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Abstract

We propose new local search algorithms for minimum makespan machine scheduling problems,
which perform multiple exchanges of jobs among machines. Inspired by the work of Thompson
and Orlin (1989) on cyclic transfer neighborhood structures, we model multiple exchanges of
jobs as special disjoint cycles and paths in a suitably defined improvement graph, by extending
definitions and properties introduced in the context of VRP (Thompson and Psaraftis, 1993) and
of CMST (Ahuja, Orlin and Sharma, 1998). Several algorithms for searching the neighborhood
are suggested.

We report the results of a wide computational experimentation, on different families of bench-
mark instances, performed for the case of identical machines. The minimum makespan machine
scheduling problem with identical machines has been selected as a case study to perform a compar-
ison among the alternative algorithms, and to discover families of instances for which the proposed
neighborhood may be promising in practice. The obtained results are very interesting. On some
families of instances, which are very hard to solve exactly, the most promising multi-exchange
algorithms proved to dominate, in gap and in time, competitive benchmark heuristics.

Subject classifications: Production/scheduling, Approximations/heuristic: multi-exchange neigh-
borhood. Networks/graphs, Flow algorithms: disjoint cycle computation.

1 Introduction

Let J = {1, 2, . . . , n} be a set of n independent jobs. The jobs have to be assigned, without preemp-
tion, to m parallel machines M1, M2, . . ., Mm, where n ≥ m ≥ 2, thereby creating a partition of J
into m subsets. Let pjh be the (positive) processing time of job j when assigned to machine Mh,
j = 1, . . . , n, h = 1, . . . ,m.

Given a job assignment (or job partition) S, denote by Ch(S) the completion time of machine
Mh under the assignment S, i.e., the latest job finishing time of Mh, h = 1, . . . ,m. Moreover, denote
by Cmax(S) = maxh=1,...,m{Ch(S)} the maximum completion time, or makespan, associated with S.

The minimum makespan machine scheduling problem consists in finding a job assignment which
minimizes the makespan. Using the standard three field classification scheme, introduced in (Graham
et al., 1979), this problem is usually denoted as R||Cmax. It includes, as special cases, the problem
P ||Cmax (case of identical machines), where the job processing times do not depend on the machines,
and the problem Q||Cmax (case of uniform machines), where the job processing times pjh have the
form pjh = pjαh.

R||Cmax is NP-hard in the strong sense (Garey and Johnson, 1978). Few exact methods have
been proposed for its solution. We mention the branch-and-bound algorithm of (Van de Velde, 1993),
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which solves instances with up to 200 jobs and 4 machines, and the algorithm of (Martello et al.,
1992). These algorithms may require a significant computational effort, mainly on large instances.
This justifies the important role of heuristic methods to compute “good” feasible solutions.

Heuristics are generally classified into constructive heuristics, and improvement heuristics. The
majority of those proposed in the literature for minimum makespan machine scheduling problems
fall within the first category, for which a worst-case performance ratio is generally provided. We
cite, among the others, the list scheduling family of (Graham, 1966), which includes the well-known
longest processing time (LPT ) algorithm. See (Lawler et al., 1993) for a survey about constructive
heuristics for these problems.

As far as improvement heuristics are concerned, few methods have been proposed (Anderson
et al., 1997). One motivation might be that, as observed in (Hübscher and Glover, 1994) for the
case of identical machines, “Minimizing the makespan on multiprocessors seems to be hard for local
optimization techniques, since neighboring solutions generally differ widely in quality”. A descent
algorithm which uses a critical reassign and a critical swap neighborhood has been proposed in (Hariri
and Potts, 1991); it appears to generate better quality solutions than two-phases heuristics, as the
one of Lenstra, Shmoys and (Tardos, 1990). Simulated annealing and tabu search algorithms, which
use critical reassign and critical swap neighborhoods, as well as genetic algorithms are described in
(Glass et al., 1994).

Recent advances have been performed in local search methods, with the aim of designing more
powerful neighborhood structures for hard combinatorial optimization problems. Among them, the
so-called ejection chain methods (Glover, 1996; Rego, 1998) focus on the development of compound
neighborhood structures which encompass succession of dependent moves, rather than simple moves
or sequences of independent moves. Other sophisticated local search algorithms are the network
flow based improvement algorithms, which also perform sequences of dependent moves, called mul-
tiple exhanges or multi-exchanges. The distinction between these two classes of algorithms is not
clear, as outlined in (Ahuja et al., 1999). However, a distinguishing property of network flow based
improvement algorithms is that they use network flow techniques to identify improvement moves.
For example, some on these algorithms characterize improvement moves in terms of negative cost
disjoint cycles in an associated graph, called the improvement graph. Network flow based improve-
ment algorithms have been successfully applied to several combinatorial optimization problems, such
as vehicle routing problems (VRP) (Thompson and Psaraftis, 1993), dynamic vehicle dispatching
problems (Gendreau et al., 1999), and the capacitated minimum spanning tree problem (CMST)
(Ahuja et al., 1998).

In this paper, we propose network flow based improvement algorithms for minimum makespan
machine scheduling problems, which perform multiple exchanges of jobs among machines. Multi-
exchanges are modelled as special disjoint cycles and paths in a suitably defined improvement graph,
by extending definitions introduced in the context of VRP and CMST. Both the improvement graph
and the improvement moves have some peculiar properties, which are formally investigated. These
properties are then used to design several algorithms for searching the neighborhood, for the discover
of improvement moves.

The proposed neighborhood structure, and the corresponding searching algorithms, have to be
intended as a first step towards the design of new local search algorithms for minimum makespan
machine scheduling problems, which go beyond the classical ones proposed in the literature, generally
based on exchanges of two jobs (2-exchanges). This work is in fact essentially methodological,
aimed to study new techniques to design neighborhood structures for minimum makespan machine
scheduling problems, exploiting peculiar graph properties, and to investigate in what cases, and
under what algorithmic choices, these new structures may produce “good” feasible solutions.

The ideas contained in this paper have also to be considered as a first step towards the design of
multi-exchange neighborhood structures for a more general class of partition problems, characterized
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by a “bottleneck-type” objective function, as is the case of R||Cmax. Such a more general class, which
includes bottleneck knapsack problems and some location problems, will be the subject of a future
work.

In order to perform a comparison among the alternative algorithms, and to try to characterize
properties of the instances for which the proposed algorithms are expected to provide good solutions
in practice, we have selected, as a case study, the problem P ||Cmax. The case of identical machines
has been considered here since it is “easier”, and therefore the practical behavior of the heuristics
in the case of identical machines may reasonably provide a worst-case estimate of their behavior for
more general cases. Moreover, a larger number of (both theoretical and experimental) papers are
available in the literature for P ||Cmax. Several heuristics, especially constructive ones, have been
proposed for the solution of P ||Cmax, and tested on some benchmark instances. Furthermore, a
branch-and-bound algorithm (Dell’Amico and Martello, 1995) is available to compute the optimum
solution in some tractable instances and to discover, on the other hand, “difficult” instances on which
to study the behavior of the multi-exchange heuristics.

Four families of instances have been selected for our computational experience, which have a
very different structure: the uniform instances proposed in (França et al., 1994), some non-uniform
instances proposed in (Necciari, 1999) and two families deriving from bin packing instances, available
at the OR Library of Beasley, which are reputed very difficult.

The obtained results are very interesting. In general, some trends emerged from our computa-
tional experimentation, which suggest what multi-exchange algorithms are expected to provide good
results, depending on the properties of the instances under consideration. Moreover, on some families
of instances, which are very hard to solve with exact approaches, the most promising multi-exchange
algorithms were able to provide solutions which dominate, in gap and in time, the solutions returned
by benchmark algorithms.

The plan of the paper is the following. Section 2 contains the presentation of the multi-exchange
neighborhood. In particular, it contains the definition of the improvement graph, the statement of
its properties, and the characterization of the improvement moves in terms of peculiar subgraphs
of the improvement graph. Section 3 contains the description of the algorithms used to explore the
neighborhood. Finally, Section 4 describes the results of the computational investigation concerning
P ||Cmax.

2 The multi-exchange neighborhood

Let S denote the current (feasible) solution of R||Cmax. Moreover, given a job j, let M(j) denote
the machine assigned to j in the current solution.

As in (Ahuja et. al, 1998), two kinds of multi-exchanges are defined, i.e., cyclic and path ex-
changes.

A cyclic exchange with respect to S (or simply cyclic exchange) is a job sequence W = (j1, j2, . . .,
jr, j1) such that M(jk) 6= M(jq) for k 6= q, with k, q ∈ {1, 2, . . . , r}. The cyclic exchange W represents
the following simultaneous exchange of jobs, currently assigned to different machines: job j1 moves
from machine M(j1) to machine M(j2), job j2 moves from machine M(j2) to machine M(j3), and
so on until job jr, which moves from machine M(jr) to machine M(j1). If S′ denote the obtained
solution, then the cost of the exchange is, as usual, C(W ) = Cmax(S′) − Cmax(S); W is said to be
an improvement cyclic exchange if C(W ) < 0.

Similarly, a path exchange is a sequence P = (j1, j2, . . . , jr−1,Mr), where j1, j2, . . . , jr−1 are jobs
whereas Mr is a machine, and M(jk) 6= M(jq) 6= Mr for k 6= q, with k, q ∈ {1, 2, . . . , r − 1}. The
meaning is that job j1 moves from machine M(j1) to machine M(j2), job j2 moves from machine
M(j2) to machine M(j3), and so on until job jr−1, which moves to machine Mr. With respect to
the cyclic exchange, the only difference is that no job is assigned to machine M(j1), and that no job
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leaves machine Mr. The definition of improvement path exchange is analogous to the one provided
for the cyclic exchange.

Observe that the definition of cyclic and path exchanges could be easily generalized, by allowing
the movement of subsets of jobs from one machine to another one, simultaneously. This will be the
subject of future investigation.

Given S, the neighborhood of S is the set of all the assignments of jobs that can be obtained from
S by performing a cyclic or a path exchange. The cardinality of the neighborhood may grow expo-
nentially with respect to the problem size; thus, the idea is to model and search such a neighborhood
by means of a suitable graph, called the improvement graph. The definition of the improvement
graph, which is based on the theory of cyclic transfers introduced in (Thompson and Orlin, 1989),
and which extends concepts introduced in the context of VRP and of CMST, will be the subject of
the following section.

