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Abstract

Recently, Guan, Pan, and Zohu presented a MIP model for the thermal single-unit commitment claiming
that provides an integer feasible solution for any convex cost function. In this note we provide a coun-
terexample to this statement and we produce evidence that the perspective function is needed for this
aim.

Keywords Unit Commitment · Mixed Integer Nonlinear Programming · Perspective Function · Exact
formulation
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1. Introduction

The Unit Commitment (UC) problem is a basic problem arising in power industries to coordinate and
manage power generation units. Originated in now mostly bygone monopolistic regimes, research on UC
have been ongoing for over 60 years and it still is very much an active area, with many hundredths of
scientific articles (cf. e.g. [7]) and new ones appearing continuously.

Lately, a prolific trend has been the study of “tight” Mixed-Integer Programming formulations; in
particular, the operating constraints of thermal units present an interesting combinatorial structure, and
therefore provide a challenging research topic. Recently, three different groups have independently pro-
posed “exact” MIP formulations for a quite general form of the single-unit (also known as self-scheduling)
problem including minimum up- and down-time constraints, ramp constraints, start-up/shut-down lim-
its, and history-dependent start-up costs. While single-unit problems are typically solved efficiently by
Dynamic Programming (DP) algorithms even with convex nonlinear objective functions [3] (as required
by many applications), exact self-scheduling models can clearly contribute to tighter formulations for the
more challenging multi-unit versions. The first proposal has been [4], based on the exact DP algorithm
of [3]; then, similar results with different proof techniques appeared in [6]. These results were for linear
objective functions, and therefore resulted in Mixed-Integer Linear formulations. Recently, [5] presented a
similar approach claiming that the proposed formulation is “exact” (its continuous relaxation always has
integer optimal solutions) also for general convex costs. However, this claim is false. This note provides
a counterexample for the case of simple convex quadratic costs, which are the most common costs used
in power industry.

The structure of the note is the following: in Section 2 the formulation proposed in [5] is recalled. In
Section 3 we show a counterexample to the statement that the model in [5] is exact for any convex cost
function, and we clarify where the conceptual error is. Finally, in Section 4 we announce a companion
paper partly solving the problem of finding an exact MINLP formulation for the case of convex cost
functions, and in the Appendix we provide full LP-format files (read by most current general-purpose
solvers) to replicate it.

2. The Guan-Pan-Zohu model

In [5] the following model is presented for the thermal single-unit commitement problem indicated there
as (9a)-(9k):

min
∑T

t=1 SU(s0 + t− 1)αt +
∑T

t=1

∑T−1
k=t+L−1 SD(k − t+ 1)βtk+∑T−`−1

t=L

∑T
k=t+`+1 SU(k − t− 1)γtk +

∑
tk∈T K

∑k
s=t w

s
tk(qstk, βtk) (9a)

s.t.
∑T

t=1 αt ≤ 1 (9b)

− αt +
∑T

k=min(t+L−1,T ) βtk −
∑t−l−1

k=L γkt = 0 t ∈ [1, T ]Z (9c)

−
∑t−L+1

k=1 βkt −
∑T

k=min(t+l+1,T ) γtk ≤ 0 t ∈ [L, T − l − 1]Z (9d)

θt −
∑t−L+1

k=1 βkt = 0 t ∈ [T − l, T ]Z (9e)

Cβtk ≤ qstk ≤ Cβtk s ∈ [t, k]Z , tk ∈ T K (9f)

qttk ≤ V βtk s ∈ [t, k]Z (9g)

qktk ≤ V βtk s ∈ [t, k]Z , k ≤ T − 1 (9h)

qs−1tk − qstk ≤ V βtk s ∈ [t+ 1, k]Z , tk ∈ T K (9i)

qstk − qs−1tk ≤ V βtk s ∈ [t+ 1, k]Z , tk ∈ T K (9j)

