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Abstract

Any institution that disseminates data in aggregated form has the duty to ensure that individual
confidential information is not disclosed, either by not releasing data or by perturbing the released
data, while maintaining data utility. Controlled tabular adjustment (CTA) is a promising technique
of the second type where a protected table that is close to the original one in some chosen distance
is constructed. We attempt, for the first time, to solve CTA with Euclidean distances; this gives
rise to difficult Mixed Integer Quadratic Problems (MIQPs) with pairs of linked semi-continuous
variables. We provide a novel analysis of Perspective Reformulations (PRs) for this special struc-
ture; in particular, we devise a Projected PR (P2R) which is piecewise-conic but simplifies to a
(nonseparable) MIQP when the instance is symmetric. We then compare different formulations of
the CTA problem, showing that the ones based on P2R most often obtain better computational
results.

Key words: Mixed Integer Quadratic Programming, Perspective Reformulation, Data Privacy,
Statistical Disclosure Control, Tabular Data Protection, Controlled Tabular Adjustment
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1. Introduction

The most important mission of National Statistical Agencies (NSAs), and a significant mission of
several other institutions, is to provide high-quality statistical data. These data are disseminated
either in disaggregated (i.e., microdata or microfiles) or aggregated (i.e., tabular data) form. A
microdata file is a matrix of individuals by variables, where each cell provides the information of
a particular individual for some particular variable. Crossing two or more categorical variables of
the microdata file produces tabular data, either a single multiway or multidimensional table, or a
set of related tables. There are stringent requirements that no confidential or sensitive information
of any individual can be disclosed from the released data; not only this is dictated by law, but also
respondents (e.g., of a census) may be tempted to hide or change information if they suspect that
their confidential information may be released. This justifies the interest in statistical disclosure
control, i.e., the set of techniques that can be deployed to protect sensitive information. In partic-
ular, the focus of this work is on tabular data protection; seminal work on this field can be found
in [2], and the current state-of-the-art is described in the recent surveys of [25] and [6], as well as
in the monographs [27, 22].

· · · Si · · · Sj · · ·
... · · · · · · · · · · · · · · ·

ASk · · · 450M$ · · · 35M$ · · ·
... · · · · · · · · · · · · · · ·

ASl · · · 625M$ · · · 770M$ · · ·
... · · · · · · · · · · · · ...

(a)

· · · Si · · · Sj · · ·
... · · · · · · · · · · · · · · ·

ASk · · · 22 · · · 1 / 2 · · ·
... · · · · · · · · · · · · · · ·

ASl · · · 27 · · · 33 · · ·
... · · · · · · · · · · · · ...

(b)

Figure 1: Example of disclosure in tabular data: (a) turnover and (b) number of companies per
activity sector and state.

Although tabular data provide aggregated information, the publication of some cells may jeopar-
dize individual information. Consider the small example of Figure 1: if there is only one company
with activity sector ASk in state Sj , then any attacker knows the turnover of this company. For two
companies, any of them can deduce the other’s turnover, becoming an internal attacker. Clearly,
the risk in the example is due to a small number of respondents in cell (ASk,Sj). However, even if
the number of respondents was larger, there could be a disclosure risk if some companies can obtain
a tight estimator of another’s turnover (for instance by subtracting its own contribution from the
cell value). Unsafe or sensitive cells are a priori determined before the application of any tabular
data protection method, by applying some “sensitivity rules”. These rules are out of the scope of
this work; e.g., see [9, 22] for details.

Disclosure limitation techniques for tabular data are classified as perturbative if one is allowed
to add small perturbations or adjustments to released data, and as nonperturbative if released
cell values must be exact, and therefore one is only allowed to entirely eliminate cells. Clearly,
nonperturbative approaches are more rigid than perturbative ones. Furthermore, the most widely
used nonperturbative approach, cell suppression [23, 10, 4], requires the solution of large-scale
optimization problems to identify the optimal set of cells to be suppressed. It is perhaps not
surprising, therefore, that perturbative approaches are being considered as emerging technologies for
tabular data protection. In particular, Controlled Tabular Adjustment (CTA) is gaining recognition
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and acceptance among NSAs [28], as testified by the recent handbook [22] and by the fact that
it is currently used by Eurostat (Statistical Office of the European Communities) within a wider
protection scheme for tabular data [16]. Figure 1 can be used to illustrate CTA. If cell (ASk,Sj)
of table (a) is considered sensitive, with lower and upper protection levels of 5, then the published
value of this cell must be in the range (−∞, 30] ∪ [40,∞). We say that the protection sense is
“lower” or “upper” if the published value is, respectively, in (−∞, 30] or in [40,∞). The remaining
cells in the same column and row of the sensitive cell have to be accordingly adjusted to preserve
the marginal values, while minimizing the distance between the original and the released values.
Since each sensitive cell introduces a disjunctive constraint, which can be formulated by adding
one binary variable, when the number of sensitive cells is large CTA is a difficult combinatorial
optimization problem.
It is worth remarking that, while the tables of Figure 1 are two-way (two-dimensional) ones,

in general the situation can be much more complex. Tables can be classified in (i) k-dimensional
tables, which are obtained by crossing k categorical variables; (ii) hierarchical tables, or set of
tables that share some variables with hierarchical structure (e.g., “country”, “state/province”,
“city”); (iii) linked tables, the most general situation, which is a set of tables that are obtained
from the same microdata. A particularly interesting case for NSAs, which will be tested in this
work, are two-dimensional hierarchical tables that share one hierarchical variable (e.g., tables that
show the turnover crossing “activity sector” by “country”, “activity sector” by “state/province”,
and “activity sector” by “city”). These are named one-hierarchical two-dimensional tables (or
1H2D for short), and their relations can be represented as a tree of tables. However, table relations
for any type of table are represented by linear constraints, where the sum of the inner cells is equal
to the marginal cell; thus, the techniques developed in this paper are applicable to the most general
case (linked tables) as well.
In all previous works on CTA, the L1 or Manhattan norm has been used to measure the distance

between the original and the protected published data [8, 3]. This has the advantage that CTA
can then be formulated as a Mixed Integer Linear Problem (MILP) with a number of variables and
constraints that is linear in the size of the table, and whose solution can therefore be attempted
with general-purpose MILP solvers. By contrast, formulations of the cell suppression problem
are much larger and typically require the application of specialized approaches such as Benders
decomposition. This is not to say that CTA, even with the L1 distance, is an easy problem: for
large (1H2D) tables MILP solvers may require a long time even to provide a first feasible solution,
and therefore heuristic approaches [17] are required to provide practical solutions in a reasonable
time. It can be expected that CTA with L2 (Euclidean) distance, which results in a Mixed Integer
Quadratic Problem (MIQP), is even more difficult to solve; this is likely the reason why this work
is, to the best of our knowledge, the first one where such a feat is attempted. Yet, protecting a
table using L2 in CTA has several benefits:

• Weighting the distance between the original and the published cell value by the inverse of
the original cell value, the objective function of CTA minimizes the well-known χ2 distance
between the original and the released table, which is useful for the statistical evaluation of
the results.

• The L2 distance more evenly distributes the deviations induced by sensitive cells to other
cells. This avoids concentration of deviations in few cells, which improves the overall utility
of the published data, as measured, e.g., by the number of non-sensitive cells whose published
value is “significantly” different from the original data.

• From a computational point of view, once the binary variables are fixed (i.e., the protection
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sense is decided), the solution of the resulting continuous problem can be more efficient for
L2 than for L1 if interior-point methods are used [3]; while this holds true already for general-
purpose solvers, specialized interior-point approaches can be orders of magnitude faster than
state-of-the-art general-purpose ones [5].

On the other hand, the protected values provided by CTA with the L2 distance will likely be more
fractional than those provided by the L1 distance, which has been often observed in practice to
provide integer values even without imposing integrality constraints. Yet, this is not a significant
drawback since CTA is mainly used for “magnitude” tables which do not provide frequencies but
information about a third continuous variable (salary, net profit, turnover, . . . ) which is most often
fractional.

