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We study the coarse-grained parallelization of an efficient bundle-based cost-
decomposition algorithm for the solution of multicommodity min-cost flow (MMCF)

problems. We show that a code exploiting only the natural parallelism inherent in the cost-
decomposition approach, i.e., solving the min-cost flow subproblems in parallel, obtains
satisfactory efficiencies even with many processors on large, difficult MMCF problems with
many commodities. This is exactly the class of instances where the decomposition approach
attains its best results in sequential. The parallel code we developed is highly portable and
flexible, and it can be used on different machines. We also show how to exploit a com-
mon characteristic of current supercomputer facilities, i.e., the side-to-side availability of
massively parallel and vector supercomputers, to implement an asymmetric decomposition
algorithm where each architecture is used for the tasks for which it is best suited.
(Networks-Graphs, Multicommodity; Programming, Large-Scale Systems; Programming, Non-
differentiable)

1. Introduction
The multicommodity min-cost flow (MMCF) problem
is a generalization of the ordinary single-commodity
min-cost flow (MCF) problem, in which flows of a
different nature (commodities) must be routed at min-
imal cost on a network, competing for the resources
represented by the arc capacities. On the theoretical
side, MMCF is intimately related with approximation
algorithms for several relevant graph problems (Klein
et al. 1990). From a practical point of view, MMCF
and its variants (Crainic et al. 2001) are (sub)models
of a wide variety of transportation and scheduling
problems, where often many large “easy” MMCFs
have to be solved in order to solve one hard prob-
lem. Although MMCF is a structured linear program
(LP), standard LP techniques often fail to be efficient
enough in practice, and several specialized algorithms

have been proposed for its solution during the last
four decades.
Among the approaches to MMCF, decomposition

methods are perhaps the most successful, as demon-
strated by the constant stream of work dedicated
to this class of algorithms. In Frangioni and Gallo
(1999), extensive computational experience showed
that a bundle-type cost-decomposition approach to
MMCF is effective in practice, especially on problems
with “many” commodities. In this paper, the results
obtained with a parallel version of that code are pre-
sented and discussed.
In the last few years, many parallel approaches

to MMCF have been developed (Zenios and Mulvey
1988; Medhi 1990; Zenios 1991; Ferris and Mangasar-
ian 1992, 1994; Lustig and Li 1992; Pinar and Zenios
1992; Gnanendran and Ho 1993; De Leone et al. 1993,
1994; Zenios 1993, Kontogiorgis et al. 1996; De Silva
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and Abramson 1998; Ferris and Horn 1998; Castro
and Frangioni 2001), demonstrating the broad inter-
est in the solution of large-scale MMCF problems. The
present approach can be classified among those with
complex coordinator, that seem to be best suited for
implementation on coarse-grained massively parallel
machines. Unlike most other attempts, the parallel
code directly derives from a sequential implemen-
tation whose actual effectiveness has been convinc-
ingly shown. The parallel code is an extension of
the sequential one—that had not been developed for
parallelization—rather than an entirely new code, and
it is able to benefit immediately from any improve-
ment in the sequential algorithm due to the inheri-
tance mechanism of the programming language used.
It obtains quite satisfactory results despite having
been developed to be portable, and therefore having
not been substantially modified to best suit the paral-
lel machines where it has been tested.
The structure of the work is the following: In §2

the MMCF problem is introduced, and the paral-
lel approaches proposed in the literature are briefly
reviewed. Section 3 describes the sequential bundle
approach, while in §4 the issues related to its coarse-
grained parallelization are discussed. In the remain-
ing paragraphs, the computational experiences are
described: In §5 the details of the available (hardware
and software) environment are given, in §6 the test
problems are introduced, and, finally, in §7 the com-
putational results are presented and conclusions are
drawn.

2. MMCF: Formulation and
Parallel Approaches

In the (linear) MMCF problem, a directed graph
G�N�A�, where �N � = n and �A� =m, is given. A set of
k commodities (types of flow) has to be routed on G
at minimal total cost while satisfying the usual flow-
conservation constraints at the nodes. Flow xhij of the
h-th commodity on arc (i� j) has individual lower and
upper bounds and a (linear) cost chijx

h
ij , while mutual

capacity constraints bound the total quantity of flow,

irrespective of the commodity, on arc (i� j). A formu-
lation of the problem is

�MMCF�




min�h�ijc
h
ij x

h
ij

�jx
h
ij −�jx

h
ji = bhi ∀i�h �a�

0≤ xhij ≤ uhij ∀i� j�h �b�

�hx
h
ij ≤ uij ∀i� j �c�

where �a� are the flow-conservation constraints and
�b�, �c� are respectively the individual and mutual
capacity constraints. We can restate the problem in
matrix notation, using the node-arc incidence matrix
E of G, as follows:
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This (node-arc) formulation highlights the block-

angular structure of MMCF.
Let us remark that the number of commodities in

real-life MMCFs ranges from just a few, as in most dis-
tribution problems, to very many, such as the number
of all the possible O/D pairs in some telecommunica-
tion models. This is of course crucial in the choice of
the most suitable solution algorithm (Frangioni and
Gallo 1999).
MMCF is only one example of the many mod-

els in planning and scheduling that exhibit a block-
angular structure, representing spatial or temporal
partial decomposability. In these problems, decision
variables can be broken down to largely independent
blocks that correspond to first-level decisions (which
may represent a time period, a geographical region,
or, such as in our case, a commodity) satisfying a
subset of the constraints. The blocks interact via cou-
pling constraints related to second-level coordination,
such as shared resource allocation. The block-angular
structure naturally leads to a number of different
decomposition algorithms, whereby a globally conver-
gent master problem is iteratively updated by solving
a set of subproblems (one for each block), until some
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prescribed convergence criterion is met. The execu-
tion of such an algorithm alternates a local and a
global computation phase. In the local phase, opti-
mization subproblems corresponding to blocks, sub-
stantially independent of each other, are solved. In the
global phase, the solution information from the sub-
problems is used in a coordination (master) problem,
the results of which are used to modify the objective
function and the constraints set of the subproblems in
the next step.
Decomposition algorithms are traditionally classi-

fied as either cost-decomposition or resource-decomposition
approaches.
Cost-decomposition approaches remove the cou-