2.1 The improvement graph and its properties

Given a solution S, the improvement graph related to S is a directed graph, G(S) = (N(S), A(S)),
which is associated with S in order to describe, in a compact way, the set of the cyclic and of the path
exchanges corresponding to S. The graph contains one node for each job 1, 2, . . . , n, and one node
for each machine in {M1,M2, . . . ,Mm} which has a completion time less than Cmax(S). Hereafter,
these machines will be referred to as unloaded machines. On the other hand, the machines having a
completion time equal to Cmax(S) will be referred to as loaded machines, and the set of the loaded
machines will be denoted by K (with a little abuse of the notation, we will speak indifferently of
nodes of the improvement graph, and of jobs and/or machines of the instance under consideration).

The arc set of the improvement graph, A(S), contains an arc (i, j) for each pair of jobs i and j
which are currently assigned to different machines, and which satisfy the following property: adding
job i to M(j) and removing job j from M(j), M(j) is unloaded. Moreover, A(S) contains an arc
(j,Mr) for each pair job-(unloaded) machine such that j is currently not assigned to Mr, and such
that, by moving j to Mr, then machine Mr is still unloaded. Clearly, |N(S)| ≤ n + m − 1 and
|A(S)| ≤ n(n + m − 2); the size of the improvement graph is thus polynomial with respect to the
input size.

The improvement graph G(S) has a special structure, which is now formally investigated.
Since S is a partition of the n jobs to the m machines, it can be represented by the notation

S = {S1, S2, . . . , Sm}, where Sh denotes the set of jobs assigned to machine Mh, h = 1, . . . ,m.
Accordingly, the set of the nodes of G(S) is partitioned in clusters as follows: there is one cluster
for each subset Sh, h = 1, . . . ,m, plus one cluster, composed by a single node, for each unloaded
machine.

By definition, no arc exists between nodes belonging to the same cluster, that is G(S) is a
(2m− |K|)-partite graph. Moreover, strong convexity properties are revealed by ordering the jobs in
Sh, h = 1, . . . ,m, in a non-decreasing way with respect to their processing times when assigned to
machine Mh: for any pair of clusters Sq and Sh, the subgraph of G(S) formed by the sets Sq and Sh,
and by the arcs going from Sq to Sh, is a convex graph with respect to Sh. In fact, by definition, if
i ∈ Sq and (i, j) ∈ A(S) with j ∈ Sh, then (i, v) ∈ A(S) for each job v following j in Sh with respect
to the introduced ordering of the jobs. The same property trivially holds for the arcs entering a
node Mr corresponding to an unloaded machine, since the corresponding cluster is a singleton. As a
consequence, for each node i ∈ Sq, q = 1, . . . ,m, and for each set Sh, h 6= q, the set of the nodes of
Sh which are heads of arcs outgoing from i, when not empty, forms an interval [i1(h), i2(h)], where
i2(h) is the job of Sh which is maximal with respect to the considered ordering of the jobs. Clustered
directed graphs satisfying the properties of G(S) will be referred to as F-convex graphs (with respect
to a given ordering of the nodes within the clusters).
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The structure of the improvement graph is illustrated in figure 1. The example refers to an
instance characterized by 3 identical machines M1, M2 and M3, and by 6 jobs with processing times
{2, 4, 3, 5, 6, 4}, respectively. The figure shows the improvement graph associated with the solution
S = {S1, S2, S3}, where S1 = {1, 4}, S2 = {2, 5} and S3 = {3, 6}; M2 is the only loaded machine,
with makespan 10. To make compact the representation, each couple of arcs (i, j) and (j, i) has been
depicted as a bidirectional arc.

3

6

2

5

1

4

M1 M3

Figure 1: The improvement graph

In the figure, there is one cluster for each subset Sh, h = 1, 2, 3, plus two clusters corresponding
to the unloaded machines M1 and M3. The convexity property is revealed by looking, for example,
at the subsets S1 and S2: the set of the nodes of S2 which are heads of arcs outgoing from node 1
forms the interval [2, 5], that is i1(h) = 2 and i2(h) = 5 for i = 1 and h = 2.

Observe that the convexity property is more general in the case of identical or uniform machines
(problems P ||Cmax and Q||Cmax, respectively). There, for any pair of clusters Sq and Sh, the
subgraph of G(S) formed by the sets Sq and Sh, and by the arcs going from Sq to Sh, is also convex
with respect to Sq. More precisely, for each node j ∈ Sh the set of the nodes of Sq which are tails of
arcs entering j, when not empty, forms an interval, whose first end is the job of Sq which is minimal
with respect to the ordering of Sq described before. The same holds true for the arcs entering a node
Mr corresponding to an unloaded machine.

2.2 The improvement subgraphs

Let us define now subgraphs of G(S) which model improvement cyclic or path exchanges, and discuss
the problem of finding these subgraphs.

A directed cycle W = (j1, j2, . . . , jr, j1) in G(S), where j1, j2, . . . , jr represent jobs, is a dis-
joint cycle if M(jk) 6= M(jq) for k 6= q, with k, q ∈ {1, 2, . . . , r}. Similarly, a directed path
P = (j1, j2, . . . , jr−1,Mr) in G(S) is a disjoint path if j1, j2, . . . , jr−1 represent jobs, Mr represents a
machine, and if M(jk) 6= M(jq) 6= Mr for k 6= q, with k, q ∈ {1, 2, . . . , r − 1}.

From the above definitions the following property can be easily proved:

Property 2.1 Each disjoint cycle (path) in G(S) corresponds to a cyclic (path) exchange with respect
to S.

The relationship between cyclic (path) exchanges and disjoint cycles (paths) is illustrated in
figure 1. There, the disjoint cycle (1, 2, 3) corresponds to the cyclic exchange consisting in moving
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job 1 from M1 to M2, job 2 from M2 to M3, and job 3 from M3 to M1. The disjoint path (1, M3)
describes the assignment of job 1 to the unloaded machine M3.

A (significant, as shown below) subset of cyclic (path) exchanges for the current solution S can
thus be modelled in terms of peculiar subgraphs of the improvement graph G(S), that is disjoint
cycles and paths. Due to the definition of the arc set A(S), the opposite correspondence does not
hold, that is, there may be cyclic or path exchanges which are not mapped onto disjoint cycles or
paths in G(S). These are the cyclic (path) exchanges which worsen the current makespan. In fact,
each arc of type (i, j) in G(S) models a movement of job which guarantees a completion time less
than Cmax(S) for machine M(j); similarly, each arc of type (j,Mr) describes a movement of job
which maintains Mr unloaded.

Such a quite peculiar property does not hold in the case of the multi-exchange neighborhood
structures introduced in the literature for VRP and for CMST. There, due to the different type of
the objective function under consideration (which is a sum function), moves which “locally” worsen
the objective function cannot be ruled out. Therefore, multi-exchanges worsening the objective
function can not be excluded from the neighborhood, and they are modelled into the associated
improvement graph.

Also the characterization of the improvement multi-exchanges in terms of disjoint cycles and
paths is quite different from that occurring in the case of VRP and CMST. For those problems,
improvement multi-exchanges are in a one-to-one correspondence with the negative disjoint cycles
and paths in the associated improvement graph, where arc costs are introduced to model the costs
of the exchanges represented by the single arcs. In the minimum makespan case, instead, a subset of
disjoint cycles and paths in G(S) can be defined which characterize the improvement multi-exchanges
for the current solution S only thanks to their peculiar structure, that is, independently of arc costs.
In order to state such a characterization, a further definition is required.

Consider the set K of the loaded machines in the current solution S, as introduced before: a
K-disjoint cycle is a disjoint cycle (j1, j2, . . . , jr, j1) such that the set of the machines involved into
the exchange, i.e., {M(j1),M(j2), . . . ,M(jr)}, includes K. A similar definition can be given for
K-disjoint paths.

In figure 1, the two disjoint cycles (1,2,3) and (1,3,2) are examples of K-disjoint cycles, since
K = {M2} and job 2 belongs to S2. Observe that the exchange (1,2,3) reduces the makespan from
10 to 8, whereas the alternative K-disjoint cycle (1,3,2) generates an improved solution where M1

and M2 are the loaded machines, and the makespan is 9.

Property 2.2 There is a one-to-one correspondence between the set of the improvement cyclic (path)
exchanges for the current solution S, and the set of the K-disjoint cycles (paths) in G(S).

Proof: Consider an improvement cyclic exchange. Since it is an improvement move, the makespan associated with

the current solution S reduces after performing the cyclic exchange; hence all the loaded machines, i.e., all the machines

belonging to K, must be involved. Such a cyclic exchange thus corresponds to a K-disjoint cycle in G(S). The opposite

correspondence and the case of the improvement path exchanges can be proved in a similar way. 3

Based on Property 2.2, the problem of finding an improvement move in the proposed multi-
exchange neighborhood can be reformulated as the problem of computing a K-disjoint cycle or path
in the improvement graph, G(S), associated with the current solution S. In (Thompson, 1988) and
in (Thompson and Orlin, 1989) it was proved that, given a generic clustered graph, that is a graph
whose set of nodes is partitioned in a set of clusters H, the problem of determining whether there
is a cycle which includes at most one node for each cluster of H (the so-called disjoint cycle) is
NP-complete (observe that this is the same definition of disjoint cycle given for the improvement
graph G(S); in fact, nodes representing a machine cannot appear in a cycle or be internal to a path,
since they have no outgoing arcs in G(S)). Also the problem of deciding, in a generic clustered
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graph, about the existence of a disjoint cycle which includes exactly one node for each cluster in a
given subset of clusters, W , is NP-complete. This is true, in particular, when |W | = 1.

We will show that these computations remain difficult in the special case of the F-convex graphs,
which is the case of the improvement graphs associated with the instances of R||Cmax. Hereafter,
G = (V,E) will be used to denote a F-convex graph, that is a directed graph whose node set V is
partitioned in a cluster set H = (V1, V2, . . . , Vh), and which satisfies the following convexity property
with respect to a given ordering of the nodes within the clusters: for any pair of clusters Vq and Vp, if
E contains the arc (i, j), with i ∈ Vq and j ∈ Vp, then E contains all the arcs (i, v), with v following
node j with respect to the given ordering of the nodes in Vp. Given a non-empty subset W of the
cluster set H, the term W -disjoint cycle (path) will be used to denote a disjoint cycle (path) which
includes exactly one node for each cluster in W .

