
ISTITUTO DI ANALISI DEI SISTEMI ED INFORMATICA
“Antonio Ruberti”

CONSIGLIO NAZIONALE DELLE RICERCHE

A. Frangioni, C. Gentile, E. Grande, A. Pacifici

PROJECTED PERSPECTIVE

REFORMULATIONS WITH APPLICATIONS IN

DESIGN PROBLEMS

R. 09-09, 2009

Antonio Frangioni – Dipartimento di Informatica, Polo Universitario della Spezia, Via dei Colli 90, 19121
La Spezia – Italy. Email: frangio@di.unipi.it.

Claudio Gentile – Istituto di Analisi dei Sistemi ed Informatica, CNR, Viale Manzoni 30 - 00185 Roma,
Italy. Email: gentile@iasi.cnr.it Ph. +39 06 77161, Fax +39 06 7716461..

Enrico Grande – Dipartimento di Ingegneria dell’Impresa, Università degli Studi di Roma “Tor Vergata”,
Via del Politecnico 1, 00133 Roma, Italy. Email: grande@disp.uniroma2.it.

Andrea Pacifici – Dipartimento di Ingegneria dell’Impresa, Università degli Studi di Roma “Tor Ver-
gata”, Via del Politecnico 1, 00133 Roma, Italy. Email: pacifici@disp.uniroma2.it.

ISSN: 1128–3378



Collana dei Rapporti dell’Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti”, CNR

viale Manzoni 30, 00185 ROMA, Italy

tel. ++39-06-77161
fax ++39-06-7716461
email: iasi@iasi.cnr.it
URL: http://www.iasi.cnr.it



Abstract

The Perspective Relaxation (PR) is a general approach for constructing tight approximations to Mixed-
Integer NonLinear Problems with semicontinuous variables. The PR of a MINLP can be formulated either
as a Mixed-Integer Second-Order Cone Program (provided that the original objective function is SOCP-
representable), or as a Semi-Infinite MINLP. In this paper, we show that under some further assumptions
(rather restrictive, but satisfied in several practical applications), the PR of Mixed-Integer Quadratic Pro-
gram can also be reformulated as a piecewise linear-quadratic problem, ultimately yielding a QP relaxation
of roughly the same size of the standard continuous relaxation. Furthermore, if the original problem has
some exploitable structure, then this structure is typically preserved in the reformulation, thus allowing to
construct specialized approaches for solving the PR. We report on implementing these ideas on two MIQPs
with appropriate structure: a sensor placement problem and a Quadratic-cost (single-commodity) network
design problem.

Key words: Mixed-Integer NonLinear Problems, Semicontinuous Variables, Perspective Relaxation, Sensor
Placement Problem, Network Design Problem





3.

1. Introduction

Semi-continuous variables are very often found in models of real-world problems such as distribution and
production planning problems [20, 11, 14], financial trading and planning problems [12], and many others
[1, 3, 15, 16]. These are variables which are constrained to either assume the value 0, or to lie in some given
convex compact set P ; in our applications P will always be a polyhedron. Often 0 /∈ P ; this is e.g. the case
when the variable represents the output of a production process that has a “nonzero minimum producible
amount”, but that can be switched off altogether. Alternatively, 0 may belong to P , but one may incur in
a fixed cost c to “activate” the process (produce a nonzero amount).

We will consider Mixed-Integer NonLinear Programs (MINLP) with n semi-continuous variables xi ∈ R
mi

for each i ∈ N = {1, . . . , n}. Assuming that each Pi = {xi : Aixi ≤ bi} has the property that {xi : Aixi ≤
0} = {0}, each xi can be modeled by using an associated binary variable yi, leading to problems of the form

min g(z) +
∑

i∈N fi(xi) + ciyi (1)

Aixi ≤ biyi i ∈ N (2)

(x, y, z) ∈ O , y ∈ {0, 1}n , x ∈ R
m , z ∈ R

q (3)

where all fi and g are closed convex functions, z is the vector of all the “other” variables, and O is any
subset of R

m+n+q (with m =
∑

i∈N mi), representing all the “other” constraints of the problem.
It is known that the convex hull of the (disconnected) domain {0} ∪ Pi of each pi can be conveniently

represented in a higher-dimensional space, which allows to derive disjunctive cuts for the problem [18]; this
leads to defining the Perspective Reformulation of (1)—(3) [5, 11]

min
{

g(z) +
∑

i∈N yifi(xi/yi) + ciyi : (2) , (3)
}

(4)

whose continuous relaxation is significantly stronger than that of (1)—(3), and that therefore is a more
convenient starting point to develop exact and approximate solution algorithms [11, 12, 3, 14, 16]. We
remark that yifi(xi/yi) for yi > 0 is called the perspective function of fi(xi) (a well-known tool in convex
analysis), whence the name; while the objective function in (4) is formally undefined when some yi = 0, one
can extend it by continuity to allow for null values (we assume that this is, in fact, done throughout the
paper).