α, β, γ ≥ 0 (9k)
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The model uses the following parameters
T length of the time horizon
L, ` minimum up- and down-time
T K set of all possible pairs t ∈ [1, T ]Z and k ∈ [min{t+ L− 1, T}, T ]Z
SU , SD start-up cost, shut-down cost
s0 number of instants generator has been off before time 1 (assumed s0 ≥ `)
ws

tk(qstk, βtk) production cost function
C, C generation lower/upper bound
V ramp-up/-down rate
V start-up/shut-down limits

and the following decision variables:
αt denotes that the first start-up occurs at time t;
βtk denotes that the unit is on from t to k;
γtk denotes that the unit is off from t+ 1 to k − 1;
θt denotes that the unit is on at time t;
qstk denotes the power generated at time s if βtk = 1.

Note that we have corrected constraints (9c) and (9d), corresponding to constraints (9c) and (9d) in [5],
as the original form in [5] did not consider the right initial indices when the limits of the summations hit
the time limit T . In [5], model (9a)–(9k) is determined as the dual of model (7a)–(7e), that is a Dynamic
Programming model. Indeed, the model can be interpreted as minimum cost path problem on an acyclic
graph with the following features:

• nodes u+k for each k ∈ T ;

• nodes u−k for each k ∈ T ;

• two additional nodes source and sink;

• arcs (u−t , u
+
k ), associated with variables βtk; when traversed by the flow they denote that the unit

is on from t to k (extreme included);

• arcs (u+k , u
−
t ), associated with variables γkt; when traversed by the flow they denote that the unit

is off from k to t (extreme excluded);

• arcs (source, u−t ), associated with variables αt, that denote that the unit will remain off until time
t− 1.

Indeed, (9c) are flow conservation constraints at nodes u−t while (9d) are flow conservation constraints
at nodes u+t (except for a missing variable associated with the arc (u+t , sink), that corresponds a slack).
The other constraints can be interpreted very easily.

3. A counterexample

Here we describe a simple counterexample to Proposition 1 in [5]:

Proposition 1. The optimal solution to the dual formulation (9) (cf. here (9a)-(9k)) is binary with
respect decision variables α, β, γ, and θ.

We point out that the counterexample is mainly based on the observation that the description of the
convex hull of the feasible solutions is not sufficient to obtain the desired property when the objective
function is nonlinear (even if convex, cf. e.g. [2]). Indeed, the counterexample considers only basic features
of UC, that is, a convex quadratic objective function and minimum/maximum power limits, while relaxing
all other features by setting high values for ramp rates and start-up/shut-down limits. In the example
we set minimum up- and down-time equal to 3, but it is also possible to reduce this value to 1.



5.

The instance.. We describe the simple instance that constitutes a counterexample:

• T = 4,

• C = 44, C = 119

• s0 = 5

• L = 3, ` = 3

• SU(t) = 0, SD(t) = 0, t = 1, . . . , T ,

• V = C − C = 75,

• V = C = 119,

• ws
tk(qstk, βtk) = a(qstk)2 + bsq

s
tk + cβtk,

where a = 0.009096, b1 = −1.30768, b2 = −1.42883, b3 = −1.47917, b4 = −1.54395, c = 120.599.

The model.. We remark that start-up (9g) and shut-down (9h) limits are not necessary, as V = C.
Similarly, the ramp constraints (9i) and (9j) are not necessary, as V = C − C. Therefore, the model
reduces to:

min
∑

t∈T K
∑k

s=t

(
0.009096(qstk)2 + bsq

s
tk + 120.599βtk

)
(9a)

s.t. α1 + α2 + α3 + α4 ≤ 1 (9b)

β13 + β14 − α1 = 0 (9c[1])

β24 − α2 = 0 (9c[2])

β34 − α3 = 0 (9c[3])

β44 − α4 = 0 (9c[4])

44βtk ≤ qstk ≤ 119 s ∈ [t, k]Z , tk ∈ T K (9f)

α, β, γ ≥ 0 (9k)

The optimal solution.. It is very simple to check with the help of a MIQP solver (such as CPLEX)
that an optimal solution for the previous problem instance is:

