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Abstract

The Unit Commitment (UC) problem in electrical power production requires to optimally operate a
set of power generation units over a short time horizon (one day to a week). Operational constraints
depend on the type of the generation units (e.g., thermal, hydro, nuclear, ...). The Single-Unit
Commitment (1UC) problem is the restriction of UC that considers only one unit; it is useful
in deregulated systems (for the so-called self-scheduling), and when decomposition methods are
applied to (multi-units) UC. Typical constraints in (1UC) concern minimum and maximum power
output, minimum-up and -down time, start-up and shut-down limits, ramp-up and ramp-down
limits.

In this work we present the first MIP formulation that describes the convex hull of the feasible
solutions of (1UC) further improved to include also ramp-up and ramp-down constraints. Our
formulation has a polynomial number of both variables and constraints and it is based on the
efficient Dynamic Programming algorithm proposed in [15].

Key words: Unit Commitment problem, Ramp Constraints, MIP Formulations, Dynamic Pro-
gramming
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1. Introduction

The Unit Commitment (UC) problem is a basic problem arising in power industries to coordinate
and manage power generation units. Although it was the typical problem to be solved in old
monopolistic regimes, the need to solve UC problems is not disappeared. On the contrary, UC
or one of its variants appears as a subproblem in new problems that arise with the free market
regime (e.g., see [1, 20, 7, 19, 24]). In particular, each generation company must solve one or more
UC problems when the price of energy has been cleared in the day-ahead market and its total
production has been defined. Due to the huge figures involved in real-world systems [30], even two
solutions with small differences can produce considerably different costs. Therefore the solution of
UC problems is required with more and more efficiency.

The traditional UC problem consists in finding the schedule of each power generation unit in
order to minimize all the operational costs while satisfying both system-wide constraints and oper-
ational constraints associated with each unit. System-wide constraints are usually referred to the
satisfaction of the energy demands, the provision of different types of reserve, the handling of the
transmission network. Operational constraints depend on the type of generation units. Most power
systems mainly use three types of generation units: thermal units, hydro units, and nuclear units.
In recent years wind, solar and other energy renewable units are getting much more relevance.
As they are characterized by uncertainty in the production output, solution approaches based on
robust and stochastic optimization are increasing their importance [32, 33]; as these variants are
considerably more difficult to solve than the deterministic ones, efficient solution methods for these
problems are still in high demand. Moreover, also interactions with the transmission network is
becoming more crucial both for the involved costs and for security and reliability reasons [5, 8];
yet another reason to research new approaches for finding UC solutions in shorter and shorter
computational times.

Traditionally, Lagrangian relaxation was one of the most used methods to solve UC (e.g., see [4,
37, 6], or [32, §3.3] for a complete survey), since it was capable of exploiting the spatial structure
of the problem: most complex constraints pertain to the behavior of a single unit, and relatively
fewer and simpler ones link the different units together. However, the advances in the solution of
Mixed-Integer (linear and convex) Programming (MIP) problems that are now widely available in
present commercial solver have made MIP approaches an attractive option. This is even more so
as the two approaches can be fruitfully combined [34, 17].

The first MILP formulation for UC was described in [18] and used three sets of binary variables.
Then some papers reduced the number of binary variables considering only on/off state variables [9,
16], while other kept the three sets of binary variables [2]. However, the number of variables used
it is not the crucial factor; instead, for the efficient solution of the problem, the tightness of the
MIP formulation provided to a MIP solver is key.

As operational constraints of thermal units have a strong combinatorial structure, many efforts
have been made to improve their definition. There are three main types of constraints for the
thermal units: minimum and maximum power output, minimum-up and -down time constraints,
ramp-up and -down constraints. Minimum-up and -down time constraints are imposed to limit
technical stress of the thermal units due to frequent start-up and shut-down operations. They
establish a minimum number of consecutive time periods that a unit must be in state ON and a
minimum number of consecutive time periods that a unit must be in state OFF. Such constraints
introduce a strong combinatorial structure. The first exact description by means of linear inequali-
ties for minimum-up and -down time constraints has been given in [22] with an exponential number
of inequalities and a polynomial time separation algorithm. Afterwards, Rajan and Takriti [28]
and independently Malkin and Wolsey [23] developed an extended linear description with a linear
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number of constraints.
Ramp-up and ramp-down constraints limit the maximum increase and the maximum decrease

of the power production between two consecutive time periods. Together with these constraints,
maximum limits on start-up and shut-down periods are also often imposed. In their simpler form
these establish a maximum limit for the produced power on the time period following the start-up
and on the period preceding the shut-down. More in general, typically for large units, they can
impose a complete trajectory for start-up and shut-down operations, exploiting the produced power
even before the unit reaches the technical minimum power for stable operations, which is the only
point in which traditional UC formulations consider the unit in an ON state (e.g., see [2, 19]). All
these constraints introduces new combinatorial structures that until now have not been completely
described.

A further feature of thermal units is given also by start-up costs, which have to be paid when the
unit is started up. In their simplest description they can be considered fixed, but in a more exact
description they are dependent on how long the unit remained in OFF state before startup. This is
because the unit must reach a minimum temperature in order to be able to produce power, and the
heating process requires energy that has to be paid for. The start-up cost of a unit is a nonlinear
and concave function of the time the unit is been in off state; however, as the time is discritized
the same happens with start-up costs, which therefore entail yet another combinatorial (as opposed
to nonlinear) feature of UC models. Nowak and Römisch [26] gave a popular description of these
constraints using only state variables. Recently, the alternative formulation of [29] was shown to
describes convex hull of the associated subproblem, as well as being computationally efficient in
practice.

In this work we present the first linear description of the convex hull of the solutions satisfy-
ing all the standard operational constraints for the thermal units: minimum-up and -down time
constraints, minimum and maximum power output, and ramp constraints (including start-up and
shut-down limits). Our new formulation is derived by a Dynamic Programming algorithm [15]
and contains a polynomial number of variables and constraints. This result was first presented at
the 17th British-French-German conference on Optimization held in London on June 15-17, 2015.
While writing this paper, we learned that other authors have independently produced a very similar
result [21], albeit using a different proof technique.