The proof relies on a peculiar property of the F-convex graphs, which will be formally proved in
the following. This property states that, in order to verify the existence in G of a W -disjoint cycle
or path, we can restrict our attention to a special subset of the arcs of G. More precisely, for any
pair of clusters Vq and Vp, and for each node j ∈ Vp which has an entering arc (i, j) with i ∈ Vq, we
can consider only the arc (w, j), where w is the maximal node in Vq (with respect to the ordering of
the nodes of Vq) for which there exists an arc entering j. The arc (w, j) will be referred to as the
maximal arc from Vq to j. An example is provided in figure 2(a), where the ordering of the nodes
within the clusters is given by their height (top nodes preceed bottom nodes in the ordering); (i, w)
is the maximal arc from Vq to w, whereas (v, z) is the maximal arc from Vq to z.

Denote by Ē the set of all the maximal arcs of G, and by Ḡ = (V, Ē) the partial graph of G
formed by the arcs in Ē. Then the following property holds true.

VpVq

i

j

v

w

z

(a) VpVq

i

v

fq

j

fp

(b)

Figure 2: The maximal arcs

Property 2.3 Let G = (V,E) be a F-convex graph, and W be a subset of its set of clusters H. G
contains a W -disjoint cycle (path) if and only if Ḡ contains a W -disjoint cycle (path).

Proof: The “if” implication is obvious, since Ḡ is a partial graph of G.
In order to prove the “only if” implication, assume that G contains a W -disjoint cycle C. Consider a pair of

consecutive arcs, (j, i) and (i, v), along this cycle, with j ∈ Vr, i ∈ Vq and v ∈ Vk (Vk = Vr if the cardinality of the
cycle is 2). If (i, v) is not the maximal arc from Vq to v, we can substitute (i, v) with the maximal arc, say (w, v).
Then, since G is a F-convex graph and (j, i) ∈ E, (j, w) is also an arc of E; thus we can substitute (j, i) by (j, w). In
this way we obtain an alternative cycle C′ where an arc which is not maximal has been substituted by a maximal arc.
C′ includes the same subset of clusters as C, and therefore it is a W -disjoint cycle. However, as a side effect, it may
happen that the introduced arc (j, w) is not maximal. The substitution process has therefore to be iterated until the
cycle contains only maximal arcs.

This process terminates in a finite number of steps. In fact, whenever an arc (i, v) is substituted, the introduced
arc is of type (w, v), where w follows i in the ordering of the nodes within the cluster of i. Therefore, for each cluster
Vr included by C, the unique node of the cycle belonging to Vr can only “move” forward with respect to the ordering
of the nodes in Vr, and this can be performed at most |Vr| − 1 times.

The same process can be applied if we start from a W -disjoint path of G. The thesis follows. 3
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Corollary 2.1 It is polynomially equivalent to decide about the existence of a W -disjoint cycle (path)
in a F-convex graph G or in any partial graph of G which contains all the maximal arcs of G.

We have now the ingredients to prove the NP-completeness result.

Theorem 2.1 Given a F-convex graph G = (V,E), and given a subset W of its cluster set H, the
problem of deciding about the existence of a W -disjoint cycle in G is NP -complete.

Proof: Due to Corollary 2.1, it is polynomially equivalent to prove the result for G or for a partial graph of G,
provided that this partial graph contains all the maximal arcs of G. In constructing the proof we will exploit this
equivalence.

Consider the special case |W | = 1. In this case, the problem is polynomially equivalent to the problem of verifying
the existence of a directed path, containing at most one node for each cluster in H , from some node s belonging to the
unique cluster in W , to some node t belonging to a cluster in H \ W , such that the arc (t, s) exists. We will therefore
prove the NP -completeness of the following problem defined on a partial graph of a F-convex graph, which contains
all its maximal arcs: given a source s and a destination t, verify the existence of a directed path from s to t which
contains at most one node for each cluster of the graph. The proof is by reduction from the path with forbidden pairs

problem. This is the problem of deciding about the existence of a directed path, from a given source s′ to a given
destination t′ in a directed graph G′ = (V ′, E′), which must contain at most one node for each pair of a given sequence
{(i1, j1), . . . , (ik, jk)} of disjoint pairs of nodes (Garey and Johnson, 1978).

Consider an instance of the path with forbidden pairs problem. Define a directed graph Ḡ = (V̄ , Ē) as follows.
Initially, add to V̄ all the nodes of V ′, and partition V̄ in a cluster set H as follows: there is one cluster Vh for each
pair of “forbidden” nodes, containing ih and jh, and there is one cluster for each remaining node p of G′, containing p.
Furthermore, add to each cluster, say Vq, an additional, fictitious, node fq , with the exception of the cluster containing
the destination node t′.

In order to define the arc set Ē, let us impose an arbitrary ordering among the nodes of each cluster, with the only
constraint that each fictitious node is always the last node of its cluster.

Initially, add to Ē all the arcs of G′, with the exception of those entering s′ and of those leaving t′. Note that, at
this step of the construction, the fictitious nodes have no entering or leaving arcs. Now, consider each pair of clusters,
Vq and Vp, which does not satisfy the F-convexity property. There are two possible cases for that. The first situation
is when Vp = {j, v, fp}, with j preceeding v in the considered ordering; there is an arc (i, j) with i ∈ Vq, but the arc
(i, v) does not belong to E. In this case, let us add the fictitious arcs (fq , v) and (fq, fp) to Ē. An example of this
construction is illustrated in figure 2(b). The second case verifies when Vp = {j, fp} and there is an arc (i, j), with
i ∈ Vq. In this case let us add the fictitious arc (fq , fp).

Finally, set s = s′ and t = t′.
By the above construction, there is a directed path from s′ to t′ in G′, containing at most one node for each pair

{ih, jh}, h = 1, . . . , k, if and only if there is a directed path in Ḡ from s to t which contains at most one node for each
cluster in H . The “only if” part is trivial, since each path of G′ corresponds to a path of Ḡ. The “if” part comes from
the property that no fictitious node can be reached from s (no fictitious arc leaves s), and therefore no fictitious arc
belongs to a directed path of Ḡ from s to t.

Ḡ is not necessarily a F-convex graph. However, if we consider the F-convex graph, G, obtained from Ḡ by adding

to Ē the minimal set of arcs which are required to convert Ḡ into a F-convex graph (the arcs (i, v) and (i, fp) in figure

2(b)), then it is easy to verify that none of these additional arcs is maximal. Thus, Ḡ is a partial graph of G which

contains all its maximal arcs. The thesis follows. 3

When the F-convex graph is an improvement graph G(S) and W = K, then a consequence of
Theorem 2.1 is that the problem of computing a K-disjoint cycle (path) in G(S) is NP -complete.
Theorem 2.1 shows another interesting result. If W contains a single cluster, corresponding to a
loaded machine, then also the “relaxed” problem of looking for a disjoint cycle (path) which includes
at least one loaded machine is a “difficult” problem. In the machine scheduling terminology, this
second problem corresponds to looking for a multi-exchange which does not worsen the current
makespan, and strictly improves the completion time for at least one loaded machine. In other
words, that corresponds to enlarge the set of the improvement moves, by allowing not only multi-
exchanges which reduce the current makespan, but also multi-exchanges which reduce the completion
time for at least one loaded machine. These relaxed moves will be referred to as 1-disjoint cycles
and paths.
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In the following sections, both kinds of multi-exchanges will be addressed. Due to Theorem 2.1,
heuristic approaches will be investigated both for the problem of computing K-disjoint cycles and
paths in G(S), and for computing 1-disjoint cycles and paths. This is a coherent choice, since the
entire algorithmic paradigm under investigation is of the heuristic type.

3 Heuristic approaches for disjoint cycle and path computation

We propose three families of heuristics, aimed at computing either K-disjoint or 1-disjoint cycles and
paths in the improvement graph G(S).

Two families, called Label correcting and Bottleneck path heuristics, are inspired by classical
algorithmic paradigms for the shortest path tree and for the bottleneck path tree computations.
They use two alternative definitions of arc costs, which are introduced to heuristically guide the
selection of the nodes during the disjoint cycle and path computation. The third family is formed
by search heuristics, and no arc costs are used to guide the computation.

Given an arc (i, j) ∈ A(S), define the cost of (i, j) as

cij =

{

pih − pjh, if j is a job assigned to machine Mh, and Mh is loaded;
0, otherwise.

(1)

This cost measures the reduction of the completion time of Mh if it is loaded, i.e., it contributes to
the current makespan (in this case it is cij < 0); otherwise, the cost is 0. An example is provided in
figure 3. The example refers to the instance described in figure 1, by restricting the attention to the
subgraph formed by the clusters S1, S2, M1 and M3.

2

5

1

4

M1 M3

-2

0

-1

0

0

0

-4

Figure 3: The cost definition (1)

The alternative cost definition measures the reduction of the completion time, with respect to
the current makespan, for both loaded and unloaded machines:

cij =

{

∑

l plh + (pih − pjh) − Cmax(S), if j is a job assigned to machine Mh;
∑

l plh + (pih) − Cmax(S), if j represents the (unloaded) machine Mh,
(2)

where l denotes the generic job assigned to Mh. Figure 4 shows the same portion of the improvement
graph provided in figure 3, where the arc costs are defined accordingly to (2).

Definition (1) suggests to search for a disjoint cycle or path in the improvement graph G(S) by
an approach similar to the one proposed in (Ahuja et al., 1998) for CMST, that is by a modification
of the label correcting approach for the shortest path tree computation (for a complete survey about
shortest path methods, we refer to (Ahuja et al., 1993)).

On the other hand, definition (2) is more appropriate for a different approach, which is based
on a modification of the algorithm which computes a bottleneck path tree in a directed graph, and
which is ad hoc for the problem under consideration.

Now let us describe the three families in more detail.
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Figure 4: The cost definition (2)

Label correcting heuristics

Consider the label correcting approach. Given a directed graph G with arc costs cij , and given a root
node r, a shortest path tree rooted at r is found by maintaing a distance label d(j) and a predecessor
pred(j) for each node j. At each iteration, a node i is selected from the set, say Q, of the so-called
candidate nodes, and the Bellman conditions are checked for each arc (i, j) in the forward star of i;
if

d(j) > d(i) + cij, (3)

then the distance label of node j is updated (d(j) := d(i) + cij), the predecessor of j is set equal to
i (pred(j) := i), and j is added to Q if not already present.

