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Abstract. We propose a new set of preconditioners for the iterative solution, via a precondi-
tioned conjugate gradient (PCG) method, of the KKT systems that must be solved at each iteration
of an interior point (IP) algorithm for the solution of linear min cost flow (MCF) problems. These
preconditioners are based on the idea of extracting a proper triangulated subgraph of the original
graph which strictly contains a spanning tree. We define a new class of triangulated graphs, called
brother-connected trees (BCTs), and discuss some fast heuristics for finding BCTs of “large” weight.
Computational experience shows that the new preconditioners can complement tree preconditioners,
outperforming them both in iterations count and in running time on some classes of graphs.

Key words. min cost flow problems, interior point algorithms, preconditioned conjugated
gradient method, triangulated graphs

AMS subject classifications. 90C51, 65F10

DOI. 10.1137/S105262340240519X

1. Introduction. The linear min cost flow (MCF) problem is the following linear
program (LP):

min{cx : Ex = b, 0 ≤ x ≤ u},(1.1)

where E is the node-arc incidence matrix of a directed graph G = (N,A), c is the
vector of arc costs, u is the vector of arc upper capacities, b is the vector of node
deficits, and x is the vector of flows. This problem has a huge set of applications,
either in itself or, more often, as a submodel of more complex and demanding prob-
lems [1]. This is evidenced by the enormous amount of research that has been devoted
to developing efficient solution algorithms for MCF problems [1], either by specializing
LP algorithms—such as the simplex method—to the network case, or by developing
ad hoc approaches.

Recently, interior point (IP) methods for linear programming have established a
reputation as efficient algorithms for large-scale problems; a detailed description of
the IP algorithms and their underlying theory can be found in the extensive literature
on the subject and in many recent linear programming textbooks, e.g., [19, 24]. At
each iteration of these methods, linear systems of the form(

EΘET
)
∆y = d(1.2)

have to be solved, where Θ and d are an m × m diagonal matrix (m = |A|) with
positive entries and a vector of R

n (n = |N |), respectively, which depend on the cur-
rent solution and on the IP algorithm chosen. These systems are often referred to as
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KKT systems, because they represent the computational core of a “slackened” KKT
system for the problem. Although the form (1.2) is not, strictly speaking, the most
general, it has the advantage of being the same for many variants of IP algorithms.
Furthermore, in the MCF case, the matrix M = EΘET has close relationships with
several extensively studied objects in both linear algebra and graph theory. When
Θ = I, the matrix M is closely related to the Laplacian of the undirected version
of G [2, 7], which has been exploited to explore topological properties of graphs
through the spectral properties of some associated matrices [6]. Conversely, the
graph G can be thought of as a combinatorial representation of certain algebraic
properties of M [20], some of which will be recalled below.

The solution of (1.2) typically represents by far the main computational burden
of IP algorithms. Thus, developing a specialized approach for the solution of (1.2) for
specially structured matrices E can substantially improve the performance of an IP
method. Since the form of the KKT system is independent of the specific variant of
IP algorithm used, the same specialized solver for (1.2) can be used to implement all
the variants of IP algorithms.

As M = EΘET is symmetric and positive semidefinite, (1.2) is often solved
through a Cholesky factorization, which is computationally effective and numerically
stable. That is, a lower triangular Cholesky factor L with all diagonal entries equal
to 1 and a diagonal matrix D with a positive (nonnegative) diagonal are found such
that M = LDLT ; this can be done in O(n3), and, once the factorization has been com-
puted, systems involving M can be solved in O(n2) with two backsolves on L. How-
ever, a well-known drawback of the Cholesky factorization is the fill-in phenomenon:
a sparse matrix M may have a dense Cholesky factor L. The density of the Cholesky
factor may vary by reordering the rows of the matrix E; hence, IP codes usually
make an effort at finding a permutation of the rows of E which (approximately) min-
imizes the fill-in effect. This is only done at the beginning of the algorithm, since
the structure of the nonzeros in M (and therefore of its Cholesky factor) does not
depend on Θ and therefore does not change with the iterations. The problem of
finding the reordering which produces the least fill-in is known to be NP-hard [25];
however, several effective heuristics have been developed for computing a “good” such
permutation [19]. Yet, in general the fill-in phenomenon cannot be avoided [4] ex-
cept in some specific cases, so that alternative methods have been proposed for MCF
[17, 15, 13, 14, 23] and other network-structured problems [4]. Most of these methods
solve the system using a preconditioned conjugate gradient (PCG) method. The crit-
ical choice is therefore that of the preconditioner: it must be inexpensive to compute
and invert while delivering a consistent reduction of the number of conjugate gradient
iterations required to (approximately) solve (1.2).

The first PCG-based IP algorithm specifically tailored for MCF problems was
proposed in [17]. Following suggestions from [12] and [22], the tree preconditioner was
defined, which is a preconditioner of the form

MS = ESΘSE
T
S ,(1.3)

where S is a spanning tree of G, ES is the node-arc incidence matrix of S, and ΘS is
the restriction of Θ to the arcs in S. In particular, S is chosen as an (approximate)
maximum-weight spanning tree, the weight of each arc (i, j) being the correspond-
ing θij . Such a tree can be constructed in O(m) with a variant of the classical Kruskal
algorithm where arcs are only approximately sorted using a “bucket” data structure
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with m buckets. The linear systems involving MS can then be solved in O(n), at
each step of the PCG method, by considering the three linear systems with coeffi-
cient matrix ES , ΘS , and ET

S , respectively; it is well known [1] that these systems
can be solved by visiting the tree S. The preconditioner MS can be expected to be
spectrally effective, especially in the final iterations of an IP algorithm; in fact, the
analysis of IP methods shows that, if the optimal solution of the underlying MCF is
unique, the weights θij tend to zero on all arcs, except on those corresponding to the
basic optimal solution [19] that form a spanning tree; hence MS ≈ EΘET in the last
iterations of the IP method. The analysis in [10] and the experimental results show
that the tree preconditioner in fact has good spectral properties in the final iterations
of an IP algorithm even in the degenerate case. Finally, a different rationale for the
choice of S as a maximum-weight spanning tree has been given in [7].

Unfortunately, tree preconditioners are less effective in the first iterations; this
has suggested a hybrid preconditioning technique [17], where the diagonal precondi-
tioner is used in the first iterations, and then some heuristic rules are used to switch
to the tree preconditioner in a later stage. The implementation of this approach,
refined with better stopping criteria [18] and a custom primal-infeasible/dual-feasible
IP algorithm [15], has shown to be competitive with well-known combinatorial MCF
codes.

In [13], the tree preconditioner is “extended” by using

M ′
S = MS + ρdiag(M −MS)(1.4)

as the preconditioner, where diag(X) is the diagonal matrix having as the diagonal
elements those of X. This has the advantage of incorporating information about all
arcs, rather than about only those in S. The parameter ρ can be chosen according
to the structure of the MCF problem at hand, with different values proposed in [13]
for different classes of MCF problems. The relationships between M ′

S and MS , from
the spectral viewpoint, have been analyzed in [10]. Finally, a different preconditioner
has been proposed in [14] for the special case of transportation problems, based on
an incomplete QR factorization of M , that has been reported as being more effective
than the tree preconditioner for this particular class of MCF instances in the early
iterations of the algorithm. For a more detailed description of these preconditioners
and their relationships the interested reader is referred to [16] and [10].