The structure of the paper is as follows. In Section 2 we recall the formulation of the UC
problem. In Section 3 we give a fast survey of the main results concerning UC formulations and
related polyhedral properties. In Section 4 we recall the Dynamic Programming algorithm described
in [15]. In Section 5 we present the new formulation and we prove that it describes the convex
hull of the solutions of the single-unit commitment problem. Finally, in Section 7 we present some
preliminary computational experiments aimed at gauging the practical effectiveness of the new
formulation on large-scale, realistic instances.

2. The Thermal Unit Commitment Problem

In this section we recall the MIP formulation of the Unit Commitment problem. We limit our
presentation to thermal units. We consider three types of constraints for each generator: the
minimum and maximum power output, the minimum-up and -down time constraints, the ramp
constraints with start-up and shutdown limits.

Let I be the set of (indices of) thermal generators, with m = |I|, and T = {1, . . . , n} be the set
of (indices of) time periods in the planning horizon. Given two time instants t′ and t′′, we will
denote by T (t′, t′′) the set of all the time instants between t′ and t′′, extremes included (obviously,
T (t′, t′′) = ∅ if t′ > t′′). For each i ∈ I and t ∈ T , let pit (the power variables) be the power
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level of unit i at time period t, and xit (the commitment variables) be the binary variable denoting
the state on/off of unit i at time period t. Furthermore, let li and ui be the minimum and the
maximum power output for unit i ∈ I, respectively. Then, the minimum and maximum power
output constraints are:

lixit ≤ pit ≤ uixit t ∈ T. (1)

Let τ+i and τ−i be the minimum number of time periods that unit i has to be in ON and OFF state,
respectively. Then, the minimum-up and -down time constraints can be expressed as follows:

xit ≥ xir − xi,r−1 t ∈ T (τ+i + 1, n) , r ∈ T (t− τ+i , t− 1) (2)

xit ≤ 1− xi,r−1 + xir t ∈ T (τ−i + 1, n) , r ∈ T (t− τ−i , t− 1) (3)

Further constraints are required to specify the initial conditions of the unit. Let τ0i denote the
initial state of unit i as follows: at the beginning of the planning horizon, if τ0i > 0 then unit i has
been in on state for τ0i time periods, thus one has to impose the condition

xit = 1 t ∈ T (1, τ+i − τ
0
i ) .

Of course, this is only required if, besides τ0i > 0, one also has τ0i < τ+i (otherwise, T (1, τ+i − τ0i ) =
∅). Similarly, τ0i < 0 means that unit i has been in off state for −τ0i time periods, and one has to
impose the condition

xit = 0 t ∈ T (1, τ−i + τ0i )

(again, this is only significant if τ0i < −τ
−
i ).

Finally, let ∆+
i and ∆−i be the ramp-up and ramp-down limits for unit i, respectively. Moreover,

let l̄i and ūi be the start-up and shut-down limits for unit i. Then, the ramp constraints can be
formulated as follows:

pit − pi,t−1 ≤ ∆+
i xi,t−1 + l̄i(1− xi,t−1) t ∈ T (4)

pi,t−1 − pit ≤ ∆−i xit + ūi(1− xit) t ∈ T (5)

Note that for t = 1 the constraints (4)–(5) refer to values pi0 and xi0, which clearly are not variables
but parameters to be set according to the initial conditions.

The objective function usually contains the minimization of the production costs. These depend
on two main contributions: the generation costs and the start-up/shut-down costs. The generation
costs, for each unit i and time period t, are customarily expressed by a convex quadratic cost
function of the type

fi(pit) = aip
2
it + bipit , (6)

plus a fixed cost cixit. This is an approximation of the true cost function, that does not take into
account some technical characteristics of the units, such as the so-called “valve points”. However,
the approximation is generally deemed to be accurate enough for practical purposes. Indeed, in
many cases the cost function is further approximated by a piecewise linear (or even downright
linear) function in order to get good feasible solutions in short time [16].

Similarly, the start-up costs should in general be expressed as a function si(xi) of the complete
state vector xi, as it depends on the time τ that unit i has been off. In its most accurate formulation,
the start-up cost can be computed by means of two functions. One is a concave cost function of
the type σi(τ) = σi(1− e−β

iτ ) + αi, corresponding to the fact that the cost of starting up the unit
depends on the temperature, which, if the unit is left to cool, drops with an exponential law towards
ambient temperature (e.g., see [29, 36, 31]). However, for shorter stops it might be preferable to
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spend some fuel just in order to keep the unit at the right temperature, which can be assumed to
have a linear cost γiτ on the number of time periods this is done. For each value of τ , then, the
optimal choice between the two options (usually referred to as “cooling” and “banking”) is just the
one giving minimum startup cost. For our purposes, this complex function only need to be known
at the discrete set of values

σiτ = min(σi(1− e−βiτ ) + σi , γiτ ) τ ∈ T (τ−i , τ i) ,

where τ i is the time such that σi(τ i) ≈ σi(τ i + 1) ≈ σi + σi, i.e., the unit has reached ambient
temperature and the startup cost is maximal (in general, banking is only convenient for short
stops, and cooling is preferable in the long run). Whatever the exact form of the function, the
only relevant property needed for MIP formulations is that the values σiτ are non decreasing with
respect to τ . This suggested to express the start-up costs by means of a single extra new variable
and τ i − τ−i + 1 extra constraints (for each unit and time instant) [26], as follows:

si(xi) =
∑n

t=1 sit (7)

sit ≥ σiτ (xit −
∑τ

j=1 xi,t−j) t ∈ T , τ ∈ T (τ−i , τ i) (8)

sit ≥ 0 t ∈ T (9)

Even though the number of extra variables and constraints in (7)–(9) is reasonably limited, the
impact on the performances of a MIP model of considering such a detailed representation of the
start-up cost can be substantial; this is why, most often the start-up costs are simply approximated
with the fixed maximal cost (σi+σi). In general, since solution time is a crucial issue, the trade-off
between an accurate representation of the physical behavior of generating units and the solution
cost of the corresponding models is nontrivial. In practice, often simplified models are employed in
order to quickly find and approximated solutions of good quality. We will refer to the parameters
σiτ as history-dependent start-up costs if τ̄i > τ−i , while we will refer to fixed start-up costs when
τ̄i = τ−i .

While most of the constraints of the standard UC problem concern the behavior of a specific unit
i ∈ I, system-wide constraints are also present that link the decisions of the different units. The
simplest and most common form of system-wide constraints is that of the demand constraints∑

i∈I pit = dt t ∈ T , (10)

where dt is the (forecasted) total energy demand at time period t.

