtained as already 
described in Case 2. 

Cases 6 and 7 are 50-unit problems, generated from the data 
of Case 4 and 5 respectively, with the random generation of 
the parameters of the cost function as in Case 2. 

In each of the previous cases, the system demand data are 
generated by resizing those of the reference case 
proportionally to the value of the maximum load that can be 
met in each case. As already mentioned, Cases 8 to 11 are 
chosen in order to assess the influence of the load profile on 
the behavior of the two algorithms, with the same unit 
parameters as in the reference case. In particular, the demand 
profile of Case 8 is obtained by increasing all the demand data 
of the reference case. This increment is equal to half of the 
margin between the peak load and the value of the maximum 
load that can be met by the units. The demand profile of Case 
9 is obtained so that each demand higher than the load mean 
value is increased and each demand lower than the average 
load is decreased, with variations proportional to the increment 
used in Case 8. The demand profile of Case 10, instead, is 
obtained so that each demand higher than the load mean value 
is decreased and each demand lower than the average load is 
increased, with the same variations of Case 9. Case 11 is 
obtained in a similar way of Case 10, but, in this case, the 
variations are 5 times more pronounced, resulting in a more 
flat demand profile. 

The influence of additional constraints, such as reserve, 
time-variant start-up costs and tighter constraints on the initial 

status of the units, can be taken into account by both 
approaches, and will be explicitly considered in further 
research activities. 

C.  Simulation results 
Reference [14] gives the value of the actual optimum of the 

production cost of the reference case (Case 1), which is equal 
to 610,646.5. In order to assess the success of the optimization 
also for the other cases, whose actual optimum is unknown, we 
refer to the highest dual value computed by the Lagrangian 
relaxation algorithm. 

Details of the simulation results are reported in Table I.  
TABLE I 

COMPUTATIONAL RESULTS 
 

Case Best dual value
Solution 
by L R 

L R Gap 
(%) 

Solution 
by TS 

TS Gap 
(%) 

1 $607,420.31 $611,214 0.625 $610,751 0.548
2 $3,162,766.76 $3,165,555 0.088 $3,169,274 0.206
3 $3,037,101.09 $3,042,094 0.164 $3,048,813 0.386
4 $403,593.70 $408,099 1.116 $408,087 1.113
5 $937,297.53 $944,275 0.744 $943,019 0.610
6 $2,004,813.58 $2,009,639 0.241 $2,010,108 0.264
7 $4,570,335.65 $4,576,011 0.124 $4,580,889 0.231
8 $626,913.75 $631,683 0.761 $631,921 0.799
9 $610,335.54 $616,216 0.963 $616,214 0.963

10 $604,773.96 $609,074 0.711 $609,623 0.802
11 $596,503.07 $600,399 0.653 $600,779 0.717

 
These computational results show: 
- a good behavior of both approaches in finding approximate 

solutions for the UC; 
- comparable difficulties of the algorithms with respect to 

the various instances; 
- the percentage gap for the instances with 50 units is 

typically smaller than the one for 10 units; 
- as expected, Case 8 corresponding to an augmented 

demand profile turns out to be more costly and difficult of 
the reference case (instance 1). Case 9 is even more 
difficult, but less costly. 

- the quality of the solution obtained by the implemented 
Lagrangian relaxation seems not to be influenced by the 
number of units. 
  

This preliminary computation shows a satisfactory behavior 
of both approaches, and suggests that there is definite room to 
integrate them in a single framework in order to exploit their 
different peculiarities. 

In particular, the Lagrangian relaxation algorithm, widely 
applied in recent years for the solution of UC problems for 
large-scale systems due to its ability to include more detailed 
system representation than would be possible with other 
techniques, is able to compute at the same time both lower and 
upper bound values for the problem. In this way, the overall 
algorithm can, for example, be stopped as soon as a 



 
 

performance guarantee is reached, i.e., a percentage gap less of 
equal than a given threshold (e.g., 1 %). 

On the other hand, the Tabu Search approach, even in a 
quite straightforward implementation, proves to give good 
results (also within 1% of average gap) in very short 
computing times: at most 5 and 60 CPU seconds on a Pentium 
II 300 MHz for instances with 10 and 50 units, respectively. In 
particular, the Tabu Search algorithm is very competitive for 
instances with 10 units, while more sophisticated 
diversification techniques have to be applied to better explore 
the huge solution space in the case of 50 units. 

A possible integration into a single algorithm of the two 
approaches could be effectively performed by using the 
feasible solutions obtained by the Lagrangian approach 
(through the Lagrangian heuristic) as advanced starting points 
for the Tabu Search approach which proved to be very 
effective in optimizing them. In this context, the Tabu Search 
could be performed for a limited number of iterations and then 
the Lagrangian optimization is resumed, possibly obtaining a 
faster convergence. 

This unified approach, which is currently under 
investigation, would exhibit the big advantage of providing not 
only good feasible solutions but also a strong indication on 
their distance from the optimal one. 

VII. CONCLUSIONS 
In this paper, a Lagrangian relaxation algorithm for the 

solution of UC problems has been illustrated, wherein the dual 
problem solution is achieved through the implementation of an 
improved bundle method and the feasible solution for the 
primal problem is computed by a heuristic procedure that 
exploits available hints given by the bundle algorithm. The 
results obtained by the implemented Lagrangian relaxation 
algorithm are compared with those obtained by a completely 
different program that applies a Tabu Search algorithm, 
explicitly conceived for the solution of UC problems. 

This comparison, carried out on a set of classical UC 
problems that take into account the main operating constraints 
and physical characteristics of the power generation system, 
has shown a good behavior of both approaches in finding 
approximate solutions. Moreover, the analysis of the different 
and complementary characteristics of the two approaches 
suggests further research activity to obtain an integrated 

algorithm of them, able to provide adequate solutions of the 
new UC problems peculiar of competitive electricity markets. 
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