Our aim is to improve the effectiveness of IP methods for MCF problems by
designing new classes of preconditioners. The basic idea is that of extracting a proper
subgraph S = (N,AS) of G (AS ⊆ A) which contains—possibly strictly—a spanning
tree, but such that the corresponding matrix MS defined as in (1.3) can still be
efficiently factored. We will refer to these preconditioners as subgraph based, and
to S as the support of MS . One way for ensuring efficient factorization is to select S
as a triangulated (also known as chordal) graph [20], so that there exists an ordering
of the nodes for which MS has no fill-in. Other ideas can then be exploited for
further improving the effectiveness of these preconditioners, yielding a large variety of
preconditioners, some of which provide a better trade-off between the cost of finding S
and factoring MS and the cost of the PCG iterations.

The structure of the paper is the following: in section 2 we introduce and prove the
properties of a large family of new preconditioners. In sections 3 and 4 the algorithmic
issues related to this new family of preconditioners are discussed. In section 5 the
results of a computational experience aimed at assessing the effectiveness of the new
preconditioners are presented. Finally, conclusions are drawn in section 6.
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2. Subgraph-based preconditioners. We propose to choose S as a triangu-
lated graph [20], i.e., such that every cycle of length at least 4 has an edge joining
two nonconsecutive vertices in the cycle. Such an edge is called a chord, whence the
alternative name of chordal graphs. Since MS has the same nonzero structure of the
node-node adjacency matrix of S, there exists a “good” ordering of the nodes, i.e.,
an n × n permutation matrix Pn, such that the reordered matrix PnMSP

T
n has a

Cholesky factorization without fill-in. This is in fact a generalization of the result
that is exploited when tree preconditioners are used: a Pn exists such that PnES is
lower triangular. For the case of trees, Pn corresponds to any permutation P of the
nodes such that if (i, j) is an arc of S with i father of j, then row j precedes row i
in P; these permutations include reverse depth-first visit and reverse breadth-first
visit. Note that the definition of a father-son relationship implies that a root has
been chosen for the spanning tree.

Thus, a natural way to generalize the tree preconditioner would be to choose S as
a maximum-weight triangulated subgraph of G. Unfortunately, this does not appear
to be an easy problem; although no conclusive evidence is known, the problem is
conjectured in [11] to be NP-hard.

However, choosing a maximum-weight triangulated subgraph of G, even if it were
computationally feasible, would not necessarily be a good idea in this application.
This is due to the fact that, as shown in section 5, for MCF problems the tree pre-
conditioner is already very effective, and only a limited (although sizable) increase
of the spectral efficiency of the method can be expected, especially in the last IP
iterations. Thus, it is crucial that the extra cost of finding and factoring a “fatter”
preconditioner MS is kept low for the approach to have some chance of improving on
the tree preconditioner. Indeed, the most efficient implementations of IP methods for
MCF based on the tree preconditioner use an approximate algorithm for finding the
maximum-weight spanning tree, even though the optimal tree could be found in (low)
polynomial time.

Hence, a generalization of the tree preconditioner is sought for finding a large-
weight triangulated graph with only slightly more effort than that required for finding
an approximate maximum-weight spanning tree. We remark here that, for our appli-
cation, finding the graph S is not enough; the “good” permutation P also has to be
provided. This can always be done in linear time [21], but in general it is not free.

Not much along these lines has been done in the literature. In [11], a class of
triangulated graphs, the k-windmills, is defined in the context of finding the “best”
Markov network model of manageable size which “explains” some observed data, a
problem that can be recast as that of finding a maximum-weight triangulated subgraph
with “small” cliques of a given graph. An approximation algorithm with guaranteed
performance is given for the maximum-weight k-windmill problem, but the algorithm
requires the solution of an LP and a rounding operation and is therefore not feasible
for our application.

A different way to achieve similar results has been proposed in the more general
setting of M-matrices; the preconditioners are constructed by adding “a few” extra
arcs to a spanning tree T , carefully balancing the extra cost of the incurred fill-in with
the gain in the number of iterations [22, 3, 5]. This can be done, e.g., by splitting the
node set into a small number k of disjoint components of size about n/k, each one
spanned by a subtree of T , and then adding to S the arc with largest weight connecting
any two of the components. The approach in [9] is similar although more involved
and is mostly motivated by the need for finding a preconditioner that parallelizes
well: since the graph is recursively subdivided into smaller graphs of roughly equal
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size, the workload can be evenly divided among parallel processors. In both cases, a
small number of components ensures a “limited” increase in the cost for factoring the
preconditioner, given that fill-in is expected.

2.1. Brother-connected trees. We now define a new family of preconditioners
of the form (1.3), based on the characterization of a new class of triangulated graphs,
strictly containing spanning trees.

Definition 2.1. A subgraph S=(N,AS) of G is a brother-connected tree (BCT)
if it is either a spanning tree T = (N,AT ) of G or it contains a spanning tree T
of G such that the subgraph S′ = (N,AS \ AT ) obtained by removing all the arcs
of T from S is formed of a certain number k ≥ 1 of node-disjoint connected components
S′

1 = (N1, A1), . . . , S
′
k = (Nk, Ak) such that all the nodes in Ni are “brothers” (sons

of the same node) in T , and each S′
i is a BCT.

Definition 2.1 is inherently recursive and operational in nature; a BCT can be
constructed by iteratively taking a family of BCTs (which may be ordinary trees) and
joining all their nodes in a tree, where all the nodes of any one of the original BCTs
are sons of the same node. Note that, conversely, it is not required that all the sons
of the same node in T belong to the same connected component. In particular, the
connected components can be composed by only one node; in this case, we consider
the empty set of arcs to be a spanning tree (and, therefore, a BCT) for the component.
In other words, the arc set AS of a BCT S is the union of the arc sets of a family
T = {T1, . . . , Tq} of arc-disjoint subtrees Ti of G. The family T itself has a tree
structure, where a tree Ti is the son of a tree Tj in T if all the nodes in Ti are
brothers in Tj .

Thus, an important characteristic of a BCT S is its depth, which is the depth
of the associated tree T , i.e., the number of times that the composition operation
has to be applied, starting from an empty graph, in order to construct S. A BCT
of depth 1 is an ordinary tree, a BCT of depth 2 contains a spanning tree T such
that the removal of all the arcs in T leaves a forest, and so on. For example, consider
the graph of Figure 2 in section 3: solid arcs define T , dashed arcs are the forest at
the second level, and dotted arcs do not belong to the BCT. The BCT depicted on
the left side of Figure 2 has a family T = {T1, T2, T3}, where T1 = T are the solid
arcs, T2 is composed of the dashed arcs linking nodes 1, 2, 3, 4, and 5, and T3 is only
the dashed arc (6, 7). The tree structure of T is simply that T1 is father of both T2

and T3; therefore, the depth of the BCT is 2.