pling constraints by putting them in the objec-
tive function via Lagrangean relaxation, in the form
of a barrier function or using penalty terms. The
resulting nonlinear (possibly nondifferentiable) prob-
lem is solved—somehow exploiting the block-angular
structure of the problem—and some parameters are
updated in the attempt to achieve feasibility w.r.t.
the relaxed constraints. Lagrangean-based approaches
such as the Dantzig-Wolfe method (Ho et al. 1988,
Gnanendran and Ho 1993) or the bundle method
(Medhi 1990, Ferris and Horn 1998, Frangioni and
Gallo 1999) directly approach the maximization of
the nondifferentiable Lagrangean function, whose cal-
culation breaks down in the solution of an inde-
pendent subproblem for each block. Other methods
are based on differentiable but non-separable func-
tions, such as the augmented Lagrangean (De Leone
et al. 1994, Kontogiorgis et al. 1996), linear-quadratic
(Pinar and Zenios 1992) or exponential (Grigoriadis
and Khachiyan 1995) penalty functions, or logarithmic
barrier functions (Meyer and Schultz 1992, De Leone
et al. 1994). Since these functions are non-separable,
iterative (mostly inner linearization) methods are
used to compute them approximately by solving only
block-separable subproblems. However, even bun-
dle methods can be seen as approximate augmented
Lagrangean approaches; indeed, several of the above
cost-decomposition approaches can be cast into a uni-
fied framework (Frangioni 2002).
By contrast, the base idea underlying resource-

decomposition approaches (De Leone et al. 1993)
consists of transforming the “global” constraints

into “local” constraints. In the MMCF case, for
instance, this is done by choosing a tentative a-priori
distribution of the mutual capacity of the arcs among
the commodities and solving the subproblems with
“strengthened” individual capacities. The reduced
costs of the corresponding optimal flows can be
used to update the distribution. A problem with this
approach is the difficulty of effectively coping with
infeasible distributions of the capacities, i.e., empty
subproblems.
Modifications of the individual capacities are some-

times performed even in cost-decomposition methods
(Grigoriadis and Khachiyan 1995) to speed up conver-
gence. Also, decomposition methods with both flow
and capacity variables (De Leone et al. 1994, Konto-
giorgis et al. 1996) have been proposed.
Another—possibly more important—distinction is

drawn between decomposition methods based on
complex coordinators and those based or simple coordi-
nators. All decomposition methods can be parallelized
by partitioning the subproblems among different pro-
cessors (processing elements, or PEs). The resulting
algorithms all have the common “master-slave” struc-
ture: at each iteration, a master problem is solved
in the—in principle, serial—master phase, then infor-
mation is sent to the slaves and the—concurrent—
slave phase begins where each slave modifies and
solves its subproblem. Clearly, the performance of dis-
tributed decomposition, as measured by speedup or
efficiency, is adversely affected by the magnitude of
the serial master phase. Thus, deciding which tasks
the master has to accomplish is a critical point, since
there is a trade-off between the complexity of the
coordinating mechanism of the decomposition pro-
cess and the overall parallel performance (De Leone
et al. 1994). Simple coordinators that only require
summing and averaging of subproblem information
are, on the surface, better suited to parallel environ-
ments. On the other hand, complex coordinators that
require the solution of an optimization problem may
lead to a much smaller number of iterations, and
hence to higher overall effectiveness. This trade-off
clearly depends on the relative computational bur-
den of the master problem and of the subproblems,
which may also depend on the particular instance—
e.g., from the number or “tightness” of the coupling
constraints.
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A prominent decomposition method based on a
simple coordinator is the alternating directions
method (De Leone et al. 1994, Kontogiorgis et al.
1996), which is basically an augmented Lagrangean
method where the nonseparable augmented Lagr-
angean is only approximately solved with one iter-
ation of a block-Gauss-Seidel approach. The master
phase is very simple, as PEs only combine their solu-
tion in order to form, as aggregates, new values
for the subproblem proximal terms and Lagrangean
multipliers. Another method based on a simple
coordinator is the parallel constraint distribution
method (Ferris and Mangasarian 1992), which dis-
tributes the constraints among the PEs and modifies
each subproblem objective function with Augmented
Lagrangean terms from other PEs.
Approaches based on complex coordinators are the

Dantzig-Wolfe method (Ho et al. 1988, Gnanendran
and Ho 1993) and bundle methods (Medhi 1990,
De Leone et al. 1993, Ferris and Horn 1998, Fran-
gioni and Gallo 1999). At each step, the master uses
(potentially all) the information collected from all
the previous slave phases—columns or subgradients,
depending on the viewpoint—to compute the new
vector of prices to be broadcasted to the slaves. Thus,
the master phase requires the solution of possibly
large-scale linear (in the DW case) or quadratic (in
the bundle case) programs, whose size also tends to
increase with the iterations.
The distinction between simple and complex coor-

dinators is unclear: the “complexity” of the coordina-
tor is not actually inherent to the approach, but rather
a function of several design decisions, so that a whole
range of possibilities exists between very simple and
very complex coordinators. In fact, many decompo-
sition algorithms employ coordinators that require
the solution of a potentially complex optimization
problem, whose cost is kept low only by forcing
the size of the optimization problem to be very low.
This is the case of the linear-quadratic penalty algo-
rithm of Pinar and Zenios (1992), of the exponential-
penalty approximation algorithm of Grigoriadis and
Khachiyan (1995), of the interior-point method of
Meyer and Schultz (1992), and of the parallel variable
distribution method of Ferris and Mangasarian (1994).

Yet, all these methods are naturally extended to com-
plex coordinator variants. Conversely, bundle meth-
ods can be made to work with limited-size master
problems (Frangioni 2002). Furthermore, even com-
plex coordinators can be implemented in different
ways, which can have a profound impact on their
complexity. For instance, both the DW and bundle
methods can be implemented in either the “aggre-
gate” or the “disaggregate” variant, the distinction
being if each solution from a block becomes a sepa-
rate column, or they are all aggregated into an unique
column; the first solution typically has a (much) faster
rate of convergence, at the cost of a (much) larger
master problem. Finally, the potential serial bottleneck
of solving a complex master problem can be faced by
decomposing it. In De Leone et al. (1994), for instance,
the decomposition algorithm of Meyer and Schultz
(1992) is extended by employing p simple coordina-
tors instead of a single complex one; the p coordinat-
ing problems are solved in parallel, each producing a
proposed next iterate, and the proposal with the best
(least) objective value is then chosen as the overall
solution. Deciding whether this two-level coordinator
is to be considered simple or complex is thus a critical
task.
Finally, let us remark that decomposition-type algo-

rithms are not the only kind of parallel approaches
developed for MMCF. Primal-dual (row-action) algo-
rithms have been proposed (Zenios and Mulvey
1988; Zenios 1991, 1993) that are capable of exploit-
ing both fine-grained and coarse-grained parallelism
(indeed, these algorithms can be seen as extremely
fine-grained cost-decomposition methods). Although
in principle interesting, row-action algorithms tend
to suffer in practice from a convergence rate that
is not really high. More recently, specialized parallel
implementations of interior-point algorithms for LP
have been proposed and tested (Lustig and Li 1992,
De Silva and Abramson 1998, Castro and Frangioni
2001). These algorithms exploit the block-staircase
structure of the coefficient matrix of MMCF to avoid
direct factorization of a very large matrix, which also
usually exhibits very dense “lower-right” corners.
Instead, smaller and much sparser systems can be
solved in parallel (one for each block), confining the
fill-in in the Shur complement matrix that is dealt
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with in the sequential part. It is even possible to avoid
forming the (dense) Shur complement at all, employ-
ing an iterative method; this has shown to be quite
effective in practice, even in sequential (Castro 2000),
thanks to the very good convergence rate of interior-
point methods for LP.