UC was the main problem to be solve when the energy production was organized as a monopolistic
system. In the present free market regime, variants of UC usually arise as a subproblem of a more
complex problem. The simplest case is that of the self-scheduling UC, corresponding to “small”
generation companies (whose production is not enough to significantly affect market prices, and
therefore denoted as price-takers) willing to establish the most convenient production levels for
their units. There, no demand constraints (10) are imposed, and therefore the self-scheduling UC
problem is completely separable into as many single-unit UC (1UC) subproblems as there are units.
The objective function to be maximized, separately for each unit i ∈ I, is the net profit, computed
as the difference between the revenue

∑
t∈T πtpit, where πt is the selling price of energy at time

period t (e.g., produced by the auction in the day-ahead-market), and the generation cost expressed
as above.
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3. Literature review of polyhedral descriptions

The first polyhedral work on UC is due Lee, Leung and Margot [22], that gave a polyhedral
description of the minimum up/down time constraints. Their formulation uses only commitment
variables, but has an exponential number of constraints. These can be separated in polynomial
time, and therefore can be used, in principle, to reinforce the natural formulation described in the
previous section.

Rajan and Takriti [28] devised an equivalent extended formulation of the minimum-up and -down
time constraints with a polynomial number of both variables and constraints. This formulation
contains 3 vectors of binary variables; all formulations following the same approach are therefore
referred to as 3-bin formulations, as opposed to the these only using the commitment variables,
which are referred to as 1-bin formulations. The idea of [28] is to introduce the binary variables
vit denoting if unit i has been started up at time period t (i.e., xit = 1 and xi,t−1 = 0), and the
binary variables wit denoting if i has been shut down t (i.e., xit = 0 and xi,t−1 = 1). Using these
variables, the minimum-up and -down time constraints (2)-(3) can be replaced by∑

s∈T (t−τ i++1,t) vis ≤ xit t ∈ T (τ+i + 1, n) (11)∑
s∈T (t−τ i−+1,t)wis ≤ 1− xit t ∈ T (τ−i + 1, n) (12)

xit − xi,t−1 = vit − wit t ∈ T (2, n) (13)

Consequently, the ramp constraints (4)-(5) can be reinforced with the following version [27]

pit − pi,t−1 ≤ ∆+
i xi,t−1 + l̄ivit t ∈ T (14)

pi,t−1 − pit ≤ ∆−i xit + ūiwit t ∈ T (15)

In [27] it was also proposed to reinforce constraints (8) by using start-up and shut-down variables,
as follows:

sit ≥ σiτ (vit −
∑τ

j=2wi,t−j+1) t ∈ T , τ ∈ T (τ−i , τ i) . (16)

Note that with fixed start-up costs si, 3-bin formulations can be significantly simplified, as the
start-up cost is then completely captured by adding the simple term∑

t∈T sivit (17)

to the objective function, with no need of the extra variables sit and the constraints (8) or (16).

The above results only concentrate on simple variants of the problem, with only a subset of
the constraints. When multiple constraints are added, as it is required in real-world problems,
the structure of the corresponding polyhedral description becomes substantially more complicated.
Thus, most of the results in the literature concern proposing sets of constraints have appeared that
strengthen UC formulations, rather than a complete polyhedral description of the convex hull of
the problem. Due to the fact that 3-bin formulation are usually stronger than 1-bin ones, most
attempts start from the former. We now provide a recap of the constraints proposed so fa.

In [27] several families of constraints are proposed:

• Strengthened the upper bound constraints. The following constraints

pit ≤ uixi,t+Ki(t) +
∑Ki(t)

j=1 (ui + (j − 1)∆−i )wi,t+j −
∑Ki(t)

j=1 uivi,t+j , (18)

where Ki(t) = max{k ∈ N : k ≤ τ+i , ūi + (k − 1)∆−i < ui, t + k < n}, state that the upper
bound on pit must be reduced if a shut-down occurs in the period from t + 1 to t + Ki(t).
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The definition of Ki(t) ensures that at most one of the w variables and at most one of the v
variables with t ∈ T (t+ 1, t+Ki(t)) can be equal to 1; and if one of these variables is equal
to 1, then also xi,t+K(t) = 1. Note that this constraint does not replace upper bounds (1).

• Strengthened ramp-up and -down constraints. Under appropriate conditions, one can re-
place (14)–(15) with stronger inequalities. In particular, if ∆+

i > ūi− li and τ+i ≥ 2 then the
following inequalities are valid:

pit − pi,t−1 ≤ ∆+
i xit − liwit − (∆+

i − ūi + li)wi,t+1 + (l̄i −∆+
i )vit t ∈ T (1, n− 1) . (19)

Indeed, at most one among wit, wi,t+1, and vit can be equal to one. If wit = 1, then xit =
pit = 0 and (19) implies to pi,t−1 ≥ l. If wi,t+1 = 1 then xit = 1 and the constraint reduces
to pit − pi,t−1 ≤ ūi − li, that is valid because in this case pit ≤ ūi and pi,t−1 ≥ l. If vit = 1,
then (19) reduces to pit ≤ l̄i. Finally, if wit = wi,t+1 = vit = 0, then constraint (19) reduces
to pit − pi,t−1 ≤ ∆+

i . In a quite symmetric way one can prove that

pi,t−1 − pit ≤ ∆−i − xit + ūiwit − (∆−i − l̄i + li)vi,t−1 − (∆−i + li)vit T ∈ T (2, n) (20)

is also valid. Indeed, a simple symmetry rule is valid for UC inequalities by simply reversing
the time horizon from n to 1, i.e., replacing pit by pi,n−t, xit by xi,n−t, vit by wi,n−t+1, ∆+

i by
∆−i , l̄i by ūi and viceversa. The symmetric version of (19) is then

pi,n−t − pi,n−t+1 ≤ ∆−i xi,n−t − livi,n−t+1 − (∆−i − l̄i + li)vi,n−t + (ui −∆−i )wi,n−t+1

for t ∈ T (1, n− 1), and replacing n− t with t− 1 and n− t+ 1 with t in the above we obtain

pi,t−1 − pit ≤ ∆−i xi,t−1 − livit − (∆−i − l̄i + li)vi,t−1 + (ūi −∆−i )wit t ∈ T (2, n) . (21)

By using the relation xit− xi,t−1 = vit−wit, we get that (21) is equivalent to (20). Similarly,
if ∆−i > (l̄i − li), τ+i ≥ 3, and τ−i ≥ 2, then the following inequalities are valid:

pi,t−1 − pit ≤ ∆−i xi,t+1 + ūiwit + ∆−i wi,t+1−
(∆−i − l̄i + li)vi,t−1 − (∆−i + li)vit −∆−i vi,t+1

t ∈ T (2, n− 1) . (22)

As for the above inequalities, only one variable among vi,t−1, vit, vi,t+1, wit, and wi,t+1 can be
equal to one; then, the validity of (22) follows by considering the 6 possible cases. Of course,
(22) has a symmetric ramp-up inequality.