As known from the literature, several algorithms can be derived from this general framework by
suitably implementing the set Q. When enriched with a cycle detection strategy, these algorithms
can be used to identify, in polynomial time, (unrestricted) negative cycles in the input graph G
(Cherkassky and Goldberg, 1999).

Starting from the general label correcting framework, we propose two heuristic approaches, K −
SPT and 1−SPT , which use the cost definition (1) for finding K-disjoint cycles (paths) and 1-disjoint
cycles (paths), respectively, in G(S). In addition to the labels d(j) and pred(j) associated with each
node j, a further label nm(j) is maintained, which counts the number of the loaded machines, i.e.,
the machines belonging to the set K, which are involved in the current disjoint path from a node r,
chosen as the root, to the node j.

Consider K − SPT . It performs the following typical iteration until either a K-disjoint cycle
(path) is found or Q is empty; i denotes the current node extracted from Q.

Typical iteration of K − SPT The current path from r to i is checked for disjointness (changes
in subpaths may have occurred during the algorithm execution, which may have destroyed this
property). If the path is not disjoint, then the iteration is terminated, and a new node is extracted
from Q; otherwise, each arc (i, j) in the forward star of i is examined. For each (i, j), if (3) holds,
then the following cases are addressed depending on the nature of node j:

1. j represents a machine: if the current path from r to j is disjoint, and if nm(j) = |K|, then a
K-disjoint path has been found (K − SPT stops);

2. j represents a job, and the current path from r to j is not disjoint: if j is internal to the disjoint
path from r to i, and if nm(i) − nm(pred(j)) = |K|, then a K-disjoint cycle has been found
(K − SPT stops);

3. j represents a job, and the current path from r to j is disjoint: in this case j is inserted
to Q, if not already present; d(j) and pred(j) are updated as in the standard shortest path
computation; moreover, label nm(j) is suitably updated.
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Compared with the standard label correcting approach, K − SPT requires an extra O(m) time for
each node selection from Q, in order to check the disjointness of the path (a disjoint path may involve
m nodes at most).

The heuristic 1−SPT is similar to K−SPT . It performs the typical K−SPT iteration without
using the labels nm(j), and stopping whenever a disjoint cycle or path of negative cost is found.
This stopping condition is justified by the property that, due to the cost definition (1), a disjoint
cycle or path has a negative cost if and only if it includes at least one loaded machine.

Bottleneck path heuristics

The heuristics K−BPT and 1−BPT are based on the cost definition (2), and they are a modification
of the algorithm which looks for a bottleneck path tree in a directed graph, where a path is said
to be bottleneck if it minimizes the maximum arc cost. The bottleneck path tree paradigm can be
derived from the shortest path label correcting framework simply by substituting condition (3) with

d(j) > max{d(i), cij} (4)

and, in case (4) holds, by modifying the label accordingly, that is d(j) := max{d(i), cij}.
Therefore, once selected a candidate node i from the set Q, K−BPT performs a typical iteration

which coincides with the one described for K −SPT , except for the different check of the optimality
condition and for the different updating of the labels of the nodes. 1 − BPT maintains a strong
similarity with respect to K −BPT . In particular, it still relies on the label nm(j), for each node j,
to calculate the number of the loaded machines in the paths and cycles it explores; the only difference
is that it stops whenever this number is at least one, rather than exactly |K|.

Search heuristics

The search heuristics, K − search and 1− search, do not rely on arc costs to guide the computation
of K-disjoint and 1-disjoint cycles and paths, respectively. They are the “degenerate” versions of
K − SPT and K − BPT from one hand, and of 1 − SPT and 1 − BPT on the other hand, when
considering all the arc costs equal to zero.

In these heuristics, the set of the candidate nodes Q is implemented either as a stack, which
corresponds to visit the improvement graph in a depth first way from a given root node, or as a
queue, which corresponds to visit the improvement graph in a breadth first way. Clearly, this choice
may affect the kind of cycles and paths found by the algorithms.

By looking at the three families of heuristics, we can observe that aim of K −BPT and 1−BPT
is to heuristically compute a disjoint cycle or path which allows for the maximum reduction of the
completion time for all the involved machines: this is due to the cost definition (2), and to the use of
the bottleneck path tree paradigm (however, the algorithms do not ensure the maximum reduction
of the makespan, due to the unloaded machines which are not involved in the computed cycle or
path). On the other hand, K − SPT and 1 − SPT look for a “good” makespan reduction using, as
a guide for their search, the label correcting paradigm. K − search and 1− search, on the contrary,
simply try to find any improvement disjoint cycle or path, without any attempt of discriminating
the “quality” of the cycles.

We can also observe that all the proposed heuristics are actually algorithmic paradigms: several
heuristics can be derived from them by suitably implementing the set of the candidate nodes Q. In
addition to the stack and to the queue, used for implementing K − search and 1− search, the Label
correcting and the Bottleneck path heuristics have been also specialized by implementing the set Q
as a priority queue (the node j extracted from Q has the smallest distance label d(j)), and as a deque
(the nodes are inserted either at the front or at the rear of the list of the candidate nodes).
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4 P ||Cmax: a case study oriented to computational investigation

In order to evaluate the potential of the multi-exchange heuristics, we have selected P ||Cmax as a
case study. One motivation for this choice is that the majority of scientific papers about minimum
makespan machine scheduling problems are devoted to the case of identical machines. If we look
at the constructive heuristics, in addition to the list scheduling family of (Graham, 1966), which
includes the longest processing time (LPT ) algorithm, we can cite the multifit algorithm of (Coff-
man et al., 1978). See (Lawler et al., 1993) for a survey about the classical constructive heuristics
for the problem. As far as improvement heuristics are concerned, an O(nlogm) time algorithm has
been proposed in (Finn and Horowitz, 1979), which reassigns jobs from most loaded to less loaded
machines, and performs interchanges of jobs. This algorithm, also known as 0/1 interchange algo-
rithm, has been later improved in (Langston, 1982). A more sophisticated algorithm is proposed in
(França et al., 1994); it uses a combined critical reassign and critical swap neighborhood structure,
and essentially consists in exchanging two jobs between two machines. There is also a tabu search
algorithm, proposed in (Hübscher and Glover, 1994), which performs 2-exchanges, and which uses
“influential diversification” to modify the current solution when no improvement is performed for
several iterations. Finally, a more recent local search algorithm is described in (Fatemi-Ghomi and
Jolai-Ghazvini, 1998), which is also based on 2-exchanges of jobs.

Another motivation for the choice of P ||Cmax is that a branch-and-bound algorithm is available
for its exact solution (Dell’Amico and Martello, 1995). This algorithm receives in input the max-
imum number of allowed backtracks; when the backtracking limit is not sufficient to compute the
optimum solution, the algorithm returns the best computed solution, and therefore it turns into
a heuristic method. The branch-and-bound algorithm has been used for discriminating “easy” in-
stances, which can be efficiently solved, from more “difficult” ones, for which heuristic approaches
may be appropriate. Also, the branch-and-bound algorithm finds the optimum solution in several
cases, thus providing a better measure of the quality of the solutions constructed by the heuristics,
whereas it is a competitive heuristic in the “difficult” cases.

Finally, there is a more philosophical motivation: since the case of identical machines is a special
and easier case of both the uniform and the unrelated cases, we think that the results of a compu-
tational experimentation performed for P ||Cmax may provide useful “worst-case” indications for the
more general cases.

4.1 Plan of the computational investigation

The computational investigation consists of two phases, having a different purpose.

In the first phase we tested a large number of multi-exchange heuristics, which differ for the
following alternative options:

• computation of K-cycles (paths) or 1-cycles (paths);

• use of a cost definition ((1) or (2)) to guide the computation, or no costs at all (case of the
search heuristics);

• implementation of the set of the candidate nodes Q: deque, queue, stack, priority queue (queue
e stack for the search heuristics);

• use of all the arcs of the improvement graph, or use of the subset of the maximal arcs (according
to the results stated by Property 2.3).

The aim of this phase was mainly methodological: to compare the alternative heuristics, in order
to establish guidelines for the implementation of the multi-exchange algorithms. Indeed, we will
show that some general trends exist, which can help in choosing the proper implementation. We
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believe that some of the obtained results are still valid for more general minimum makespan machine
scheduling problems, as well as for other combinatorial optimization problems with a bottleneck-type
objective function. Due to the large number of variants tested in this phase, we will avoid to report
tables of results, describing, whenever possible, the trends that emerged from the experimentation.

In the second phase, we investigated about the potential of the multi-exchange neighborhood, by
considering the most promising heuristics selected during the first phase. We studied the behavior of
the algorithms on four families of benchmark instances, having a very different structure: the uniform
instances proposed in (França et al., 1994), the non-uniform instances proposed in (Necciari, 1999),
and two families deriving from bin packing instances, available at the OR Library of Beasley, which
qualify as very difficult instances. The aim was to trace out properties of the instances which may
be suitable for local search (and, in particular, for the multi-exchange heuristics), and to perform
a comparison with other heuristics from the literature. We used the branch-and-bound algorithm
of (Dell’Amico and Martello, 1995) to classify the instances in “easy” (for which the branch-and-
bound algorithm computes the optimum solution very rapidly) and “not easy” ones, in order to focus
our analysis on the “not easy” instances. Then we analyzed the behavior of the best multi-exchange
heuristics by estimating the relative error, and reporting the computational time, the average number
of the computed cycles and paths, and their average cardinality. We also tested the improvement
algorithm of (França et al., 1994), as an example of local search algorithm essentially based on 2-
exchanges, and the algorithm of (Dell’Amico and Martello, 1995) with a limit on the number of
backtracks, in order to provide a comparison with a different type of heuristic from the literature.

All the multi-exchange algorithms were coded in C++, compiled with the GNU egcs compiler
(ver.2.91.66) with normal optimization options, and run on a PC with a Pentium II/400 processor
and 256Mb RAM under the RedHat GNU/Linux 6.0 operating system. The benchmark algorithms
were also compiled and run in the same environment. As far as the code of (Dell’Amico and Martello,
1995) is concerned, referred to as MTB&B , we experimented with different settings of the maximum
number of allowed backtracks, starting from the value 4000, which is suggested by the authors in
their work. The code of (França et al., 1994), referred to as FMHEU , could not be run on all the
instances due to problems related with the maximum allowed dimension of some data structures
(these are the two families of instances deriving from bin packing instances).