The main structural characteristic of MIQP formulations of CTA with the L2 distance (from now
on, simply “CTA”) is very closely related to convex separable quadratic-cost models with semicon-
tinuous variables, which are naturally formulated as in the following (fragment of) MIQP

min
{

wz2 + cy : yl ≤ z ≤ yu , y ∈ {0, 1}
}

(1)

where w > 0 and l < u. This is useful because (1) admits the Perspective Reformulation (PR)

min
{

wz2/y + cy : yl ≤ z ≤ yu , y ∈ {0, 1}
}

. (2)

Despite the weird look and the apparent ill-definiteness at y = 0, the objective function in (2) is
convex, and it actually is the convex envelope of an appropriately re-defined version of the objective
function in (1), i.e., the best possible objective function to have when the integrality constraints
y ∈ {0, 1} are relaxed to y ∈ [0, 1]. Indeed, (2) has at least two possible further reformulations
which avoid the fractional term in the objective function with the associated difficulties (nondif-
ferentiability, possible numerical problems) at y = 0: one is the Mixed Integer Second-Order Cone
Program (SOCP)

min
{

v + cy : yl ≤ z ≤ yu ,
√

wz2 + (v − y)2/4 ≤ (v + y)/2 , y ∈ {0, 1}
}

(3)

[26, 1, 19], and another is the Semi-Infinite (SI) MILP

min
{

v + cy : yl ≤ z ≤ yu , v ≥ w(2γz − γ2y) γ ∈ [l, u] , y ∈ {0, 1}
}

(4)

where γ is the index of the infinitely many linear constraints (called Perspective Cuts in [11])
whose pointwise supremum completely describes the objective function in (2). Either (3) or any
finite approximation to (4)—typically, to be iteratively refined—can be used as models of (2),
whose continuous relaxation is significantly stronger than that of (1) and that therefore is a more
convenient starting point to develop exact and approximate solution algorithms [11, 12, 19, 1, 15].
Somewhat surprisingly, the potentially very large and approximated (4) appears to be most often
preferable to the compact and exact (3) in the context of exact or approximate enumerative solution
approaches [13], likely due to the better reoptimization capabilities of simplex methods for linear
programs w.r.t. those of interior point methods for conic programs.

Yet a different approach has been recently proposed in [14] that can be applied under several
restrictive hypotheses, some (but not all) of which satisfied in our application. The idea is to recast
the continuous relaxation of (2) as the minimization over z ∈ [0, u] of the function

φ(z) = miny
{

wz2/y + cy : ly ≤ z ≤ uy , y ∈ [0, 1]
}

(5)



6.

which effectively eliminates the y variable(s) from the model. The function φ is convex, and its
closed form can be algebraically computed revealing a piecewise-quadratic function with at most
two pieces, at most one of them actually quadratic (and the other linear). When the underlying
problem has a useful structure (e.g., network flow or knapsack), the continuous relaxation of (2)
obtained in this way retains that structure, which allows to use specialized algorithms to solve it
and therefore to outperform both (3) and (4). Yet, direct application of that approach is only
possible under rather restrictive assumptions that are not satisfied in our case.

In this paper we discuss the application of Perspective Reformulation techniques to the CTA
problem. In particular, other than the standard approaches (3) and (4) we develop and test a new
reformulation partly inspired by the results of [14]. However, since our problem is different and
somewhat more complex, the “projected” version of the PR we obtain is substantially different and
trickier to use. Thus, instead of insisting in keeping the equivalence with the original formulation
we “drop the nastier pieces” and end up with an approximated reformulation, which is only as tight
as the PR in some special cases, and looser otherwise. However, this reformulation results in a
simpler (although non-separable) MIQP to be solved, and therefore it is most often preferable to
the standard ones (3) and (4); furthermore, it suggests a simple modification to the latter which
invariably improves their performances. Armed with these results we show on a large experimental
set that CTA for randomly-generated 1H2D and real-world tables of realistic sizes can most often
be solved effectively enough.
We remark that the Perspective Reformulation approach is much more widely applicable than

the simple quadratic case we consider here: it not only applies to the objective function but also
to constraints f(z) ≤ 0 that are “activated” if and only if a binary variable y is 1, f can be any
closed convex (possibly, SOCP-representable) function, z can be a vector whose feasible region can
be any bounded polyhedron; see [7, 26, 18, 11, 21] and the recent survey [20]. Thus, some of the
ideas developed here could be extendable to more complex situations.

2. Formulations of the CTA problem

Any CTA problem instance, either with one table or with any number of tables, can be represented
by the following elements:

• a set of n cells ai, i ∈ N = {1, . . . , n}, that satisfy m linear relations Aa = b (a = [ai]i∈N );
in the general case, if I| is the set of inner cells of relation j ∈ {1, . . . ,m}, and tj is the
index of the total or marginal cell of relation j, the constraint associated to this relation is
∑

i∈I|
ai − atj = 0;

• the subset S ⊆ N of indices of sensitive cells, and hence its complement U = N \ S;

• a vector of nonnegative cell weights w = [wi]i∈N ;

• finite lower and upper bounds l̄a ≤ a ≤ ūa for each cell reasonably known by any attacker;

• nonnegative lower and upper protection levels for each confidential cell i ∈ S, li and ui
respectively, such that the released values x = [xi]i∈N are considered to be safe if they satisfy

either xi ≥ ai + ui or xi ≤ ai − li for all i ∈ S . (6)

Given any weighted distance ‖ · ‖w, CTA can then be formulated as

min
{

‖x− a‖w : Ax = b , l̄a ≤ x ≤ ūa , (6)
}

(7)
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since one seeks for the released values x that are closest (in the given norm) to the true values
a, compatible with the relationships that a is known to have to satisfy, and protected according
to (6). Of course, the disjunctive constraints (6) are the difficult part of the problem, their feasible
region being nonconvex. Formulating them hence requires some nonconvex element, the simplest
one being a vector of binary variables y = [yi]i∈S ∈ {0, 1}|S|. It is also convenient to restate the
problem in terms of the deviations z = x − a from the true cell values, which therefore have to
satisfy l̄a − a = l̄ ≤ z ≤ ū = ūa − a; this gives the formulation

min
{

‖z‖w : Az = 0 , l̄ ≤ z ≤ ū , l̄i(1−yi)+uiyi ≤ zi ≤ ūiyi−li(1−yi) , yi ∈ {0, 1} i ∈ S
}

(8)

with “natural big-M constraints”. Indeed, when yi = 1 one has zi ≥ ui and thus the protection
sense is “upper”, while when yi = 0 one rather gets zi ≤ −li and thus the protection sense is
“lower”. While this formulation is correct, it would provide rather weak bounds when its continuous
relaxation is formed by replacing the integrality constraints yi ∈ {0, 1} with yi ∈ [0, 1]. The simple
example with n = 1, “empty” A, l1 = u1 = 10 and −l̄1 = ū1 = 100 shows that for y1 = 1/2 the
solution z1 = 0 is feasible to the relaxation, whose optimal value is therefore 0 while the optimal
value of the integer problem is ‖10‖w . Since weak bounds are very detrimental for the solution of
the problem via exact or approximate approaches, we aim at constructing “better” formulations of
the problem.
A first step in this direction is to introduce vectors of positive and negative deviations z+ ∈ R

n

and z− ∈ R
n, respectively, thereby redefining z = z+−z−; this allows to reformulate the disjunctive

constraints in (8) as
uiyi ≤ z+i ≤ ūiyi

li(1− yi) ≤ z−i ≤ −l̄i(1− yi)

yi ∈ {0, 1}

i ∈ S (9)

As before, when yi = 1, the constraints force ui ≤ z+i ≤ ūi and z−i = 0, thus the protection sense
is “upper”; conversely, when yi = 0 we get z+i = 0 and li ≤ z−i ≤ −l̄i, thus the protection sense
is “lower”. This alone is not enough to improve on the bounds, though: in the above example
we now have z+1 = z−1 = 5 as a feasible solution for y1 = 1/2, which still leads to a null bound.
However the advantage of this formulation is that we now have two semicontinuous variables, to
which we can hope to apply Perspective Reformulation techniques. This is not straightforward:
the two semicontinuous variables are governed by the same integer variable, and unlike in standard
cases—where this is possible, provided that all variables are “active” or “inactive” at the same
time—one of them is “active” if and only of the other is not. Furthermore, the objective function
is nonseparable in z+ and z−, and the convex envelope of multilinear functions, even if with only
two variables as here, is notoriously a complex object (cf. [24] and the references therein) so that
“dirty tricks” have to be used [12] in order to apply PR techniques. Thus, the next section will be
devoted to the study of the convex envelope for our particular case.