• Two-periods ramping constraints. If ∆+
i > ūi − li, τ+i ≥ 2, and τ−i ≥ 2, then the following

inequalities are valid:

pit − pi,t−2 ≤ 2∆+
i xit − liwi,t−1 − liwit+

(l̄i −∆+
i )vi,t−1 + (l̄i − 2∆+

i )vit
t ∈ T (2, n) . (23)

In order to check that (23) are valid, one can observe that only one variable among vi,t−1,
vit, wi,t−1, and wit can be equal to 1 and then consider the 5 possibile cases. It is not even
entirely clear if the hypothesis ∆+

i > ūi − li, stated in [27] is actually needed. By the same
principles, also the following inequalities are valid:

pi,t−2 − pit ≤ 2∆−i xit + ūiwi,t−1 + (ūi + ∆−i )wit−
2∆−i vt−2 − (2∆−i + li)vi,t−1 − (2∆−i + li)vit

t ∈ T (2, n) . (24)
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In [11] the ramp-up polytopes and ramp-down polytopes are defined and studied separately, and
the following constraints are proposed.

• Strenthening the upper bound constraints. It is straightforward to see that the following
constraints are valid:

pit ≤ uixit − (ui − l̄i)vit i ∈ T (25)

pit ≤ uixit − (ui − ūi)wi,t+1 i ∈ T (26)

More in general, Variable Upper Bound constraints can be constructed taking into account
multiple time periods. This is done by selecting any t, some 0 ≤ j ≤ min{t− 2, (ui− l̄i)/∆+

i }
a subset M = {e0, e1, . . . , em} ⊂ T such that ek ∈ T (t − j + 1, t − 1) for k = 1, . . . ,m − 1,
e0 = t+ 1, and em = t (M = ∅ if j = 0 or j = 1), and writing

pit ≤ l̄ixit + ∆+
i

∑m
k=1(ek − ek−1)(xi,ek − vi,ek) + (ui − l̄i − j∆+

i )(xi,t−j − vi,t−j) . (27)

Note that constraints (25) are a particular case of (27) when j = 0, M = ∅, and e1 = t (with
a little abuse of notation in the definition of ek).

• Strenthening the Ramp-up and ramp-down inequalities. The ramp-up and ramp-down con-
straints can be extended to two periods as follows:

pi,t+1 − pit ≤ (l̄i − li −∆+
i )vi,t+1 + (li + ∆+

i )xi,t+1 − lixit t ∈ T (1, n− 1) (28)

pit − pi,t+1 ≤ (ūi − li −∆−i )wi,t+1 + (li + ∆−i )xit − lixi,t+1 t ∈ T (1, n− 1) (29)

Note that constraint (14) is obtained as the sum of constraint (28) and of constraint vi,t+1 ≥
xi,t+1 − xit multiplied by li + ∆+

i ; therefore, (28) is stronger than (14). Similarly, (29) is
stronger than (15), because the latter is the sum of the former with wi,t+1 ≥ xit−xi,t+1 mul-
tiplied by li+∆−i . These inequalities (starting in particular with (28)), have been generalized
to multi-period ramp-up inequalities in two different ways. The first is

pi,t+j − pit ≤ (li + j∆+
i )xi,t+j − lixit +

∑j
k=1 min{(l̄i− li− k∆+

i ), (ui− li− j∆+
i )}vi,t+k (30)

that is valid if l̄i ≥ li+∆+
i for each j = 1, . . . ,min{n− t, b(l̄i− li)/∆+

i c}. The second, instead,
is

pi,t+j − pit ≤ l̄ixi,t+j − lixit + ∆+
i

∑m
k=1(dk − dk−1)(xi,k − vi,k) + φ(xq − vq) (31)

for 1 ≤ j ≤ {n− t, b(ui− li)∆+
i c}, S = {d0, d1, . . . , ds} ⊆ T (t+ 1, t+ j), d0 = t+ 1, ds = t+ j,

q = min{k ∈ S}, and φ = (li + ∆+
i − l̄i)+.

Note that (27) and (31) involve subsets, and therefore in principle define families of inequalities of
exponential size. However, exact polynomial separations algorithms are provided in [11].

In [19] the convex hull for (1UC) when only start-up and shut-down limits are imposed (i.e.,
with no ramp-up and -down limits) is characterized by means of the minimum-up and -down time
constraints (11)–(13) together with the constraints

pit ≤ uixit − (ui − l̄i)vit − (ui − ūi)wi,t+1 t ∈ T (2, n− 1) (32)

which hold if τ+i ≥ 2. For the case τ+i = 1, these become

pit ≤uixit − (ui − ūi)wi,t+1 −max(ūi − l̄i, 0)vit t ∈ T (2, n− 1) , (33)

pit ≤uixit − (ui − l̄i)vit −max(l̄i − ūi, 0)wi,t+1 t ∈ T (2, n− 1) . (34)
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Note that constraints (25)–(26) are similar to constraints (32)–(34), but the latter constraints uses
both start-up and shut-down conditions. Indeed, they can be proven to dominate the former (since
they give the convex hull).

In [25] a new formulation is proposed for start-up costs, using a new binary variable δitτ is equal
to one if and only if for time period t the start-up cost σiτ is paid. This is used in the constraints∑τ i

τ=τ−i
δitτ = vit

δitτ ≤ wi,t−τ
sit ≥

∑τ i
τ=τ−i

σiτδitτ

t ∈ T , τ = τ−i , . . . , τ i − 1 .

The first constraint states that exactly one of the possibile start-up costs is to be paid whenever
the unit is started up. The second constraint disable all possible variable δitτ until j is such that
wi,t−τ = 1, i.e., τ corresponds to the last shut-down period.