However, an issue with (4) is the high nonlinearity in the objective function due to the added fractional
term. Two alternative reformulations of (4) have been proposed; one as a Mixed-Integer Second-Order Cone
Program [19, 3, 16] (provided that the original objective function is SOCP-representable), and the other as
a Semi-Infinite MILP [11]. In several cases, the latter outperforms the former in the context of exact or
approximate enumerative solution approaches [13], basically due to the much higher reoptimization efficiency
of active-set (simplex-like) methods for Linear and Quadratic Programs w.r.t. the available Interior Point
methods for Conic Programs.

However, both reformulations of (4) require the solution of substantially more complex continuous relax-
ations than the original formulation of (1)—(3). In this paper, we show that under some further assumptions
(rather restrictive, but satisfied in several practical applications), the PR of a Mixed-Integer Quadratic Pro-
gram can also be reformulated as a piecewise linear-quadratic problem, ultimately yielding a QP relaxation
of roughly the same size of the standard continuous relaxation; this is discussed in Section 2. Furthermore,
if the original problem has some exploitable structure, then this structure is typically preserved in the re-
formulation, thus allowing to construct specialized approaches for solving the PR. We apply this approach
on two MIQPs with appropriate structure: a sensor placement problem (Section 3) and a Quadratic-cost
(single-commodity) network design problem (Section 4), reporting numerical experiments comparing state-
of-the-art, off-the-shelf MIQP solvers with the new specialized solution approach (Section 5).

2. A piecewise description of the convex envelope

Here we refine the analysis of the properties of the Perspective Reformulation under three further assumptions
on the data of the original problem (1)—(3):



4.

A1) each xi is a single variable (i.e., mi = 1), therefore each Pi is a bounded real interval [li, ui] with
0 ≤ li < ui;

A2) the variables yi only appear each in the corresponding constraint (2), i.e., the “other” constraints O
do not concern the yi;

A3) all functions are quadratic, i.e., fi(xi) = aix
2
i + bixi (and since they are convex, ai > 0).

While these assumptions are indeed restricting, they are in fact satisfied by most of the applications of the
PR reported so far [11, 12, 3, 15, 16]. Since in this paragraph we will only work with one block at a time, to
simplify the notation in the following we will drop the index “i”. We will therefore consider the (fragment
of) Mixed-Integer Quadratic Program (MIQP)

min
{

ax2 + bx + cy : ly ≤ x ≤ uy , y ∈ {0, 1}
}

(5)

and its Perspective Relaxation

min
{

f(x, y) = (1/y)ax2 + bx + cy : ly ≤ x ≤ uy , y ∈ [0, 1]
}

. (6)

The basic idea behind the approach is to recast (6) as the minimization over x ∈ [0, u] of the following
function:

z(x) = minyf(x, y) = bx + min
{

(1/y)ax2 + cy : ly ≤ x ≤ uy , y ∈ [0, 1]
}

. (7)

It is well-known that z(x) (partial minimization of a convex function) is convex; furthermore, due to the
specific structure of the problem z(x) can be algebraically characterized. In particular, due to convexity of
f(x, y), the optimal solution y∗(x) of the inner optimization problem in (7) is easily obtained by the solution
ỹ (if any) of the first-order optimality conditions of the unconstrained version of the problem

∂f(x, y)

∂y
= c − 1

y2
ax2 = 0 . (8)

In fact, if ỹ is feasible for the problem, then it is optimal (y∗(x) = ỹ); otherwise, y∗(x) is the projection
of ỹ over the feasible region, i.e., the extreme of the interval nearer to ỹ (this is where assumption A1
is used). Thus, by developing the different cases, one can construct an explicit algebraic description of
z(x) = f(x, y∗(x)). To simplify the presentation, in the following we will treat l as if it were a positive

number; e.g., we will assume that x/l is always a well-defined quantity. It can be easily verified that all the
obtained formulae plainly extend to the case l = 0.