It is easy to show that BCTs are triangulated graphs by induction on the depth.
A BCT of depth 1 is a tree, hence a triangulated graph. When building a BCT of
depth k + 1 out of a number of disjoint BCTs of depth at most k, all newly created
cycles have length 3. Thus, there exists a permutation P of the nodes that allows
us to factor ES without fill-in if S is a BCT. Something more, however, can be said:
the “good” ordering is “embedded” in the description of the BCT in terms of the
associated tree T . Thus, if the description is—as in the case of the heuristics that we
propose—available “for free,” then the BCT immediately provides all the necessary
information for factoring the associated preconditioner without fill-in. This is what
we are going to prove in the following.

A well-known property of the Cholesky factorization is that, given a matrix M ′

with Cholesky factor L′, any symmetric positive definite matrix

M =

[
M ′ m
mT µ

]
has a Cholesky factor of the form L =

[
L′ 0
lT 1

]
.
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Furthermore, the values in a row of the Cholesky factor L depend only on the values
on the same row and on the previous ones. Therefore, if M ′ is a matrix with no fill-in,
then M can have fill-in only in its final row.

In graph terms, the above operation corresponds to adding to the graph repre-
senting the nonzero structure of the matrix M a new node, possibly connected with
all other nodes. Therefore, the following result easily follows.

Lemma 2.2. Consider any finite number k ≥1 of node-disjoint triangulated graphs
Gi = (Ni, Ai) and their corresponding “good” orderings Pi; the graph G = (N,A)
obtained as the union of all the graphs Gi plus a new node u linked by an arc to each
node in each of the graphs Gi is triangulated, and the corresponding “good” order-
ing P is obtained by composing the permutations Pi in arbitrary order and placing
the new node u as the last node in the ordering.

Proof. Apply the above observations: M ′ corresponds to all the Gi, and the new
row l in the Cholesky factor of M is dense (completely nonzero), but this corresponds
to the fact that S has n − 1 arcs more than S′; i.e., the row [mTµ] is completely
nonzero too.

We can now prove the main result.

Theorem 2.3. Given a brother-connected tree S in G, its representation as a
tree T allows us to compute a “good” ordering of the nodes of G (such that MS has
a Cholesky factor L with no fill-in).

Proof. We will proceed by double nested induction: the first on the depth of S,
the second on the number of nonterminal nodes in the tree T contained in the BCT.

The basic step of the (outer) induction corresponds to depth 1; i.e., S is a tree.
As we already recalled, any ordering of the nodes such that node j precedes node i
if (i, j) is an arc of S and i is the father of j has the desired property. This ordering
can be found in linear time.

For the inductive step, we assume that the ordering is available for any BCT with
depth at most h and show how to construct it for BCTs of depth h+1. Once again we
proceed by induction, this time on the number of nonterminal nodes of the spanning
tree T included in S.

The basic step of the (inner) induction corresponds to the case where there is
only one nonterminal node u; i.e., T is a “star tree,” where any other node but u is a
leaf. Since S is a BCT, the subgraph S′ obtained by removing u (and all its incident
arcs) from S is formed of k ≥ 1 node-disjoint BCTs of depth at most h. Therefore,
for the (outer) inductive hypothesis we know a good ordering for S′, and we can find
the one for S as shown in Lemma 2.2.

For the (inner) inductive step, consider a nonterminal node u such that all its
sons are leaves of T ; call V the set of the sons of u. Let S′ be the subgraph of S
induced by the nodes V ∪ {u} and let S′′ be the subgraph of S induced by the nodes
in N \ V ; note that both subgraphs contain node u. Now we can apply the (inner)
inductive hypothesis to S′′, as we have reduced the number of nonterminal nodes by
one unit; hence, we can find a good ordering P ′′ of N \ V . Furthermore, since S is
a BCT, then S′ \ {u} is a set of node-disjoint BCTs of depth at most h, and, as in
the basic step of the (inner) induction, we can find a good ordering P ′ of V ∪ {u},
where u must be the last node. We can then construct an ordering P of N by simply
joining P ′ and P ′′ in a sequence that corresponds to P ′ on V and to P ′′ on N \ V
such that all the nodes in V precede those in N \ V . Therefore, the corresponding
reordered MS can be written as
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MS =

⎡
⎢⎢⎢⎢⎣

MS′\{u} 0 m 0

0 0 0 0

mT 0 µ 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎣

0 0 0 0

0
0
0

MS′′

⎤
⎥⎥⎦ ,

where [mT , µ] is the (completely nonzero) row corresponding to node u in the ma-
trix MS′ . The two matrices in the right-hand side share only one nonzero position
in the row and column associated with u. Hence, the first part of the Cholesky
factor L of MS is equal to that of MS′ , and so it is the part of the factorization
relative to the nondiagonal elements in row u. Thus, the Cholesky factorization of
(the reordered) MS in the first |V | rows/columns has no fill-in. As S′ is a graph, the
associated matrix MS′ is rank deficient and the value d′u for its LDLT factorization is
zero. Hence, the value du for the factorization of MS is equal to d′′u computed in the
factorization of MS′′ . Therefore, the second part of the factorization of MS is exactly
the factorization of MS′′ . For the inductive hypothesis we know that the Cholesky
factor of MS′′ (reordered with P ′′) has no fill-in, and this finally allows us to conclude
that P is a good ordering for MS .

The above result can be easily generalized with the following proposition.
Proposition 2.4. Let M be a positive definite matrix with a BCT support; then,

the ordering of Theorem 2.3 is “good” for M .
Proof. In the general case, the computation of the element du in the proof of

Theorem 2.3 may depend on the submatrix associated with S′. Let d′u and d′′u be the
values computed in the factorization of MS′ and MS′′ , respectively. The first part
of the factorization of MS is equal to the factorization of MS′ for rows in S′ \ {u},
and the rest can be obtained as the factorization of MS′′ , but starting from the value
du = d′u + d′′u. Therefore, M can be factored without fill-in.

To summarize, for a BCT with depth 2, P must be such that
• The matrix ET associated with its spanning tree T is lower triangular; i.e.,

if (i, j) is an arc of T with i father of j, then row j of ES precedes row i in P;
• For each nonterminal node u of T , each subset of its sons which belong to

the same subtree Th = S′
h (once the arcs of T have been removed) is ordered in the

permutation according to the order defined by Th; i.e., if (i, j) is an arc of Th with i
father of j, then row j precedes row i in P. The roots of the subtrees and the sequence
of the trees can be arbitrarily chosen.

In general, P can be recursively constructed by ordering the nodes of the BCTs
of depth h and then composing these orders into orders for the BCTs of depth h+ 1.
This can be done with a bottom-up postvisit of the tree T associated with the BCT,
i.e., by visiting the tree T from the leaves to the root with the constraint that each
node of T can be visited only after all of its sons.

