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Abstract. Under mild assumptions that are satisfied for many network
design models, we show that the Lagrangian dual obtained by relaxing
the flow constraints is what we call “quasi-separable.” This property im-
plies that the Dantzig-Wolfe (DW) reformulation of the Lagrangian dual
exhibits two sets of convex combination constraints, one in terms of the
design variables and the other in terms of the flow variables, the latter
being linked to the design variables. We compare the quasi-separable
DW reformulation to the standard disaggregated DW reformulation. We
illustrate the concepts on a particular case, the budget-constrained mul-
ticommodity capacitated unsplittable network design problem.

Keywords: Lagrangian relaxation, Dantzig-Wolfe reformulations, net-
work design

1 Introduction

We consider a large class of network design models that can be represented by
the following generic mixed-integer linear program (MILP), denoted (ND) [1]:

v(ND) = min cx+ fy (1)

Ax = b (2)

Dx+ Ey ≥ g (3)

Hy ≥ p (4)

x ∈ X ⊂ Rn
+ (5)

y ∈ Y ⊂ Zm
+ (6)

where v(M) denotes the optimal value of any model (M) and the rational vectors
b, c, f , g, p and rational matrices A, D, E, H have appropriate dimensions. The
sets X and Y are the domains of the flow variables x and the design variables y,
respectively. We assume the two sets are bounded and defined by three types of
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constraints: integer-valued bounds on individual variables; simplex constraints
on subsets of the variables, which may be included in the definition of Y, but
not in that of X ; integrality constraints, which are included in the definition of
Y, but not necessarily in that of X . When integrality constraints are relaxed, we
denote the corresponding domains of variables X and Y.

We call (2) the flow constraints, (3) the linking constraints and (4) the design
constraints. To analyse these constraints, we introduce the corresponding sets
QF = { (x, y) ∈ X × Y |Ax = b }, QL = { (x, y) ∈ X × Y |Dx + Ey ≥ g },
and QD = { (x, y) ∈ X ×Y |Hy ≥ p }. The associated linear programming (LP)
relaxation polyhedra, obtained by substituting X with X and Y with Y, will
be denoted respectively with PF , PL, and PD. Note that sets QF and QD (PF

and PD) are defined on all the space, but in fact only concern a subset of the
variables; we will therefore denote by Qx

F ⊂ Rn
+ and Qy

D ⊂ Zm
+ (and similarly

for the continuous relaxation) their projection on the set of relevant variables.
Many solution methods for network design models that can be cast as special

cases of (ND) rely on Lagrangian relaxation strategies. These consist in relaxing,
in a Lagrangian way, either the linking constraints (3) [2,3] or the flow constraints
(2) [2,4,5,6,7]. These strategies give rise to two Lagrangian dual programs: the
linking relaxation dual, noted (LDL), and the flow relaxation dual, noted (LDF ),
respectively.

In (LDL), relaxing the linking constraints (3) yields a Lagrangian relax-
ation that can be decomposed into two independent subproblems: one in the
x variables, and one in the y ones. Hence, the bound strength of (LDL) can
be estimated using the primal interpretation of Lagrangian duality: the general
result of [8] reads

v(LDL) = min{ cx+ fy | (x, y) ∈ PL ∩ conv(QF ∩QD) }
= min{ cx+ fy | (x, y) ∈ PL ∩ conv(QF ) ∩ conv(QD) }
= min{ cx+ fy | (x, y) ∈ PL , x ∈ conv(Qx

F ) , y ∈ conv(Qy
D) } ,

where conv(C) denotes the convex hull of the set C. Since the Lagrangian relax-
ation is separable in two independent problems, we can write down its Dantzig-
Wolfe (DW) reformulation using two sets of convex combination constraints.
That is, being {xs }s∈S and { yt }t∈T the sets of extreme points of conv(Qx

F )
and conv(Qy

D), respectively, one has the following explicit form

v(LDL) = min cx+ fy (1)

Dx+ Ey ≥ g (3)

x =
∑

s∈S λ
sxs ,

∑
s∈S λ

s = 1 , λ ≥ 0 (7)

y =
∑

t∈T γ
tyt ,

∑
t∈T γ

t = 1 , γ ≥ 0 (8)

The second strategy, that of relaxing the flow constraints (2), does not yield
a separable Lagrangian relaxation. That is, for the corresponding Lagrangian
dual (LDF ) one has

v(LDF ) = min{ cx+ fy | (x, y) ∈ PF ∩ conv(QL ∩QD) }
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and the relevant set is {(xr, yr)}r∈R, containing the extreme points of conv(QL∩
QD), which yields the DW reformulation

v(LDF ) = min cx+ fy (1)