3. Perspective Reformulations of the CTA problem

In the following we will most often concentrate on a single cell i ∈ S; thus, to simplify the notation
we will consider the index i as fixed and drop it. In order to improve the lower bound provided
by the continuous relaxation, one possibility is to compute the convex envelope of the nonconvex
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function

f( z+ , z− , y ) =











w(z+ − z−)2 if u ≤ z+ ≤ ū , z− = 0 and y = 1

w(z+ − z−)2 if l ≤ z− ≤ −l̄ , z+ = 0 and y = 0

+∞ otherwise

(10)

This can be accomplished by considering two arbitrary points u ≤ z̄+ ≤ ū and l ≤ z̄− ≤ −l̄ and
computing the convex combinations of the two tuples in the epigraphical space

( z̄+, 0, 1, w(z̄+)2 ) ( 0, z̄−, 0, w(z̄−)2 ) .

In other words, taking any arbitrary convex combinator θ ∈ [0, 1] and using the shorthand f(z) =
wz2 (which also suggests how the approach can be generalized to general convex functions f), we
have

θ( z̄+ , 0 , 1 , f(z̄+) ) + (1− θ)( 0 , z̄− , 0 , f(z̄−) ) =

( θz̄+ , (1− θ)z̄− , θ , θf(z̄+) + (1− θ)f(z̄−) )

Now, identifying θ ≡ y, z+ ≡ θz̄+ and z− ≡ (1− θ)z̄− we can rewrite the above as

(

z+ , z− , y , yf

(

z+

y

)

+ (1− y)f

(

z−

1− y

) )

which finally leads to

cof( z+ , z− , y ) =







w
(

(z+)2

y
+ (z−)2

1−y
)
)

if
uy ≤ z+ ≤ ūy

l(1− y) ≤ z− ≤ −l̄(1− y)
, y ∈ [0, 1]

+∞ otherwise

and therefore to the following PR of (8):

min
∑

i∈U wi(z
+
i − z−i )

2 +
∑

i∈S wi

(

(z+i )
2/yi + (z−i )

2/(1− yi)
)

(11)

A(z+ − z−) = 0 , 0 ≤ z+ ≤ ū , 0 ≤ z− ≤ −l̄ , (9) (12)

In other words, the PR can be seen as being obtained as follows:

1. substitute (z+ − z−)2 in the objective function with (z+)2 + (z−)2, which is correct since
z+z− = 0 holds in each integer solution;

2. treat z+ and z− as two distinct semicontinuous variables with two distinct binary variables,
say y+ and y−, and apply the standard PR (2);

3. now exploit the fact that y+ + y− = 1 to replace y+ = y and y− = 1− y.

While this sequence of reformulation steps could have been devised independently (but, to the best
of our knowledge, has never had), our analysis has suggested them, as well as proved that this is
in fact the convex envelope of the fragment. Actually, the analysis suggests that one can further
improve the PR even regarding the non-sensitive cells i ∈ U . In fact, these can be considered as
sensitive cells with l = u = 0, and therefore it is clear that one could have taken

(MIQP) min
{

∑

i∈N wi

(

(z+i )
2 + (z−i )

2
)

: (12)
}
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as the original MIQP formulation of CTA, to which then directly apply steps 2. and 3. above, thus
obtaining

(PR) min
{

∑

i∈U wi

(

(z+i )
2 + (z−i )

2
)

+
∑

i∈S wi

(

(z+i )
2/yi + (z−i )

2/(1− yi)
)

: (12)
}

.

Note how (MIQP) have already improved the lower bound: for our example of Section 2 (with
w1 = 1), z+1 = z−1 = 5 and y1 = 1/2, (MIQP) gives a bound of 50 instead of 0. Yet, (PR) is
even better: for the same solution it gives a bound of 100, which (as expected) is the optimal
solution to the problem. One can then apply the standard SOCP and SI reformulation tricks to
(PR), i.e., formulae (3) and (4), to express the objective function of (PR) in terms of one SOCP
constraint/infinitely many linear constraints, respectively; we denote the two thus obtained PRs of
CTA as (SOCP) and (P/C), respectively.

Conversely, applying the projection approach of [14] following the same guidelines is not possi-
ble. The reason is that the main condition required for that to work is that the binary variable
corresponding to one semicontinuous variable only appears in the corresponding constraints (9) and
nowhere else, or, in other words, that there are no constraints directly linking the binary variables
to one another. This is clearly not the case here, as the constraint y+ + y− = 1 is crucial. In order
to extend the projection approach of [14] to CTA we then have to explicitly carry out the analysis
for our case. This is done by considering the function

g(z+, z−) = miny
{

cof( z+ , z− , y ) : y ∈ [0, 1]
}

(13)

(clearly convex, being the partial minimization of a convex function) and carrying out a case-by-
case analysis of its shape. This is significantly more complex and rather tedious, so the details are
best relegated to the Appendix. These can be summarized by the following Theorem.

Theorem 3.1. The function g(z+, z−) is piecewise-conic-quadratic with at most three pieces. If
cell i is reasonably balanced, i.e., max{ li , ui } < min{ ūi , −l̄i }, then g(z+, z−) has exactly
three pieces, the “central” one of which is

wi(z
+
i + z−i )

2 (14)

that is also the lower approximation to g(z+, z−) corresponding to the relaxation of the bounds
constraints. If, furthermore, cell i is totally symmetric, i.e., ūi = −l̄i and li = ui, then (14)
actually coincides with g(z+, z−).

It would be then possible to derive a projected model analogous to those of [14] for CTA, but the
prospects of doing so are not particularly encouraging. First of all, the corresponding model would
be a SOCP with up to three SOCP constraints for each sensitive cell; the standard formulation
(SOCP), which already has only two of them, is typically not competitive with (P/C) [13], a fact
that we directly verified to be true for CTA also. Furthermore, the rationale of [14] is to exploit
structural properties in the original problem, which are absent here for general tabular data since
the matrix A lacks exploitable characteristics.

Yet, the analysis readily suggests a workable alternative: use the model

(MIQP+) min
{

∑

i∈N wi

(

z+i + z−i
)2

: (12)
}

instead of (MIQP), (SOCP) or (P/C). This is possible since (14) is a lower approximation to
(13); furthermore, the two objective function obviously coincide on integer solutions. The model
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is clearly stronger than (MIQP); on sensitive cells its objective function is weaker than that of
(SOCP) or (P/C), unless in the totally symmetric case, in which they are equivalent. However,
on non-sensitive cells its objective function is stronger than that of (SOCP) or (P/C). Note that
the objective functions of (MIQP) and (MIQP+), on non-sensitive cells, could seem to actually be
equivalent on the constraints (12), since these can all be written in terms of z = z+ − z−. In other
words, the coefficient of z− in every constraint is always the opposite to that of z+. Hence, one
could always assume that z+z− = 0 in the optimal solution of each continuous relaxation, since if
this were not the case then one could reduce both variables at the same rate, keeping feasibility and
improving the objective function value. However, this line of reasoning fails when valid inequalities
are added to the formulation. These, typically, do not obey to the condition that the coefficients
of z+ and z− are opposite, and therefore z+z− > 0 can (and indeed does) happen. So, in terms
of strength of the continuous relaxation (and after introduction of valid inequalities) the models
(MIQP+) and (PR) are not comparable. The (MIQP+) model is somewhat simpler than (SOCP),
not requiring SOCP constraints; however, it has a nonseparable (albeit only slightly so) objective
function. It is also more compact than (P/C), which however is a separable quadratic model.
Note that, as in the previous case, there is no need to distinguish between sensitive and non-

sensitive cells: the reformulation of the objective function can be applied to either, and this actually
has—as it can be expected—positive results. Indeed, since non-sensitive cells are equivalent to
totally symmetric sensitive ones, as previously seen the analysis suggests to rather consider

(PR+) min
{

∑

i∈U wi(z
+
i + z−i )

2 +
∑

i∈S wi

(

(z+i )
2/yi + (z−i )

2/(1− yi)
)

: (12)
}

as the “starting” Perspective Relaxation. Thus, other than (MIQP), (SOCP), (P/C) and (MIQP+),
there are two further possible models: (SOCP+) and (P/C+), obtained from (PR+) exactly as
(SOCP) and (P/C) are obtained from (MIQP), respectively. Compared to (SOCP) and (P/C),
these new models have (slightly) nonseparable objective function but may provide better results.
The relative strengths and weaknesses of these six models can only be gauged computationally,
which is done in the next section.