The induction process in Theorem 2.3 suggests an algorithm that performs the
Cholesky factorization of MS without fill-in in O(nh2), where h is the depth of the
BCT. All the trees at the same depth q can be represented with a unique predecessor
function Pred[q] defined on the nodes, such that Pred[q][u] = v if v is the father
of u at depth q, and Pred[q][u] = nil (null value) if u is a root, i.e., it has no father.
For instance, in a BCT of depth 2 the function Pred[1] represents the spanning
tree T whose removal leaves a forest F , which is represented by the function Pred[2].
The algorithm for computing the LDLT factorization of a matrix MS with a BCT
support S is shown with the pseudocode in Figure 1. It requires a description of the
BCT (of depth h) in terms of the predecessor functions Pred[q], and a description
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Procedure CholeskyFactorBCT (h, n,M,Pred,Order, L,D)
begin

for i = j, . . . , n; i = 1, . . . , j − 1 do
L[i, j] = M [i, j];

for i = 1 . . . n do
D[i] = M [i, i];
L[i, i] = 1;

for i = 1 . . . n− 1 do
u = Order[i];
for q = h . . . 1 do

w = Pred[q][u];
if w �= nil then

L[w, u] = L[w, u]/D[u];
D[w] = D[w] − L[w, u]2 ∗D[u];

for q = h . . . 1 do
w = Pred[q][u];
if w �= nil then

for r = q − 1 . . . 1 do
y = Pred[r][w];
if y �= nil then

L[y, w] = L[y, w] − L[w, u] ∗ L[y, u] ∗D[u];
end.

Fig. 1. Pseudocode for factorization of a matrix with BCT support.

of a “good” ordering P in an array Order[]. By performing a bottom-up visit of the
tree T , it outputs the Cholesky factor L and the diagonal matrix D. The algorithm is
similar to the usual procedure for the Cholesky factorization, but it exploits the fact
that the fill-in cannot be produced, so nonzero elements of L correspond to pairs (y, w)
such that y = Pred[s][w] for some level s. Indeed, the Cholesky factorization using
the ordering P would be

L[y, w] =
1

D[w]

[
M [y, w] −

∑
u<Pw

L[w, u]L[y, u]D[u]

]
,

D[w] = M [w,w] −
∑

u<Pw

L[w, u]2D[u],

where “<P” is the ordering contained in Order[].
Using the same data structures, Pred and Order, an O(nh) algorithm that solves

systems of the form MSr = v—which is what is actually required if MS is used as
a preconditioner in a PCG algorithm—can be constructed; any iteration of a PCG
algorithm which uses a BCT-based preconditioner has a complexity of O(nh + m).
In our implementation, we have considered only the case of BCTs of depth 2; this
simplifies and streamlines the algorithms, while still leaving room for almost doubling
the number of arcs to be put in S with respect to a standard tree preconditioner (a
BCT of depth 2 can have up to 2n− 3 arcs).

Thus, BCT preconditioners can be easily integrated with standard tree precondi-
tioners, and they do not need general-purpose Cholesky factorization routines; in fact,
the construction and factorization of the preconditioner are easily and efficiently per-
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Fig. 2. Two maximal BCTs on the same graph with different cardinality.

formed using the data structures naturally produced by the construction of the BCT.

3. Finding brother-connected trees. The complexity of the problem of find-
ing the maximum-weight BCT in a given graph G is not known to us. However,
the exact solution of this problem is not crucial in this application; even in the case
of tree preconditioners, an approximate solution is usually preferred although the
exact solution can be obtained in low polynomial time. It is very unlikely that a
maximum-weight BCT can be found with a comparable efficiency, because BCTs are
not matroids. This is shown by the two BCTs S1 and S2 in Figure 2, where the solid
arcs belong to the first level, the dashed ones belong to the second level, and, finally,
the dotted ones are in the complements G \S1 and G \S2. It is easy to check that S1

and S2 are maximal BCTs (of level two) with different cardinality.

3.1. A class of heuristics for maximum-weight BCT. For all the above
reasons, we will resort to heuristics to find the BCT to be applied in the PCG method.
A large number of different heuristics can be proposed, by combining different variants
of two basic ingredients:

(i) how a spanning tree T is chosen;
(ii) how extra arcs forming trees among brothers in T are chosen.

Some results can be proved about the worst-case performances of this kind of
heuristics if T is chosen to be a maximum-weight spanning tree for the graph.

Proposition 3.1. Let G be a graph; denote by w(MBCT ) the weight of the
maximum-weight BCT with depth 2 on G and by w(MST ) the weight of the maximum
weight spanning tree on G. Then w(MBCT ) ≤ 2w(MST ).

Proof. Consider the following problem: given a graph G, find a connected sub-
graph S = (N,AS) of maximum weight with the property that S contains at least a
spanning tree T = (N,AT ) of G such that the residual graph S \ T = (N,AS \ AT )
is acyclic. Obviously, this problem is a relaxation of the maximum-weight BCT with
depth 2. Moreover, its optimal objective function value is less than 2w(MST ): in
fact, w(MST ) is an upper bound on both w(T ) and w(S \ T ) as the latter one is
acyclic.

Corollary 3.2. All heuristics for constructing a BCT which augment the
maximum-weight spanning tree are 2-approximated.

Thus, choosing the initial tree as an (approximate) maximum-weight spanning
tree appears to be a promising choice. In fact, we have experimented with several
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different ways for finding an initial spanning tree, described in [8] and not reported
here to save on space, but they were almost invariably outperformed by the “standard”
maximum-weight spanning tree.

The above bound is asymptotically tight even if we find the maximum-weight
spanning tree T on G and then compute a maximum-weight spanning tree on each
connected component induced by the sets of brothers in T , as the following example
shows.

Example 3.3. Let us consider the graph with n nodes and the following two types
of arcs:

• (i, i + 1) for i = 1, . . . , n− 1 with weight 1;
• (1, j) for j = 3, . . . , n with weight 1 − ε.

Clearly, the maximum spanning tree T is the path from 1 to n composed of the arcs
of the first type; hence, there are no brothers in T and the heuristic stops. However,
the whole graph is a BCT of depth two, with the arcs connecting 1 with each of the
other nodes in the first level and the other arcs in the second level with total weight
2n− 3 − (n− 2)ε.

3.2. Enlarging the tree to a BCT. When a tree T is selected, extra arcs
forming trees among brothers in T must be chosen (point (ii)). For this task we
propose three different variants:

(ii.a) When the tree is selected, the final ordering of the nodes to be considered
in the factorization is also arbitrarily fixed as any “good” ordering for T . Then, the
arcs out of T are scanned in (approximated) order of decreasing weight and added to
the tree if they are compatible with the fixed ordering and they satisfy the condition
that the trees on the second level are paths among brothers.

(ii.b) As in case (ii.a), the arcs are scanned in (approximated) order, and the
trees in the second level of the BCT are restricted to being paths; however, the
ordering between brothers can be changed. The final ordering is found by considering
one of the two possible permutations for each path among brother nodes, and then
composing these orders, respecting the tree structure of T .

(ii.c) This variant is analogous to case (ii.b), but the trees in the second level of
the BCT are not restricted to being paths.

These three variants require different data structures and amounts of computa-
tional time (how many times the list of arcs is scanned), and they find different BCTs.
Variant (ii.a) is the cheapest one, but it usually adds fewer new arcs. Variant (ii.c) is
the most complex, as it requires a new union-find structure to find trees in the second
level and to select the corresponding orders, but it may add more arcs. Variant (ii.b)
is something in between.