α1 = 0.360962 β13 = 0.171256 q113 = 20.379406 q224 = 24.708599
α2 = 0.207635 β14 = 0.189706 q213 = 20.379406 q324 = 24.708599
α3 = 0.215512 β24 = 0.207635 q313 = 20.379406 q424 = 24.708599
α4 = 0.215891 β34 = 0.215512 q114 = 22.575026 q334 = 25.645983

β44 = 0.215891 q214 = 22.575026 q434 = 25.645983
q314 = 22.575026 q444 = 25.690986
q414 = 22.575026

with objective function value equal to −72.018180917. Note that the values of the variables α and β are
not binary, and this already establishes the counterexample.

Additional remarks.. It may, however, be worth remarking that a fractional optimal solution occurs
in the counterexample because the objective function is nonlinear. Indeed, if we modify the example
simply by setting a = 0, any MILP solver would confirm that the optimal solution becomes

α1 = 1, β14 = 1, q114 = q214 = q314 = q414 = 119

with an optimal value of −202.99997. Hence, the solution is now integral, although not the optimal
integral solution of the original problem. In fact, the optimal value clearly provides a lower bound on
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that of the UC, but this is worse than the bound provided by (9a)–(9k). We can confidently state that
the solution is not optimal because we can construct a tighter model using the well-known Perspective
Reformulation technique, first proposed in [2] (incidentally, motivated exactly by UC) for constructing
“tight” formulations of Mixed-Integer NonLinear problems with semi-continuous variables with convex
nonlinear costs. Applying the technique to the counterexample results in

min
∑

t∈T K
∑k

s=t

(
zstk + bsq

s
tk + 120.599βtk

)
s.t. (9b) , (9c[1]) , (9c[2]) , (9c[3]) , (9c[4]) , (9f) , (9k)

0.009096(qstk)2 ≤ zstkβtk s ∈ [t, k]Z , tk ∈ T K

The last nonlinear constraints are rotated Second-Order Cone constraints (that current solvers are typ-
ically able to handle), and therefore describe a convex region. This represent the (epigraph of the)
perspective function

p( qstk , βtk ) = 0.009096(qstk)2/βtk

that can be proven to be the convex envelope (best possible convex approximation) of the nonconvex
(nonlinear) function corresponding to fact that qstk is a semi-continuous variable “governed” by the binary
variable βtk, i.e., βtk = 0 =⇒ qstk = 0, and βtk = 1 =⇒ qstk ∈ [C , C ]. Indeed, with this change the
formulation turns out to be “exact”: any appropriate solver (such as CPLEX) readily proves that its
optimal solution is equal to zero for all variables, and therefore has optimal objective function equal to
zero, too. The optimal solution being integral, is therefore optimal for the integer version of the problem
as well (indeed, the obtained lower bound is much better than the previous two ones). This can be shown
to be a general result.

4. Conclusions

In this note we have provided a counterexample for Proposition 1 in [5], stating that (9a)–(9k) is an
exact formulation for the thermal single-unit commitment problem valid for any convex cost. We have
also shown that the issue lies in the nonlinearity of the objective function, as the optimal solution indeed
becomes integer if we make the objective linear. In order to get an integer solution in the nonlinear case,
the Perspective Reformulation technique can be used for our example. In a companion paper [1], we will
show that an “exact” formulation for the problem can always be obtained combining the two ingredients
above, i.e., DP-based formulations like these of [4, 6, 5], and the Perspective Reformulation technique.
The proof actually extends not only to Unit Commitment problems but to a large class of problems with
analogous structure.

Acknowledgements This paper has been supported by the Italian Government project PRIN2015B5F27W
“Nonlinear and Combinatorial Aspects of Complex Networks” and by the European H2020 project MINOA
GA764759 “Mixed Integer Nonlinear Optimization: Algorithms and Applications”.

References

[1] T. Bacci, A. Frangioni, C. Gentile, and K. Tavlaridis-Gyparakis, “New MINLP formulations for the
single-unit commitment problems with ramping constraints,” tech. rep., in publication.