Ax = b (2)

(x, y) =
∑

r∈R θ
r(xr, yr) ,

∑
r∈R θ

r = 1 , θ ≥ 0 (9)

In Section 2, we show that, under mild assumptions that are satisfied for many
network design models, (LDF ) can be reformulated in an “almost” separable
form, which we call quasi-separable. Then, in Section 3 we compare the quasi-
separable DW reformulation to a disaggregated DW reformulation, which we
define. Finally, in Section 4 we illustrate our results on a special case of (ND),
the budget-constrained multicommodity capacitated unsplittable network design
problem (BMCUND).

2 Quasi-Separable Lagrangian Dual

To derive the quasi-separable DW reformulation of (LDF ), we recall recently
published results [1] concerning the Lagrangian subproblem associated with the
relaxation of the flow constraints. If we denote by π the (unrestricted) Lagrange
multipliers associated with the flow constraints (2), and with c = c − π, the
Lagrangian relaxation can be written as

v(LRc
F ) = min

{
cx+ fy | (x, y) ∈ X × Y , Dx+ Ey ≥ g , Hy ≥ p

}
.

Using a Benders’ decomposition strategy, we consider y as “complicating” vari-
ables and define the Benders subproblem

v(BSc(y)) = min{ cx |x ∈ QL(y) }

where QL(y) = {x ∈ X |Dx ≥ g − Ey }; hence, the Lagrangian relaxation can
be rewritten as

v(LRc
F ) = min

{
fy + v(BSc(y)) | y ∈ Qy

D

}
.

The following assumption holds for many network design models where y are
binary variables.

Assumption QS. [1] v(BSc(y)) can be written as a linear function of y ∈ Y:
for any cost vector c, there exists a cost vector wc such that v(BSc(y)) = wcy.

The following proposition, due to [1], shows that Assumption QS allows to de-
compose the Lagrangian relaxation by optimizing first over x ∈ QL(y), then over
y ∈ Qy

D, giving rise to a quasi-separable Lagrangian dual.

Proposition 1. [1] Under Assumption QS, it holds

conv(QL ∩QD) = conv(QL) ∩ conv(QD) .
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Proof. We prove that, however chosen cost vectors c and f̄ , minimizing them
over the two sets yields the same result. In fact

min
(x,y)∈conv(QL∩QD)

cx+ f̄y = min
(x,y)∈QL∩QD

cx+ f̄y = min
y∈Qy

D

f̄y + v(BSc(y))

= min
y∈Qy

D

(f̄ + wc)y = min
y∈conv(Qy

D)
(f̄ + wc)y

= min
y∈conv(Qy

D)

(
f̄y + min

x∈QL(y)
cx
)

= min
y∈conv(Qy

D)

(
f̄y + min

x∈conv(QL(y))
cx
)

= min
y∈conv(Qy

D)

(
min

(x,y)∈conv(QL)
cx+ f̄y

)
= min

(x,y)∈conv(QL)∩conv(QD)
cx+ f̄y .

Corollary 1. Under Assumption QS, it holds

v(LDF ) = min
y∈conv(Qy

D)

(
fy + min

x∈Px
F∩conv(QL(y))

cx
)
.

The next proposition gives sufficient conditions for a model of the form (ND)
to satisfy Assumption QS.

Proposition 2. Consider any model (ND) such that, for some set J , both Y
and X decompose over J , i.e., Y = ×j∈J Yj and X = ×j∈J X j. Thus, x =

[xj ]j∈J and y = [ yj ]j∈J . Let I(j) be the set of indices of the variables in yj,
i.e., yj = [ yi ]i∈I(j), and I = ∪j∈JI(i). If

1. Yj = { yj ∈ { 0 , 1 }|I(j)| |
∑

i∈I(j) yi ≤ 1 };
2. QL(y) decomposes over J : QL(y) = ×j∈J{xj ∈ X j |Djxj ≤ Ejyj } for

rational matrices Dj ≥ 0 and Ej ≥ 0 of appropriate dimensions;

then model (ND) satisfies Assumption QS.

Proof. Under the assumptions, we can write the Benders subproblem as

v(BSc(y)) =
∑

j∈J min
{
cjx

j |xj ∈ X j , Djxj ≤ Ejyj
}
.