For variants (ii.b) and (ii.c), it is actually possible to modify the original spanning
tree T as the algorithm proceeds, in order to add even more arcs. One way to do
that is to apply an operation, which we call promotion, whereby a node connected
with its grandfather is “promoted” as a brother of its former father. That is, let j
be a node, k its father in T , and i the father of k in T . If the arc (i, j) is selected
from the (approximated) ordering, it is possible, under some conditions, to modify
the tree T in such a way that j becomes a son of i and brother of k. This is done
by making (i, j) an arc of T (i.e., in the first level of the BCT), while (k, j) becomes
an arc of the second level, as shown in Figure 3. In order to apply the promotion,
node j must not have incident arcs (j, l) in the second level of the BCT, as after the
promotion j and l are no longer brothers. Moreover, for variant (ii.b) the node k must
also have at most one connected brother in the second level of the BCT, for otherwise
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Fig. 3. The BCT before (left) and after (right) the promotion.

the tree in the second level would no longer be a path. Note that using the promotion
operation in Example 3.3 allows one to discover that the complete graph is indeed
a BCT.

In all the above heuristics, an initial ordering of the nodes is assumed that is
“good” for the initial tree T ; this is done by selecting a root node and performing a
visit of the tree. Since this order impacts the heuristics (especially (ii.a), where it is
fixed), the selection of the root node is potentially critical. We considered two possible
strategies for selecting the root node: choosing the node with the largest adjacency
list (“static”) or choosing the node with the largest total weight of the set of incident
arcs (“dynamic”).

Let us remark here that the matrix M = EΘET has rank equal to n minus the
number of connected components in G, i.e., at most n − 1. It is always possible to
assume that G is connected, as otherwise the original MCF problem can be partitioned
into a set of smaller subproblems, one for each of the connected components; hence, we
can assume that the rank of M is n−1. When solving the KKT system, it is therefore
possible to work with full-rank matrices by just deleting one row of E; alternatively,
it is possible to work with the rank-deficient KKT system, although in this case MS

is rank deficient, too. The choice of the row (node) to be eliminated is arbitrary, yet
it may have some consequences; when a node (row of the matrix E) is deleted, we
choose it as the one associated with the root node of the tree T , although in principle
different choices would be possible.

4. Further improvements. All the preconditioners that we have proposed so
far can be further improved by applying two kinds of operations that attempt to in-
corporate in MS information regarding arcs which have been left out of the support S.

The first operation amounts to adding to S all arcs (i, j) which are “parallel”
to arcs already belonging to S, i.e., every other arc (i, j) or (j, i) belonging to G; we
will denote these as “tree/BCT+parallel,” or “T/BCT+P” for short, preconditioners.
Clearly, this cannot generate fill-in other than that already present in the original MS ,
as the support of the two matrices is the same. Note that “parallel” arcs, i.e., multiple
copies of the same arc (or of its reverse arc) with different costs and capacities, are
often present in MCF problems, e.g., to model piecewise linear convex separable flow
cost functions [1]. This kind of operation has not been explicitly described before in
the literature of IP approaches for MCF problems, while it is taken for granted when
M-matrices are approached; our computational experience shows that the option has
to be kept open. In fact, when “many” parallel arcs are present, it is useful to set the
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weight of each edge {i, j} in the MST computation equal to the sum of the weights of
all parallel arcs (i, j) or (j, i), in order to correctly estimate the importance of adding
any of those parallel arcs (and, therefore, all the others) to the support. However,
when “few” parallel arcs are present, the extra computational burden required for
computing the weights of the edges is not worth the corresponding improvement in
the PCG convergence.

The second operation, proposed in [13] for the tree preconditioner, consists of
using as preconditioner the matrix

M ′
S = MS + ρdiag(M −MS).

This cannot have more fill-in than MS , and it contains at least some information
about all arcs. We will denote these as “tree/BCT+diagonal,” or “T/BCT+D” for
short, preconditioners. Of course, combining the two ideas gives “T/BCT+P+D”
preconditioners.

Adding the diagonal can be very useful for some classes of instances, but, as re-
ported in [10] and essentially confirmed by our experience, it is not always convenient,
so the option has to be kept open. Note that this operation adds some complexity
to the Cholesky factorization of the preconditioner. This is more clearly seen in the
case of T+D preconditioners; while the pure tree preconditioner basically does not
need any factorization (it can be factored by just permuting the rows), the T+D
preconditioner does need a true—although simple—factorization phase. Analogously,
the factorization of BCT+D preconditioners requires the modification described by
Proposition 2.4. It may also be worth remarking that the factorization routine can
be somewhat simplified if ρ = 1, which is significant in light of the results reported in
the next section.

5. A computational comparison of preconditioners. In this section, we
present the results of a large-scale computational test aimed at assessing the effec-
tiveness of our new family of preconditioners.

For our tests, we selected three well-known random generators of MCF problems:
goto (GridOnTOrus), gridgen, and netgen.1 For each generator, we generated a
total of 12 classes of instances, with n = 2k for k = 8, 10, 12, 14, and 16 and up to
three different densities. In particular, for k = 8 we generated instances with density
8, 16, and 32, for k = 10 we generated instances with density 8, 32, and 64, for k = 12
we generated instances with density 8, 64, and 256, for k = 14 we generated instances
with density 8 and 64, and for k = 16 we generated only instances with density 8. In
the following, we will use the form genX.Y to refer to the class of instances generated
by the generator gen (goto, grid, or net), with k = X and density equal to Y. In
each class, five different instances were generated by simply changing the seed of the
pseudorandom number generator.

For all the above instances, we ran an implementation of a primal-dual IP method,
using a standard tree preconditioner, in order to collect the data for reproducing the
matrices M at the IP iterations. Then, the different preconditioners were tested on
these matrices, and an estimate of the total time that would be spent by an IP method
if using each preconditioner is computed. This way, we ensure that for every precon-
ditioner we solve exactly the same sequence of linear systems; since the systems are

1Source code for these generators can be downloaded, e.g., at http://www.di.unipi.it/di/
groups/optimize/Data/MMCF.html; parameters for reproducing the instances are available upon
request from the authors.
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only approximately solved, the sequence of systems solved by different preconditioners
within an IP approach would in general be different, so that directly comparing the
total time spent in the solution of the linear systems during an IP method using each
given preconditioner would have been unfair. The impact of the choice of the precon-
ditioner on the overall optimization process will be analyzed in depth in a forthcoming
paper, also taking into account many important details such as the different choices
of IP algorithm (primal, dual, primal-dual) with several variants each (affine, barrier,
predictor-corrector, etc.), and the required precision in the solution of the systems.

We remark that each one of the preconditioner procedures has been carefully
implemented. In particular, during the factorization phase we have exploited as much
as possible the structure of the preconditioner in order to speed up operations. For
instance, T/T+P preconditioners have a Cholesky factor with entries in {1,−1, 0} and
where the entries in matrix D depend only on the predecessor arcs of each node; these
matrices need not be directly constructed as such, so that both the factorization phase
and the solution of the linear systems at each PCG iteration are faster in this case.
Analogously, for BCT/BCT+P preconditioners the entries in the Cholesky factor
depend only on the brothers and on the predecessor, but they do not depend on the
sons in the first level of the BCT, which leads to some simplification in the factorization
routine. Since the efficiency of these procedures is crucial, all efforts have been made
to obtain the best possible implementation for all the tested preconditioners.

