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A graph G = (V, E) is called a pairwise compatibility graph (PCG) if there exid¢s an edge-weighted
tree T and two non-negative real numbersdni, and dnax such that each leafl, of T corresponds to
a vertexu € V and there is an edggu, V) € E if and only if dmin < drw(ly, Iv) < dmax Where dry(ly, 1)

is the sum of the weights of the edges on the uni

que path fromy to I, in T. In this paper, we focus

our attention on PCGs for which the witness tree is a caterplar. We first give some properties of

graphs that are PCGs of a caterpillar. We formulate this problem as an integer linear programming

problem and we exploit this formulation to show that for the wheels onn verticesW,, n=7,..., 11,

the witness tree cannot be a caterpillar. Related to this ragt, we conjecture that no wheel is PCG of

a caterpillar. Finally, we state a more general result provig that any pairwise compatibility graph
admits a full binary tree as witness treeT.

Keywords: Pairwise Compatibility Graphs; Caterpillar; @gpede; Wheel.

1. INTRODUCTION

A graph G = (V,E) is a pairwise compatibility graph
(PCQG) if there exists a tre€, an edge-weight functiow
that assigns positive values to the edge3 @nd two non-
negative real numbe,, anddmax With dmin < dmax such
that there is a bijection between the verticesGond the
leaves ofT (so each vertex € V is uniquely associated to
a leafl, of T) and there is an edge,V) € E if and only if
Omin < drw(lu, Iv) < dmaxWheredy w(ly, lv) is the sum of the
weights of the edges on the unique path figro I, in T. In
such a case, we say thatis a PCG ofT for dmin anddmax;
in symbolsG = PCG(T, W, dnmin, may)-

Itis clear that if a tred’, an edge-weight functiow and
two valuesin anddmaxare given, the construction of a PCG
is a trivial problem. We focus on the reverse of this problem
i.e., given a graplG we have to find a tred, an edge-
weight functionw and suitable valueSimi, anddmax such
thatG = PCE(T, W, dmin, dmay)- Such a problem is called the
pairwise compatibility tree construction problem

The concept of pairwise compatibility was introduced
in [1] in a computational biology context and the weight

function w has positive values, as it represents a not
null distance. Moreover, this problem has many other
applications as it is part of a class of problems that are

particular subclasses of split matrogenic graphs [8]ntrie-

free outerplanar 3-graphs [9], Dilworth 2 graphs [10]. From
the other side, it is known that not all graphs are PCGs
[7, 11]. Furthermore a lot of work has been done concerning
some particular subclasses of PCGs as leaf power graphs [5],
exact leaf power graphs [2] and min-leaf power graphs [8].

A caterpillar I, is ann-leaf tree for which any leaf is at
a distance exactly one from a central path calipthe A
centipeddl, is ann-leaf caterpillar whose edges incident to
the leaves induce a perfect matching. As an exaniples
depicted in Fig. 1.

FIGURE 1: A 7-leaf centipedH.

Caterpillars are interesting trees in the context of PCGs,
as in most of the cases, the pairwise compatibility tree
construction problem admits as solution a tree that is ih fac
a caterpillar. For this reason, we focus on this special kind
of tree, providing the following results:

motivated by issues in graph powers, intersection graphs, e  We study the properties of the graphs that are PCGs of

tree representations of similarity relations and evohaity
processes [2].

a caterpillar. First we consider the special case in which
the edge-weight function assigns weight 1 to each edge

There are several known specific graph classes that have  of the caterpillar, and we provide a characterization of

been proved to be pairwise compatibility graphs, e.g.hall t

these graphs. Observe that this restriction is natural as

graphs with at most 7 vertices [3, 4], cliques and disjoint in many papers (e.g. see [5, 1]) the tree is not weighted

union of cliques [5], chordless cycles and single chordeycl
[6], some particular subclasses of bipartite graphs [1theso

and the distance is defined as the number of edges on
the (unique) path connecting two leaves.
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Then we consider the general case and expldiicsent
conditions concerningmax and dmin to guarantee that
the PCGs are triangle free.

e We formulate the pairwise compatibility tree construc-

tion problem as an integer linear programming problem

(ILP). We exploit this formulation to show that the wit-
ness tree of the whee),, n = 7,...,11 cannot be a
caterpillar, wher&\, is the graph formed by connecting
a single vertex to all vertices of an ¢ 1)-cycle. Re-

other kinds of caterpillar structures and restrict ourratta
to consider only centipedes.