3. The (Sequential)
Bundle Approach

To address the solution of MMCF, the cost-
decomposition code of Frangioni and Gallo (1999)
(MMCFB) considers its Lagrangean relaxation w.r.t.
the “complicating” constraints (c), i.e.,

�RMG�� min
{
�h�ijc

h
ij x

h
ij +�ij�ij ��hx

h
ij −uij � �

Exh = bh�0≤ xh ≤ uh ∀h}�
and solves the corresponding Lagrangean dual

�DMMCF� max�≥0

{
����=min��h�ch+��xh−�u �

Exh = bh�0≤ xh ≤ uh ∀h�}�
For any fixed ������ can be quickly computed
by solving k independent (single-commodity) MCFs.
This is especially true if each commodity has a single
origin (or destination) node and no single-commodity
upper bounds exist (i.e., uhij =+	 ∀ i� j�h), since under
these assumptions the subproblems are shortest path
tree problems (SPTs) w.r.t. the modified costs �ch+��.
(DMMCF) is solved with a proximal bundle algo-

rithm, a class of nondifferentiable optimization
approaches mainly characterized by storing the first-
order information about �( ), obtained at the previous
iterations, in a disaggregated form. Having visited
a (finite) sequence of points ��i�, the “bundle” � =
�
�i����i��g��i��� is used to compute a tentative
ascent direction di, along which �i+1 is chosen, where
g��� = �hxh���− u is the subgradient of �( ) in �

identified by an(y) optimal solution �x1���� � � � �xk����
of (RMG��. At each step, calculation of di requires
the solution of the quadratic-programming (QP)
subproblem

���t� min��1/2t��i∈�gi�i�2+�i∈� i�i �

�i∈��i = 1��≥ 0�

where gi = g��i� and  i =  i��̄� = ���i�+gi��̄−�i�−
���̄� is the linearization errors w.r.t. the current point
�̄. Here, t > 0 is the so-called proximal parameter;
slightly different forms of ���t� are needed for differ-
ent variants of Bundle methods, such as Proximal Level
algorithms (Ferris and Horn 1998). Once di has been
found, the value of ���̄+di� and the relative subgra-
dient are used to adjust the current point �̄, if a suffi-
cient increase in the value of the �( ) is attained, and
the parameter t. Anyway, the newly obtained first-
order is added to �.
(��t� can be viewed either as a (Lagrangean

relaxation of a) “least-square version” of the mas-
ter problem of Dantzig-Wolfe decomposition, or, in
the nondifferentiable optimization terminology, as (a
Lagrangean relaxation of) the problem of finding the
minimum norm vector in an inner approximation of
the maxi∈�� i�- subdifferential of �( ) in �̄. Further-
more, its (quadratic) dual is

�"�t� max
d
�����̄+d�−1/2t�d�2��

i.e., the maximization of the cutting-plane model
����� =mini∈�����i�+ gi��−�i��−���̄�, the polyhe-
dral upper approximation of �( ) built up with the
first-order information found so far, plus a quadratic
proximal term, weighted with t. The proximal term
discourages directions leading to “far-away” points,
where ��( ) is probably a “bad” approximation of
�( ), and the parameter t somehow measures our
“trust” in ��( ) as we move further from �̄ (Figure 1).
For sufficiently large values of t, ("�t� is equivalent

to the “naive” maximization of ��( ) alone,

�"�� max
d
�����̄+d���

provided that the latter problem has a finite maxi-
mum, which is very often not the case, especially in
earlier stages of the algorithm’s operations. Bundle
methods are therefore a variant of the DW/cutting-
plane algorithm, which uses the optimal solution of
("�� as the next trial point.
Actually, for solving MMCF a constrained bun-

dle algorithm is required, since nonnegativity of the
Lagrangean variables has to be ensured. This can be
tackled by just making the QP subproblem “aware” of
the constraints, i.e., by solving the extended problem

�"′
�t� max

d
�����̄+d�−1/2t�d�2 � d ≥−�̄��
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Figure 1 Effect of the Proximal Term for t1 < t2 < t3 � di Are the Optimal
Solutions

which guarantees feasibility of the tentative point
w.r.t. the �≥ 0 constraints.
The above method is used in the sequential MMCFB

code; it is beyond the scope of this paper to describe
it in full detail; the interested reader is referred to
Frangioni and Gallo (1999). MMCFB has been shown
to be efficient on several different classes of instances,
the key components of its performance are:
— the use of a fast, specialized QP solver (Frangioni

1996) that uses a two-level-active-set strategy, explicitly
designed to be efficient for the kind of reoptimization
arising in bundle algorithms, and which supports on-
line creation and destruction of variables;
— the use of an efficient MCF solver to keep the

cost of the solution of (RMG�) low;
— the ability of exploiting the structure of the flow

subproblems by identifying those that are in fact SPTs
and using a specialized shortest-path code instead of
the more general MCF solver;
— a Lagrangean variables generation strategy, where

only an “active” subset of the variables is modified at
each iteration: this greatly helps in reducing the com-
putational cost of solving �"′

�t�, as few Lagrangean
variables ever become nonzero and the “active set”
is very stable after the first few iterations, so that
the (relatively costly) check of whether new variables
have to be added can be performed with low fre-
quency;
— a new t handling scheme based on two different

heuristics for the increase and decrease respectively,
proper settings of some critical optimization parame-
ters, and a new stopping condition based on a user-
provided “distance estimator” t∗.