We also remark that we have used an adaptive stopping rule for the PCG: the
algorithm for solving (1.2) is stopped when a vector ∆y is found such that

|di −Mi∆y| ≤ ε1 max(|bi − Eix̄|, ε2 max(|bi|, 1))

for all components i, where x̄ is the current primal solution of the IP algorithm.
It is easy to check that this stopping rule allows early termination in the initial IP
iterations, thereby improving the overall efficiency of the IP approach, by ensuring
that the PCG is stopped as soon as the system is solved with enough precision to
decrease the infeasibility of the primal solution, if it is not feasible yet, or that the
violation of the primal constraints is not worsened too much, if the primal solution is
already feasible (usually, because of cancellation of errors this is enough to keep the
primal solution feasible until termination). The tolerance ε1 is set to 0.1, while ε2 is
the relative feasibility precision required to the constraints satisfaction, typically set
to 1e-6. We have also tested the alternative “cosine” stopping rule proposed in the
literature [18], but we have found it to be less reliable from the IP viewpoint; this
is probably due to the fact that we have used a standard primal-dual IP algorithm
rather than a primal-infeasible/dual-feasible one [15].

The computational experiments were performed in three phases. In the prelim-
inary phase, a significant subset of the instances were tested with all the over 200
possible variants of preconditioners obtained by implementing the ideas presented in
sections 3 and 4 and in [8]. This allowed us to discover that certain choices were
consistently outperformed, thus reducing the set of promising preconditioners to only
eight. In the second phase these preconditioners were tested on the full set of in-
stances, in order to develop automatic rules for choosing the right preconditioner for
each instance. Finally, in the third phase we compared the performances of the code
having the automatic preconditioner selection rule with that of the corresponding
T/T+D (whichever of the two was better) preconditioner. We will report the results
of the three phases separately.
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5.1. Preliminary experiments. In the preliminary phase, we were able to
establish with a high degree of confidence the following facts:

• As already mentioned, using approximated maximum-weight spanning trees
as the basis for the heuristics is consistently the best choice.

• The T+D and BCT+D preconditioners were found to be preferable to their
“pure” counterparts for the grid and net classes, while the converse happens for
the goto problems (except in the very first iteration when Θ = Im); this basically
confirms the results reported in [10].

• When a “+D” preconditioner is used, ρ = 1 seems to be the best option in
general, at least for the classes of instances at hand.

• Working with the full rank-deficient system M is consistently better than
eliminating one row when a “+D” preconditioner is used (this is reasonable, since then
the preconditioner is nonsingular even if the whole system is not), while eliminating
the row and working with a nonsingular system is preferable if the diagonal is not
added.

• When one row (node) has to be removed from the system, the best choice
appears to be the one with the largest total weight of the set of incident arcs.

• When working with the rank-deficient system, the choice of the root node—
which impacts the heuristics for the maximum-weight BCT computation—has little
effect.

We are not reporting the tables relative to the experiments in the preliminary
phase in order to save space.

At the end of the preliminary phase, we were therefore able to decide that all
preconditioners should find the initial tree with an approximated maximum-weight
spanning tree computation. Furthermore, for goto problems we did not use the “+D”
preconditioners, and therefore we eliminated one row and worked with the full-rank
subsystem, while for grid and net problems we did use the “+D” preconditioners,
therefore working with the rank-deficient system M . The remaining choices were
about which heuristic was used for finding the BCT ((ii.a), (ii.b), (ii.c), or none, i.e.,
the tree preconditioner) and whether or not “+P” preconditioners are used, for a
grand total of eight different variants. For those we ran the code on all the instances,
obtaining the results reported in the next section.

5.2. The second phase. The complete results of the second phase are shown in
Table 5.1. There are seven groups of two columns. The first three, labeled B-a, B-b,
and B-c, report the results relative to BCT preconditioners where the BCT is found
with heuristic (ii.a), (ii.b), and (ii.c), respectively. The fourth group, labeled TP,
reports the results relative to the T+P preconditioner. Finally, the last three groups,
labeled BP-a, BP-b, and BP-c, report the results relative to BCT+P preconditioners.
For grid and net problems only, these preconditioners have to be intended as “+D”
also. All the results in the tables are normalized with respect to those obtained by
the tree preconditioner (without “+P”, and with or without “+D” according to the
problem class); that is, the numbers in the columns Iter and Time are, respectively,

Iter =
number of iterations of the corresponding preconditioner

number of iterations of the tree preconditioner

and

Time =
running time of the corresponding preconditioner

running time of the tree preconditioner

(averaged among the five instances of each class). This makes it easier to spot where
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Table 5.1

Comparison of the most promising preconditioners.