[2] A. Frangioni and C. Gentile, “Perspective cuts for a class of convex 0–1 mixed integer programs,”
Mathematical Programming, vol. 106, no. 2, pp. 225–236, 2006.

[3] A. Frangioni and C. Gentile, “Solving Nonlinear Single-Unit Commitment Problems with Ramping
Constraints,” Operations Research, vol. 54, no. 4, pp. 767 – 775, 2006.

[4] A. Frangioni and C. Gentile, “An extended MIP formulation for the single-unit commitment problem
with ramping constraints,” in 17th British-French-German Conference on Optimization, London June
15-17, 2015.



7.

[5] Y. Guan, K. Pan, and K. Zhou, “Polynomial time algorithms and extended formulations for unit
commitment problems,” IISE Transactions, vol. 50, no. 8, pp. 735–751, 2018.

[6] B. Knueven, J. Ostrowski, and J. Wang, “The ramping polytope and cut generation for the unit
commitment problem,” INFORMS Journal on Computing, vol. 30, no. 4, pp. 739–749, 2018.

[7] W. van Ackooij, I. Danti Lopez, A. Frangioni, F. Lacalandra, and M. Tahanan, “Large-scale Unit Com-
mitment under uncertainty: an updated literature survey,” Annals of Operations Research, vol. 271,
no. 1, pp. 11–85, 2018.

A. Complete LP file of the example

The following file in LP format, read by most general-purpose solvers, completely represents the counter-
example.