Tueorem 2.1.[4] Let G be an n vertex grapH,, andIl,
be an n leaf caterpillar and centipede, respectively.

Let G = PCQEI\, W, dmin, dnay- Then it is possible
to choose wand d,,, such that it also holds that G=
PCG(I1n, W, Amin, Aimasd-

We conclude this section with some useful general

lated to this result, we conjecture that no wheel is PCG properties concerning the edge-weight function of a paiewi

of a caterpillar. We recall that it is anyway known that
W7 is PCG [4], while it is not known whethéf/,, n > 8
isa PCG or not.

compatibility tree.

Tueorem 2.2.[12] Let G = PCHT, W, dmin, dmax), Where
dmin, dmax and the weight () of each edge e of T are

As a consequence of this latter result, caterpillars cannotnonnegative real numbers. Then it is possible to choose
generate all the PCGs, so we focus on a more general tredatural numbersdmin, dmax and an edge wight functiow
structure, namely full binary trees. A binary tree is said to such that for any e(e) is a natural number and G=

befull if all its internal vertices have two children; in other
words, all its internal vertices, except for its ragthave
degree exactly 3; we denote a full binary treefay

Concerning PCGs, we prove that it isfiscient to focus
only on full binary trees, i.e. i is a PCG then one of its
possible witness trees must be a full binary tree.

2. PRELIMINARIES

PCqT, W, dmin, dmax).

Tueorem 2.3.[4] Let G = PCE(T, W, dmin, Omay). It is
possible to choose natural numbetsi,, dmax and for any
e in ET), W(e), such thatminegr)W(e) = 1 and G =
PCHT, W, dmin, dmay) -

Due to the last results, in the rest of the paper we will
assume that the weights adglin, dmax are integers and that
the smallest weight is 1.

In this section we recall some graph theory definitions and  The next section is devoted to the study of some properties
some theorems dealing with PCGs, that will be useful in the of PCGs for which the witness tree is a centipede.

rest of the paper.

The k-th power of a graph Gdenoted byG¥, is a graph
with the same set of vertices @sand an edge between two
vertices if and only if inG there is a path of length at mdst
between them. The vertex simple path is denoted By.

3. PROPERTIES OF PCGS OF CENTIPEDES

There are a number of papers dealing with the attempt of
characterizing the classes of PCGs derived by special trees
or by special values ol and dnax for instance, PCGs

Given two graphs defined on the same vertex set of a starKy, are characterized in [12], PCGs of any tree

Gi1=(V,E1) and G, = (V,Ep) such thatE, ¢ E;, their
difference G — G; is the graph defined on the node &t
whose edges are all the edge&inthat are not irG,.

A unit interval graphis the intersection graph of a set of

with dmin = dmax = 3,4,5 are studied in [2] and PCGs of
caterpillars for whictdmi, = O are considered in [13].

In this section we try to derive some properties of the
PCGs of centipedes. As they seem to be very general graphs,

unit length intervals on the real line. It has one vertex for we first consider a simplified model, i.e. we assume that

each interval in the set, and an edge between every pair ofyy(g)

vertices corresponding to intervals that intersect. Weotien
by I, the set ofh vertex unit interval graphs.

= 1 for each edge of the tree. Observe that this
restriction is natural as in many papers (e.g. see [5, 1]) the
tree is not weighted and the distance is defined as the number

~ Given a centipedél,, consider its plane representation of edges on the (unique) path connecting two leaves. Then,
in which the path representing its spine lies on a horizontal \ye slightly extend the class of weight functions we consider

line, and the leaves lie on a parallel horizontal line, oeder

and finally we give some properties whenis arbitrary.

in a way that does not introduce crosses (as an example, see

Fig. 1). We name all vertices and edgedigfas follows:

e letly, Iy, ..., In-1, I, be the leaves, considered from left
to right;

e letg,i =1,...,nbe the (unique) edge incident to the
leafl;;

e letsy, ..., s, be the vertices on the spine, considered

from left to right; thuss is the parentof,i=1,...,n;
o finally, let e,;j be the edge on the spine connecting
verticess ands,1,i=1,...,n-1.