B − a B − b B − c TP BP − a BP − b BP − c

goto Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time

8.8 0.97 * 0.87 * 0.87 * 0.90 * 0.88 * 0.80 * 0.79 *

8.16 0.97 * 0.84 * 0.84 * 0.82 * 0.78 * 0.69 * 0.68 *

8.32 0.96 * 0.82 * 0.82 * 0.78 * 0.75 * 0.64 * 0.63 *

10.8 0.99 * 0.86 * 0.85 * 0.77 * 0.76 * 0.70 * 0.70 *

10.32 0.97 0.98 0.81 0.85 0.80 0.86 0.77 0.78 0.74 0.77 0.62 0.68 0.62 0.67

10.64 0.98 1.00 0.86 0.90 0.84 0.88 0.74 0.75 0.69 0.71 0.62 0.66 0.62 0.65

12.8 0.99 1.01 0.86 0.93 0.86 0.92 0.84 0.84 0.82 0.86 0.79 0.85 0.78 0.84

12.64 0.98 0.99 0.84 0.88 0.84 0.87 0.73 0.67 0.71 0.67 0.64 0.62 0.64 0.61

12.256 0.97 0.97 0.80 0.84 0.79 0.83 0.72 0.71 0.68 0.71 0.50 0.56 0.50 0.56

14.8 0.99 1.00 0.76 0.83 0.76 0.83 0.33 0.37 0.33 0.37 0.30 0.39 0.30 0.38

14.64 0.98 1.00 0.78 0.83 0.78 0.83 0.63 0.64 0.62 0.65 0.53 0.62 0.53 0.59

16.8 1.01 1.01 0.72 0.74 0.71 0.74 0.22 0.24 0.22 0.24 0.19 0.22 0.19 0.22

grid Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time

8.8 1.00 * 0.99 * 0.99 * 0.87 * 0.87 * 0.87 * 0.87 *

8.16 0.99 * 0.99 * 0.98 * 0.97 * 0.97 * 0.95 * 0.95 *

8.32 0.99 * 1.00 * 1.00 * 0.97 * 0.96 * 0.97 * 0.97 *

10.8 1.00 * 1.00 * 1.00 * 0.82 * 0.82 * 0.82 * 0.82 *

10.32 0.99 1.07 0.98 1.12 0.98 1.11 0.94 0.96 0.94 1.02 0.94 1.12 0.94 1.13

10.64 1.00 1.12 0.98 1.28 0.98 1.31 0.99 0.99 0.98 1.09 0.98 1.24 1.00 1.29

12.8 1.00 1.05 1.00 1.08 1.00 1.09 0.63 0.70 0.63 0.73 0.63 0.77 0.63 0.76

12.64 1.00 1.12 1.00 1.29 1.00 1.34 1.00 0.94 1.00 1.05 0.99 1.20 0.99 1.29

12.256 1.00 1.08 0.99 1.26 0.99 1.39 0.97 0.94 0.97 1.06 0.76 1.07 0.96 1.35

14.8 1.00 0.94 1.00 0.98 1.00 1.00 0.38 0.40 0.38 0.41 0.38 0.44 0.38 0.44

14.64 1.00 1.08 1.00 1.20 1.00 1.25 0.91 0.97 0.91 1.03 0.91 1.14 0.92 1.20

16.8 1.00 1.00 1.00 1.03 1.00 1.02 0.31 0.33 0.31 0.34 0.31 0.35 0.31 0.36

net Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time

8.8 0.99 * 1.00 * 1.00 * 1.00 * 1.00 * 1.00 * 1.00 *

8.16 1.00 * 0.99 * 0.98 * 1.00 * 1.00 * 0.99 * 0.99 *

8.32 1.00 * 1.00 * 1.01 * 1.00 * 1.00 * 1.00 * 1.00 *

10.8 0.99 * 0.99 * 0.99 * 1.00 * 0.99 * 0.99 * 0.99 *

10.32 1.00 1.08 1.00 1.15 1.00 1.17 1.00 1.09 1.00 1.14 1.00 1.19 0.99 1.19

10.64 0.99 1.04 1.00 1.15 1.01 1.21 1.00 0.94 0.99 1.02 1.00 1.12 1.00 1.11

12.8 1.05 1.05 1.00 1.09 1.00 1.09 0.99 1.00 1.03 1.06 1.02 1.14 1.02 1.13

12.64 1.00 1.11 1.00 1.19 1.00 1.25 1.00 1.02 0.99 1.16 0.99 1.21 0.99 1.28

12.256 0.99 1.13 0.99 1.27 0.99 1.35 1.00 1.01 0.99 1.18 0.99 1.33 0.99 1.36

14.8 1.00 0.94 1.00 1.02 1.00 1.11 1.00 1.11 1.00 1.06 1.00 1.13 1.00 1.17

14.64 1.00 1.05 1.00 1.15 1.00 1.19 1.00 0.97 1.00 1.06 1.00 1.16 1.00 1.22

16.8 1.00 1.06 1.00 1.13 1.00 1.15 1.00 1.01 1.00 1.06 1.00 1.13 1.00 1.16

the new preconditioners improve upon the known ones (entries < 1), and it highlights
some interesting trends, as we will see later on. However, for the smaller instances
we elected not to report running times, as each system was timed separately, and the
time required to solve one system was too near to the precision of the timing routines,
and therefore too affected by errors, to be significant.

We will now comment on the results for the three classes of problems separately.

goto instances. For these instances, the new preconditioners are quite competi-
tive with the tree one, obtaining, when parallel arcs are added, improvements of up
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Table 5.2

More detailed results for 10.32 instances.

goto 10.32 grid 10.32 net 10.32

T B-b TP BP-b T B-b TP BP-b T B-b TP BP-b

0 729 0.78 0.37 0.26 12 0.95 0.95 0.95 10 1.00 0.98 1.00

1 95 0.78 0.85 0.69 10 0.98 0.96 0.96 11 0.98 1.00 0.98

k/4 77 0.81 0.77 0.62 11 1.00 0.98 0.98 11 1.00 0.98 0.98

k/2 47 0.82 0.86 0.68 16 0.98 0.94 0.93 15 1.00 1.00 1.00

3k/4 27 0.87 0.92 0.80 14 0.99 0.94 0.93 15 1.00 1.00 1.00

k-1 16 0.95 1.00 0.92 7 1.00 0.85 0.85 7 1.00 1.00 1.00

k 16 0.95 1.00 0.92 3 1.00 0.87 0.87 3 1.00 1.00 1.00

to a factor of five in iterations count, and only slightly less so in time. Among BCT
preconditioners, the more complex heuristics (ii.b) and (ii.c) clearly outperform the
simpler (ii.a), with the most complex one, (ii.c), oftentimes slightly outperforming
(ii.b). There does not seem to be a clear trend regarding graph density, with denser
graphs sometimes benefiting more and other times benefiting less from BCT precon-
ditioners than sparse ones; however, there is a clear positive trend with graph size, in
that larger problems benefit most from BCT preconditioners.

grid instances. Even for these instances, enriching the support graph by adding
more arcs turns out to be in general a good strategy; this time, however, it is the
addition of parallel arcs that makes up the largest part of the improvement. In
fact, although improvements of up to a factor of three are still obtained, the T+P
preconditioner is the most competitive one. BCT preconditioners often obtain smaller
iteration counts than the corresponding tree one, but only slightly so, and this does
not pay for the extra cost of finding the preconditioner. Among BCT preconditioners,
the more complex heuristics (ii.b) and (ii.c) fail, on this class of instances, to obtain
more than minor improvements with respect to the simpler (ii.a), so that the most
complex one, (ii.c), is usually the slowest one. The same positive trend with graph
size as in the goto case shows up; this time, however, there appears to be something
of a more defined trend with density, too, as improvements tend to be more consistent
for problems on sparser graphs.

net instances. For this class of instances, the new preconditioners are not compet-
itive with the tree one. Although enriching the support graph fairly often decreases
the iterations count, the decrease is always minimal, and adding parallel arcs does not
help; for these instances, all the mechanisms for enriching the support graph actually
increase the total running time required for solving the systems.

In order to better understand the behavior of the preconditioners, it is worth-
while to examine some of the results in greater detail. In Table 5.2 we report some
data about the number of iterations required to solve problems of the same size (the
class 10.32) generated by the three different generators. For each generator, we re-
port seven rows corresponding to the systems solved at IP iterations 0, 1, k/4, k/2,
3k/4, k− 1, and k, where k is the index of the last iteration; this is a significant sam-
ple of the matrices generated during the IP algorithm. In particular, the systems of
iteration 0 are those solved to find an initial interior solution, for which Θ = Im (i.e.,
M = EET [7]). For each generator, the column T reports the number of PCG itera-
tions required for solving the system using the tree preconditioner, while the columns
TP, B-b, and BP-b have the same meaning as the columns Iter in the corresponding
sections of Table 5.1.
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Table 5.3

Number of arcs added to the support graph.

T B − a B − b B − c

goto #TP #B #BP #B #BP #B #BP

0 927 2 0 410 8 410 8

1 927 2 0 384 8 384 8

k/4 843 54 14 385 33 385 33

k/2 724 86 27 370 72 371 73

3k/4 722 88 26 368 72 369 73

k − 1 721 87 26 367 70 367 70

k 721 84 26 354 69 354 69

grid #TP #B #BP #B #BP #B #BP

0 15 5 2 13 6 13 6

1 401 96 35 145 53 188 67

k/4 569 5 1 14 3 14 3

k/2 546 5 1 12 3 12 3

3k/4 544 5 2 13 3 13 3

k − 1 528 2 1 6 2 6 2

k 498 0 0 1 0 1 0

net #TP #B #BP #B #BP #B #BP

0 5 29 0 41 0 41 0

1 4 8 0 24 0 24 0

k/4 4 9 0 23 0 23 0

k/2 6 9 0 20 0 20 0

3k/4 6 11 0 20 0 20 0

k − 1 6 7 0 13 0 13 0

k 5 4 0 8 0 8 0

The results show that the systems corresponding to goto instances are consider-
ably more difficult to solve than those corresponding to either grid or net instances.
The effect of the BCT preconditioner on goto instances is larger in the first iterations,
where the tree preconditioner is less effective, and diminishes as the IP algorithm pro-
ceeds; for grid and net instances the effect is very limited across the board, and no
clear trend emerges. The effect of the “+P” variant is less easy to characterize, with a
decreasing trend showing up for goto instances and no clear trend emerging for grid
instances. It is, however, interesting to note that, for the goto instances, in the very
final iterations of the IP algorithm the “+P” variant alone does not seem to produce
any improvement to the tree preconditioner, while it is capable of helping out, albeit
slightly, the BCT one.