4. Computational Tests

We performed a large computational experience to compare the six models (MIQP), (P/C), (SOCP),
(MIQP+), (P/C+), and (SOCP+). All models have been solved with Cplex 12.2 in single-
threaded mode on a computer with 2.2 GHz AMD Opteron 6174 CPUs and 32 GB of RAM,
under a GNU/Linux operating system (Ubuntu 10.10). In addition, models (MIQP), (SOCP),
(MIQP+), and (SOCP+) have been solved, for some real-world difficult instances, with Cplex

12.1 in multi-threaded mode (up to 24 parallel threads) on a computer with 3.33GHz Intel Xeon
X5680 CPUs and 144 GB of RAM, under a GNU/Linux operating system (Suse 11.4). A few
details are noteworthy:

• (SOCP) and (SOCP+) have been tested but were regularly worse than (P/C) and (P/C+),
respectively, for single-threaded executions, confirming the results of [13]; therefore, the cor-
responding results have not been reported.

• (P/C) and (P/C+) could not be considered for the multi-threaded executions, since the addi-
tion of perspective cuts deactivates the parallel capabilities of Cplex. (SOCP) and (SOCP+),
which are inefficient for single-threaded executions, allow Cplex to exploit its parallel features,
and then are recovered for the multi-threaded executions.
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• The large values of l̄i and ūi in the instances created substantial numerical problems, whereby
a variable (say z−i ) that should have been zero (say because yi = 1) actually had a “substan-
tial” nonzero value (say because 1 − yi ≈ 1e-6, and therefore −l̄i(1 − yi) was still “large”),
leading to some of the cells in the table not actually being protected. This has been solved
by setting the Cplex parameter CPX PARAM NUMERICALEMPHASIS to 1.

• The runs were performed with a time limit of 10000 seconds (wall-clock time) and requiring
a global accuracy of 0.01%.

4.1. Test instances

For our tests we have considered both synthetic hierarchical instances and real-world ones. Hierar-
chical instances were obtained with a generator of 1H2D synthetic tables [4] that was retrieved from
http://www-eio.upc.es/~jcastro/generators_csp.html. This is a relevant class of instances,
since a significant fraction of the tables released by NSAs are 1H2D. The generator produces a set
of two-dimensional subtables with hierarchical structure according to the setting of several parame-
ters, among which the mean number of rows per subtable, the number of columns per subtable, the
depth of the hierarchical tree, the percentage of sensitive cells, the minimum and maximum number
of rows with hierarchies per subtable, and the random seed. We fixed all these parameters, but
three: the mean number of rows per subtable (“r”∈ {10, 20}), the number of columns per subtable
(“c”∈ {20, 30}), and the percentage of sensitive cells (“s”∈ {3, 5, 10}). In addition, we generated
both symmetric and asymmetric instances. The former have the property that ui = li; note that in
general this does not imply ūi = −l̄i, since in many cases one have to ensure non-negativity of the
perturbed values, which usually leads to ūi > −l̄i. Asymmetric instances were instead obtained by
considering ui = a · li, “a”∈ {2, 5, 10} being the asymmetry parameter. Instances are thus named
by the particular combination of parameters used for its generation, i.e., “r-c-s” for symmetric
instances and “r-c-s-a” for asymmetric ones. For each combination of parameters we generated
5 instances varying the random generator seed, and all the reported results are averaged on these
five instances.
We also dealt with a set of real-world instances. These are a subset of public instances that have

been previously used in the literature [3, 10], and some confidential ones provided by Eurostat and
the Australian NSA. Of the available real-world instances, we selected those that are neither too
easy, i.e., solved by every model in a few seconds, nor too difficult, i.e., very large (up to millions
of cells) and such that one cannot even find the first feasible solution—and often even solve the
continuous relaxation at the root node—within the allotted timeframe. Unlike the synthetic 1H2D
instances, the real-world ones have symmetric protection levels (i.e., ui = li); as we shall see, this
turns out to be a questionable modeling choice from the computational viewpoint.

Tables 1, 2 and 3 report the characteristics of, respectively, the 1H2D symmetric, 1H2D asym-
metric, and real-world instances: the number of cells |N |, the number of sensitive cells |S|, the
number of table relations m, the number of variables and constraints in the resulting (MIQP) or
(MIQP+) models, and the percentage of pure binary variables (that are in one-to-one correspon-
dence with sensitive cells). As already mentioned, these data is averaged over the 5 instances of
the same type for synthetic tables. Note that (P/C),(P/C+), (SOCP), and (SOCP+) models have
more variables and constraints than these due to the reformulation tricks (3) and (4); in particular,
(P/C) and (P/C+) formulations in theory have infinitely many constraints, but only finitely many
ones are dynamically generated in order to approximate the objective function value of (PR) or
(PR+), respectively, with the same global accuracy required to the solution of the problem.
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Table 1: Size and properties of symmetric instances.

instance |N | |S| m vars. cons. %bin

10-20-3 2877 81 452 5835 777 1.39
10-20-5 3163 150 466 6475 1064 2.31
10-20-10 2772 262 447 5806 1495 4.51
10-30-3 4569 131 612 9270 1137 1.42
10-30-5 4185 201 600 8571 1403 2.34
10-30-10 4706 452 617 9864 2426 4.59
20-20-3 6607 188 630 13401 1381 1.40
20-20-5 6426 305 621 13157 1841 2.32
20-20-10 6212 590 611 13013 2969 4.53
20-30-3 9145 264 760 18554 1816 1.42
20-30-5 8947 431 754 18324 2478 2.35
20-30-10 9164 884 761 19211 4296 4.60

4.2. Computational Results

The computational results obtained with models (MIQP+), (P/C+), (MIQP) and (P/C) in single-
threaded executions are reported in Tables 4 and 5 for the symmetric and asymmetric 1H2D
instances, respectively. In the tables, the column “gap” reports the gap between the value of the
best feasible solution (UB) and the lower bound provided (LB) by the algorithm at termination
(i.e., gap = ( UB − LB )/ LB); this is the optimality gap “perceived” by the algorithm. The column
“pgap” reports the analogous measure, only using the best known lower bound ever computed in our
tests (on the same architecture) in place of LB; this is our best measure of the actual optimality gap
of the feasible solution produced by the algorithm, and the difference between “gap” and “pgap”
gives a sense of how much weaker the lower bound attained at termination is w.r.t. the best among
the four models. The columns “time” and “nodes” report, respectively, the total CPU time and
the number of Branch&Cut nodes expended by the algorithm.
The results show that, as it could be expected, (MIQP) attains by far the worst results. Similarly

to what has been reported several times [11, 12, 19, 1, 15, 21], the use of “standard” PR techniques,
i.e. (P/C) (and (SOCP), which is always worse) significantly improve on (MIQP) by delivering much
better lower bounds, which in turn dramatically reduce the number of required B&C nodes. Note
that typically (P/C) enumerates fewer nodes than (MIQP) in the same time, which is reasonable
since adding valid inequalities requires repeated solutions of the continuous relaxation. This is true
consistently both for symmetric and asymmetric instances.
In many cases (P/C+) is even more efficient than (P/C), showing that the trade-off between the