In view of the following result, it is possible to get rid of

3.1. Unit edge-weight

Observe that the problem to characterize PCGs of
caterpillars has been considered in [13] in the special case
in which dyin = 0 (in such a case PCGs coincide with the
class ofLeaf Power Graph$14]), providing the following
result:

Tueorem 3.1.[13] Let G be an n vertex connected graph
and I'; be an n leaf caterpillar and let the edge-weight
function ue) = 1 for each edge e df,.

Then the following statements are equivalent:
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PairwisE CoMPATIBILITY GRAPHS OF CATERPILLARS 3

1. G = PCG(T'y, U, 0, dmay); 2.G = PUec _ pln-2-ljf g > 2k + 1 and
2. Gis a unitinterval graph. G = P otherwise.

We now characterize the class of graphs that are PCGs of  CororLary 3.2.Let G be an n vertex connected graph and
a centipede with unit edge weights. I1, an n leaf centipede. Furthermore, let be given an integer
value k and define the an edge-weight funcfigion I1,, as
follows: Ok(e) = 1 andOk(ensi) = k foreachi=1,...n.

Then the following statements are equivalent:

Tueorem 3.2.Let G be an n vertex connected graphbe
an n leaf centipede and let the edge-weight functi@h & 1
for each edge e dfl,.

Then the following statements are equivalent: 1. G = PCG(ITh, ik, Ahnin, Ay’
1. G = PCan, U, dmin, dmax); dmax-2 A2 1
2.G = Piwc2 _ plun3if g > 3and G = P2 2.6 = P, PR i dyn > 2k + 1 and

dmax-2

otherwise. G= Pﬁ < otherwise.

Proof. Let G = PCHI1y, U, dmin, dmay). Observe that due
fo the unitary weights, the weighted distance between anyHn an n leaf centipede. Furthermore, let be given an integer

two leaves inll, coincides with the length of the shortest value k and let the edae-weiaht functin k for each edae
(unique) path between them. Thus, two vertices are adjacent 9 9 ml 9

. . X . . e ofITI,.
in G if and only if their corresponding leaves are connected Then the following statements are equivalent:
in T, by a path of a length belonging to the interval '
[diin, Amay- 1. G = PCHIlp, Uk, Omin, Oma);

So, if we consider the verticas, ..., v, of G lying on a
line, each of them is connected to the vertices at distance 5 o _ pl™¥%) _ g1 o o g o0
Omin — 2, ..., dmax — 2 on the line. These edges can be et " mn
obtained by considering thevertex pathP, and computing = Pn otherwise.
its (dmax — 2)-th power; but this graph contains even edges
that are not inG, and these edges are exactly those present3.2. General edge-weight
in P&"~3, On the other hand, based on the same argument, it
is easy to verify that its = Pdm2 — plnn=3 then it is a PCG
of the centipede with unitary weights.

To conclude the proof, observe that valuesdgf, too
small imply that this constraint has nffect because every
pair of leaves is at distance greater than or equdkto O

Cororrary 3.3.Let G be an n vertex connected graph and

Let us now consider the more general case in witick
PCHIT,, W, dmin, dmay), for any edge-weight functiomw,
whose values are integer numbers, and their minimum value
is 1, according to Theorems 2.2 and 2.3. We exploit some
conditions orw, dmin anddmax under whichG presents some
interesting properties.

Tueorem 3.3.Let G = PCHII,, W, dmin, dmay and
MmaXeery, W(E) = p. If dnax < 20min — 2p then G is triangle
free. On the contrary, if @, = dmax = d, for each pair of
edgeqv;, v;) and (vj, vi) that are in G, if Wej) = d/2, then
the edgdvi, v) is in G, too.

Let P, be the class of vertex graphs that are PCGs of a
unit edge-weight centipede. Itis easy to seefhat 7, # 0
(indeed P, belongs to this set); moreoveP, — 7, and
I, — P, are both non empty. Indeed, observe that any
PC(ITp, U, dmin, dmay) such thatmax— dmin > 3 anddmin > 2
contains & 3 as an induced subgraph. Hence such graphs
belong to, — I, (indeed unit interval graphs akg s-free). Proof. Let G be a graph satisfying the condition of the
Furthermore, it is not diicult to see that the unit interval theorem. Suppose on the contrary that there are three
graph constituted by two copies Kﬁyz joined by an edge  verticesv;, vj and v in G that form a triangle, i.e. such
cannot be expressed in the foRfr>% — Pd=3 and thus it that (4,v;), (vj,w) and {,v) are edges. Consider their
isinZn—Pn. corresponding leavds |; andly; without loss of generality,

This is not a contradiction, as Theorem 2.1 does not apply assumei < j < k. The existence of edges;(v;) and
to caterpillars with unit edge-weight, and so the result in (v, ) implies thatdmin < dm, w(li,1}) < dmax anddmin <
Theorem 3.1 is not a particular case of the resultin Theoremdm, w(l;, lk) < dmax. Consider the edgei( vi). We have:

3.2; instead, this latter result constitutes a further prizz
piece toward the comprehension of the PCG properties. Arnw(li 1) = drw(lis 1) + drw(l, 1) — 2w(ey)

Exploiting the same technique used in the proof of > 2dmin — 2W(ej).