The above results can be better understood by looking at Table 5.3, where the
number of arcs added to the spanning tree in the different variants of preconditioners is
reported. In the table, the three groups of two columns labeled B−a, B−b, and B−c
correspond to the heuristics (ii.a), (ii.b), and (ii.c), respectively, for the maximum-
weight BCT computation. In each group, the column #B reports the number of arcs
in the second level of the BCT found by the heuristic, and the column #BP reports
the number of arcs “parallel” to those in the second level of the BCT. Finally, the
column #TP reports the number of arcs “parallel” to those of the original spanning
tree. The table shows the (averaged) results for the 10.8 instances for the three
different generators; these results can be considered typical. For each generator, we
report seven rows corresponding to the systems at the same seven “snapshots” of the
optimization process as in Table 5.2.
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These results show that the effectiveness of the new preconditioners—at least,
relative to that of the tree one—is directly related to the number of arcs that are
added to the support graph. In particular, for goto instances the heuristic (ii.a)
adds considerably fewer arcs than (ii.b) or (ii.c), and in fact it is less effective; fur-
thermore, a large number of “parallel” arcs are added to the support graph, and in
fact the corresponding preconditioners improve upon those where this is not done.
For grid instances, the BCT heuristics are not capable of adding many arcs to the
support graph (except in the second iteration), while a large number of “parallel”
arcs are added; indeed, adding parallel arcs is what makes the difference for these
instances. Finally, for net instances very few arcs are added to the support graph by
both methods, and this directly translates into the inferior performances of the new
preconditioners.

These results lead us to the following conclusions:

• Of all heuristics for finding the BCT, (ii.b) is the one that obtains the best
performances, being far more efficient than (ii.a) in adding arcs to the support graph
and only slightly less so than (ii.c), but is, however, much more costly; this confirms
that balancing the effort for finding/factoring the preconditioner with the improve-
ment in the convergence rate of the PCG is crucial.

• Enriching the support graph turns out to be a good strategy for those prob-
lems that are not easily solved by the tree preconditioner, whereas it is less useful for
systems that are already very efficiently solved by the tree preconditioner.

• The relative efficiency of the new subgraph-based preconditioners with re-
spect to the tree one is well predicted by the number of arcs added to the spanning
tree; this has been confirmed by the analysis of data for all the instances, which we
do not report here to save space.

5.3. Final results. Given the results of the previous section, we have tested the
effect of an automatic rule for choosing the preconditioner. Sticking to heuristic (ii.b)
for finding the BCT, we initially start by using both BCT and “+P” preconditioners.
The number of arcs added to the support graph S by both operations are counted; if
this number is larger than a fixed threshold, the preconditioner actually includes those
arcs; otherwise the operation is disabled in that and all the following IP iterations.
This choice is motivated by the fact that the tree preconditioner becomes more and
more efficient as the IP algorithm proceeds; hence if adding arcs to the support graph
is not likely to help at a given iteration, it is somewhat unlikely that is it going to
help later. Permanently disabling the rule is simple and has the advantage of avoiding
the cost for finding a BCT and/or parallel arcs that are not going to be used (the
cost for factoring MS is not paid anyway because the decision is taken before the
factorization).

The analysis of the obtained results has shown that reasonable thresholds are 45%
for the BCT and 10% for “+P”; that is, using the BCT is disabled if it does not add
at least as many as 0.45(n− 1) arcs, and using parallel arcs is disabled if it does not
add at least as many as 0.10(n− 1) arcs. These thresholds appear to work well for all
three classes of instances.

The results of using these rules are shown in Table 5.4; as for the previous tables,
the results are relative to those obtained by the tree preconditioner (“+ D” or not,
according to the class of instances).

The table shows that the rules are, at least in these instances, capable of choosing
the right preconditioner at the right time. Most often the chosen preconditioner is
always the same for all the IP iterations, but in some cases a switch happens during
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Table 5.4

Results with the automatic selection rule.

goto grid net

Iter Time Iter Time Iter Time

8.8 0.80 * 0.87 * 1.00 *

8.16 0.69 * 0.97 * 1.00 *

8.32 0.64 * 0.97 * 1.00 *

10.8 0.70 0.84 0.82 0.90 1.00 1.00

10.32 0.62 0.68 0.94 0.96 1.00 1.00

10.64 0.62 0.66 0.99 0.99 1.00 0.99

12.8 0.79 0.85 0.63 0.70 1.00 1.00

12.64 0.64 0.62 1.00 0.97 1.00 1.00

12.256 0.50 0.56 0.97 0.94 1.00 1.00

14.8 0.30 0.39 0.38 0.40 1.00 1.00

14.64 0.53 0.59 0.91 0.97 1.00 1.00

16.8 0.19 0.22 0.31 0.33 1.00 1.00

the optimization process which may modify the running time w.r.t. the case where
the same preconditioner is used throughout the IP algorithm, either decreasing it (as
for goto 14.64 and net 10.64) or increasing it (as for grid 12.64) but always by a
relatively small amount. More sophisticated selection rules may further improve the
results, but the obtained ones already show that BCT preconditioners, if carefully
implemented and paired with appropriate automatic selection rules, can effectively
complement tree preconditioners as a solution tool for the linear systems arising in
IP methods for MCF problems.

6. Conclusion and directions for future work. We have proposed a new
family of subgraph-based preconditioners for the solution of the KKT systems arising
in the solution of MCF problems through IP methods. For some families of instances,
these preconditioners improve on those known in the literature both in iterations
count and total time. Also, the new family of preconditioners offers some flexibility
in the way to select the subgraph, thereby allowing us to tune the trade-off between
the cost of computing and using the preconditioner and the corresponding reduction
in the number of PCG iterations. Therefore, we believe that our new preconditioners
can be a valuable tool for constructing efficient IP algorithms for MCF problems.
Furthermore, they may find broader application for the solution of linear systems
with M-matrices [3].

Further work along this line of research will involve perfecting our implementa-
tion of an IP method for MCF problems and testing it against efficient MCF codes
from the literature; the results will be presented in a forthcoming paper, where all
the issues relative to the effectiveness of the different variants of preconditioners for
different IP algorithms will be discussed. Also, other fast heuristics for the maximum-
weight BCT problem will be tested, trying to find an optimal compromise between
the quality of the BCT found and the extra cost involved in finding it; that is a
critical parameter for the overall efficiency of the approach. Finally, theoretical in-
vestigations on the class of BCT graphs may pay off in terms of better heuristics,
characterization of some classes of graphs where “large” BCTs can be easily found,
and a better understanding of the complexity class of the maximum-weight BCT
computation.
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