In [29] a model for the start-up costs based on temperatures is proposed that works when the
banking function is not considered. It requires to add new continuous variables: tempit, the
temperature of the unit at time t, and hit, the heating needed to restart at time t. The start-up
cost is then expressed by the cost of the heating σi plus the fixed cost αi:

sit = σihi,t−1 + αivit. (35)

The temperature is normalized to be equal to 1 when the unit is on and decreases exponentially
when the unit is off. The heating and the temperatures are linked by the following constraints:

xit ≤ tempit ≤ 1 t ∈ T (36)

tempi1 = e−βimax(−τ0,0) + hi0 (37)

tempit = e−βitempi,t−1 + (1− e−βi)xi,t−1 + hi,t−1 t ∈ T (2, n) . (38)

The constraints (36) forces the temperature to be equal to 1 when the unit is on. Due to the cost
paid in the objective function for (35), hi,t−1 > 0 only when xit = 1 and the temperature tempit = 1.
Therefore, from equation (38) we get that hi,t−1 = tempit−e−βitempi,t−1 = 1−e−βie−βitempi,t−2 =
. . . = 1 − e−βiτ where τ is equal to the number of time instants that the unit has been off.
The term 1 − e−βxi,t−1 in (38) is need to neutralize the heating when the unit is kept in on
state, i.e., if xi,t−1 = xit = 1, then tempit = tempi,t−1 = 1 and constraint (38) is satisfied with
hi,t−1 = 0. If xi,t−1 = 1 and xit = 0, then tempit ∈ [0, 1] and constraint (38) is satisfied with
tempit = e−βi + (1− e−βi) + hi,t−1 ⇒ tempit = 1 and hi,t−1 = 0.

All the above results show that describing the convex hull of (1UC), when all the technical con-
straints are considered, is rather difficult. Hence, formulations used in practice usually are not
optimal in this sense. As an example we examine [9], that is clearly considered an important refer-
ence by practitioners, having been cited over 600 times. There, the minimum-up time constraints
are implemented as ∑t+τ+i −1

k=t xik ≥ τ+i (xit − xi,t−1) t ∈ T (τ̃+i + 1, n− τ+i + 1) (39)∑n
k=t xik − (xit − xi,t−1) ≥ 0 t ∈ T (n− τ+i + 2, n) (40)∑τ̃+i

k=1(1− xik) = 0, (41)

where τ̃+i = min(τ+i − τ0i , 0) if τ0i > 0, and τ̃+i = 0 otherwise. Inequalities (39) can be obtained as
the sum of τ+i consecutive inequalities of type (2)

xi,k ≥ xit − xi,t−1 k ∈ T (t, t+ τ+i − 1); (42)
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as a consequence, (42) dominate (39). Symmetric conditions for the minimum-down time con-
straints, similarly dominated, are also proposed. Also, variable upper bound constraints

pit ≤ uixi,t+1 + ūi(xit − xi,t+1) k ∈ T (1, n− 1) (43)

are proposed that are dominated e.g. by constraints (32). Finally, the ramp-up constraints

pit ≤ pi,t−1 + ∆+
i xi,t−1 + l̄i(xit − xi,t−1) + ui(1− xit) t ∈ T (44)

are proposed. Note that if xi,t−1 = xit = 1 then (14) reduces to pit ≤ pi,t−1 + ∆+
i , if xi,t−1 = 0

and xit = 1 it reduces to pit ≤ l̄ixit = l̄i, and if, finally, xi,t−1 = 1 and xit = 0 then it reduces to
0 ≤ pi,t−1+∆+

i − l̄i+ui. Hence, (44) are clearly dominated by (14). Similar ramp-down constraints
are proposed in [9] that are dominated by (15).

4. The dynamic programming algorithm

In [15], a Dynamic Programming (DP) algorithm was proposed to efficiently solve (1UD), which
extended a previous result [13] to the handling of nonlinear convex separable objective functions. We
now recall the basic ingredients of the approach that are necessary to present the MILP formulation.

The DP is based on defining a state-space graph Hi = (Ni, Ai) associated with unit i ∈ I; in
this paragraph, since the unit index is fixed we will drop it for notational simplicity. The nodes in
N are, in principle, all pairs (h, k) for h ∈ T and k ∈ T (h, n), plus a source s and a sink d. The
meaning of each state (h, k) ∈ N is that the unit is turned ON at time instant h (i.e., it was OFF
at time instant h− 1), and it will be turned OFF again at the end of time instant k (i.e., it will be
OFF at time instant k + 1). Clearly, all states such that k < h + τ+ − 1 correspond to infeasible
operations and need not to be considered. The set of arcs A is defined as follows. There is an arc
between node (h, k) and node (r, q) if r ≥ k + τ− + 1, i.e., it is feasible to turn on the unit at time
instant r given that it has been turned off at time instant k. Each of these arcs are labeled with
the start-up cost of the unit at time instant r; note that time-dependent start-up costs of any form
(say, not necessarily only that of (36)–(38)) are easily handled within this framework. There are
also arcs from the source s to all nodes (h, k) compatible with the initial state of the unit. That
is, if the unit is committed since τ0 time periods, then there is an arc from s to each node (1, k)
such that k + τ0 ≥ τ+, labeled with zero cost. If, instead, the unit is uncommitted since −τ0i time
periods, then there is an arc from s to each node (h, k) such that h − τ0 − 1 ≥ τ−; these arcs are
labeled with the corresponding start-up cost. Finally, there is a zero-cost arc from each node to
the sink d. Clearly, every s–d path on H represents a feasible schedule for the unit.

By now, the cost of the path only represent the contribution of start-up costs to the objective
function. Obviously, fixed generating costs (if any) can also be easily included: we can associate
with each node (h, k) ∈ N the sum of all fixed costs ci for all periods from h to k (extremes
included) as cost of the node, since the unit will be committed in that interval. Furthermore, for
each node (h, k) ∈ N the optimal contribution of the variable generating costs, that depend on the
pit variables, can be computed in polynomial time by solving the following Economic Dispatch with
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Ramping Constraints problem:

min
∑

t∈T (h,k) f(pt) (45)

l ≤ pt ≤ u t ∈ T (h, k) (46)

ph ≤ l̄ (47)

pt+1 ≤ pt + ∆+ t ∈ T (h, k − 1) (48)

pt ≤ pt+1 + ∆− t ∈ T (h, k − 1) (49)

pk ≤ ū (50)

We will denote problem (45)–(50) as (EDhk). Since all the relevant binary variables are fixed,
this is an optimization problem with convex objective function and linear constraints. Hence, its
optimal objective function value zhk = z(EDhk) can be computed in polynomial time. By summing
zhk to the weight of node (h, k), the cost of each s–d path on H is that of the feasible solution it
represents. Hence, (1UC) is reduced to a shortest path problem on an acyclic graph with O(n2)
nodes and O(n4) arcs. Thus, the problem can be solved in O(n4) once that all the data has been
computed.