Theorem 3.2, we can state the following results: In order to prove the first claim, observe that this latter

Cororrary 3.1.Let G be an n vertex connected graph and term is greater than or equal tag, — 2p. The hypothesis
I1, an n leaf centipede. Furthermore, let be given an integer 2dmin — 2p > dmaximplies a contradiction.
value k and define the edge-weight functignom I1, as
follows: w(e) = k and w(ei) = Lforeachi=1,...n.
Then the following statements are equivalent:

To prove the second claim, notice thad — 2w(ej) >
dmin if and only if 2n(ej) < dmin.

On the other handdp, w(li, lk) = w(&) + w(&) + X+ Yy <
1. G = PCHTIp, Uk, Amin, dmax); 2dmax — 2w(g;j), and this latter term is upper bounded by
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dmax if and only if 2w(ej) > dmax. Joining together the two
obtained inequalities, we have that, () is surely an edge
of G if dmax < 2w(€j) < dmin. Since, by definition of PCG,
Omin < dmax the claim follows. |

Given a grapl@, letvy, . .., v, be any ordering on the line
of its vertices. We define thian with respect to nodes,v
vj and \, and denote it by j«, the set of edgesy vi) for
eachi <k < j.

Tueorem 3.4.Let G PCHITI,, W, dmin, dmay) and let
w(e) < w(ey1) + W(enyi), foreachi=1,...,n— 1. In other
words, ifi< j <k, dg,w(li,1;) < dm,w(li, ), for each k> j.

If (vi,vj) and(vi, ), i < Kk, are edges of G, then the whole
fan F jx belongs to G.

Proof. First observe that, if\{, v;) and {, vi) are edges of
G, thendmin < d,w(li. 1) < dmax anddmin < dig,w(li, k) <
dmax Let us now consider a nodg, such thatf < m< k. To
prove the claim we have to show thdin < dp, w(li, Im) <
dmax It is easy to convince oneself that:

A, w(lis Im) = drw(lis Im-1) — W(€m-1) + W(€hsm-1) + W(Em)
= d]‘[n,w(li, Im+l) - W(em+1) - W(en+m) + W(em)

From the hypothesisv(en) < wW(eni1) + W(Enm), for
eachm = 1,...,n— 1 and from the previous equalities, it
follows that diy, w(li, Im-1) < dm,w(li, Im) < di,w(li Imen)-
Iterating these inequalities, we hadgin < dp,w(li,l;) <
A, w(lis Im) < di, w(li, Ik) < dmax SO the claim follows. o

4. THE ILP MODEL

In this section we propose an Integer Linear Programming
(ILP) model for the pairwise compatibility tree constracti

problem, when the shape of the tree is given. That is, given

ann vertex graptG = (V, E) and ann leaf treeT, we want

to determine whether there exists an assignment (bijective

mappingo : V — F) between the vertex s&t and the
set F of the leaves ofT, integer weightsw(a) for each
edgea € A of T, and two integerslyin < dmax such that
G = PCEH(T, W, Amin, dmay)-

In the following, we denote b = {(i, j) € VXV : i< j}
the set of all possible edges@and byF = {(u,v) € FxF :
u < v} the set of all pairs of leaves ify; since the shape af
is fixed, for eachif, v) € F we know the subsei(u,v) C A
defining the unique path between the laaind the leak in
T. With this notation, we want to determine whether it is
possible to satisfy the condition

1)

We will show that we can (reasonably easily, for small
n) solve this problem by formulating it as an ILP and using
available tools. To do that, we first introduce the classical
(binary) assignment variables

|

(i,]) € E &= dmin < Yaca@(i)o(j) W@ < dmax

1 ifo(i)=u
0 otherwise

for all n? pairs , u) € VxF, together with the assignment
constraints

ZieV Xiu = 17 ueF and ZUEF Xiy = 1,| e V.
()