For each j ∈ J , if yj = 0 then the unique solution is xj = 0. Otherwise, let
i ∈ I(j) be unique index of the nonzero variable in yj : then, xj can be obtained
by solving

wc
i = min

{
cjx

j |xj ∈ X j , Djxj ≤ ei
}

where ei is the column of Ej corresponding to yi. Note that this problem is
feasible, as xj = 0 is a solution, and bounded, since X j is bounded. Thus,
v(BSc(y)) =

∑
i∈I w

c
i yi, and Assumption QS is satisfied. ut
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Using the same notation as in the proof of Proposition 2, we define for each
i ∈ I

Qx
L(i) =

{
xj ∈ X j |Djxj ≤ ei

}
where j is the unique index such that i ∈ I(j) (this should be denoted by “j(i)”,
but we will avoid it whenever i is clear from the context, as we will use yji for yi
only if necessary). We then denote as {xj,s }s∈S(i) the set of extreme points of
conv(Qx

L(i)).

Proposition 3. Under the assumptions of Proposition 2, we have

conv(QL(y)) =×
j∈J

xj ∈ X j

∣∣∣∣∣∣
xj =

∑
i∈I(j)

∑
s∈S(i) ω

sxj,s

yi =
∑

s∈S(i) ω
s i ∈ I(j)

ωs ≥ 0 i ∈ I(j) , s ∈ S(i)


Proof. Due to the assumptions we have

conv(QL(y)) =×j∈J
{
{ 0 } ∪

⋃
i∈I(j) conv(Qx

L(i))
}
.

Clearly, we only need to discuss each j ∈ J (with the corresponding yj and xj)
separately. Consider any

xj =
∑

i∈I(j)
∑

s∈S(i) ω
sxj,s .

If yj = 0, then xj = 0. Otherwise, let i be the unique index in I(j) such that
yi = 1. Clearly, yh = 0 for h ∈ I(j) \ { i }; therefore, ωs = 0 for all s ∈ S(h).
Consequently ∑

s∈S(i) ω
sxj,s = xj ∈ conv(Qx

L(i))

which implies the result. ut

With the same notation as in Section 1, we can now write the quasi-separable
DW reformulation of the flow relaxation dual:

v(LDF ) = min cx+ fy (1)

Ax = b (2)

y =
∑

t∈T γ
tyt ,

∑
t∈T γ

t = 1 , γ ≥ 0 (8)

xj =
∑

i∈I(j)
∑

s∈S(i) ω
sxj,s j ∈ J (10)

yi =
∑

s∈S(i) ω
s i ∈ I (11)

ωs ≥ 0 i ∈ I , s ∈ S(i) (12)

This DW reformulation corresponds to the expression of (LDF ) given by Corol-
lary 1. Indeed, constraints (8) correspond to y ∈ conv(Qy

D), constraints (2) cor-
respond to x ∈ Px

F , and, by Proposition 3, constraints (10)–(12) correspond to
x ∈ conv(Qx

L(y)). The quasi-separable DW reformulation relies on the fact that
the Benders subproblem derived from the Lagrangian subproblem decomposes
by j ∈ J . As such, it bears close resemblance to a disaggregated DW refor-
mulation that could be derived from the Lagrangian relaxation of constraints
(2) and (4). Next, we compare these two reformulations, showing that they are
essentially the same when PD is an integral polyhedron.



6 Frangioni et al.

3 Comparison with Disaggregated DW Reformulation

The disaggregated DW reformulation is obtained by relaxing in a Lagrangian
way both the flow constraints (2) and the design constraints (4). The result-
ing Lagrangian subproblem decomposes by j ∈ J , i.e., its feasible domain is

×j∈J QL(j), where

QL(j) =
{

(xj , yj) ∈ X j × Yj |Djxj ≤ Ejyj
}
.

The disaggregated DW reformulation of the corresponding Lagrangian dual,
called the flow-design relaxation dual and denoted (LDFD), can then be writ-
ten as follows, where { (xj,r , yj,r ) }r∈Rj are the extreme points of conv(QL(j))
excluding ( 0 , 0 ):

v(LDFD) = min cx+ fy (1)

Ax = b (2)

Hy ≥ p (4)

xj =
∑

r∈Rj θj,rxj,r j ∈ J (13)

yj =
∑

r∈Rj θj,ryj,r j ∈ J (14)∑
r∈Rj θj,r ≤ 1 , θj ≥ 0 j ∈ J (15)

Note that, for any j ∈ J , there is a one-to-one correspondence between the ex-
treme points { (xj,r , yj,r ) }r∈Rj of conv(QL(j)) \ { ( 0 , 0 ) } and the extreme
points {xj,s }s∈S(i) of conv(Qx

L(i)) for some i ∈ I(j). Indeed, for each s ∈
∪i∈I(j)S(i), there exists a unique r ∈ Rj such that xj,r = xj,s and yi = 1.
We denote as r = r(s) this unique index.