4. Parallelization of the
Bundle Approach

The parallel code, pMMCFB, is developed as an
extension of the existing sequential MMCFB, rather
than as an independent code, exploiting the inher-
itance mechanisms provided by C++. This allows
updates on the sequential code automatically to re-
echo on the parallel one. For instance, early ver-
sions of MMCFB used a line search to find the new
point �i+1 along direction di, that was subsequently
abandoned in favor of a trust region approach;
these changes have not required any modification to
pMMCFB.
pMMCFB shares most of the base code of MMCFB,

which consists of several C++ classes. In the follow-
ing the most important ones are briefly described
(see Frangioni (1997) for more detail). The Graph class
provides a mean for reading MMCF problems, pre-
processing (e.g., identifying redundant mutual capac-
ity constraints) and storing them in memory, along
with an interface that can be used by any MMCF
solver to access and change the data. It also supports
decomposition-based MMCF solvers by providing
methods that hide the details of the mutual capac-
ity constraints structure. The MMCFBundle class imple-
ments the main bundle algorithm; the value of the
objective and the subgradient are computed inside
the (virtual) method FiAndGi( ), that is the only other
function interacting with Graph apart from the con-
structor, where the data structures are set up. The
RelaxIV class implements a MCF solver based on the
RelaxIV algorithm (Bertsekas 1991), that is known to
be fast and to reoptimize efficiently.
pMMCFB extends the sequential code by introduc-

ing the three derived classes MasterClass, SlaveClass,
and ParGraph. In the following we will give a brief
description of such classes in order to point out how
the portability of the code has been obtained (the
interested reader is referred to Cappanera (1996) for
further detail). ParGraph derives from Graph, and pro-
vides support for splitting the data of the problem
among the different PEs. A constructor of the class,
which is used in each slave, reads the data from a
PVM channel. Methods to send the data along the
channel are provided for being used at the mas-
ter PE, where the original Graph constructors are
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used instead. MasterClass derives from MMCFBundle,
and only re-implements the constructor—where the
data are spliced among the Slaves by using the
ParGraph methods—and the method FiAndGi( ). At
each iteration, the sequential code is executed until
FiAndGi( ) is invoked, then control is passed to
MasterClass::FiAndGi( ) where the new prices � are
broadcasted to the slaves, the results are gathered,
and the corresponding objective function and subgra-
dient are calculated, prior to returning control to the
MMCFBundlemethods. Note that the slaves synchronize
by sending their solutions to the master through a
reduce operation; this may introduce active waiting,
but it exploits the very efficient reduce implemen-
tations available on most parallel machines. Besides,
in an “aggregated” bundle approach as MMCFB the
master cannot proceed until all the subproblems are
terminated, differently from a “disaggregated” DW
approach where the master can begin processing
columns received from the slaves piecemeal (Gnanen-
dran and Ho 1993). Finally, SlaveClass implements
the (RMG�� solution phase, nearly identical to the one
in MMCFBundle::FiAndGi( ), for the subset of the com-
modities assigned to the ParGraph object of the cor-
responding PE. Thanks to the inheritance mechanism
and the use of the derived ParGraph class, extension
of the code to any block-structured network prob-
lem with side constraints would not require changing
MasterClass or SlaveClass.
Some other implementation details may be note-

worthy. For instance, MMCFBundle is in turn derived
from MMCFClass, an abstract base class implementing
a standard interface for MMCF solvers that makes
application programs independent from the partic-
ular kind of solver that is used. An analogous
structure has been used for the MCF solver: the
abstract base class MCFClass defines a standard inter-
face for MCF solvers, and k objects of proper derived
classes are constructed within the MMCFB, which
uses the public methods of such objects for chang-
ing the costs, solving the problems, and collecting
the results. This makes MMCFBundle completely inde-
pendent from upgrades in the MCF solver, or even
changes of algorithm, as well as easily adaptable to
specially-structured classes of instances. Indeed, this
mechanism has been used to deal efficiently with

SPT subproblems, by essentially only developing the
derived class SPTree.
All the modules use a set of “abstract” basic data

types, allowing one easily to port the code under dif-
ferent architectures, and to tailor it to the character-
istics of both the computer that is being used and
the class of instances that are being solved. Finally,
compile-time options are given to the end user for
customizing the code without knowing the details
of the implementation; some of these switches can
be used to overcome the limitations—or exploit the
peculiarities—of a given parallel machine, as dis-
cussed in the next section.

5. The Parallel Environment
pMMCFB has been mainly tested on a Cray T3D,
incorporating 64 Alpha microprocessors, each capa-
ble of 150 MFLOPS peak performance. Each PE in the
system is composed of the Alpha processor, with 8+8
(instruction+data) Kb of cache, 64 Mb of local mem-
ory, and custom support logic for the bi-directional
3-D torus interconnect network, with peak interpro-
cessor communication rates of 300 Mb/s. The Cray
T3D system design supports some major latency-
hiding mechanisms and offers a wide range of syn-
chronization mechanisms to accommodate both SIMD
and MIMD programming styles. Memory, although
physically distributed among PEs, is globally address-
able, but a highly-optimized implementation of PVM
(Cray 1994a) is also provided. The Cray T3D is run-
ning UNICOS MAX, a distributed operating system
whose functions are divided between the PEs of the
T3D and the Cray C90 host, which allows the user
to edit, compile, and link programs, and to initiate,
control, and terminate all T3D processes. The avail-
able C90 system was a C94/2148 with 2 CPUs, each
with 14 independent functional units and 8 vector
registers, capable of almost 240 MFLOPS peak perfor-
mance (clock cycle= 4�2 Ns).
pMMCFB has been designed to work under any

distributed environment where PVM is available;
however, it is also possible to activate—via compile-
time switches—architecture-specific portions of code
for communication or process control primitives. This
allows some architecture-specific optimization of the

INFORMS Journal on Computing/Vol. 15, No. 4, Fall 2003 375



CAPPANERA AND FRANGIONI
Symmetric and Asymmetric Parallelization of a Cost-Decomposition Algorithm for Multicommodity Flow Problems

code. For instance, when running PVM on T3D in
standalone mode there is no need to set up a Mas-
ter (PE0 is always chosen), to create the slave pro-
cesses by pvm_spawn( ) and to wait for them to
join into a proper global group and signal their
presence through a pvm_barrier( ). Also, the stan-
dard pvm_bcast( ), pvm_send( ), and pvm_reduce( ),
which are used in pMMCFB respectively to send
common data to all PEs, for point-to-point communi-
cation and to calculate g��� and ����, can be substi-
tuted with architecture-specific primitives, such as the
SHMEM routines of the T3D (Cray 1994b). Finally, two
self-implemented reduce procedures, one based on a
binary tree and the other one on p− 1 pvm_recv( ),
are provided for those cases in which pvm_reduce( )
is not available.
A remarkable characteristic of the available paral-

lel environment was the side-to-side presence of two
very different architectures: the vector supercomputer
Cray C90 and the massively parallel MIMD Cray T3D.
While the latter is clearly the machine where the ����
calculation is to be performed, the former is partic-
ularly efficient on the kind of vector operations that
forms the computational core of the (otherwise non-
parallelizable) algorithm for the solution of ("′

�t). This
is confirmed by Table 1, where the time spent by
MMCFB for calculating ���� (MCF) and solving ("′