Again, we want to emphasize that it was not a goal of this research to deal with all the as-
pects which would be necessary to develop efficient heuristics for the problem. Thus, no effort has
been performed to embed the pure multi-exchange local search, as presented here, into a more gen-
eral metaheuristic framework, with devices, like tabu-lists, which could enhance the computational
efficiency and provide a guidance to overcome local optimality.

4.2 Some implementation issues

In this section we will describe some issues that arise when implementing a multi-exchange heuristic,
and how they were solved in our implementation. Our choices were mainly motivated by a preliminary
experimentation described in [Necciari, 1999].

Implicit construction of G(S)

The improvement graph G(S) is dynamic, as (portions of) it changes each time an improvement
move is performed. There are two possibilities for implementing a visit of G(S): either the data
structures describing the graph (basically, the forward star of each node) are computed and stored,
or the existence of an arc (i, j) ∈ A(S) is checked each time, during the visit, the forward star of i
has to be scanned.
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With the first solution, the data structures describing G(S) should be rebuilt each time the
current solution S changes. Moreover, an explicit representation requires quite a lot of memory and
generates, at each change of S, even parts of the graph which are never reached during the visit. On
the contrary, the second solution avoids all these problems, but the checks which are necessary to
decide about the existence of an arc (i, j) are potentially repeated many times, i.e., each time i is
selected from Q. Our experience has shown that the implicit construction of G(S) is usually more
efficient than constructing the whole improvement graph. This strategy has therefore been adopted
in our implementation.

The root selection and the stop criterion

All the heuristics visit the improvement graph starting from a given (job) node r. Clearly, different
choices of r may lead to different results. In our implementation, the multi-exchange algorithms
mantain a list of the nodes that have not been used yet as a starting point for the improvement of
the current solution S, and select one node at random from that list: if a disjoint cycle or path is
found starting from the selected node, then S is updated and the list is re-initialized; otherwise, a
new node is selected from the list. If the list becomes empty, then no improvement multi-exchange
has been found, and the algorithm stops.

More sophisticated selection strategies can be imagined to select “promising” root nodes. In
our preliminary experiments we tested some of these strategies, where the probability of selecting a
node in the above list is biased by considering factors such as the processing time of the job and the
completion time of the machine it is currently assigned to. The results showed that these strategies
can have a positive impact on the performance, but the gains were unclear; therefore we decided to
adopt the simplest strategy.

The initial solution

In local search algorithms, especially when, as in our case, no restarting mechanism is available, a
crucial decision is the selection of the initial solution, i.e., the initial assignment of the jobs to the
machines. In the preliminary experimentation we ran the multi-exchange algorithms starting from
different solutions, obtained via standard constructive procedures for P ||Cmax. Among the others,
we considered LPT and the multifit algorithm. In general, LPT showed to be the best choice, and
therefore it has been chosen for generating the starting solution.

4.3 The instances

In almost all the previous computational experiences concerning P ||Cmax, the benchmark instances
were randomly generated with uniform distribution of the processing times. During our preliminary
experiences, we quickly realized that these instances tend to be “easy”, up to the point that LPT
alone produces very good solutions, which often are optimum ones. Thus we decided to develop and
collect other, more challenging, classes of instances. As a result, the algorithms have been tested on
four different families of instances.

The first two families are composed, respectively, by uniform and by “non-uniform” instances.
In these families, the number of machines m varies in {5, 10, 25}, the number of jobs n varies in
{50, 100, 500, 1000} (for m = 5, n = 10 is also tested), and the interval for the (integer) processing
times varies in {[1, 100], [1, 1000], [1, 10000]}. 10 problems were randomly generated for each choice
of m, n and of interval of the processing times, for a total of 390 problems within each family.

The two families differ for the shape of distribution of the processing times. The generator of
the first family, which has been presented in (França et al., 1994), generates the processing times at
random, with uniform distribution, from the considered time interval. This family will be denoted
UNIFORM. Given an interval [a, b], the generator of the second family, which has been developed
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for this computational experimentation, produces instances where the 98% of the processing times
is uniformly distributed in the interval [(b − a) ∗ 0.9, b], whereas the remaining processing times
fall within the interval [a, (b − a) ∗ 0.02]. This second family will be denoted NON-UNIF. Our
preliminary computational experience showed that instances characterized by such “highly non-
uniform” processing times are considerably more “difficult”, at least for simple heuristics such as
LPT . Both generators are available at the URL

http : //www.di.unipi.it/di/groups/optimize/Data/index.html

together with the scripts used for producing the instances.
The last two families of instances derive from some difficult bin packing instances, which are

available at the OR-Library of J.E. Beasley, at the URL

http : //mscmga.ms.ic.ac.uk/jeb/orlib/binpackinfo.html

In the first family, denoted BINPACK, the processing times are uniformly distributed in (20,100)
(files binpack1 to binpack4, problem identifiers beginning with ’u’). The second family, denoted
TRIPLET, consists of ’triplets’ of elements with processing times from (25,50) (files binpack5 to
binpack8, problem identifiers beginning with ’t’). The triplet instances are such that the optimum
solution has exactly three jobs per machine. To convert bin packing instances into P ||Cmax instances,
the number of machines m has to be specified; in our case, m is the number of bins in the best known
solution of the bin packing instances.

4.4 Computational results: the first phase

In the first phase we compared a large number of alternative multi-exchange heuristics on the four
families of instances, in order to verify whether some algorithmic choices are dominant. Fortunately
some clear trends emerged, which allowed us to restrict the testing of the second phase to a lim-
ited set of alternatives. We compared each algorithm using a given option (say, visiting the whole
improvement graph G(S)) with the identical algorithm but for the selected option (say, visiting the
partial graph Ḡ(S) containing the maximal arcs of G(S)). When dominance was detected (for all the
possible choices of the other options), then we concluded about the dominance of one option with
respect to the alternative choices. The main criterion of dominance, in this phase, was the accuracy
of the returned solution, measured as the relative error with respect to the best known lower bound.
We could rule out a number of algorithmic options which most often produced poor results. Only
when the solutions were of comparable quality we also took into account the running time.

The results of this phase can be summarized as follows:

1) when looking for both K-disjoint and 1-disjoint cyles (paths), it is preferable to visit the whole
improvement graph G(S) rather than the partial graph Ḡ(S), containing only the maximal
arcs of G(S);

2) it is preferable to use arc costs to guide the discover of K-disjoint and 1-disjoint cycles and
paths; in fact, the algorithms K−search and 1−search were always consistently outperformed
by the corresponding algorithms using costs;

3) the alternative implementations of Q are essentially equivalent, i.e., no appreciable difference
was found among variants that only differ in the implementation of the set Q.

Result 1) was somewhat surprising, in view of Property 2.3 which guarantees that an improving
move exists in G(S) if and only if it exists in the partial graph Ḡ(S). However, it is reasonable when
combined with result 2), which suggests that, even when the whole G(S) is considered, a simple
search visit is in general not capable of finding improvement moves. Together, results 1) and 2)
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1 − SPT 1-Search 1 − SPT

deque queue stack priority Ḡ

m n r. gap sec r. gap sec r. gap sec r. gap sec r. gap sec r. gap sec
5 10 0.00e00 0.00 0.00e00 0.00 0.00e00 0.00 0.00e00 0.00 0.00e00 0.00 0.00e00 0.00
5 50 8.58e-03 0.01 8.90e-03 0.01 8.80e-03 0.01 8.80e-03 0.00 1.65e-02 0.00 1.80e-02 0.00
5 100 5.31e-05 0.02 5.31e-05 0.03 1.06e-04 0.03 5.31e-05 0.05 5.15e-03 0.01 8.33e-03 0.00
5 500 0.00e00 1.44 0.00e00 1.52 0.00e00 1.36 0.00e00 1.84 1.06e-05 0.04 6.06e-04 0.01
5 1000 0.00e00 12.01 0.00e00 11.12 0.00e00 11.41 0.00e00 14.73 5.31e-06 0.22 1.38e-04 0.04

10 50 1.57e-02 0.00 1.59e-02 0.00 1.55e-02 0.01 1.59e-02 0.00 1.85e-02 0.00 1.95e-02 0.00
10 100 5.09e-03 0.04 5.20e-03 0.04 5.09e-03 0.03 5.31e-03 0.05 8.49e-03 0.01 9.55e-03 0.00
10 500 2.13e-05 3.26 2.13e-05 3.28 2.13e-05 3.23 2.13e-05 3.58 4.18e-03 0.07 8.24e-03 0.02
10 1000 0.00e00 20.21 0.00e00 22.99 0.00e00 20.61 0.00e00 23.71 6.37e-05 0.32 7.86e-04 0.09
25 50 0.00e00 0.01 0.00e00 0.01 0.00e00 0.01 0.00e00 0.01 0.00e00 0.01 0.00e00 0.00
25 100 9.85e-03 0.04 9.85e-03 0.03 9.85e-03 0.04 1.01e-02 0.04 1.09e-02 0.01 1.60e-03 0.01
25 500 2.12e-04 5.78 2.12e-04 5.44 2.12e-04 5.97 2.12e-04 4.06 8.23e-03 0.03 8.34e-03 0.08
25 1000 7.97e-05 52.99 7.97e-05 45.33 7.97e-05 51.79 7.97e-05 40.63 7.57e-03 0.22 8.39e-03 0.19

Table 1: The first phase

suggest that finding improvement moves is not an easy task also in practice, so that any choice
which reduces the number of the available cycles and paths (e.g., by reducing the number of the
available arcs) severely cripples the performance of the algorithms. These results also suggest that
algorithms which are able to visit a larger number of paths (e.g., by maintaining multiple labels for
each node) could be promising.

Result 3) was also quite surprising. However, it may be partly explained by the fact that the
improvement graphs tend to be quite dense, so that the strategy used to explore them probably has
a poor influence on the performance of the algorithms.

Although it is impossible to show the results for all the tested algorithms, on all the families
of instances, the above findings can be easily confirmed by looking at Table 1, which refers to the
instances NON-UNIF with processing times in [1,100]. The Table shows the results (in terms of
relative error and running time) of 1 − SPT with the alternative implementations of the set Q,
together with the results di 1− Search and the results of 1− SPT on the partial graph Ḡ(S) (Ḡ in
the table), with Q implemented as a deque.