(slightly) non-separable objective function and the higher bound is often favorable. This is true for
all symmetric instances, and for roughly half of the asymmetric ones, in particular the smallest ones.
Furthermore, most often (MIQP+) performs better than (P/C+). This is true for all symmetric
instances, and for most of the asymmetric instances except some of those with large asymmetry
parameter, e.g., 10 30 10 5, 10 30 10 10, 20 30 10 5, and 20 30 10 10. This is consistent with our
theoretical results: (MIQP+) and (P/C+) should provide the same lower bound on fully symmetric
instances, and although this is not really the case even for our symmetric instances (cf. §4.1), it
appears that the bounds are close enough to be roughly equivalent within the B&C approach.
Indeed, the same phenomenon observed for (MIQP) and (P/C) shows off once again here: (P/C+)
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Table 2: Size and properties of asymmetric instances.

instance |N | |S| m vars. cons. %bin

10-20-3-2 2877 81 452 5835 777 1.39
10-20-3-5 3163 89 466 6414 822 1.39
10-20-3-10 2919 82 454 5920 784 1.39
10-20-5-2 3095 146 462 6337 1048 2.31
10-20-5-5 2835 134 450 5804 986 2.31
10-20-5-10 3188 151 467 6526 1070 2.31
10-20-10-2 3230 306 469 6765 1691 4.52
10-20-10-5 3146 298 465 6589 1655 4.52
10-20-10-10 3024 286 459 6334 1603 4.52
10-30-3-2 4476 129 609 9081 1124 1.42
10-30-3-5 4383 126 606 8893 1110 1.41
10-30-3-10 4452 128 609 9031 1121 1.42
10-30-5-2 4439 213 608 9091 1460 2.34
10-30-5-5 4427 212 608 9066 1457 2.34
10-30-5-10 3999 192 594 8190 1360 2.34
10-30-10-2 4334 416 605 9084 2270 4.58
10-30-10-5 4204 404 601 8811 2216 4.58
10-30-10-10 4545 437 612 9526 2359 4.59
20-20-3-2 5985 170 600 12140 1280 1.40
20-20-3-5 6556 186 627 13299 1372 1.40
20-20-3-10 6737 192 636 13665 1402 1.40
20-20-5-2 5905 280 596 12091 1717 2.32
20-20-5-5 6573 312 628 13458 1876 2.32
20-20-5-10 6409 304 620 13123 1837 2.32
20-20-10-2 6082 577 605 12740 2913 4.53
20-20-10-5 6094 578 605 12767 2919 4.53
20-20-10-10 6577 624 628 13779 3126 4.53
20-30-3-2 8804 254 749 17862 1767 1.42
20-30-3-5 9219 266 762 18705 1828 1.42
20-30-3-10 9176 265 761 18617 1822 1.42
20-30-5-2 9126 440 759 18693 2519 2.35
20-30-5-5 8661 417 744 17740 2414 2.35
20-30-5-10 8996 434 755 18426 2490 2.35
20-30-10-2 9170 884 761 19224 4298 4.60
20-30-10-5 9151 883 760 19185 4291 4.60
20-30-10-10 9033 871 756 18938 4241 4.60
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Table 3: Size and properties of real-world instances.

instance |N | |S| m vars. cons. %bin

australia ABS 24420 918 274 49758 3946 1.84
cbs 11163 2467 244 24793 10112 9.95
hier13 2020 112 3313 4152 3761 2.70
hier13x13x13a 2197 108 3549 4502 3981 2.40
hier13x13x13b 2197 108 3549 4502 3981 2.40
hier13x13x13c 2197 108 3549 4502 3981 2.40
hier13x13x13d 2197 108 3549 4502 3981 2.40
hier13x13x13e 2197 112 3549 4506 3997 2.49
hier13x13x7d 1183 75 1443 2441 1743 3.07
hier13x7x7d 637 50 525 1324 725 3.78
osorio 10201 7 202 20409 230 0.03
sbs2008 C 4212 1135 2580 9559 7120 11.87
sbs2008 E 1430 382 991 3242 2519 11.78
table7 624 17 230 1265 298 1.34
table8 1271 3 72 2545 84 0.12
targus 162 13 63 337 115 3.86

Table 4: Results for symmetric instances.

MIQP+ P/C+ MIQP P/C
instance gap pgap time nodes gap pgap time nodes gap pgap time nodes gap pgap time nodes
10-20-3 0.01 0.00 442 474 0.00 0.00 486 357 6.49 0.01 9686 10365 0.00 0.00 1331 1973
10-20-5 0.01 0.00 765 690 0.01 0.00 1016 611 67.62 0.05 10000 2649 0.16 0.00 6695 8675
10-20-10 0.01 0.01 3852 10507 2.21 0.07 7660 2676 72.75 0.14 10000 5536 12.39 0.14 10000 3230
10-30-3 0.01 0.00 1470 760 0.01 0.00 1749 457 127.03 0.02 10000 778 0.98 0.01 9070 3022
10-30-5 0.01 0.01 4850 4003 0.07 0.01 7102 4769 118.53 0.12 10000 1422 15.80 0.03 10000 1853
10-30-10 2.44 2.44 10000 3512 8.26 2.53 10000 889 128.67 2.62 10000 1619 35.30 2.54 10000 643
20-20-3 0.00 0.00 1710 260 0.00 0.00 1874 291 158.64 0.01 10000 636 17.84 0.04 8559 596
20-20-5 0.01 0.01 3543 1507 1.27 0.01 7237 1185 138.59 0.12 10000 625 12.33 0.01 8808 481
20-20-10 7.10 7.10 10000 1968 24.51 7.21 10000 504 142.82 7.60 10000 777 38.22 7.39 10000 262
20-30-3 0.40 0.40 6113 738 3.60 0.41 6800 458 138.85 0.47 10000 726 27.17 0.45 10000 379
20-30-5 7.39 7.39 8791 751 15.19 7.46 8885 379 156.73 9.37 10000 801 32.83 8.02 10000 406
20-30-10 19.92 19.92 10000 674 32.04 21.13 10000 102 153.79 23.08 10000 496 44.06 21.20 10000 56
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Table 5: Results for asymmetric instances.