�t)
(QP) on the two architectures is compared for two

Table 1 ���� and �	′

t � Times on the Two Different Architectures

128-128 256-128

MCF QP MCF QP

C90 T3D C90 T3D C90 T3D C90 T3D

26�94 25�51 0�03 0�05 298�03 298�60 0�25 0�45
21�98 20�59 0�03 0�04 129�05 121�07 0�09 0�12
11�64 10�70 0�02 0�02 80�51 74�58 0�11 0�12
45�71 43�77 0�07 0�15 510�35 499�00 0�45 1�28
22�85 21�62 0�04 0�08 217�54 211�27 0�17 0�55
16�07 14�83 0�04 0�03 80�74 76�40 0�13 0�25

243�88 232�47 0�78 1�78 553�34 554�80 0�92 2�55
99�12 91�22 0�16 0�73 529�95 526�59 0�79 6�27

133�75 126�35 0�23 0�70 379�24 373�49 0�42 1�82
526�24 486�24 1�44 4�63 2518�62 2546�11 6�04 26�39
355�84 325�70 0�75 3�62 1203�13 1167�85 2�05 11�54
233�00 217�45 0�45 1�57 777�06 786�76 1�23 6�63

particular groups of instances (the 128-128 and 256-
128 problems, see §5). As the table clearly show, the
MCF solver is not faster on the C90 than on a single
PE of the T3D, while the QP code is up to six times
faster, and the difference increases with the size of the
problem (larger for 256-128 problems than for 128-128,
and in the latter six problems of each group than in
the former six). This is not surprising, since the MCF
solver contains few vector operations, and is therefore
almost not vectorizable, while the converse is true
for the QP code. Note that all the results have been
obtained by only invoking the vectorization options
provided by the C90 compiler; further performance
improvements might have been obtained by hand-
made vectorization.
These results prompted the development of an

asymmetric version of pMMCFB, where the master
and the slaves are executed on different machines.
Only limited modifications were necessary, some of
which are, however, worth describing. Basically, in
the specialized implementation the PE0 of T3D acts
as a submaster, being the only slave that directly
communicates with the C90. This allows for most of
the data exchange to be performed via the fast T3D
interconnection network, avoiding C90-T3D commu-
nication through the PVM-daemon (running on the
C90) and the slow Unix sockets system, which would
severely degrade performance. This also serves to
overcome a difficulty arising with pvm_reduce( ),
i.e., that dynamic groups consisting of tasks run-
ning on both the T3D and the C90 are not allowed.
Master-submaster communication speed can also be
improved by combining I/O and PVM (Cray 1994a),
i.e., by separating the two parts of a PVM mes-
sage, control information and actual data, using the
slower PVM (Unix sockets) for the former and faster
UNICOS I/O (read/write operation on a memory-
mapped file) for the latter. Finally, it is possible to
decide, via compile-time switches, whether or not the
master solves a group of MCFs.

6. The Test Problems
Several data sets and random generators of MMCF
problems are available, and have been used in the
literature to test one or the other of the proposed
approaches; the ones employed here, along with
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many others, can be retrieved at http://www.di.
unipi.it/di/groups/optimize/Data/MMCF.html.
In order to test PMMCFB, a suite of 78 Mnetgen

problems has been selected. But for the very large
problems, the same data set had been previously used
for testing MMCFB (Frangioni and Gallo 1999); there
already, the choice of Mnetgen had proven fruitful for
analyzing the influence of some characteristics of the
MMCF instances on the relative effectiveness of alter-
native sequential algorithms.
The test set has been generated with the follow-

ing rules: for each value of n in �64�128�256� and
k in �64� � � � �n� (Mnetgen cannot generate problems
with k > n), 12 different problems were generated,
for a total of 6 classes of problems characterized by
a pair (n�k). Within each class, 6 problems (groups
A and B) are “sparse” and 6 (groups C and D) are
“dense”, with m/n respectively equal to about 3 and
8. Both these subclasses are in turn subdivided of
into 3 “easy” (A and C) and 3 “hard” (B and D)
problems; easy problems have mutual capacity con-
straints on 40% of the arcs and 10% of the arcs with
a “high” cost, while these figures are 80% and 30%,
respectively, for hard problems. Finally, the 3 sub-
problems within each group differs in the number of
arcs that have individual capacity constraints, fixed to
30%, 60%, and 90%, respectively; note that, because of
the individual capacities, the corresponding MCF sub-
problems are not SPTs. Usually, within the same group
the “difficulty” of the problem decreases as the per-
centage of arcs with individual arc bounds increases,
since the number of “tight” mutual constraints tend
to diminish.
To test the code on larger problems, the “sparse”

problems groups (A and B) with n= k= 512 were also
generated, whose LP formulation has more than 8 ·105
variables. Curiously enough, it was not possible to
test the (512, 512) “dense” groups, or problems with
larger n, because of limitations of the disk space avail-
able on the server machine, but the computational
results seem to show that even much larger problems
may be solved in a very reasonable time.
Table 2 summarizes the (averaged) characteristics

of the test problems: in the table, each problem group
is designated by n− k− g, with g ∈ �A�B�C�D�, b

Table 2 Characteristics of the Test Problems

Group k n m b Var Constr

64-64-A 64 64 209 86 13376 4182
64-64-B 64 64 197 160 12608 4256
64-64-C 64 64 516 193 33003 4289
64-64-D 64 64 524 415 33536 4511

128-64-A 64 128 388 155 24811 8347
128-64-B 64 128 405 328 25920 8520
128-64-C 64 128 1159 458 74155 8650
128-64-D 64 128 1185 932 75819 9124

128-128-A 128 128 394 156 50475 16540
128-128-B 128 128 407 332 52053 16716
128-128-C 128 128 1219 486 156032 16870
128-128-D 128 128 1213 966 155307 17350

256-64-A 64 256 825 327 52779 16711
256-64-B 64 256 801 647 51264 17031
256-64-C 64 256 2337 922 149547 17306
256-64-D 64 256 2330 1828 149120 18212

256-128-A 128 256 814 304 104149 33072
256-128-B 128 256 812 655 103893 33423
256-128-C 128 256 2344 909 300032 33677
256-128-D 128 256 2353 1861 301184 34629

256-256-A 256 256 824 314 210859 65850
256-256-B 256 256 830 679 212480 66215
256-256-C 256 256 2168 841 554923 66377
256-256-D 256 256 2190 1772 560640 67308

512-512-A 512 512 1633 644 836096 262788
512-512-B 512 512 1635 1291 837120 263435

is the number of arcs having mutual capacity con-
straints, Constr = m× k+ b is the total number of
constraints, and Var = m× k is the total number of
variables in the LP formulation of the problem.
Preliminary experiments were also conducted on

other sets of problems, typically having k < 64. Those
problems were later discarded for two reasons: the
first was that it was impossible to exploit all the par-
allelism provided by the available machines, and the
second was that they were “too easy,” i.e., solvable
within a few seconds on a workstation, so that their
parallelization was hardly interesting in practice. A
posteriori, problems with a large number of com-
modities turned out to be especially “well-suited” for
our approach. Still, problems with this structure are
quite common in practice, for instance in telecom-
munications, so that the results obtained can be of
practical interest. Moreover, the limited amount of
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CPU time available forced us to select among many
possibilities, and the current set of problems seems to
be able to indicate both potentials and limitations of
the parallel code.