2.1. The piecewise description of z(x)

We start by rewriting the constraints in (7) as

(0 ≤)
x

u
≤ y ≤ min

{ x

l
, 1

}

(9)

(since u ≥ x ≥ l ≥ 0 ⇒ x/u ≥ 0); if l = 0 the constraint ly ≤ x is redundant, and one can imagine x/l = +∞
so that the quantity “never gets in the way of y”. We must now proceed by cases:

1) If c ≤ 0, then (8) has no solution for y > 0: the derivative is always negative. Of course, y = 0 is
not a solution, either. Thus, there is no global minima of the unconstrained problem, and therefore
y∗(x) = min{ x/l , 1 }. This gives two subcases:

1.1) x/l ≤ 1 ⇔ x ≤ l ⇔ y∗(x) = x/l ⇒

z(x) =
(

b + al + c/l
)

x (10)

1.2) x/l ≥ 1 ⇔ x ≥ l ⇔ y∗(x) = 1 ⇒
z(x) = ax2 + bx + c . (11)



5.

In other words, z(x) is the piecewise linear-quadratic function

z(x) =

{ (

b + al + c/l
)

x if 0 ≤ x ≤ l

ax2 + bx + c if l ≤ x ≤ u
(12)

Note that z(x) is continuous in the (potential) breakpoint x = l; also, we have z′
−

(l) = b + al + c/l ≤
2al + b = z′+(l) (as a > 0, l > 0 and c ≤ 0; the case l = 0 is obvious), confirming that z(x) is convex,
as expected.

2) Instead, if c > 0 the only solution to (8) is

ỹ = x
√

a/c (13)

(note that we have used x ≥ (l ≥) 0, c > 0, a > 0). Actually, this gives ỹ = 0 for x = 0, which leaves
(8) ill-defined; however, this is the only solution in (9) if l > 0, while if l = 0 one could choose any
y ∈ [0, 1], but this again gives ỹ = y∗(x) = 0 as c > 0. In general, three cases can arise:

2.1) ỹ ≤ x/u ⇔ u ≤
√

c/a ⇔ y∗(x) = x/u ⇒

z(x) =
(

b + au + c/u
)

x (14)

2.2) x/l ≥ ỹ ≥ x/u ⇔ u ≥
√

c/a ≥ l; two further subcases arise:

2.2.1) (u ≥) x ≥
√

c/a (≥ l), which implies both ỹ ≥ 1 and x/l ≥ 1, so that y∗(x) = 1 and therefore
(11) holds;

2.2.2) l ≤ x ≤
√

c/a (≤ u), which gives ỹ ≤ 1. Now, if l ≤ x then x/l ≥ 1, and therefore y∗(x) = ỹ.

However, because l ≤
√

c/a we always have x/l ≤ x
√

a/c = ỹ, thus even when 0 ≤ x ≤ l we
have y∗(x) = ỹ, which finally implies

z(x) =
(

b + 2
√

ac
)

x . (15)

Thus, z(x) is the piecewise linear-quadratic function

z(x) =

{ (

b + 2
√

ac
)

x if 0 ≤ x ≤
√

c/a

ax2 + bx + c if
√

c/a ≤ x ≤ u
(16)

Note that (16) is continuous and differentiable even at the (potential) breakpoint x =
√

c/a, and
therefore convex (as expected); the derivative is constant—hence nondecreasing—in the linear
part and increasing in the quadratic one.

2.3) ỹ ≥ x/l ⇔ (u ≥) l ≥
√

c/a ⇔ y∗(x) = min{x/l, 1} ⇒ (12) (cf. 1)).

In all the cases, z(x) is a convex piecewise-quadratic function with at most 2 pieces; except in case (12)
it is also differentiable, and even (12) is differentiable if l = 0 (in which case the function actually has only
one piece).

2.2. A convex reformulation

Hence, we are confronted with the problem of minimizing a convex function with the generic k-piecewise
form

z(x) = zh(x) if αh ≤ x ≤ αh+1 h = 1, . . . , k

where each zh(x) is, obviously, convex. For the convexity of the function z, one has

z(x) = min











z1(χ1 + α1) +
∑k

h=2 zh(χh + αh) − zh(αh)

χh ∈ [0, αh+1 − αh] h = 1, . . . , k

α1 +
∑k

h=1 χh = x

(17)



6.

for all x ∈ [α1, αk+1]. This equivalence is well-known (being related to the fact that the infimal convolution

of convex functions is convex), but we briefly sketch a proof for illustratory purposes assuming for simplicity
that all the zh are continuously differentiable. It is easy to check that for each value of x ∈ [α1, αk+1], the
following “canonical representation” of x

χh = max{ αh , min{ αh+1 , x } } − αh h = 1, . . . , k

is equivalent to x in the sense that

z(x) = z1(χ1 + α1) +
∑k

h=2 zh(χh + αh) − zh(αh)