Actually, the complexity of DP can be reduced by exploiting some structural properties of the
state-space graph H. Consider the set of nodes (h, k) in N partitioned into levels V k = { (h, k) ∈
N : 1 ≤ h ≤ k } for k ≥ 1 (level V 0 only contains the starting node s). From the definition of Hi,
it immediately follows that:

• if we consider only outgoing arcs, all nodes in V k have the same set of adjacent nodes;

• the cost of the arc between (h, k) and (r, q) only depends on k and r.

Therefore, it is possible to visit H in ascending order of level k, avoiding to explicitly explore the
forward star of all but one node for each level. Clearly, the chosen order is a valid one, and the
visit terminates having determined a shortest s–d path. Therefore, the complexity of the visit can
be reduced to O(n3) plus the cost of solving the O(n2) convex problems (EDhk), with up to n
variables, for each (h, k) ∈ N . The solution of each (EDhk) problems can be efficiently performed
in O(k−h), for our choice (6) of f , with another DP algorithm, yielding a O(n3) overall complexity.
We refer to [15] for details. The usefulness of this discussion in the present context is that we can
modify the structure of the state-space graph H in order to avoid the need for the special search
method above described. To do that, we introduce the modified state-space graph G = (N ′, A′)
where N ′ ⊃ N ; furthermore, level nodes V k are added to N ′ for k ∈ T . Each node (h, k) is linked to
node V k with an arc of zero cost. In turn, each node V k is linked to each node (r, q) if r ≥ k+τ−i +1;
as previously remarked, this arc can be given the same cost as all the arcs from each node (h, k)
to (r, q), which are identical. It is then easy to see that G is an acyclic graph with O(n2) nodes
and O(n3) arcs, as opposed to H that has significantly more arcs (O(n4)) albeit slightly less nodes.
The new graph state-space graph G is therefore a more convenient starting point for developing
our formulation, which is done in the next paragraph.

5. The convex hull for the thermal single-unit polytope

In this section we introduce a new formulation for (1UC) that is inspired by the DP algorithm
recalled in Section 4. This new formulation is composed of two parts:

• the shortest path formulation based on the modified state-space graph G of the DP algorithm;



13.

• new power variables, their related cost, and the linking constraints with the previous part.

As in the previous section, the unit index i ∈ I is fixed and therefore we drop it.

The shortest path formulation is straightforward: one just introduce the node-arcs incidence
matrix of the graph and writes the obvious system of inequalities. Actually, for our purposes we
will consider a further slight modification of the graph G introduced in the previous section, where
we have “node variables”, i.e., (binary) variables that have value 1 if and only if the corresponding
node is transversed by the path. These can be easily obtained by the ordinary arc variables by just
summing all the arcs variables entering the node. However, to simplify the notation we equivalently
obtain them by the well-known “node splitting” modification of the graph. That is, we consider the
graph G′ = (N ′′, A′′) where N ′′ contains two nodes for each node (h, h) ∈ N ′ (that is, neither level
nodes nor s and d need be splitted), denoted by (h, k)− and (h, k)+. For each arc in A′ entering
any (h, k) we insert in A′′ one arc entering (h, k)−, for each arc leaving (h, k) we insert one arc
leaving (h, k)+, and we insert in A′′ a single arc joining (h, k)− to (h, k)+; all other arcs are left
unchanged. Clearly, the variables corresponding to the arcs ((h, k)−, (h, k)+) are the desired node
variables. Given this construction, we can then simply write this part of the formulation as

Eξ = b , ξ ≥ 0 , (51)

where E is the node-arcs incidence matrix of G′, ξ is the vector of arc flow variables, and b is the
vector with all zero entries except bs = −1 and bd = 1 for the source node s and the sink node
d, respectively. For future reference, we will consider ξ partitioned as [z, y], where z are the arc
variables while y are the node variables.

We now add variables phkt associated with each node (h, k) ∈ N with t ∈ T (h, k) to compute the
power level for each time instant and the related costs. These variables are constrained as

lyhk ≤ phkh ≤ l̄yhk

lyhk ≤ phkt ≤ uyhk t ∈ T (h+ 1, k − 1)

lyhk ≤ phkt ≤ ūyhk

phkt+1 ≤ phkt + yhk∆+ t ∈ T (h, k − 1)

phkt ≤ phkt+1 + yhk∆− t ∈ T (h, k − 1)

(52)

while in the objective function we simply add∑
(h,k)∈N

∑
t∈T (h,k) f(phkt ) .

We now prove that the formulation of (1UC) given by constraints (51)–(52) describes the convex
hull of the feasible solutions for (1UC) if the objective function f is linear. To prove this statement
we will use the following well-known principle labeled as “Approach no. 4” by Wolsey [35] (used by
Edmonds in [12] and by others), and then we prove a lemma on the composition of polyhedra.

Proposition 5.1. For A ∈ Rm×n and b ∈ Rm, let

S =
{
x ∈ Rn : Ax ≤ b , x ≥ 0 , xj ∈ Z j ∈ J ⊆ {1, . . . , n}

}
. (53)

If S is bounded, then the inequalities in (53) describe the convex hull of S if and only if for each
vector c ∈ Rn there exists λ ∈ Rm such that

max{ cx : x ∈ S } = min{λb : λA ≥ c , λ ≥ 0 } .
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Definition 5.2. Let Si ⊂ Rni × R be two sets; their 1-sum composition is defined as

S1 ⊕ S2 = { (x1, x2, y) ∈ Rn1+n2+1 : (xi, y) ∈ Si i = 1, 2 } .

The following lemma enables us to prove that the linear description of the convex hull of S1⊕S2
can be obtained from the linear description of the convex hulls of S1 and S2.