7. Computational Results
and Conclusions

In this section, the computational results obtained by
both symmetric and asymmetric versions of pMM-
CFB are presented and discussed. We remark that
these results correspond to a solution of the MMCF
instances with a relative precision of about 10−6

(average relative gap 9�94 ·10−7, maximum 2�35 ·10−6)
w.r.t. the optimal solution obtained with a commer-
cial LP solver. The relative aggregate unfeasibility
(norm of the unfeasibility/�u�) is about 10−5 (average
4�65 ·10−6, maximum 1�92 ·10−5). However, any preci-
sion, both for optimality and feasibility, is in principle
attainable by properly setting the stopping parame-
ters of the code. Also, the convergence of the method
is usually pretty fast when near the optimal solution.

7.1. Performance Measures
Let us start with a brief discussion on the performance
measures (Patton 1989) that have been used. It is now
widely acknowledged (Hennessy and Patterson 1990)
that a reliable performance metric for any computer
system is just program execution time, since it measures
several characteristics of the system that influence the
overall performance. In a sequential computer, these
characteristics are the quality of the instruction set,
the ALU and FPU performances, the optimizing capa-
bility of the compiler, the latency and bandwidth of
the memory subsystem, and the clock rate of the chip.
When the object of benchmarking is a parallel system,
execution time also mirrors communication and syn-
chronization costs, the latency and bandwidth of the
interconnection network, and the quality of the rout-
ing scheme for inter-processor communication. Thus,
we chose execution time as the basic unit of measure.
Let Tp stand for the execution time of a program

on a system with p identical processors, and T ∗ be
the time it takes to execute the “best” known serial
algorithm for the same problem, on the same data set,

on a single processor; widely accepted efficiency mea-
sures are the absolute speedup s∗p = T ∗/Tp, the relative
speedup sp = T1/Tp, and the relative efficiency +p = sp/p.
+p is usually less than one (actually, this has to be
true under fairly general assumption), hence sp ≤ p,
indicating efficiency loss due to communication over-
head, duplication of operations, and active wait due
to load imbalance or message dependencies. There-
fore, linear speedup (sp = p) is the best one can hope
for, although superlinear speedups (sp > p) can some-
times be observed; this phenomenon is usually due
to memory hierarchies, i.e., to reduction of cache misses
and page faults that arises from the splitting of the
problem data among the different PEs. However,
linear speedup is usually quite difficult to achieve,
because of the limit on the amount of parallelism that
can be extracted from an algorithm as described by
Amdahl’s law

+p ≤ +I
p =

1
�p−1�s+1

�

where s ∈ �0�1� is the fraction of inherently sequential
(non-parallelizable) code. For pMMCFB, s is all the
time that is not spent in �( ) calculation, i.e., mainly
the time for the solution of ("′

�t).
In certain cases, however, the above measures can

be difficult to compute. For problems such as linear
programming, for instance, there is no uncontested
“best” serial algorithm; however, for the instances at
hand MMCFB is one of the most efficient approaches
(Frangioni and Gallo 1999), and therefore s∗p = sp.
Moreover, the absolute speedup does not reflect the
degree of parallelization of the algorithm, as measured
against its serial implementation, while the relative
speedup does; thus, sp and +p seem to be highly indi-
cated as the right performance measures in our case.
However, problems arise with the asymmetric pMM-
CFB, where different parts of the code are run on very
different machines; clearly, the above definitions cease
to be sensible, and the definition of appropriate effi-
ciency measures unclear. The best solution is proba-
bly that of presenting the data “as are” and leaving
the conclusion to the reader; since the purpose of this
research was essentially practical, we will be satis-
fied by showing that the asymmetric implementation
could allow us to reduce the overall solution time.
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Table 3 Aggregated Computational Results for the Cray T3D

Group T1 s% T4 T16 T64 �I
4 �I

16 �I
64 �4 �16 �64

64-64 21�31 1�10 5�98 2�08 1�00 0�97 0�86 0�61 0�90 0�64 0�34
128-64 123�66 1�25 35�70 13�16 7�01 0�96 0�86 0�62 0�88 0�65 0�34
128-128 159�78 0�66 42�04 12�65 4�95 0�98 0�91 0�73 0�96 0�78 0�51
256-64 466�35 1�51 129�75 44�69 21�89 0�96 0�83 0�58 0�90 0�69 0�39
256-128 718�35 0�62 188�96 57�23 22�99 0�98 0�92 0�74 0�96 0�79 0�50
256-256 1404�48 0�30 348�46 98�30 33�85 0�99 0�96 0�85 0�99 0�88 0�65
512-512 15898�89 0�22 ∗ 1025�26 291�40 ∗ 0�97 0�88 ∗ 0�99 0�86

7.2. Results of the Symmetric
pMMCFB (Cray T3D)

In this section, the computational results obtained
by the symmetric pMMCFB on the Cray T3D are
reported. In each table, Tp denotes the running time,
in seconds, taken by the solution of the problem
(excluding loading and preprocessing) with p proces-
sors, +I

p the ideal efficiency according to Amdahl’s law,
+p the actual relative efficiency achieved, and s% an
estimate of the percentage of inherently sequential
code.
In Table 3, the aggregated computational results for

all the problem classes are reported. The results are
visualized in the corresponding Figure 2, where +p

is plotted as a function of both p and the problem
class, and in Figures 3, 4, and 5, where +I

p and +p are
compared for p = 4�16, and 64 respectively.
These results show that satisfactory efficiencies

(always over 64%) are consistently obtained when

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

64-64 128-64 128-128 256-64 256-128 256-256 512-512

4
16
64

Figure 2 Efficiency as a Function of p and the Problem Group from Table 3

using at most 16 PEs, which is the typical number of
processors for most of the experiences reported in the
literature. However, as p further increases, +p soon
degrades down to 34% on some classes of instances.
Yet, Figure 2 shows that +p also depends on the

“size” of the problem in the following ways:
— for a fixed graph size, +p increases as k does (cf.

the 256-64, 256-128, and 256-256 problems): increasing
k, the relative weight of the non-parallelizable code
(measured by s� decreases;
— for a fixed m/k�+p increases when m does (cf.