In general, we have v(LDF ) ≥ v(LDFD) and the inequality can be strict
if conv(QD) ⊂ PD. However, if PD is an integral polyhedron, then v(LDF ) =
v(LDFD). In fact, the next proposition show that when conv(QD) = PD the
quasi-separable and disaggregated DW reformulations are essentially identical.

Proposition 4. If PD is an integral polyhedron, then there is a one-to-one cor-
respondence between the solutions of the quasi-separable and disaggregated DW
reformulations, given by

θj,ryj,ri = ωs for j ∈ J , i ∈ I(j) , s ∈ S(i) , r = r(s) . (16)

Proof. The objective functions and the flow constraints are the same in the two
models. In addition, since PD is an integral polyhedron, (8) are equivalent to
(4). Because of (16), nonnegativity constraints (12) and (15) are equivalent. For
any j ∈ J , the identity

∑
i∈I(j) y

j,r
i = 1 is true for all r ∈ Rj , hence:

1. (10) and (13) are identical, since

xj =
∑

r∈Rj θj,rxj,r =
∑

i∈I(j)
∑

r∈Rj θj,ry
j,r
i xj,r =

∑
i∈I(j)

∑
s∈S(i) ω

sxj,s .

2. (11) and (14) are identical, since yi =
∑

r∈Rj θj,ry
j,r
i =

∑
s∈S(i) ω

s.
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3. (15) is implied by (11) and the definition of Y:∑
r∈Rj θj,r =

∑
i∈I(j)

∑
r∈Rj θj,ry

j,r
i =

∑
i∈I(j)

∑
s∈S(i) ω

s =
∑

i∈I(j) yi ≤ 1 .

This concludes the proof. ut

This proposition implies that the quasi-separable DW reformulation really
brings something more than the disaggregated DW reformulation only for prob-
lems where PD is not an integral polyhedron. In the next section we present
such a problem.

4 Illustration with the BMCUND

The Budget-Constrained Multicommodity Capacitated Unsplittable Network
Design problem (BMCUND) is defined on a directed graph G = (N, J), where
N is the set of nodes and J is the set of arcs. For each node n ∈ N we define the
sets of outgoing and incoming arcs, J+

n and J−n , respectively. Each commodity
k ∈ K corresponds to an origin–destination pair such that dk units of flow must
travel between the origin O(k) and the destination D(k) using a single path; this
is why the problem is termed unsplittable, to distinguish it from the splittable
variant where the flow of each commodity can be split among several paths.
There is a limited budget M on the global investment costs to select the arcs
to be used, where using arc j ∈ J incurs a fixed cost f j ≥ 0 and provides a
capacity uj > 0. The objective function to be minimized are the routing costs
cjk ≥ 0 for each unit of commodity k ∈ K through arc j ∈ J . We introduce two

sets of variables to model the problem: xjk is 1 if the demand dk of commodity
k flows on arc j, and 0, otherwise; yj is 1, if arc j is used, and 0, otherwise. The
model is then written as follows:

v(BND) = min
∑

j∈J
∑

k∈K dkc
j
kx

j
k (17)∑

j∈J+
n
xjk −

∑
j∈J−

n
xjk = bnk n ∈ N , k ∈ K (18)∑

k∈K dkx
j
k ≤ ujyj j ∈ J (19)

xjk ≤ y
j j ∈ J , k ∈ K (20)∑

j∈J f
jyj ≤M (21)

xjk ∈ { 0 , 1 } j ∈ J , k ∈ K (22)

yj ∈ { 0 , 1 } j ∈ J (23)

where bnk is the supply of node n for commodity k, i.e., 1 for n = O(k), −1 for
n = D(k), and 0 otherwise. This model is a special case of (ND) for which the
sets are defined as X = {x = [xjk ]j∈J,k∈K | (22) }, Y = { y = [ yj ]j∈J | (23) },
Qx