Lemma 5.3. For i = 1, 2, let Si ⊂ Rni×R be two sets, and suppose that Pi = { (xi, y) ∈ Rni×R :
Aixi + aiy ≤ bi , xi ≥ 0 , y ≥ 0 } describes the convex hull of Si for i = 1, 2. If (xi, y) ∈ Si
implies that y ∈ {0, 1} for i = 1, 2, then the system

A1x1 + a1y ≤ b1
a2y + A2x2 ≤ b2

x1 , y , x2 ≥ 0
(54)

describes the convex hull of S1 ⊕ S2.

Proof. We prove that for every (c1, c2, d) ∈ Rn1+n2+1 there exists a dual optimal solution for (54)
whose objective function value is equal to z = max{ c1x1 + c2x2 + dy : (xi, y) ∈ Si i = 1, 2 },
according to Proposition 5.1. This proof follows similar steps as the proof by Chvátal [10] for
composition of stable set polyhedra by clique-cutsets.
For y ∈ {0, 1}, we define ziy = max{ cixi+dy : (xi, y) ∈ Si }. Note that max{ cixi+(d+zi0−zi1)y :
(xi, y) ∈ Si } = zi0 for i = 1, 2. Therefore, by Proposition 5.1 there exists λi such that

λiAi ≥ ci , λiai ≥ d+ zi0 − zi1 , λibi = zi0 .

Let z0 = z10 + z20 , z1 = z11 + z21 − d, and z = max{ z0 , z1 }. Clearly z − z0 ≥ 0, max{ (z − z0)y :
(x1, y) ∈ S1 } = z − z0, and by Proposition 5.1 there exists γ ≥ 0 such that

γA1 ≥ 0 , γa1 ≥ z − z0 , γb1 = z − z0 .

Finally, consider the dual solution of (54) given by µ = [µ1, µ2] = [λ1 + γ, λ2], where µ1 =: the
following relationships hold

µ1A1 = λ1A1 + γA1 ≥ c1 + 0 = c1

µ2A2 = λ2A2 ≥ c2

µ1a1 + µ2a2 = λa1 + γa1 + λ2a2 ≥ (d+ z10 − z11) + (z − z0) + (d+ z20 − z21)

= d+ z − z1 ≥ d

µ1b2 + µ2b2 = (λ1 + γ)b1 + λ2b2 = z10 + (z − z0) + z20 = z ,

and by Proposition 5.1 the lemma follows.

In order to apply Lemma 5.3 to (1UC) we also need the following result.

Lemma 5.4. The formulation (52) describes the convex hull of the feasible integer solutions.

Proof. In (52) there is only one binary variable: yhk. We can then apply the disjunctive pro-
gramming principle of lift-and-project [3]: we multiply each row of the system (52) once by yhk
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and once by 1− yhk, obtaining

l(yhk)2 ≤ phkh yhk ≤ l̄(yhk)2

l(yhk)2 ≤ phkt yhk ≤ u(yhk)2 t ∈ T (h+ 1, k − 1)

l(yhk)2 ≤ phkt yhk ≤ ū(yhk)2

phkt+1y
hk ≤ phkt yhk + (yhk)2∆+ t ∈ T (h, k − 1)

phkt y
hk ≤ phkt+1y

hk + (yhk)2∆− t ∈ T (h, k − 1)

0 ≤ (yhk)2 ≤ yhk

lyhk(1− yhk) ≤ phkh (1− yhk) ≤ l̄yhk(1− yhk)
lyhk(1− yhk) ≤ phkt (1− yhk) ≤ uyhk(1− yhk) t ∈ T (h+ 1, k − 1)

lyhk(1− yhk) ≤ phkt (1− yhk) ≤ ūyhk(1− yhk)
phkt+1(1− yhk) ≤ phkt (1− yhk) + yhk(1− yhk)∆+ t ∈ T (h, k − 1)

phkt (1− yhk) ≤ phkt+1(1− yhk) + yhk(1− yhk)∆− t ∈ T (h, k − 1)

0 ≤ yhk(1− yhk) ≤ 1− yhk

. (55)

By applying the standard reduction rules (yhk)2 = yhk, yhkphkt = phkt (for all t ∈ T (h, k)), that are
valid because yhk ∈ {0, 1} and phkt = 0 (for all t ∈ T (h, k)) when yhk = 0, we obtain that (55) can
be reduced to

lyhk ≤ phkh ≤ l̄yhk

lyhk ≤ phkt ≤ uyhk t ∈ T (h+ 1, k − 1)

lyhk ≤ phkk ≤ ūyhk

phkt+1 ≤ phkt + yhk∆+ t ∈ T (h, k − 1)

phkt ≤ phkt+1 + yhk∆− t ∈ T (h, k − 1)

0 ≤ yhk

0 ≤ 1− yhk

. (56)

Because (56) is clearly equivalent to (52), by lift-and-project the formulation (52) describes the
convex hull of its integer feasible solutions.

It is now straightforward to prove the desired result.

Theorem 5.5. Formulation (51)–(52) describes the convex hull of the feasible solutions for (1UC).

Proof. Define S0 the set of feasible solutions of the network flow problem (51) associated with
the DP graph G′, and Shk the set of feasible solutions of (52) for each pair (h, k). We can build
the set of solutions for the complete problem by iteratively composing the solutions of S0 with the
sets Shk, e.g., in lexicographic order of the pairs (h, k) ∈ N . By Lemma 5.3, at the first step,
the system obtained by adding to the inequalities of the system (51) plus the inequalities of the
system (52) associated with the first feasible pair (h1, k1) describes the convex hull of the solutions
S1 = S0 ⊕ Sh1k1 , because the two systems share only the binary variable yh1k1 . One can then
iteratively define Sj as the set of feasible solutions obtained as Sj = Sj−1⊕Shjkj : combining Lemma
5.3 with Lemma 5.4, at each step the corresponding system of inequalities describes conv(Sj). So,
at the end of the composition process we have obtained a description with linear inequalities for
the overall set of solutions.
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Note that the number of variables is O(n3) (n being the number of time instants) for the network
flow system and O(n) for each of the O(n2) subproblems (52) associated with each pair (h, k);
hence, the total number of variables in the proposed formulation is O(n3).