64-64, 128-128, and 256-256 problems): thus, although
both the communication and the QP solution costs
increase with m, this increase is largely compensated
by the corresponding decrease of s;
— for a fixed k�+p is “stable” (cf. 64-64, 128-64, and

256-64 problems): thus, the QP solution cost at least
does not increase much faster than the subproblem
solution cost as m increases.
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Figure 3 Ideal and Actual Efficiency for p = 4

Furthermore, the gap between ideal and actual effi-
ciency seems to follow an analogous law: although
large for “small” problems, and increasing with the
number of processors p, it is smaller for instances
with relatively many commodities, and it reduces (up
to, eventually, closing) as the size of the problem
increases.
These observations are particularly relevant

because the sequential MMCFB becomes more and
more competitive w.r.t. a number of alternative
approaches as the size of the problem increases, and
for “small” values of m/k (Frangioni and Gallo 1999).
Hence, pMMCFB seems to be particularly well-suited
for large instances with “many” commodities, since
for these problems the code is effective in sequential
mode, and the efficiency is high even with a large
number of processors.
Other observations can be made by analyzing the

results in a little more detail. Table 4 reports the
results for each single problem group; note that it
contains violations of Amdahl’s law (128-128-C with
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µ16µ I
16

Figure 4 Ideal and Actual Efficiency for p = 16

4 PEs) and superlinear speedups (256-256-C and D

with 4 PEs, 512-512-A with 16 PEs), presumably due
to the above-mentioned effects of memory hierarchies.
Table 4 shows that communication time does not
appear to be a significant factor. This is predicted by
estimates based on the declared performances of the
machine, and is confirmed by the fact that the gap
between +I

p and +p diminishes as m (and therefore
the amount of exchanged data per iteration) increases,
up to closing in several cases, clearly indicating that
the loss of efficiency is due to master-slaves synchro-
nization rather than to communication overhead. The
largest problems in the suite always attain very high
efficiencies, even with 64 PEs, and little or no gap
between +I

p and +p; for the B group, the parallel code
reduces the “wall-clock time” of a factor over 50, from
more than 6 hours to about 7 minutes.
Further insight on the nature of the results can be

obtained by examining the results for each of the
12 instances of any particular class of problems; in
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Figure 5 Ideal and Actual Efficiency for p = 64

Table 5, this is done for the 64-64 problems, where
pMMCFB performs significantly worse than in all
other cases. The instances are ordered by increasing
loss of efficiency �+ = +I

64−+64, and the percentage of
arcs having single-commodity constraint is shown as

Table 4 Disaggregated Computational Results for the Cray T3D

Group T1 s% T4 T16 T64 �I
4 �I

16 �I
64 �4 �16 �64

64-64-A 3�27 0�73 0�90 0�31 0�15 0�95 0�79 0�48 0�89 0�64 0�34
64-64-B 8�56 0�85 2�38 0�82 0�37 0�97 0�85 0�58 0�90 0�65 0�33
64-64-C 14�52 1�06 4�04 1�42 0�70 0�98 0�89 0�65 0�90 0�63 0�34
64-64-D 58�89 1�78 16�59 5�78 2�77 0�98 0�91 0�71 0�89 0�66 0�35

128-64-A 6�97 0�55 1�97 0�65 0�30 0�98 0�92 0�74 0�89 0�67 0�36
128-64-B 26�47 0�71 7�56 2�52 1�11 0�98 0�90 0�69 0�88 0�66 0�37
128-64-C 82�37 0�77 23�03 7�73 3�67 0�98 0�90 0�68 0�89 0�67 0�36
128-64-D 378�85 2�98 110�25 41�73 22�98 0�92 0�70 0�38 0�87 0�60 0�29

128-128-A 23�91 0�21 6�06 1�94 0�68 0�99 0�97 0�88 0�99 0�77 0�54
128-128-B 30�90 0�41 8�60 2�48 0�96 0�99 0�94 0�80 0�92 0�78 0�50
128-128-C 177�67 0�86 44�80 14�01 5�63 0�97 0�89 0�65 0�99 0�79 0�50
128-128-D 406�63 1�16 108�70 32�18 12�54 0�97 0�85 0�58 0�94 0�79 0�51

256-64-A 46�28 0�80 13�32 4�23 1�77 0�98 0�89 0�67 0�88 0�70 0�41
256-64-B 100�52 0�63 28�89 9�09 3�56 0�98 0�91 0�72 0�90 0�70 0�43
256-64-C 598�23 1�60 160�19 54�88 25�92 0�95 0�82 0�55 0�94 0�71 0�40
256-64-D 1120�37 3�02 316�60 110�56 56�33 0�92 0�70 0�37 0�89 0�65 0�33

256-128-A 155�91 0�21 41�85 12�44 4�92 0�99 0�97 0�88 0�95 0�79 0�48
256-128-B 282�99 0�38 76�40 21�74 7�87 0�99 0�95 0�81 0�94 0�81 0�54
256-128-C 702�94 0�70 183�43 57�79 21�63 0�98 0�91 0�70 0�96 0�76 0�51
256-128-D 1731�54 1�18 454�18 136�93 57�55 0�97 0�85 0�58 0�97 0�80 0�48

256-256-A 431�58 0�12 115�39 31�60 10�16 1�00 0�98 0�93 0�94 0�85 0�65
256-256-B 744�50 0�22 204�28 54�91 17�16 0�99 0�97 0�88 0�92 0�85 0�68
256-256-C 1381�11 0�41 322�95 95�71 34�11 0�99 0�94 0�80 1�07 0�90 0�64
256-256-D 3060�72 0�46 751�23 210�98 73�98 0�99 0�93 0�77 1�03 0�91 0�64

512-512-A 7662�02 0�16 ∗ 467�91 138�20 ∗ 0�98 0�91 ∗ 1�02 0�87
512-512-B 24135�76 0�28 ∗ 1582�61 444�61 ∗ 0�96 0�85 ∗ 0�95 0�85

sc. The results show that problems can be essentially
divided into two suites: the first six, having �+≤ 0�27,
mostly belong to the C and D classes, while the oth-
ers, having �+ ≥ 0�3, are mostly of groups A and
B. Thus, the problems in the first group are larger,
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Table 5 Even More Disaggregated Computational Results for the 64-64 Problems

�� sc T1 s% T4 T16 T64 �I
4 �I

16 �I
64 �4 �16 �64

11�D� 0�10 60% 80�20 2�24 22�96 8�13 3�92 0�94 0�75 0�42 0�87 0�62 0�32

10�D� 0�14 30% 60�77 1�79 16�90 5�77 2�85 0�95 0�79 0�47 0�90 0�66 0�33
12�D� 0�19 90% 35�71 1�31 9�91 3�43 1�56 0�96 0�84 0�55 0�90 0�65 0�36
8�C� 0�23 60% 19�57 1�35 5�38 1�92 0�97 0�96 0�83 0�54 0�91 0�64 0�31
7�C� 0�25 30% 16�69 1�22 4�61 1�65 0�82 0�96 0�85 0�57 0�90 0�63 0�32
4�B� 0�27 30% 18�65 0�90 5�17 1�73 0�79 0�97 0�88 0�64 0�90 0�67 0�37