In our experience, no dominance was detected, on the other hand, between the algorithms looking
for K-disjoint cycles (paths) and those looking for 1-disjoint cycles (paths), and between the variants
based on the shortest path or on the bottleneck path tree paradigm. However, a form of dominance
can be established for some particular classes of instances, as will be shown later on.

Due to the above results, for the second phase of the computational investigation we selected the
versions of the heuristics 1− SPT , 1− BPT , K − SPT and K − BPT which visit the entire graph
G(S), and which implement the set Q using the deque data structure.

4.5 Computational results: the second phase

The aim of the second phase was to assess the potential of the multi-exchange algorithms. This
was done by comparing the best versions of the multi-exchange heuristics, as emerged from the first
phase, with other algorithms in the literature. For the comparison, we considered both the quality
of the obtained solution and the time required to compute it.

An interesting by-product of our computational investigation is the awareness that different
classes of instances have different “difficulty”. In particular the UNIFORM instances, often used as
benchmark instances in the literature, are generally very easy (most authors have developed their own
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set of benchmark instances, but only the generator of (França et al.,1994) was available). Because
of that, we will present the results separately for each family of instances.

In the tables, columns K − SPT , 1 − SPT , K − BPTand 1 − BPTdescribe the results of the
corresponding multi-exchange heuristics (visiting the entire graph G(S) and implementing Q as a
deque). Results are averaged for a group of 10 instances, and are given both in terms of the relative
error with respect to the best lower bound known to date (column r. gap) and in terms of the total
running time, included the generation of the initial solution (column sec). We also report the number
of the computed cycles (column cy.) and their average cardinality (column mlc).

Columns LPT , MTB&B and FMHEUdescribe the results of the constructive heuristic LPT , of
the algorithm of (Dell’Amico and Martello, 1995) and of the code of (França et al., 1994), respectively,
both in time and in gap. In some cases we also report the number of instances that have been solved
to optimality (column o.) For the algorithm MTB&B , without further notice a limit of 4000
backtracks is intended. This is because the instances that the branch-and-bound method could not
solve within 4000 backtracks could not be solved even with 40000 bactracks, and the improvement
in the gap was negligible, while the running time grew considerably. Larger numbers of allowed
backtracks resulted in an analogous situation, i.e., no significant improvements and longer running
times.

UNIFORM instances

The UNIFORM instances are pretty “easy”, in the sense that most of them can be solved to op-
timality in a very little time. This is shown in Table 2, where the results obtained by LPT , by
FMHEUand by MTB&B are reported. Three sets of results are reported for each algorithm,
which corresponds, from left to right, to UNIFORM instances with processing times in the range
[1 − 100], [1 − 1000] and [1 − 10000], respectively.

The results clearly show that these instances can be efficiently approached with these algorithms.
LPT usually obtains reasonably low gaps, and solves to optimality a fair number of instances.
FMHEUobtains results comparable with, and often better than, LPT . MTB&B solves all the
[1 − 100] instances, all but one of the [1 − 1000] instances, and all but 24 of the [1 − 10000] ones.
Due to these results, the uniform instances seem not suited for sophisticated local search approaches,
like multi-exchange. In particular, the multi-exchange heuristics improved sensibly the solutions
computed by LPT , but at a high computational cost.

It is interesting to discuss some trends which emerge from the pool of the obtained results. First of
all, counting the instances solved to optimality, we can see that the instances seem to become more
“difficult” as the range of their processing times grows. Moreover, the instances with processing
times in [1 − 10000] which are not solved to optimality by the branch-and-bound method are those
for which LPT obtains the worst gaps: these instances seem to be characterized by an n/m ratio
which is neither too small nor too large, i.e., larger than 2 but smaller or equal to 10.

Thus, the UNIFORM instances are generally “easy”; however, there are some “difficult” instances,
characterized by an intermediate n/m ratio. This is an interesting finding, and it will be confirmed
by the next set of results.

NON-UNIF instances

The results for the NON-UNIF instances are shown in Table 3, Table 4 and Table 5 for the three
subsets of instances with processing times in [1 − 100], [1 − 1000] and [1 − 10000], respectively. The
tables report the results obtained by LPT , FMHEUand MTB&B . Moreover, they show the results
obtained by 1 − SPT , 1 − BPT and K − SPT . The results of K − BPT are very similar to those
of K − SPT , and are not reported here.
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LPT MTB&B FMHEU LPT MTB&B FMHEU LPT MTB&B FMHEU
m n r. gap o. sec r. gap o. sec r. gap sec r. gap o. sec r. gap o. sec r. gap sec r. gap o. sec r. gap o. sec r. gap sec
5 10 4.90e-03 9 0.00 0.00e00 10 0.00 3.26e-02 0.02 1.59e-03 9 0.00 0.00e00 10 0.00 4.03e-02 0.02 0.00e00 10 0.00 0.00e00 10 0.00 6.78e-03 0.02
5 50 4.23e-03 0 0.00 0.00e00 10 0.00 1.96e-04 0.02 4.27e-03 0 0.00 0.00e00 10 0.00 2.48e-04 0.02 5.44e-03 0 0.00 6.55e-06 8 0.07 5.44e-04 0.01
5 100 1.46e-03 3 0.00 0.00e00 10 0.00 0.00e00 0.02 1.22e-03 0 0.00 0.00e00 10 0.00 6.03e-05 0.02 9.84e-04 0 0.00 0.00e00 10 0.00 7.78e-05 0.02
5 500 0.00e00 10 0.00 0.00e00 10 0.00 0.00e00 0.02 2.05e-05 4 0.00 0.00e00 10 0.00 0.00e00 0.02 4.49e-05 0 0.00 0.00e00 10 0.00 3.96e-07 0.03
5 1000 0.00e00 10 0.00 0.00e00 10 0.00 0.00e00 0.02 6.00e-06 4 0.00 0.00e00 10 0.00 0.00e00 0.02 1.03e-05 0 0.00 0.00e00 10 0.00 0.00e00 0.03

10 50 1.60e-02 1 0.00 0.00e00 10 0.00 2.35e-03 0.02 2.80e-02 0 0.00 6.96e-05 9 6.30 4.43e-03 0.02 2.07e-02 0 0.00 9.18e-04 0 1.44 4.81e-03 0.02
10 100 4.93e-03 2 0.00 0.00e00 10 0.00 0.00e00 0.02 4.76e-03 0 0.00 0.00e00 10 0.00 3.43e-04 0.02 5.63e-03 0 0.00 3.98e-06 8 0.15 2.48e-04 0.02
10 500 4.10e-05 9 0.00 0.00e00 10 0.00 0.00e00 0.03 1.61e-04 0 0.00 0.00e00 10 0.00 0.00e00 0.02 1.59e-04 0 0.00 0.00e00 10 0.00 2.38e-06 0.02
10 1000 0.00e00 10 0.00 0.00e00 10 0.00 0.00e00 0.02 4.01e-05 0 0.00 0.00e00 10 0.00 0.00e00 0.03 4.81e-05 0 0.00 0.00e00 10 0.01 0.00e00 0.03
25 50 3.89e-03 7 0.00 0.00e00 10 0.00 3.42e-02 0.02 9.29e-03 8 0.00 0.00e00 10 0.00 2.33e-02 0.02 9.98e-03 7 0.00 0.00e00 10 0.00 2.08e-02 0.02
25 100 2.52e-02 0 0.00 0.00e00 10 0.00 3.62e-03 0.02 2.23e-02 0 0.00 0.00e00 10 0.01 4.04e-03 0.03 3.27e-02 0 0.00 4.11e-03 0 6.39 4.33e-03 0.02
25 500 5.04e-04 5 0.00 0.00e00 10 0.00 0.00e00 0.02 1.06e-03 0 0.00 0.00e00 10 0.00 0.00e00 0.03 1.31e-03 0 0.00 0.00e00 10 0.01 2.28e-05 0.03
25 1000 1.01e-04 8 0.00 0.00e00 10 0.00 0.00e00 0.02 2.81e-04 0 0.00 0.00e00 10 0.00 0.00e00 0.02 3.55e-04 0 0.00 0.00e00 10 0.01 3.52e-06 0.03

Table 2: The UNIFORM instances
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LPT MTB&B FMHEU 1 − SPT 1 − BPT K − SPT
m n r. gap o. sec r. gap o. sec r. gap sec r. gap sec cy. mlc r. gap sec cy. mlc r. gap sec cy. mlc
5 10 0.00e00 10 0.00 0.00e00 10 0.00 7.52e-03 0.00 0.00e00 0.00 0 0.0 0.00e00 0.00 0 0.0 0.00e00 0.00 0 0.0
5 50 1.80e-02 0 0.00 1.46e-02 0 30.44 1.54e-02 0.01 8.58e-03 0.01 19 2.5 8.80e-03 0.01 23 2.2 1.50e-02 0.01 6 3.4
5 100 8.33e-03 0 0.00 5.31e-04 9 3.99 6.05e-03 0.01 5.31e-05 0.02 34 2.4 1.59e -04 0.03 44 2.2 5.68e-03 0.11 7 3.2
5 500 6.06e-04 0 0.00 0.00e00 10 0.01 2.03e-03 0.00 0.00e00 1.44 10 2.3 0.00 e00 1.01 11 2.1 3.19e-05 4.83 4 3.1
5 1000 1.38e-04 2 0.00 0.00e00 10 0.00 1.25e-03 0.01 0.00e00 12.01 5 2.4 0.0 0e00 9.71 5 2.2 0.00e00 12.69 3 2.6