Minimize

obj: 361.797 B_1_3 - 1.30768 Q_1_3_1 - 1.42883 Q_1_3_2 - 1.47917 Q_1_3_3

+ 482.396 B_1_4 - 1.30768 Q_1_4_1 - 1.42883 Q_1_4_2 - 1.47917 Q_1_4_3

- 1.54395 Q_1_4_4 + 361.797 B_2_4 - 1.42883 Q_2_4_2 - 1.47917 Q_2_4_3

- 1.54395 Q_2_4_4 + 241.198 B_3_4 - 1.47917 Q_3_4_3 - 1.54395 Q_3_4_4

+ 120.599 B_4_4 - 1.54395 Q_4_4_4 + [ 0.018192 Q_1_3_1 ^2

+ 0.018192 Q_1_3_2 ^2 + 0.018192 Q_1_3_3 ^2 + 0.018192 Q_1_4_1 ^2

+ 0.018192 Q_1_4_2 ^2 + 0.018192 Q_1_4_3 ^2 + 0.018192 Q_1_4_4 ^2

+ 0.018192 Q_2_4_2 ^2 + 0.018192 Q_2_4_3 ^2 + 0.018192 Q_2_4_4 ^2

+ 0.018192 Q_3_4_3 ^2 + 0.018192 Q_3_4_4 ^2 + 0.018192 Q_4_4_4 ^2 ] / 2

Subject To

_9b#0: A_1 + A_2 + A_3 + A_4 <= 1

_9c_1#1: B_1_3 + B_1_4 - A_1 = 0

_9c_2#2: B_2_4 - A_2 = 0

_9c_3#3: B_3_4 - A_3 = 0

_9c_4#4: B_4_4 - A_4 = 0

_9fa_1_3_1#5: 44 B_1_3 - Q_1_3_1 <= 0

_9fa_1_3_2#6: 44 B_1_3 - Q_1_3_2 <= 0

_9fa_1_3_3#7: 44 B_1_3 - Q_1_3_3 <= 0

_9fa_1_4_1#8: 44 B_1_4 - Q_1_4_1 <= 0

_9fa_1_4_2#9: 44 B_1_4 - Q_1_4_2 <= 0

_9fa_1_4_3#10: 44 B_1_4 - Q_1_4_3 <= 0

_9fa_1_4_4#11: 44 B_1_4 - Q_1_4_4 <= 0

_9fa_2_4_2#12: 44 B_2_4 - Q_2_4_2 <= 0

_9fa_2_4_3#13: 44 B_2_4 - Q_2_4_3 <= 0

_9fa_2_4_4#14: 44 B_2_4 - Q_2_4_4 <= 0

_9fa_3_4_3#15: 44 B_3_4 - Q_3_4_3 <= 0

_9fa_3_4_4#16: 44 B_3_4 - Q_3_4_4 <= 0

_9fa_4_4_4#17: 44 B_4_4 - Q_4_4_4 <= 0

_9fb_1_3_1#18: - 119 B_1_3 + Q_1_3_1 <= 0

_9fb_1_3_2#19: - 119 B_1_3 + Q_1_3_2 <= 0

_9fb_1_3_3#20: - 119 B_1_3 + Q_1_3_3 <= 0

_9fb_1_4_1#21: - 119 B_1_4 + Q_1_4_1 <= 0

_9fb_1_4_2#22: - 119 B_1_4 + Q_1_4_2 <= 0

_9fb_1_4_3#23: - 119 B_1_4 + Q_1_4_3 <= 0

_9fb_1_4_4#24: - 119 B_1_4 + Q_1_4_4 <= 0

_9fb_2_4_2#25: - 119 B_2_4 + Q_2_4_2 <= 0

_9fb_2_4_3#26: - 119 B_2_4 + Q_2_4_3 <= 0

_9fb_2_4_4#27: - 119 B_2_4 + Q_2_4_4 <= 0
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_9fb_3_4_3#28: - 119 B_3_4 + Q_3_4_3 <= 0