1�A� 0�30 30% 5�57 0�87 1�54 0�53 0�25 0�97 0�88 0�65 0�91 0�66 0�34
5�B� 0�31 60% 4�89 0�83 1�34 0�52 0�22 0�98 0�89 0�66 0�91 0�59 0�34
6�B� 0�32 90% 2�16 0�84 0�61 0�21 0�10 0�98 0�89 0�65 0�88 0�63 0�34
3�A� 0�32 90% 2�26 0�72 0�63 0�22 0�10 0�98 0�90 0�69 0�90 0�65 0�37
9�C� 0�35 90% 7�31 0�60 2�11 0�68 0�30 0�98 0�92 0�73 0�87 0�67 0�38
2�A� 0�41 60% 1�96 0�59 0�55 0�19 0�10 0�98 0�92 0�73 0�89 0�65 0�32

and therefore more “difficult” to solve. The exception,
i.e., the swap 4�B�-9�C�, is still meaningful since, as
remarked in §5, 4(B) is the most difficult among the
small problems whereas 9(C) is the easiest among the
big ones.
This relation between �+ and the “difficulty” of the

problem is also confirmed by the sequential times,
and by the fact that, on average, D problems perform
better than C ones and B problems perform better
than A ones. This is easily justified by observing that,
using 64 PEs, each PE is assigned exactly one MCF;
for the small or easy problems, time spent waiting for
synchronization is relatively large, resulting in poor
performance.
All the results so far may perhaps be summarized

as follows: the larger and more difficult an instance
is, the better its relative efficiency is likely to be. This
possibly indicates that the present approach is well-
suited for large-scale, difficult MMCFs with many
commodities, i.e., the class of problems where a par-
allel approach appears to be really instrumental.

7.3. Results of the Asymmetric pMMCFB (Cray
T3D + Cray C90)

As noted in §7.1, it is difficult even to define the
speedup of the asymmetric pMMCFB; at least two
definitions are possible, as T1 can be that of MMCFB
on the C90 or on the T3D, and both these choices
disregard the fact that the two architectures behave
differently on different parts of the code (cf. Table 1).

Some technical difficulties further complicate the mat-
ter. The main problem was that, in the available envi-
ronment, the C90 was not run in dedicated mode,
so that the process running the master was repeat-
edly de-scheduled during the execution of the algo-
rithm, increasing the idle time of the (dedicated) T3D.
Actually, since PVM messages pass through the PVM-
daemon, receiving one message requires two pro-
cesses being scheduled for execution. The effect of this
extra idle time was dramatic: the wall-clock time of
the asymmetric pMMCFB actually increased up to an
order of magnitude, and was also fluctuating with the
workload of the C90 (that was, however, always very
high). In order to estimate the results that might be
obtained with a dedicated C90, we therefore approxi-
mated the total execution time by the sum of the CPU
time of the C90 and the wall-clock time of the T3D,
excluding from both the time spent in the C90-T3D
communications; the latter was a very large fraction of
the wall-clock time, since it includes the active wait-
ing due to the de-scheduling of the master process on
the C90. Such an estimate can be assumed to be tight,
since it only disregards the very low cost of the actual
data transfer, at least if the C90 does not solve MCFs
(so that it is immediately available when the T3D fin-
ishes), i.e., if the two machines are never working at
the same time.
This is how the execution times of the asymmetric

pMMCFB, reported in Table 6, have been computed.
In the table, Tp has to be interpreted as the time
obtained with p PEs of the T3D, i.e., excluding the
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Table 6 Time Comparison for the C90: The Symmetric and Asymmetric
Versions

Symmetric Asymmetric

C90 T16 T64 T1 T16 T64 �t16 �t64

128-128-A 21�41 1�72 0�66 20�81 1�72 0�66 0% 0%
128-128-B 30�46 2�42 0�94 30�22 2�38 0�96 1% −1%
128-128-C 174�99 14�35 5�91 171�80 13�90 5�82 3% 1%
128-128-D 405�03 30�97 12�32 384�71 29�45 10�77 5% 13%
256-128-A 177�12 13�76 5�35 175�87 13�92 5�28 −1% 1%
256-128-B 279�83 20�94 7�17 277�20 20�33 7�29 3% −2%
256-128-C 522�13 42�77 16�98 530�81 42�32 15�28 1% 10%
256-128-D 1610�55 129�47 54�94 1639�63 117�80 44�32 9% 19%

C90 (for the asymmetric version) from the processors
count; this is fair, as the C90 can be seen as a “spe-
cialized coprocessor” of PE0 of T3D, which is basi-
cally only used to solve more efficiently ("′

�t). �tp is
the relative difference between the corresponding val-
ues, which is reported as a very rough measure of the
potential wall-clock time improvement obtainable on a
system with a dedicated C90.
Although clearly still preliminary, these results

seem to show that the asymmetric version can be sig-
nificantly faster, saving up to 20% of total time espe-
cially on the larger and more difficult groups. Note
that, due to limitations of the CPU time available,
we only ran this set of experiments on the medium-
size 128-128 and 256-128 classes, although presum-
ably larger benefits might have been obtained with
some of the larger instances.

7.4. Conclusions
The aim of this work was to test whether the exploita-
tion of the natural parallelism inherent in any decom-
position algorithm for multicommodity min-cost flow
problems, i.e., the parallel solution of k MCFs at
each step, can lead to an efficient parallel code
even by starting with a complex-coordinator code
not originally designed for a parallel implementation.
The parallel code, extending the effective sequen-
tial bundle-based cost-decomposition solver MMCFB,
turned out to be highly efficient even with a large
number of processors, with, e.g., the running time
of the largest instances reduced from more than 6
hours to about 7 minutes. Perhaps the most interest-
ing finding was that the classes of problems on which

pMMCFB attained its best results were exactly those
where MMCFB is known to outperform several other
approaches, i.e., “difficult” problems with relatively
“many” commodities w.r.t. the size of the graph. The
results of the basic version can be further improved,
at least ideally, by exploiting—apparently for the first
time—a quite-common characteristic of current super-
computing facilities, i.e., the side-to-side availability
of vector and massively parallel supercomputers. We
believe that these results show a potential for parallel
bundle-based decomposition approaches as tools for
the effective solution of large-scale, difficult MMCFs.
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