While writing this report, we learned that paper [21] presents a very similar formulation obtained
with a different proof exploiting a result on a polyhedral representation of constrained Minkowski
sums of polyhedra using indicator variables. Their formulation uses O(n4) variables and O(n3)
constraints, as it is based on the original graph proposed in [15]. However, a second formulation
is presented in [21] of comparable size as the one proposed here, i.e., O(n3) variables and O(n3)
constraints. However, this second formulation does not seem to allow for history-dependent start-up
costs as our own does.

6. An improved DP algorithm and formulation

We can define a new DP algorithm by redefining the state-space graph G̃i = (Ñi, Ãi) for each unit
i ∈ I. We again drop the unit index i for simplicity. The set of nodes Ñi considers nodes of two
types: ON t and OFF t for each t ∈ T , plus two special nodes, the source s and the sink d. The
set of arcs includes two types: arcs (OFF h, ONk), denoting that the unit is turned ON at time
period h and that the unit is turned OFF at the end of time period k, that is the unit is OFF at
time periods h− 1 and k+ 1; arcs (ONk, OFF r), denoting that the unit is OFF from time periods
k + 1 to time period r − 1. The arcs satisfy the minimum-up time and the minimum-down time
as the nodes (h, k) of the original DP algorithm. Moreover, there are the connections between the
source node s and the above nodes defined according to the initial conditions. All nodes are then
connected to the sink node s. This amounts to the definition of a state space graph with 2n + 2
nodes and O(n2) arcs.

The definition of an associated MILP formulation is straightforward and contains O(n2) binary
variables and O(n3) continuous variables.

7. Computational tests

In this section we test the computational performances of the new formulation (51)–(52). The
main issue, of course, is that of the trade-off between the bound improvement w.r.t. less tight
formulations and the cost increase due to the larger size. Indeed, the proposed formulation has
O(n3) variables and O(n3) constraints, while the 1-bin and 3-bin formulations only have O(n)
variables and O(n) constraints. This is significant not for (1UC) alone, but for the whole of (UC).
In fact, formulation (51)–(52) has the integrality property, so we can solve it by simply using a
Linear Programming solver; thus it will likely be far more efficient than using any other formulation
and branching. Yet, this is of little import in practice because the DP algorithm of [15] will typically
solve the problem much faster than applying an LP solver to the proposed formulation. The interest
in devising tighter formulations of (1UC) mostly lies in using them to improve on the solution of
the whole problem.

The experiments have been carried out with CPLEX 12.5 on a PC with 2.2 GHz AMD Opteron
6174 CPUs and 32 GB of RAM, under a GNU/Linux Ubuntu 10.10 operating system. We used
the set of instances published at

http://www.di.unipi.it/optimize/Data/UC.html

considering pure thermal instances ranging from 20 to 150 units and n = 24 time periods. For
each instance size we performed 5 tests, and we present the average of the results thus obtained.
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DP formulation 1bin
p gap% time gap% time

20 0.59 67.48 3.10 0.13
50 0.10 24.19 2.19 0.74
75 0.08 42.38 2.26 0.65
100 0.04 414.38 2.12 7.00
150 0.02 120.73 2.12 24.26

Table 1: Root node gaps of the DP and 1bin formulations

In Table 1 we compare the running times to solve the continuous relaxation of the new formulation
and the standard 1-bin one, with the corresponding gap w.r.t. the optimal solution to the problem.
Note that the gap is that of the “pure” formulation, i.e., before any cut added by CPLEX.

The results in Table 1 show that the root node gaps computed with the DP formulation actually
descreases when the size of the instances increases; on largest instances the gap is actually quite
close to 0.01%, which is considered optimal in practice in many cases (and far more accurate than
how UC is usually solved, see e.g. [17]). On the contrary, the root node gap computed with the 1-
bin formulation is almost constant and always around 2%. Of course, the required average running
time is considerably larger.

We have performed some preliminary computational results for solving the UC problem at op-
timality (i.e., with 0.01% gap). In these tests, often the 1-bin formulation was competitive with
the DP one, or better. However, we believe that the DP formulation is promising and it should
be further investigated, in at least two directions. The first is to help in the definition of heuristic
algorithms that exploit the much smaller gap and use the better continuous solution to quickly
produce feasible solutions with the quality required by practical applications (say, a gap smaller
than 0.5%). The second is the fact that, like with all “large” formulations, the number of vari-
ables and constraints that are actually required to characterize at the optimal solution is a small
fraction of the total number. Thus, generation of variables and constraints, such as the Structured
Dantzig-Wolfe Decomposition [14], could very considerably speed-up the overall performances of
the algorithm, thereby overcoming the disadvantage related to the larger size of the formulation
and making it competitive with the best implementations of 1-bin and 3-bin ones.
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[3] E. Balas, S. Ceria, and G. Cornuéjols, “A lift-and-project cutting plane algorithm for mixed
0-1 programs,” Mathematical Programming, vol. 58, pp. 295–324, 1993.

[4] J. Bard, “Short-term scheduling of thermal-electric generators using lagrangian relaxation,”
Operations Research, vol. 36, no. 5, pp. 765–766, 1988.

[5] E. Bartholomew, R. O’Neill, and M. Ferris, “Optimal transmission switching,” IEEE Trans-
actions on Power Systems, vol. 23, no. 3, pp. 1346–1355, 2008.



18.

[6] A. Borghetti, A. Frangioni, F. Lacalandra, and C. Nucci, “Lagrangian heuristics based on
disaggregated bundle methods for hydrothermal unit commitment,” IEEE Transactions on
Power Systems, vol. 18, pp. 313–323, 2003.

[7] A. Borghetti, A. Frangioni, F. Lacalandra, C. Nucci, and P. Pelacchi, “Using of a cost-based
unit commitment algorithm to assist bidding strategy decisions,” in Proceedings IEEE 2003
Powerteck Bologna Conference (A. Borghetti, C. Nucci, and M. Paolone, eds.), p. Paper n.
547, 2003.

[8] S. Bruno, M. D. Lullo, G. Felici, F. Lacalandra, and M. L. Scala, “Tight unit commitment
models with optimal transmission switching: Connecting the dots with perturbed objective
function.” 2014.

[9] M. Carrión and J. Arroyo, “A computationally efficient mixed-integer linear formulation for
the thermal unit commitment problem,” IEEE Transactions on Power Systems, vol. 21, no. 3,
pp. 1371–1378, 2006.
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