10 50 1.95e-02 0 0.00 1.65e-02 0 148.67 1.42e-02 0.01 1.57e-02 0.00 10 2.4 1.63e-02 0.00 11 2.2 1.87e-02 0.02 1 2.7
10 100 9.55e-03 0 0.00 8.70e-03 0 141.19 7.31e-03 0.01 5.09e-03 0.04 28 2.4 5.52e-03 0.02 30 2.1 9.02e-03 0.20 1 3.6
10 500 8.24e-03 0 0.00 4.26e-05 9 11.19 6.63e-03 0.01 2.13e-05 3.26 183 2.2 2. 13e-05 3.39 207 2.1 5.52e-04 30.05 34 5.2
10 1000 7.86e-04 0 0.00 0.00e00 10 0.11 2.74e-03 0.01 0.00e00 20.21 28 2.1 0 .00e00 17.14 31 2.1 1.70e-04 197.51 6 5.3
25 50 0.00e00 10 0.00 0.00e00 10 0.00 5.28e-03 0.00 0.00e00 0.01 0 0.0 0.00e00 0.01 0 0.0 0.00e00 0.01 0 0.0
25 100 1.17e-02 0 0.00 1.04e-02 0 1508.43 7.44e-03 0.00 9.85e-03 0.04 10 2.4 1.01e-02 0.01 9 2.3 1.12e-02 0.13 1 8.5
25 500 8.34e-03 0 0.00 5.84e-04 6 252.18 6.43e-03 0.01 2.12e-04 5.78 267 2.4 2 .12e-04 3.29 299 2.1 8.23e-03 218.07 1 3.5
25 1000 8.39e-03 0 0.00 1.86e-04 7 276.32 6.16e-03 0.01 7.97e-05 52.99 461 2.9 7.97e-05 36.59 530 2.1 7.59e-03 2437.87 29 11.6

Table 3: The NON-UNIF instances [1-100]
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LPT MTB&B FMHEU 1 − SPT 1 − BPT K − SPT
m n r. gap o. sec r. gap o. sec r. gap sec r. gap sec cy. mlc r. gap sec cy. mlc r. gap sec cy. mlc
5 10 0.00e00 10 0.00 0.00e00 10 0.00 6.13e-03 0.00 0.00e00 0.00 0 0.0 0.00e00 0.00 0 0.0 0.00e00 0.00 0 0.0
5 50 1.76e-02 0 0.00 1.61e-02 0 30.19 1.59e-02 0.00 8.92e-03 0.01 40 2.4 9.13e-03 0.01 53 2.9 1.17e-02 0.01 32 2.4
5 100 8.48e-03 0 0.00 1.38e-04 9 7.74 6.52e-03 0.01 7.43e-05 0.06 100 2.4 9.55e-05 0.07 144 2.9 7.86e-03 0.06 72 2.5
5 500 6.74e-04 0 0.00 0.00e00 10 0.00 0.00e00 0.01 0.00e00 1.87 63 2.2 0.00 e00 1.39 67 2.1 2.35e-04 7.80 29 2.4
5 1000 1.39e-04 0 0.00 0.00e00 10 0.01 1.88e-04 0.01 0.00e00 18.31 33 2.2 0.00e00 14.80 38 2.0 2.44e-05 25.88 16 2.4

10 50 1.83e-02 0 0.00 1.58e-02 0 177.34 1.42e-02 0.01 1.46e-02 0.01 33 2.6 1.48e-02 0.01 32 2.3 1.74e-02 0.01 11 2.5
10 100 8.98e-03 0 0.00 8.45e-03 0 123.39 7.18e-03 0.01 4.64e-03 0.07 99 2.6 4. 92e-03 0.05 103 2.3 8.70e-03 0.09 25 3.4
10 500 8.38e-03 0 0.00 0.00e00 10 0.10 6.46e-03 0.01 0.00e00 5.61 789 2.4 0. 00e00 6.24 984 2.2 8.37e-03 9.96 224 2.0
10 1000 8.61e-04 0 0.00 0.00e00 10 0.61 4.53e-04 0.01 0.00e00 21.81 212 2.2 0.00e00 14.61 221 2.1 5.78e-04 89.23 51 2.6
25 50 0.00e00 10 0.00 0.00e00 10 0.00 4.03e-03 0.01 0.00e00 0.01 0 0.0 0.00e00 0.01 0 0.0 0.00e00 0.01 0 0.0
25 100 9.84e-03 0 0.00 8.88e-03 0 1115.34 7.50e-03 0.00 7.93e-03 0.08 54 2.8 8.27e-03 0.02 39 2.6 9.47e-03 0.08 3 3 .4
25 500 8.37e-03 0 0.00 9.23e-04 2 1971.29 6.59e-03 0.01 4.25e-05 15.39 1794 2.5 2.18e-04 10.88 2156 2.4 8.36e -03 10.84 51 6.0
25 1000 8.53e-03 0 0.00 7.18e-05 7 658.17 6.18e-03 0.01 7.97e-06 138.21 3335 2 .4 7.97e-06 88.55 3957 2.3 8.53e-03 91.52 208 2.7

Table 4: The NON-UNIF instances [1-1000]
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LPT MTB&B FMHEU 1 − SPT 1 − BPT K − SPT
m n r. gap o. sec r. gap o. sec r. gap sec r. gap sec cy. mlc r. gap sec cy. mlc r. gap sec cy. mlc
5 10 0.00e00 10 0.00 0.00e00 10 0.00 6.18e-03 0.00 0.00e00 0.00 0 0.0 0.00e00 0.00 0 0.0 0.00e00 0.00 0 0.0
5 50 1.76e-02 0 0.00 1.63e-02 0 26.35 1.58e-02 0.01 8.96e-03 0.01 44 2.4 8.95e-03 0.01 56 2.2 8.84e-03 0.01 49 2.2
5 100 8.51e-03 0 0.00 4.26e-04 5 48.78 6.64e-03 0.01 5.78e-05 0.09 116 2.4 6.7 8e-05 0.09 176 2.2 5.78e-05 0.05 136 2.2
5 500 6.78e-04 0 0.00 0.00e00 10 0.02 0.00e00 0.01 0.00e00 1.97 110 2.2 0.00e00 1.59 136 2.1 6.69e-06 5.0 8 81 2.3
5 1000 1.39e-04 0 0.00 0.00e00 10 0.01 0.00e00 0.01 0.00e00 19.19 94 2.3 0. 00e00 13.88 111 2.1 9.77e-06 67.91 51 2.5

10 50 1.82e-02 0 0.00 1.60e-02 0 145.27 1.42e-02 0.01 1.46e-02 0.02 41 2.7 1.46e-02 0.01 41 2.3 1.47e-02 0.01 39 2.3
10 100 8.93e-03 0 0.00 8.54e-03 0 42.05 7.25e-03 0.01 4.63e-03 0.15 130 2.7 4.77e-03 0.09 123 2.3 4.68e-03 0.1 0 98 2.6
10 500 8.40e-03 0 0.00 0.00e00 10 0.17 6.55e-03 0.01 1.91e-06 7.15 1078 2.5 1 .06e-06 7.99 1312 2.2 4.89e-06 12.90 1026 2.7
10 1000 8.68e-04 0 0.00 0.00e00 10 0.23 0.00e00 0.01 0.00e00 15.57 388 2.4 2.13e-07 11.41 399 2.2 2.02e-06 9 3.07 303 3.4
25 50 0.00e00 10 0.00 0.00e00 10 0.00 4.09e-03 0.01 0.00e00 0.01 0 0.0 0.00e00 0.01 0 0.0 0.00e00 0.01 0 0.0
25 100 9.75e-03 0 0.00 9.12e-03 0 659.75 7.58e-03 0.01 7.76e-03 0.14 85 3.1 7.90e-03 0.06 57 2.6 8.02e-03 0.24 40 4.3
25 500 8.36e-03 0 0.00 2.71e-04 1 8185.42 6.58e-03 0.01 2.07e-05 23.20 3138 3 1.91e-05 20.37 4211 2.6 6.16e-05 51.98 1184 6.6
25 1000 8.54e-03 0 0.00 0.00e00 10 6.86 6.20e-03 0.02 5.31e-07 195.88 7656 2.8 7.97e-07 141.18 9204 2.5 2.03e-04 656.47 2473 6.2

Table 5: The NON-UNIF instances [1-10000]
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The first observation is that the results show a trend which is analogous to the one observed
for the uniform instances, i.e., the most “difficult” instances seem to be those with 2 < n/m ≤ 10.
However, for large values of n, also instances with n/m ≤ 40 can be “difficult”, although the difficulty
decreases when n/m increases. In all the cases, these instances are generally more difficult than the
UNIFORM instances, as both LPT and MTB&B obtain less good gaps, and solve less instances.
Now, the trend about the processing times is inverse, with more [1 − 10000] instances solved to
optimality than the corresponding [1− 1000] instances, which in turn appear to be “easier” than the
corresponding [1 − 100] instances.

On the “difficult” cases, 1−SPT and 1−BPT often dominate MTB&B , providing substantially
better gaps in much less running time. We notice however that, when the number of jobs, n, increases,
the running time of the multi-exchange heuristics grows faster than the one of MTB&B , up to the
point that, for large values of n, the latter is comparable to, or even better than, the former (yet,
for large values of n the multi-exchange heuristics are sometimes outperformed also in terms of
gap). This is probably due to the fact that, in those cases, the improvement graph G(S) is almost
dense, and therefore the number of the arcs grows about quadratically with respect to n. As far as
the comparison with LPT and FMHEU is concerned, the multi-exchange algorithms usually obtain
consistently better gaps, sometimes at a higher computational cost.

Finally, no strict dominance can be established between 1−SPT and 1−BPT : 1−SPT usually
provides a better gap, but it is generally slower than 1 − BPT . K − SPT is dominated, sometimes
consistently, by 1−SPT and 1−BPT , both in time and in gap. This phenomenon can be explained
by looking at the average cardinality of the improving cycles found by K − SPT , which is typically
around 3 for m = 10 and, with few exceptions, around 6 or less for m = 25. Thus, relatively few
machines are loaded in each solution, and therefore it is probably convenient to look for moves which
improve the completion time for at least one loaded machine at a time. Yet, K-disjoint cycles are
harder to find that 1-disjoint cycles, thus it is possible that K − SPT stops since it is not able to
detect improvement moves.

In conclusion, the results on this class of instances show that 1−SPT and 1−BPT are competitive
on the “difficult” instances. K − SPT seems to be less competitive on the instances with relatively
few (loaded) machines, since in those cases it seems to be advantageous to compute 1-disjoint cycles,
which are easier to find.

BINPACK instances

The results obtained for the BINPACK instances are shown in Table 6. These instances present a
curious mix of “difficult” and “easy” instances, in the sense that roughly half of them were solved
very quickly to optimality by MTB&B , whereas the others were not solved even by allowing much
more than 4000 backtracks. Yet, difficult and easy instances are about evenly distributed, almost
irrespective of their size (although it seems that the larger instances tend to be slightly easier than
the smaller ones), so that we could not find any property to explain this huge difference in the
behaviour of the code. We can only note that the n/m ratio is always greater than 2 but strictly
smaller than 3. Thus, also these instances seem to be critical ones.