For each(,v) € F we then introduce binary variables

va={

In order to guarantee the intended semantic, for eaal) €
Fand{, j) € Ewe add

1 if(oct(u), e} v) € E
0 otherwise.

the constrainy,, > Xy + Xy — 1 if (i, j) e Eand (3)

if(i,)¢eE.  (4)

These do the intended job. Indeed, consider two leaves of
T, u,v € F and two vertices 06, u,v € V. If i # o~1(u)

or j # o~}(v), then at least one among, andxj, is 0. If

(i, j) € E then the right-hand-side of (3) is 0, while if

(i, ) ¢ E then the right-hand-side of (4) s 1; in either
case the constraint is redundant singe € {0,1}. Thus,

the constraint only becomes “active” for these quadruples
((u,v), (i, j)) such thatxy, = X = 1, i.e.,i = oc~1(u) and

j = o7Y(v); there, if §, ) € E then constraint (3) forces
yuv = 1, while if (i, j) ¢ E then constraint (4) forceg, =

the constrainy,y < 2 — Xy — Xjv

Given these constraints, we can model the “if” part
of (1). To do that we first introduce (positive) integer
variables:dmin, dmax andw(a) for eacha € A, with obvious
meaning. We must now represent by linear constraints, for
each (1,v) € F, the logical condition “ify,, = 1, then
Omin < YacauyW(@) < dmax. The standard approach
for representing this within an ILP would ask for a-priori
knowledge of a “sticiently large” valueM, i.e., such that
M > YacauyW(@) for all possible ¢,v) € F and each
possible feasible value off (if any). If we had suchM
at our disposal, we could write the two classical “iNg-
constraints”

YacAuy) W(@) < dmax+ M(1 - yuw)

5
ZaeA(u,v) wW(@) > dmin— M(1 - yw) - ®)

Wheny,, = 0, both constraints are clearly redundant;
conversely, whery,, = 1 we precisely obtain the condition
that the weight of the pathA(u, v) lies betweert,i, anddmax.
Unfortunately, there is not any obvious way to find such an
M a priori.

However, modern ILP solvers like the one we usgd,ex
12.3, allow to add to the formulation the so-calledlicator
constraints These have the generic form

binary variable= value — linear constraint

and their semantic is that the “linear constraint” must be
satisfied by any feasible solution of the ILP where the
“binary variable” has the prescribed “value” (either O or 1)

while the solutions where the binary variable does not have
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that value can violate the constraint. Therefore, the two but for each ¢, v) € F we can substitute the corresponding

indicator constraints indicator constraints (6) with the simple
Yov=1 — ZaeA(u,v) W(@) < dmax (6) Omin < ZaeA(u,v) W(@) < dmax
Yw=1l — ZaeA(u,v) W(@) > dmin R )
For u,v) ¢ F (yow = 0), we must rather constrain
have precisely the same semantic of (5), while not requiring ., W(a) to lie outside the interval; however, we must
knowledge ofM. still choose the “side” of the interval, and therefore wél sti

To enforce the “only if* part we need to introduce two need indicator constraints like (8). Yet, because we know

- : ~ thaty,, = 0, (7) gives 1=y}, + y,, i-e., 1- Yy, = Vi, that
furth | f F: uv uv uv' uv uv
urther binary variables for eachi() ¢ is, the two variableg?, can be eliminated, and (8) can be

y+ _ { 1 if (o:l(u)’o-il(v)) ¢E and ZaeA(u,v) W(a) 2 dmax+ 1 Slmp“fled to
uv =

0 otherwise Zn=1 = TacauyWM@) > dnax+ 1

)
. { 1 if (o7}(u), 07V)) ¢ E and ¥ acauy W(@) < din — 1 Zv=0 = YacauyW@) < Umin - 1
. 0 otherwise for binary variablesz,, only defined for ¢,v) ¢ F.
These need be linked to tlyg, by the constraint Therefore, denoting bl = |F| - [F| < |F| = n(n — 1)/2 the
cardinality of the complement d¥, the model for fixedr
1-Yuw =Y+ Y (7) only hask binary variables|Al + 2 general integer variables,

k indicator constraints antF| = n(n — 1)/2 — k linear
which guarantees that §,, = 1 (and thereforedmin < constraints. This model is significantly easier to solve: fo
Yaeauy) W(@) < dmax because of (6)) thew, + v, = O, n = 7, it only takes a small fraction of a second using a
while if yu, = 0 then exactly one amonyg, andy;, is equal state-of-the-art ILP solver liképlex 12.3 on an ordinary
to one. We can then finish up with the two further indicator |aptop computer. Of course, the drawback is that we need,
constraints in principle, to solven! of such models, one for each of