MIQP+ P/C+ MIQP P/C
instance gap pgap time nodes gap pgap time nodes gap pgap time nodes gap pgap time nodes
10-20-3-2 0.00 0.00 23 9 0.00 0.00 58 1 0.01 0.00 1218 7823 0.00 0.00 106 17
10-20-3-5 0.01 0.00 19 1 0.00 0.00 82 1 0.01 0.00 322 197 0.00 0.00 111 1
10-20-3-10 0.00 0.00 15 7 0.00 0.00 55 1 0.01 0.00 270 124 0.00 0.00 78 1
10-20-5-2 0.01 0.00 58 30 0.00 0.00 119 9 0.04 0.00 10000 113601 0.00 0.00 152 32
10-20-5-5 0.01 0.00 21 15 0.00 0.00 79 1 0.01 0.00 1293 2332 0.00 0.00 81 1
10-20-5-10 0.00 0.00 20 2 0.00 0.00 106 1 0.01 0.00 1483 660 0.00 0.00 111 1
10-20-10-2 0.01 0.00 438 556 0.00 0.00 637 181 0.04 0.00 10000 67541 1.49 0.00 2904 370
10-20-10-5 0.01 0.00 4315 31344 0.00 0.00 142 1 0.08 0.00 10000 102641 0.00 0.00 142 1
10-20-10-10 0.01 0.00 416 2135 0.00 0.00 120 1 0.04 0.00 5044 26508 0.00 0.00 109 1
10-30-3-2 0.00 0.00 115 28 0.00 0.00 271 5 0.02 0.00 10000 55266 0.00 0.00 391 35
10-30-3-5 0.00 0.00 40 4 0.00 0.00 220 1 0.01 0.00 2447 1333 0.00 0.00 237 1
10-30-3-10 0.00 0.00 31 1 0.00 0.00 232 1 0.01 0.00 1468 565 0.00 0.00 258 1
10-30-5-2 0.00 0.00 193 103 0.00 0.00 377 19 0.05 0.00 10000 28721 0.00 0.00 455 72
10-30-5-5 0.01 0.00 119 39 0.00 0.00 333 1 0.01 0.00 4055 24181 0.00 0.00 258 1
10-30-5-10 0.01 0.00 63 46 0.00 0.00 207 1 0.01 0.00 1855 1104 0.00 0.00 216 1
10-30-10-2 0.01 0.00 1158 1035 0.00 0.00 1905 230 7.03 0.00 10000 27461 0.82 0.00 3066 986
10-30-10-5 0.01 0.00 6489 38818 0.00 0.00 401 1 8.53 0.00 10000 60347 0.00 0.00 311 1
10-30-10-10 0.01 0.00 4806 22519 0.00 0.00 522 1 0.09 0.00 10000 52141 0.00 0.00 372 1
20-20-3-2 0.00 0.00 136 25 0.00 0.00 393 1 0.03 0.00 10000 13721 0.00 0.00 502 9
20-20-3-5 0.01 0.00 72 1 0.00 0.00 625 1 0.01 0.00 4074 1207 0.00 0.00 691 1
20-20-3-10 0.00 0.00 76 1 0.00 0.00 574 1 2.18 0.00 5356 465 0.00 0.00 644 1
20-20-5-2 0.00 0.00 257 47 0.00 0.00 601 4 1.40 0.00 10000 14362 0.00 0.00 598 24
20-20-5-5 0.01 0.00 117 10 0.00 0.00 690 1 1.19 0.00 10000 15635 0.00 0.00 638 1
20-20-5-10 0.01 0.00 128 54 0.00 0.00 736 1 0.52 0.00 6434 2076 0.00 0.00 623 1
20-20-10-2 0.01 0.00 1448 212 0.00 0.00 2802 138 63.41 0.04 10000 1006 0.00 0.00 2525 228
20-20-10-5 0.02 0.00 9203 22462 0.00 0.00 943 1 3.40 0.00 10000 9950 0.00 0.00 634 1
20-20-10-10 0.03 0.00 7910 19421 0.00 0.00 1327 1 7.33 0.00 10000 9801 0.00 0.00 801 1
20-30-3-2 0.01 0.00 439 28 0.00 0.00 1477 1 13.94 0.00 10000 1203 0.00 0.00 1649 16
20-30-3-5 0.01 0.00 140 1 0.00 0.00 1597 1 5.39 0.00 8400 1767 0.00 0.00 1510 1
20-30-3-10 0.00 0.00 157 8 0.00 0.00 1601 1 8.34 0.00 9321 691 0.00 0.00 1547 1
20-30-5-2 0.00 0.00 777 65 0.00 0.00 2160 17 48.34 0.01 10000 612 0.00 0.00 2111 34
20-30-5-5 0.01 0.00 618 462 0.00 0.00 1800 1 19.74 0.01 10000 1692 0.00 0.00 1622 1
20-30-5-10 0.01 0.00 622 243 0.00 0.00 1988 1 2.14 0.00 9815 2623 0.00 0.00 1625 1
20-30-10-2 1.23 1.23 7575 1454 3.67 1.24 8407 297 79.80 1.39 10000 422 4.16 1.23 7705 262
20-30-10-5 0.52 0.00 10000 12890 0.00 0.00 2784 1 36.91 0.03 10000 718 0.00 0.00 1915 1
20-30-10-10 0.04 0.00 10000 17526 0.00 0.00 2619 1 27.08 0.03 10000 1441 0.00 0.00 1817 1
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Table 6: Single-threaded results for real instances.

MIQP+ P/C+ MIQP P/C
instance gap pgap time nodes gap pgap time nodes gap pgap time nodes gap pgap time nodes
australia ABS 2.29 2.29 10000 2401 8.08 3.15 10000 401 113.69 2.60 10000 1501 9.45 2.87 10000 763
cbs 1.24 0.61 10000 32281 0.77 0.77 10000 1801 96.38 1.22 10000 16400 0.77 0.74 10000 1801
hier13 24.77 24.77 10000 145 129.83 118.55 10000 15 111.65 27.21 10000 126 74.02 28.40 10000 73
hier13x13x13a 30.52 29.87 10000 123 29.87 29.87 10000 119 114.41 29.74 10000 200 55.41 29.74 10000 171
hier13x13x13b 30.54 29.88 10000 114 29.88 29.88 10000 99 114.41 29.74 10000 200 55.41 29.74 10000 171
hier13x13x13c 32.30 29.90 10000 100 29.90 29.90 10000 90 114.41 29.77 10000 197 55.41 29.77 10000 171
hier13x13x13d 0.00 0.00 3357 89 0.00 0.00 3479 78 0.00 0.00 9135 162 0.00 0.00 4960 100
hier13x13x13e 0.00 0.00 3293 149 0.00 0.00 3830 90 0.00 0.00 9887 185 0.00 0.00 5489 111
hier13x13x7d 0.01 0.01 1458 805 0.00 0.00 3052 1033 0.00 0.00 4995 4310 0.00 0.00 2928 2595
osorio 0.00 0.00 3754 255 0.00 0.00 6493 252 27.42 0.00 10000 83 0.72 0.00 10000 145
sbs2008 C 4.97 4.97 10000 33839 219.57 26.69 10000 389 49.66 5.24 10000 11332 12047.9 2594.78 10000 110
sbs2008 E 50.15 50.15 10000 401380 68.49 47.97 10000 11988 55.82 48.16 10000 507901 31.75 17.30 10000 7937
table7 0.01 0.01 0.55 1 0.00 0.00 5.74 1 0.00 0.00 76.61 12 0.00 0.00 3.86 1
table8 0.00 0.00 1.84 15 0.00 0.00 2.85 15 0.00 0.00 1.22 9 0.00 0.00 3.01 15
targus 0.01 0.00 0.16 3 0.00 0.00 0.28 13 0.01 0.00 0.21 16 0.01 0.00 0.32 3

most often enumerates less nodes than (MIQP+), which means that the (P/C+) bound is usually
somewhat stronger. However, most often (MIQP+) is faster on the instances that are solved within
10000 seconds, and it provides better gaps on the ones that stop at the time limit. This is due to
the fact that, by not requiring constraint generation to compute the (approximated) PR bound, its
time-per-node is lower.
The results show that, as it could be expected, the main driver of the difficulty of an instance is

the percentage of sensitive cells: while instances with up to 5% of sensitive cells are routinely solved
within the time limit, instances with 10% of sensitive cells are typically more difficult. However,
this is only true for symmetric instances: as the asymmetry parameter “a” grows, the instances
become easier. Indeed, almost all asymmetric instances are solved within 10000 seconds by (P/C)
and (P/C+), and values a > 2 are associated to the easiest ones. This is not unreasonable, as a
high degree of symmetry (albeit in a technically different sense) is well-known to be detrimental
for combinatorial problems. Remarkably, a trade-off shows off for (MIQP+). While that model
is almost invariably the best for a = 2, it is typically worse than (P/C+) and (P/C), often by a
relevant margin, when a > 2. Also, these are the cases where most often (P/C) bests (P/C+). This
seems to indicate that the approximation (14) of the objective function only makes sense, both for
sensitive and non-sensitive cells, only when a reasonably degree of symmetry is present (which is,
however, the most difficult case).

It should be remarked that protection levels, and therefore their (a)symmetry, are a choice of the
modeler. Indeed, in practice NSAs derive the upper protection levels ui from the sensitivity rules
[22], and, as a rule of thumb, this value is assigned to the lower protection level li, too. Since asym-
metric instances are more efficiently solved than symmetric ones, however, such a practice should
be discouraged in favor of choosing decidedly asymmetric values with any appropriate heuristic.
This will likely keep the same confidentiality protection and data usability in the disclosed tables
while making their computation more efficient.

Tables 6 and 7 show the results on the real-world instances for, respectively, single- and multi-
threaded executions. Note that the column “pgap” in each table is computed considering only
the lower bounds of the four algorithms of the table, since the others were solved on a different
computer and by a different Cplex release. As it is customary, column “time” in Table 7 reports
wall-clock time.
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Table 7: Multi-threaded results for real instances.