_9fb_3_4_4#29: - 119 B_3_4 + Q_3_4_4 <= 0

_9fb_4_4_4#30: - 119 B_4_4 + Q_4_4_4 <= 0

_9g_1_3#31: - 119 B_1_3 + Q_1_3_1 <= 0

_9g_1_4#32: - 119 B_1_4 + Q_1_4_1 <= 0

_9g_2_4#33: - 119 B_2_4 + Q_2_4_2 <= 0

_9g_3_4#34: - 119 B_3_4 + Q_3_4_3 <= 0

_9g_4_4#35: - 119 B_4_4 + Q_4_4_4 <= 0

_9h_1_3#36: - 119 B_1_3 + Q_1_3_3 <= 0

_9i_1_3_2#37: - 75 B_1_3 + Q_1_3_1 - Q_1_3_2 <= 0

_9i_1_3_3#38: - 75 B_1_3 + Q_1_3_2 - Q_1_3_3 <= 0

_9i_1_4_2#39: - 75 B_1_4 + Q_1_4_1 - Q_1_4_2 <= 0

_9i_1_4_3#40: - 75 B_1_4 + Q_1_4_2 - Q_1_4_3 <= 0

_9i_1_4_4#41: - 75 B_1_4 + Q_1_4_3 - Q_1_4_4 <= 0

_9i_2_4_3#42: - 75 B_2_4 + Q_2_4_2 - Q_2_4_3 <= 0

_9i_2_4_4#43: - 75 B_2_4 + Q_2_4_3 - Q_2_4_4 <= 0

_9i_3_4_4#44: - 75 B_3_4 + Q_3_4_3 - Q_3_4_4 <= 0

_9j_1_3_2#45: - 75 B_1_3 - Q_1_3_1 + Q_1_3_2 <= 0

_9j_1_3_3#46: - 75 B_1_3 - Q_1_3_2 + Q_1_3_3 <= 0

_9j_1_4_2#47: - 75 B_1_4 - Q_1_4_1 + Q_1_4_2 <= 0

_9j_1_4_3#48: - 75 B_1_4 - Q_1_4_2 + Q_1_4_3 <= 0

_9j_1_4_4#49: - 75 B_1_4 - Q_1_4_3 + Q_1_4_4 <= 0

_9j_2_4_3#50: - 75 B_2_4 - Q_2_4_2 + Q_2_4_3 <= 0

_9j_2_4_4#51: - 75 B_2_4 - Q_2_4_3 + Q_2_4_4 <= 0

_9j_3_4_4#52: - 75 B_3_4 - Q_3_4_3 + Q_3_4_4 <= 0

_9k0_0#53: A_1 >= 0

_9k0_1#54: A_2 >= 0

_9k0_2#55: A_3 >= 0

_9k0_3#56: A_4 >= 0

_9k1_1_3#57: B_1_3 >= 0

_9k1_1_4#58: B_1_4 >= 0

_9k1_2_4#59: B_2_4 >= 0

_9k1_3_4#60: B_3_4 >= 0

_9k1_4_4#61: B_4_4 >= 0

_9k2_1_3#62: G_1_3 >= 0

_9k2_1_4#63: G_1_4 >= 0

_9k2_2_4#64: G_2_4 >= 0

_9k2_3_4#65: G_3_4 >= 0

_9k2_4_4#66: G_4_4 >= 0

End

The results relative to the linear objective function can be obtained by replacing the objective function
section in the file with

obj: 361.797 B_1_3 - 1.30768 Q_1_3_1 - 1.42883 Q_1_3_2 - 1.47917 Q_1_3_3

+ 482.396 B_1_4 - 1.30768 Q_1_4_1 - 1.42883 Q_1_4_2 - 1.47917 Q_1_4_3

- 1.54395 Q_1_4_4 + 361.797 B_2_4 - 1.42883 Q_2_4_2 - 1.47917 Q_2_4_3

- 1.54395 Q_2_4_4 + 241.198 B_3_4 - 1.47917 Q_3_4_3 - 1.54395 Q_3_4_4

+ 120.599 B_4_4 - 1.54395 Q_4_4_4

while those relative to the “perspectivized” exact formulation can be obtained by replacing the objective
function with

obj: 361.797 B_1_3 - 1.30768 Q_1_3_1 - 1.42883 Q_1_3_2 - 1.47917 Q_1_3_3
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+ 482.396 B_1_4 - 1.30768 Q_1_4_1 - 1.42883 Q_1_4_2 - 1.47917 Q_1_4_3

- 1.54395 Q_1_4_4 + 361.797 B_2_4 - 1.42883 Q_2_4_2 - 1.47917 Q_2_4_3

- 1.54395 Q_2_4_4 + 241.198 B_3_4 - 1.47917 Q_3_4_3 - 1.54395 Q_3_4_4

+ 120.599 B_4_4 - 1.54395 Q_4_4_4 + z_1_3_1 + z_1_3_2 + z_1_3_3

+ z_1_4_1 + z_1_4_2 + z_1_4_3 + z_1_4_4 + z_2_4_2 + z_2_4_3 + z_2_4_4

+ z_3_4_3 + z_3_4_4 + z_4_4_4

and adding the (rotated Second-Order Cone) constraints

[0.009096 Q_1_3_1 ^2 - B_1_3 * z_1_3_1 ] <= 0

[0.009096 Q_1_3_2 ^2 - B_1_3 * z_1_3_2 ] <= 0

[0.009096 Q_1_3_3 ^2 - B_1_3 * z_1_3_3 ] <= 0

[0.009096 Q_1_4_1 ^2 - B_1_4 * z_1_4_1 ] <= 0

[0.009096 Q_1_4_2 ^2 - B_1_4 * z_1_4_2 ] <= 0

[0.009096 Q_1_4_3 ^2 - B_1_4 * z_1_4_3 ] <= 0

[0.009096 Q_1_4_4 ^2 - B_1_4 * z_1_4_4 ] <= 0

[0.009096 Q_2_4_2 ^2 - B_2_4 * z_2_4_2 ] <= 0

[0.009096 Q_2_4_3 ^2 - B_2_4 * z_2_4_3 ] <= 0

[0.009096 Q_2_4_4 ^2 - B_2_4 * z_2_4_4 ] <= 0

[0.009096 Q_3_4_3 ^2 - B_3_4 * z_3_4_3 ] <= 0

[0.009096 Q_3_4_4 ^2 - B_3_4 * z_3_4_4 ] <= 0

[0.009096 Q_4_4_4 ^2 - B_4_4 * z_4_4_4 ] <= 0