Vi=1 5 3 W) > O+ 1 the possible permutations, in order to solve the overall
w aEA(UY) = Tmax (8) problem. However, when we apply this model to the case
Yow=1 = XacauyW@) < dmin—1 in which G is the 7 vertex whealV; andT is the centipede

I17, we can exploit the symmetry of the tree and of the graph
to reduce the number of permutations to be considered. We
can extend these arguments easily by induction to reduce the
number of the permutations that need to be considered for
Collating all the above constraints provides a valid ILP n < 11. We have therefore written a smal+ program
formulation (with indicator constraints) of our problerat that automatically constructs all these models, each one
can therefore be solved by standard ILP tools. Note that corresponding to one fixed permutatienand solves them
we have not specified any objective function; indeed, since With Cplex 12.3. None of these models turned out to have
we are only interested in determining the feasibility of the any feasible solution. The code and the accompanying files
integer system, we can leave the costfioents of all (encoding the necessary permutations) are freely avai&bl
variables to zero. Alternatively we may add a single vagabl http://www.di.unipi.it/optimize/Software/PCGCat.html.
v, constraints

which enforce that whenever one (and only one) amgng
andyy, is equal to one, the,caq,y) W(Q) lies outside the
interval [dmin, dmax (in either of the two possible directions).

Calling M the class of graphs that are PCGs of a
caterpillar, in view of Theorem 2.1, this proves the follogi
and minimize the objective function this results in an result:

optimization problem whereby we seek for the labels (ifthey  1,.0rem 4.1. The wheels Wn=7,...,11do not belong
exist) with minimum maximal value. to M. T

vV > w(a) acA

The model hagO(n?) binary variables)A| + 2 general
integer variables, an@(n*) constraints, primarily due to (3)
and (4) (all other constraints a@n?)). Even for relatively
small n, the corresponding ILP may be rather large, and
therefore dificult to solve. If the permutatiosr were fixed,
then the problem would considerably simplify: we would
not need the, variables and the corresponding constraints,
and for eachf, v) € F we could determine a-priori whether
or not 1(u),c"1(v)) € E, that is, the value of thgy, In the general case, the ILP model can be used to check
variables. Let us denote by the subset of such that whether a given graph is PCG or not implementing it by
(c7Y(u),cY(v)) € E, i.e.,yuy = 1. We must of course keep choosing the possible witness tr&eamong all then leaf
the general integer variabl@g dmin anddmax in the model, trees. Of course, this is impracticable. For this reason, in

We recall that each grap® with at most 7 vertices is a
PCG, and the witness tree is a centipede, except in the case
of Wy, whose witness is a more general tree [4]. So, the
previous theorem concludes the study of the graphs with at
most 7 vertices.

5. PCGS OF GENERAL TREES
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6 T. CaLAMONERTI, A. FRANGIONI, B. SNAIMERIT

this section we study PCGs of general trees with the aim not difficult to see that in a full binary treld < 2n. So, the
of understanding if there exists a unifying tree structure valuee = ﬁ is well defined.

allowing one to check only it instead of all possilvideaf

Now define a new weight functiow’ on A by assigning

trees, so taking a role that is analogous to the centipede forthe weighte to any edge of weight 0. More formally,

all the caterpillars.

Tueorem 5.1.Let G be a graph, and T a tree. If G
PCHT, w, dmin, dmax), then there always exists a full binary
tree A, a new edge-weight functiorf yand a new value;g,,
such that G= PCG(A, W', dmin, d/250-

Proof. Given T with a positive edge-weight functiow,
we will first constructA, with a non negative edge-weight

function w” and then we deduce a positive edge-weight

functionw for A, modifying the value oflnax accordingly.
We perform a breadth first search @n each time we

examine a vertex and its children onl, we construct a

portion of A inserting bothv and its children, guaranteeing

that the new structure is a full binary tree. Namely, let us

call ch(v) the number of children of andN*(v) the subtree
of T induced byv and by all its childrercy(v), . . . Ceny (V).
If ch(v) > 3, then we substitut®*(v) with a ch(v) leaf

w(e) = w’(e) if w’(e) # 0 andw'(€) = e otherwise. In
this way the distance between any two leavea itan result
increased by a value upper boundedby< L. Set the new
valuedy,,x = dmax+ €N.