The behaviour of the multi-exchange algorithms is quite interesting. First of all, again, 1−SPT
and 1 −BPT generally outperform K − SPT and K −BPT . This is especially true for K −BPT ,
which seems to be uncapable of finding improvement cycles, and in all the cases finds very few cycles,
obtaining a final gap which is pretty close to the (bad) one of the initial solution provided by LPT .
On the contray, K − SPT finds a fair number of K-disjoint cycles, and it computes a gap which is
competitive with the one of 1 − SPT and 1 − BPT , but at a higher computational time.

The interesting observation is that the average cardinality of the computed K-disjoint cycles
is very large, which probably means that very many machines are loaded in the solutions that
are generated. Thus, finding these long K-disjoint cycles is probably “difficult”, which explains
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LPT MTB&B 1 − SPT 1 − BPT K − SPT K − BPT
m n r. gap sec r. gap o. sec r. gap sec cy. mlc r. gap sec cy. mlc r. gap sec cy. mlc r. gap sec cy. mlc

u120 48 120 1.22e-01 0.00 2.04e-02 3 6.40 2.30e-02 0.25 168 2.95 2.71e-02 0.11 139 2.5 4.06e-02 1.83 12 20.9 1.16 e-01 0.19 1 3.3
u120 50 120 1.38e-01 0.00 1.65e-02 3 3.02 1.90e-02 0.31 185 2.94 2.65e-02 0.13 146 2.5 4.07e-02 1.89 13 22.0 1.29 e-01 0.23 2 3.5
u250 102 250 1.35e-01 0.00 1.93e-02 4 8.03 2.28e-02 3.00 462 2.85 1.54e-02 1.38 469 2.6 4.84e-02 28.54 13 47.2 1.3 2e-01 1.75 1 2.8
u250 102 250 1.33e-01 0.00 1.68e-02 8 5.01 1.94e-02 2.48 460 2.87 1.74e-02 1.21 436 2.6 4.75e-02 26.83 13 43.9 1.2 7e-01 1.83 1 3.1
u500 203 500 1.43e-01 0.00 2.68e-02 4 49.10 2.48e-02 21.73 1131 2.75 5.55e-02 5.33 705 2.6 5.69e-02 440.82 12 91.0 1.40e-01 13.43 1 2.8
u500 200 500 1.29e-01 0.00 3.36e-02 9 15.09 1.33e-02 25.92 1097 2.74 8.87e-02 2.20 194 2.5 4.47e-02 447.17 12 98.4 1.27e-01 14.14 1 5.5

u1000 402 1000 1.40e-01 0.00 2.68e-02 7 222.00 1.80e-02 220.90 2776 2.69 2.60e-02 72.78 2451 2.6 6.01e-02 2611.98 11 192.2 1.39e-01 107.72 1 2.0
u1000 399 1000 1.33e-01 0.01 2.68e-02 6 266.76 2.67e-02 191.95 2305 2.65 5.15e-02 54.97 1720 2.6 6.62e-02 2246.92 9 190.6 1.32e-01 103.86 1 2.0

Table 6: The BINPACK instances
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why K − SPT is so much slower than 1 − SPT and 1 − BPT (where the average cardinality of
the computed cycles is always less than 3). As far as 1 − BPT and 1 − SPT are concerned, the
former usually obtains slightly worse gaps, but it is usually faster. Thus, for these instances the
cost definition behind 1 − SPT seems to provide a remarkably more efficient guide for computing
improvement moves, especially the K-disjoint cycles which are more difficult to find.

MTB&B and the best multi-exchange heuristics obtain, on average, quite comparable gaps in
roughly the same time. However, no clear winner emerges in this context. In fact, MTB&B solves
about half of the problems to optimality, in a very quick way, and therefore it is preferable in those
cases. However, on the “difficult” instances the multi-exchange heuristics are generally competitive,
both in gap and in time, up to the point that they almost balance the worse behavior on the “easy”
instances.

TRIPLET instances

The results obtained on the TRIPLET instances are shown in Table 7. These instances are almost
all “difficult”, i.e., with very few exceptions, they were not solved by MTB&B . Observe that these
instances have, by construction, an n/m ratio which is exactly 3: this further confirms the findings
of all the previous cases.

On these instances, the multi-exchange heuristics are preferable, in terms of gap, with respect to
MTB&B , although they require sometimes a longer running time. In this case, moreover, K−SPT
outperforms all the other heuristics, included 1−BPT and 1−SPT . As in the previous case, instead,
K −BPT seems to be not capable of finding enough improvement cycles, and it quickly terminates
with a gap which is not consistently smaller than the one returned by LPT . Curiously enough, the
reverse happens for the algorithms based on 1-disjoint cycle computations: 1 − BPT outperforms
1 − SPT in terms of gap, slightly but uniformly.

The dominance of K−SPT can be explained in terms of the average cardinality of the K-disjoint
cycles found by the algorithm: as the number of machines, m, increases, longer and longer cycles
are found, but their cardinality is relatively small compared to the total number of the machines,
unlike what happens in the case of BINPACK (this implies that the number of loaded machines is
usually small). Thus, for the TRIPLET instances finding K-disjoint cycles appears to be “easier”,
and therefore it seems to be preferable to improve the current makespan by considering all the loaded
machines, rather than improving the completion time for at least one loaded machine. Finally, it is
interesting to observe that the difference in gap between K −SPT and 1−BPT (the best algorithm
for computing 1-disjoint cycles) generally grows with m: K − SPT dominates 1 − BPT as the
K-disjoint cycles become more and more longer than the 1-disjoint cycles.

To summarize the computational results reported in this section, even “pure” local search heuris-
tics based on a multi-exchange neighborhood outperform existing approaches on “difficult” instances
of P ||Cmax. Moreover, as far as the alternative multi-exchange heuristics are concerned, some inter-
esting guidelines emerged. One of them is that finding “global” improvement moves (i.e., K-disjoint
cycles and paths rather than 1-disjoint cycles and paths) is preferable only if the cardinality of the
cycles that have to be found is neither too small (since otherwise the two kinds of moves are basically
coincident), nor too large (since otherwise finding K-disjoint cycles may be too difficult). Also, the
combination of the K-disjoint cycles computation with a bottleneck-type searching strategy does
not appear to be promising, whereas both label correcting and bottleneck path heuristics are worth
testing when 1-disjoint cycles are looked for.
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LPT MTB&B 1 − SPT 1 − BPT K − SPT K − BPT
m n r. gap sec r. gap o. sec r. gap sec cy. mlc r. gap sec cy. mlc r. gap sec cy. mlc r. gap sec cy. mlc

t60 20 60 2.27e-02 0.00 5.70e-03 3 1.30 5.80e-03 12.41 60019 2.4 7.00e-03 3.81 20017 2.1 6.00e-03 15.78 20017 2.7 9.50e-03 1.83 25 2.7
t60 20 60 2.08e-02 0.00 6.20e-03 0 1.59 8.10e-03 15.04 40025 2.8 7.00e-03 5.70 40019 2.3 6.00e-03 1.83 20014 2.8 1.30e-02 0.03 11 2.8

t120 40 120 2.79e-02 0.00 1.96e-02 1 3.95 8.70e-03 81.04 100085 2.8 7.00e-03 44.03 60107 2.7 6.00e-03 19.03 20068 6.1 2.53e-02 0.25 4 5.6
t120 40 120 2.37e-02 0.00 1.72e-02 0 4.46 9.60e-03 79.26 140044 2.5 9.00e-03 110.67 140024 2.6 6.00e-03 0.96 20066 6.5 2.09e-02 0.32 5 6.0
t249 83 249 2.52e-02 0.00 2.32e-02 0 10.89 1.63e-02 270.40 132513 2.4 1.00e-02 259.31 133991 2.5 8.00e-03 79.60 73185 7.7 2.26e-02 1.99 3 2.4
t249 83 249 2.51e-02 0.00 2.16e-02 0 11.34 1.64e-02 277.56 132769 2.5 2.00e-02 253.32 133824 2.6 8.00e-03 80.04 60064 9.5 2.13e-02 2.28 4 2.8
t501 167 501 2.77e-02 0.00 2.58e-02 0 51.20 2.31e-02 273.50 106015 2.1 2.00e-02 243.73 86035 2.8 1.00e-02 330.25 68566 9.6 2.69e-02 17.76 2 3.4
t501 167 501 2.65e-02 0.00 2.49e-02 0 46.75 2.08e-02 296.64 107391 2.1 2.00e-02 289.54 60721 2.6 1.00e-02 343.47 56212 13.3 2.57e-02 16.61 2 4.5

Table 7: The TRIPLET instances

25



5 Conclusions

In this paper, we have proposed a large family of new local search algorithms based on a multi-
exchange neighborhood for minimum makespan machine scheduling problems. The proposed neigh-
borhood has quite different properties with respect to the other multi-exchange neighborhoods pre-
viously proposed in the literature, and some interesting theoretical results have been obtained.

By means of an extensive computational investigation, where a large number of algorithms have
been tested on a large data set, we have obtained a set of guidelines for the implementation of this
kind of algorithms. Although the results have been obtained for the case of identical machines, we
believe that the obtained insights can be useful for other minimum makespan machine scheduling
problems, and even for different problems with a similar structure.

Testing the multi-exchange algorithms against other algorithms from the literature, we have
shown that some algorithms based on the multi-exchange neighborhood are promising, in terms of
quality and time, for “difficult” P ||Cmax instances. Moreover, we have collected an interesting set
of P ||Cmax instances and analyzed their characteristics. This may be of help in the development of
new and more efficient algorithms for “difficult” P ||Cmax instances.

In conclusion, we believe that local search algorithms based on multi-exchanges can be successfully
applied to minimum makespan machine scheduling problems. Relatively simple variants, lacking any
metaheuristic guidance, are capable of producing better quality solution than other algorithms from
the literature for some classes of instances. Our work has hopefully set the ground for more efficient
implementations of multi-exchange heuristics for minimum makespan machine scheduling problems,
comprised the cases of the uniform and the unrelated machines. Also, we believe that our research
may provide good insights for the construction of multi-exchange heuristics for other problems with
a bottleneck-type objective function; research in this field is ongoing, and it will be the subject of a
future paper.
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