MIQP+ SOCP+ MIQP SOCP
instance gap pgap time nodes gap pgap time nodes gap pgap time nodes gap pgap time nodes
australia ABS 1.41 1.41 10000 30870 13.77 3.25 10000 1780 137.12 12.98 10001 9010 14.45 3.79 10001 221
cbs 1.12 0.59 10000 737465 71.70 39.80 10001 4828 94.98 1.09 10000 198867 1.00 1.00 10000 5990
hier13 0.00 0.00 4290 3185 143.47 2.99 10003 829 0.00 0.00 9403 6256 174.56 5.39 10000 0
hier13x13x13a 0.00 0.00 7038 5092 169.62 3.67 10000 0 12.15 0.00 10001 4609 169.08 1.79 10001 5308
hier13x13x13b 0.00 0.00 7018 5122 169.62 3.67 10000 0 0.00 0.00 9015 6750 167.00 0.83 10001 5866
hier13x13x13c 0.00 0.00 7165 5591 63.44 32.99 10000 0 0.00 0.00 7771 6425 172.30 3.04 10001 5910
hier13x13x13d 0.00 0.00 154 139 62.73 0.01 10000 0 0.00 0.00 409 261 109.16 0.02 10000 0
hier13x13x13e 0.00 0.00 148 169 62.73 0.01 10000 0 0.00 0.00 429 251 89.86 0.02 10000 0
hier13x13x7d 0.00 0.00 160 1704 120.07 9.71 10000 0 0.00 0.00 1258 11812 113.26 3.42 10000 0
hier13x7x7d 0.00 0.00 34.08 2029 56.28 3.99 10000 0 0.00 0.00 91.52 3801 56.74 2.33 10000 4
osorio 0.00 0.0 363 255 0.00 0.00 250 505 0.00 0.0 2439 255 0.00 0.00 224 509
sbs2008 C 2.39 2.39 10000 726715 17.37 2.82 10001 4979 4.82 2.21 10000 292576 8.09 3.20 10001 5131
sbs2008 E 39.34 0.82 10000 12640158 0.01 0.01 6097 20602 43.08 0.00 10000 13122442 184.90 2.49 10000 184041
table7 0.01 0.00 0.26 0 0.00 0.00 64.23 1283 0.00 0.00 28.31 9 0.00 0.00 73.89 1280
table8 0.00 0.00 1.52 15 0.00 0.00 10.40 15 0.00 0.00 0.96 9 0.00 0.00 9.85 15
targus 0.01 0.00 0.46 3 0.00 0.00 11.82 316 0.00 0.00 0.32 25 0.00 0.00 6.17 177

The single-threaded results in Table 6 basically confirm these on the synthetic instances: (MIQP)
is the worst model, (P/C) is significantly better, (P/C+) is usually (but not always) better yet,
(MIQP+) is (at least on our test set) invariably the best. Yet, in several cases the obtained results
can hardly be deemed satisfactory, with several gaps larger than 20%, and one as high as 50%. It
thus makes sense to investigate if the problems can be solved with reasonable precision when more
computational power is available.
The 24-threads results of Table 7 show mixed success for (SOCP) and (SOCP+); sometimes

they are better than (MIQP), sometimes worse. In general (MIQP+) is by far the best option,
as in previous tables, although it is very occasionally bested by (SOCP+) (cf. sbs2008 E, one of
the most difficult confidential instances). What is perhaps more relevant is that, coupled with
a relatively powerful—but by no means “super”—24-threads machine, (MIQP+) is capable of
providing solutions with pretty reasonable accuracy for all the real-world instances in our test bed.
The good results obtained with (MIQP+) for all the types of instances show that appropriate

modeling techniques combined with state-of-the-art, general-purpose (parallel) MIQP solvers can
provide accurate solutions to real-life (and realistic) instances within a reasonable timeframe.

5. Conclusions

This paper studies the CTA problem with L2 distance. The peculiar structure of the problem are
pairs of alternative semicontinuous variables, that is, such that exactly one of them is nonzero in
any feasible solution. Exploiting ideas from the Perspective Reformulation approach we developed
and analyzed several MIQP, SOCP, and Semi-Infinite LP strong formulations for the problem,
which provide different degrees of approximation to the objective function of the classical PR.
We show that one particularly simple MIQP model is often preferable, from the computational
viewpoint, at least on instances that are not “too much asymmetric”. Yet, other models are better
on highly asymmetric instances, which are usually easier to solve; this also provides a practical
indication to practitioners about setting the protection levels to the cells in order to make the
instances more easily solvable. The right choice of the model allows to solve real-life instances in
reasonable time with off-the-shelf, general-purpose MIQP solvers, at least on relatively powerful
multi-core computers.
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Since CTA is a difficult problem, instances with a large number of sensitive cells and/or a high
degree of symmetry remain difficult to solve with high accuracy; further research will then be
required to improve the effectiveness of the solution methods for these cases. Also, the specific
structure of CTA may show up, perhaps with non-quadratic functions, in other applications: the
techniques developed in this paper could be adaptable to these cases.
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Appendix. Proof of Theorem 3.1.

As in Section 3 we will concentrate on a fixed cell i ∈ S and therefore drop the index i. Also, in
the development we assume w.l.o.g. w = 1, because it is a multiplicative factor which just goes
untouched through the derivation. It is easy to see that the constraint

min{ l , u } ≤ z+ + z− ≤ max{ ū , −l̄ } (15)

is implied by (9): in all integral solutions one has either z+ ≤ ū and z− = 0, or z− ≤ −l̄ and
z+ = 0, and, analogously, either z+ ≥ u and z− = 0 or z− ≥ l and z+ = 0. Therefore, we can
consider (15) as explicitly added to the formulation if we need it. Furthermore, the constraints
0 ≤ z+ ≤ ū and 0 ≤ z− ≤ −l̄ are always valid.
From (9) we immediately obtain

0 ≤ z+/ū ≤ y ≤ z+/u

(l − z−)/l ≤ y ≤ (z− + l̄)/l̄ ≤ 1

which yields

δ(z+, z−) = max

{

z+

ū
, 1 −

z−

l

}

≤ y ≤ min

{

z+

u
, 1 +

z−

l̄

}

= ∆(z+, z−) . (16)

We now want to develop a closed-form formula for the optimal solution y(z+, z−) of (13). We
therefore need to find the value of y such that

∂h(z+, z−, y)

∂y
= −

(z+)2

y2
+

(z−)2

(1− y)2
= 0

which leads to

(1− y)2(z+)2 = y2(z−)2 ⇔ (1− 2y + y2)(z+)2 = y2(z−)2

y2((z+)2 − (z−)2)− 2y(z+)2 + (z+)2 = 0 ⇔ y = z+/(z+ + z−) = ỹ

as 0 ≤ y ≤ 1, z+ ≥ 0 and z− ≥ 0. In fact, the other root of the quadratic equation, z+/(z+ − z−),
coincides with ỹ when z− = 0, is > 1 when z+ > z− > 0, is indefinite when z+ = z− and is < 0
when z− > z+, and therefore is never relevant. Moreover, the second derivative

∂2h(z+, z−, y)

∂y2
= 2

(z+)2

y3
+ 2

(z−)2

(1 − y)3

is greater then zero in y = ỹ when 0 < ỹ < 1. Me must now distinguish three cases:

1) ỹ ≤ δ(z+, z−) ⇒ y(z+, z−) = δ(z+, z−);

2) δ(z+, z−) ≤ ỹ ≤ ∆(z+, z−) ⇒ y(z+, z−) = ỹ;

3) ∆(z+, z−) ≤ ỹ ⇒ y(z+, z−) = ∆(z+, z−).

For case 2), plugging y = ỹ = z+/(z+ + z−) into (9) gives

u ≤ z+ + z− ≤ ū and l ≤ z+ + z− ≤ −l̄ . (17)
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Therefore, under these conditions, the optimal objective function value f∗(z+, z−) = f(z+, z−, ỹ)
takes the particularly simple form

f∗( z+ , z− ) = f( z+ , z− , z+/(z+ + z−) ) = (z+ + z−)2 ,

i.e., (14). Hence, in the totally symmetric case ū = −l̄, l = u one has max{ ū , −l̄ } = min{ ū , −l̄ }
and max{ u , l } = min{ u , l }, only case 2) can happen: g(z+, z−) = f∗(z+, z−). Note that,
as claimed in the Theorem, (14) ≡ f∗(z+, z−) ≤ g(z+, z−) as it corresponds to unconstrained
minimization over y.

With non-symmetric data, cases 1) and 3) has to be taken into account. The analysis has to be
divided into several sub-cases.