The following three observations conclude the proof:

e any distance between leaves Anthat was strictly
smaller thandmi, with respect to the weight function
w” remains so after this transformationed¢ < L;

e any distance that was strictly greater thdgx with
respect to the weight functiom” is strictly greater than
d/,.x due to the definition ok;

e any distance that was in the intervaln, dmay] with
respect to the weight functiom” is now in the interval

[dmin, anax]-

O

complete binary tree (that is, all levels, except possibly Unfortunately, the previous theorem does not guarantee
the deepest one are fU”y f|”8d, and, if the last level is to have a unique tree, but it is anyway an important
not complete, the nodes of that level are filled from left jmprovementin the complexity of the pairwise compatikilit

to right) whose root corresponds t9 and whose leaves
correspond to the children of in the same order from
left to right. On this portion ofA we define the weight
function w”: calling p(u) the parent vertex of a vertex
u, for each edged(v), p(ci(v))), 1 < i < deqv), define

w’((ci(v), p(ci(v)))) = w(ci(v),Vv); the weights of all the

tree construction problem, as it leads to consider only a
particular subclass of all theleaf trees.

6. CONCLUSIONS AND OPEN PROBLEMS

In this paper we consider the pairwise tree construction

other edges of the complete binary tree are set to 0. Thisproblem with particular attention to the cases when the

portion of A must be merged with the previous currently
constructed part, by overlapping the two copiesvpthe
one generated whanis considered as child of its father and
the one just generated. Once that all the verticeB bave
been examined; is completely constructed. An example of
execution of this procedure is depicted in Figure 2.

It is easy to check thaA is a full binary tree and that
PCHT, W, dmin, dmaxy andPCG(A, W, dmin, dmax) are in fact
the same grapG.

It remains to modify the non negative edge-weight
functionw” into a positive functionw’, varying the value
of dmaxaccordingly. Let us define:

L= (u,\gyé’ge){ldmi“ = daw (lu, |v)|» ldmax— daw (lu, |V)|}
N = '{e: ee E(A),w(e) = o}'.

L is the smallest distance between the quantitjgs dmax

pairwise compatibility tree is a caterpillar. This was first
motivated by the fact that in the literature, the pairwise
compatibility tree construction problem of many graphs has
as a solution a tree that is a caterpillar. Moreover, duedo th
simple and symmetric structure of this class of trees itde al
one of the first non trivial cases to be considered when trying
to identifying the class of PCGs generated by a specific tree
structure.

It is known that every graph that is PCG of a caterpillar is
PCG of a centipede (for opportune values of weight function,
dmin @nddmay). In view of this, we first characterize the class
P, of graphs that are PCGs of a unit edge-weight centipede,
and then we put itin relation with the clagg of unit interval
graphs, that are all the PCGs of a unit edge-weight cataerpill
in the special case whety,, = 0.

For what concerns arbitrary edge-weighted centipedes,
we give some conditions onw and dmax SO that
PCH(IT,, W, dmin, dmay is triangle free or has a certain fan
as a subgraph.

and the weighted distances on the tree of the paths Then, we propose an ILP model when the structure of

corresponding to non-edges®@f N is the number of edges
of A of weight 0.

Observe that, unles& coincides with the cliqueK,
(which trivially is PCG of a full binary tree), there always
exists a pair of leaves such that their distanceAdills out
of the interval fimin, dma] and hence. > 0. Furthermore, as
any edge incident to a leaf i is strictly greater than 0, it is

the tree is given. We apply it to the special case when the
graph is the 7 vertex wheé&l; and the tree a centipede,
so proving thatW, (that is known to be PCG) cannot be
PCG of a caterpillar. As a consequence, caterpillars cannot
generate all the PCGs, so we focus on a more general tree
structure, with the aim of understanding if there exists a
unifying structure allowing one to check only it instead of
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PairwisE CoMPATIBILITY GRAPHS OF CATERPILLARS

a.

FIGURE 2: a) An example of tre€. b) T transformed into a full tree; edges without a weight areridesl to have weight 0.

all possiblen leaf trees, so taking for all trees a role that REFERENCES

is analogous to the centipede for all the caterpillars. We
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