F = {x ∈ X | (18) },QL = { (x, y) ∈ X×Y | (19) , (20) },Qy
D = { y ∈ Y | (21)},

and I = J . Relaxing the flow constraints in a Lagrangian way yields

min
{ ∑

j∈J
∑

k∈K cjkx
j
k | (x, y) ∈ QL ∩QD

}
,
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where cjk = dkc
j
k + π

t(j)
k − πh(j)

k , πn
k are the Lagrange multipliers, and h(j) and

t(j) are the head and the tail of arc j, respectively. The Benders subproblem
(BSc(y)) decomposes by arcs: for each j ∈ J , if yj = 0, we obtain the trivial
solution where all variables take value 0. If yj = 1 instead, a 0–1 knapsack
subproblem must be solved. Let x̃j be the solution, with optimal value wc

j : if

wc
j < 0, then ( x̃j , 1 ) is the optimal solution, otherwise the all-0 solution is

optimal. This shows that

v(BSc(y)) = min{ cx |x ∈ Qx
L(y) } =

∑
j∈J w

c
jy

j = wcy ,

i.e., Assumption QS is satisfied. Note that the assumption is also verified for
the splittable version of the problem, which is analogous save that a continuous
(rather than a 0–1) knapsack problem must be solved to compute wc

j .
Before presenting the DW reformulations of (LDF ), we note that the flow

relaxation dual dominates both the linking relaxation dual (LDL) and the flow-
design relaxation dual (LDFD). Indeed, PF is an integral polyhedron, which
implies that

v(LDL) = min{ cx | (x, y) ∈ conv(QF ) ∩ PL ∩ conv(QD) }
= min{ cx | (x, y) ∈ PF ∩ PL ∩ conv(QD) }
≤ min{ cx | (x, y) ∈ PF ∩ conv(QL) ∩ conv(QD) }
= min{ cx | (x, y) ∈ PF ∩ conv(QL ∩QD) } = v(LDF ) .

The inequality can be strict if conv(QL) ⊂ PL, which is possible since PL is not
an integral polyhedron, as the Benders subproblem reduces to a 0–1 knapsack
problem. Also, since PD is not an integral polyhedron, we have

v(LDFD) = min{ cx | (x, y) ∈ PF ∩ conv(QL) ∩ PD }
≤ min{ cx | (x, y) ∈ PF ∩ conv(QL) ∩ conv(QD) }
= min{ cx | (x, y) ∈ PF ∩ conv(QL ∩QD) } = v(LDF ) .

The inequality can be strict if conv(QD) ⊂ PD, which is possible since QD is a
0–1 knapsack set.

We now present and contrast the two DW reformulations of LDF . With the
notation set forth in Section 1, the standard DW reformulation is:

v(LDF ) = min
∑

j∈J
∑

k∈K dkc
j
kx

j
k (17)∑

j∈J+
n
xjk −

∑
j∈J−

n
xjk = bnk n ∈ N , k ∈ K (18)

xjk =
∑

r∈R θ
rxj,rk j ∈ J , k ∈ K (24)

yj =
∑

r∈R θ
ryj,r j ∈ J (25)∑

r∈R θ
r = 1 , θ ≥ 0 (26)

It is interesting to note that constraints (25) are redundant and can be removed.
Indeed, any link between the flow and design variables is captured in the La-
grangian subproblem, since the design variables do not appear in the objective
function of the BMCUND.



Quasi-Separable Dantzig-Wolfe for Network Design 9

To derive the quasi-separable DW reformulation, we use the same notation set
forth in Section 2; note that, in this case, Qx

L(i) = {xj ∈ X j |
∑

k∈K dkx
j
k ≤ uj }

and i = j, since each of the simplices in the general treatment is actually a single
variable. Then,

v(LDF ) = min
∑

j∈J
∑

k∈K dkc
j
kx

j
k (17)∑

j∈J+
n
xjk −

∑
j∈J−

n
xjk = bnk n ∈ N , k ∈ K (18)

yj =
∑

t∈T γ
tyj,t j ∈ J (27)∑

t∈T γ
t = 1 , γ ≥ 0 (8)

xjk =
∑

s∈S(j) ω
sxj,sk j ∈ J , k ∈ K (28)

yj =
∑

s∈S(j) ω
s j ∈ J (29)

ωs ≥ 0 j ∈ J , s ∈ S(j) (30)

Note that (28) is somehow simpler than the general (10), again due to the
fact that I(j) = { j }. Compared to the standard DW reformulation, the quasi-
separable DW reformulation is larger, but has an obvious advantage when ap-
plying column generation: the same extreme point yt of conv(Qy

D) can be recom-
bined with different corresponding extreme points of conv(Qx

L(yt)), while many
more columns with the same yt, but with different x values, might be needed
to solve the standard DW reformulation. This should result in much less col-
umn generation iterations when solving the quasi-separable DW reformulation,
as already shown for disaggregated DW reformulations (e.g., [9]). Computational
results on large-scale instances of the BMCUND will soon be reported to verify
this assertion.
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