1) ỹ ≤ δ(z+, z−). Because δ(z+, z−) = max{z+/ū, 1−z−/l}, two sub-cases have to be separately
considered:

1.1) z+/ū ≥ 1− z−/l and ỹ ≤ z+/ū; by simple algebraic manipulations, these two conditions
boil down to

lz+ + ūz− ≥ ūl (18)

z+ + z− ≥ ū (19)

By rewriting (18) in the equivalent form

z+ + z−(ū/l) ≥ ū

it is immediately evident that one among (18) and (19) is redundant when the other is
imposed; this depends on which of the two conditions

ū ≤ l (20)

l ≤ ū (21)

holds. In particular,

∗ (20) ⇒ (18) dominates (19);

∗ (21) ⇒ (19) dominates (18).

In either case we have y(z+, z−) = z+/ū, which finally leads to

f∗( z+ , z− ) = f( z+ , z− , z+/ū ) = ū((z−)2/(ū− z+) + z+) . (22)

Note that the objective function value is always positive, as z+ ≤ ū.

1.2) z+/ū ≤ 1− z−/l and ỹ ≤ 1− z−/l; this gives

lz+ + ūz− ≤ ūl (23)

z+ + z− ≤ l (24)

Again, by rewriting (23) in the equivalent form

z+(l/ū) + z− ≤ l

we see that one of these is redundant when the other is imposed, depending on the same
conditions (20)/(21); that is,



21.

∗ (20) ⇒ (23) dominates (24);

∗ (21) ⇒ (24) dominates (23).

In either case we have y(z+, z−) = 1− z−/l, which finally leads to

f∗( z+ , z− ) = f( z+ , z− , 1− z−/l ) = l((z+)2/(l − z−) + z−) . (25)

Note that the objective function value is always positive, as z− ≤ z+ + z− ≤ l.

3) ∆(z+, z−) ≤ ỹ. Because ∆(z+, z−) = min{z+/u, 1 + z−/l̄}, again this can happen in two
different ways:

3.1) z+/u ≤ 1 + z−/l̄ and ỹ ≥ z+/u; this is equivalent to

−l̄z+ + uz− ≤ −l̄u (26)

z+ + z− ≤ u (27)

where as usual (26) can be rewritten as z+ + z−(u/− l̄) ≤ u. Thus, according to which
among

−l̄ ≤ u (28)

u ≤ −l̄ (29)

holds, one of the constraints is useless; indeed,

∗ (28) ⇒ (26) dominates (27);

∗ (29) ⇒ (27) dominates (26).

In either case we have y(z+, z−) = z+/u, which finally leads to

f∗( z+ , z− ) = f( z+ , z− , z+/u ) = u((z−)2/(u− z+) + z+) . (30)

Note that the objective function value is always positive, as z+ ≤ z+ + z− ≤ u.

3.2) z+/u ≥ 1 + z−/l̄ and ỹ ≥ 1 + z−/l̄; one has

−l̄z+ + uz− ≥ −l̄u (31)

z+ + z− ≥ −l̄ (32)

According to which among (28)/(29) holds, one of the above (considering that (31) can
be rewritten as z+(−l̄/u) + z− ≥ −l̄) is irrelevant; that is,

∗ (28) ⇒ (31) dominates (32);

∗ (29) ⇒ (32) dominates (31).

In either case we have y(z+, z−) = 1 + z−/l̄, which finally leads to

f∗( z+ , z− ) = f( z+ , z− , 1 + z−/l̄ ) = (−l̄)((z+)2/(−l̄ − z−) + z−) . (33)

Again, the objective function value is always positive, as z− ≤ −l̄.

From the above discussion we conclude, remembering that 0 ≤ u ≤ ū and 0 ≤ l ≤ −l̄, that the
(z+, z−) space can be partitioned into several subsets, in each of which the objective function is
uniquely determined. Again this requires a case-by-case discussion:
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• If ū ≤ l (cf. (20)), then max{l, u} = l ≥ min{ū,−l̄} = ū; therefore, case 2) is not significant
(cf. 17). Because (18) dominates (19) and (23) dominates (24), we have that for all u ≤
z+ + z− ≤ −l̄

g(z+, z−) =

{

ū((z−)2/(ū− z+) + z+) if lz+ + ūz− ≥ ūl

l((z+)2/(l − z−) + z−) if lz+ + ūz− ≤ ūl
.

• Analogously, if −l̄ ≤ u (cf. (28)), then max{l, u} = u ≥ min{ū,−l̄} = −l̄; therefore, case 2)
does not happen (cf. 17). Because (26) dominates (27) and (31) dominates (32), we have that
for all l ≤ z+ + z− ≤ ū

g(z+, z−) =

{

u((z−)2/(u− z+) + z+) if − l̄z+ + uz− ≤ −l̄u

(−l̄)((z+)2/(−l̄ − z−) + z−) if − l̄z+ + uz− ≥ −l̄u
.

If none of the above two “extreme” cases occur, then the “simple” inequalities (19), (24), (27) and
(32) all dominate their “complex” companions (18), (23), (26) and (31), respectively. We can thus
continue the discussion listing all other possible ways in which l, u, −l̄ and ū can be arranged along
the line:

• If l ≤ u ≤ ū ≤ −l̄, then max{l, u} = u and min{ū,−l̄} = ū. Thus,

g(z+, z−) =















u((z−)2/(u− z+) + z+) if l ≤ z+ + z− ≤ u

(z+ + z−)2 if u ≤ z+ + z− ≤ ū

ū((z−)2/(ū− z+) + z+) if ū ≤ z+ + z− ≤ −l̄

• If l ≤ u ≤ −l̄ ≤ ū, then max{l, u} = u and min{ū,−l̄} = −l̄. Thus,

g(z+, z−) =















u((z−)2/(u− z+) + z+) if l ≤ z+ + z− ≤ u

(z+ + z−)2 if u ≤ z+ + z− ≤ −l̄

(−l̄)((z+)2/(−l̄ − z−) + z−) if − l̄ ≤ z+ + z− ≤ ū

• If u ≤ l ≤ −l̄ ≤ ū, then max{l, u} = l and min{ū,−l̄} = −l̄. Thus,

g(z+, z−) =















l((z+)2/(l − z−) + z−) if u ≤ z+ + z− ≤ l

(z+ + z−)2 if l ≤ z+ + z− ≤ −l̄

(−l̄)((z+)2/(−l̄ − z−) + z−) if − l̄ ≤ z+ + z− ≤ ū

• If u ≤ l ≤ ū ≤ −l̄, then max{l, u} = l and min{ū,−l̄} = ū. Thus,

g(z+, z−) =















l((z+)2/(l − z−) + z−) if u ≤ z+ + z− ≤ l

(z+ + z−)2 if l ≤ z+ + z− ≤ ū

ū((z−)2/(ū− z+) + z+) if ū ≤ z+ + z− ≤ −l̄

Thus, we have a total of 6 possible cases; in 4 of them the function has three pieces, two SOCP
ones and a quadratic one, while in the remaining 2 the function has two pieces, all of them being
SOCP. We have therefore completed the proof of Theorem 3.1.
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[20] Günlük, O., J. Linderoth. 2011. Perspective reformulation and applications. IMA Volumes,
to appear.

[21] Hijazi, H., P. Bonami, G. Cornuejols, A. Ouorou, Mixed integer nonlinear programs featur-
ing “On/Off” constraints: convex analysis and applications. Computational Optimization and
Applications. To appear.

[22] Hundepool, A., J. Domingo-Ferrer, L. Franconi, S. Giessing, R. Lenz, J. Naylor, E. Schulte-
Nordholt, G. Seri, P.P. de Wolf. 2010. Handbook on Statistical Disclosure Control (v. 1.2),
Network of Excellence in the European Statistical System in the field of Statistical Disclosure
Control. Available on-line at http://neon.vb.cbs.nl/casc/SDC_Handbook.pdf.

[23] Kelly, J.P., B.L. Golden, A.A. Assad. 1992. Cell suppression: disclosure protection for sensitive
tabular data. Networks 22 28–55.

[24] Luedtke, J., M. Namazifar, J.T. Linderoth. 2010. Some results on the strength of relaxations
of multilinear functions Technical Report #1678, Computer Sciences Department, University
of Wisconsin-Madison.
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