(by convexity ⇒ continuity of z, zh(αh+1) = zh+1(αh+1)). Thus, (17) provides a lower bound on z(x).
However, it is easy to see that there exists an optimal solution to (17) representing the “canonical form” of x,
that is, for which there exists an index q ∈ {1, . . . , k} such that χh = αh+1−αh for h < q, χq ∈ [0, αq+1−αq],
and χh = 0 for h > q. In fact, take an optimal solution [χ∗

h] of (17) and assume that there exist two indices
1 ≤ q < j ≤ k such that χ∗

q < αq+1 − αq and χ∗

j > 0. Because z is overall convex, its derivative must be
nondecreasing, and therefore

z′q(χ
∗

q + αq) ≤ z′j(χ
∗

j + αj)

(as q < j, αj ≥ αq+1). Hence, for some small ǫ > 0 the feasible solution to (17) obtained from [χ∗

h] by
increasing χ∗

q of ǫ and decreasing χ∗

j of ǫ must be not worse than [χ∗

h]; since the latter is optimal, the former
must be optimal too. Hence, by increasing χq and decreasing χj we can construct an optimal solution where
either the q-th interval is “full” (χq = αq+1 −αq) or the j-th interval is “empty” (χj = 0); repeating this we
show that an optimal solution to (17) is the canonical form of x.

The interest of this procedure is that if we have a minimization problem where z(x) is a part of the
objective function and x is constrained to lie in [α1, αk+1], we can obtain an equivalent problem by:

• replacing z(x) in the objective function with z1(χ1 + α1) +
∑k

h=2 zh(χh + αh) − zh(αh);

• replacing x everywhere in the constraints with α1 +
∑k

h=1 χh, where each χh is constrained to lie in
[0, αh+1 − αh].

Because these changes are quite simple, we can transform a problem with a “complex” convex objective
function in a problem with more variables but “simpler” convex objective functions without interfering too
much with the structure of the constraints. This may allow us to use specialized solution algorithms that
exploit the structure of the constraints without the need to explicitly take into account the piecewise nature
of the original objective functions. Two examples of application of this procedure are shown below.

3. A sensor placement problem

Consider the problem of optimally placing a set N = {1, . . . , n} of sensors to cover a given area, where
deploying one sensor has a fixed cost plus a cost that is quadratic in the radius of the surface covered [1].
The problem, which is shown to be NP-hard in [2], can be written as

min
∑

i∈N ciyi +
∑

i∈N aix
2
i

0 ≤ xi ≤ yi i ∈ N
∑

i∈N xi = 1

yi ∈ {0, 1} i ∈ N

Since we can assume ci > 0 (for otherwise yi can surely be fixed to 1), in the continuous relaxation of this
problem the “design” variables yi can be “projected” onto the xi; that is, since at optimality it surely is
yi = xi, the yi variables can be eliminated and their linear cost term is shifted onto the xi. Such a problem
can be solved in O(n log n); however, the bound provided by the continuous relaxation can be weak, leading
to a large number of nodes in the enumeration tree and therefore to a large solution time.



7.

We want to improve the bound by using the convex envelope of the single blocks of the objective function.
As outlined in the previous sections, we can compute this bound by means of a single minimization involv-
ing the piecewise-linear-quadratic functions developed in Section 2; that is, according to the reformulation
technique of Subsection 2.2, we rewrite the problem in the form

min
∑m

j=1 bjχj +
∑m

i=1 djχ
2
j

∑m
j=1 χj = 1

χj ∈ [0, αj] j = 1, . . . , m

(18)

where m ≤ 2n and the coefficients bj and dj are as follows:

• if
√

ci/ai ≥ 1 then only one new variable χj is generated with coefficients bj = aiui + ci/ui, dj = 0,
and αj = ui;

• if
√

ci/ai < 1 then two new variables χj1 and χj2 are generated such that xi = χj1 + χj2 with

bj1 = 2
√

aici, dj1 = 0, αj1 =
√

ci/ai for the first variable and bj2 = 2
√

aici, dj2 = ai, αj2 = 1−
√

ci/ai

for the second variable.

This problem can be easily solved in O(m log m) = O(n log n) as follows. Consider its Lagrangian relaxation
w.r.t. the “linking” constraint

∑m
j=1 χj = 1 with Lagrangian multiplier µ:

φ(µ) = µ + min
∑m

j=1(bj − µ)χj +
∑m

j=1 djχ
2
j

χj ∈ [0, αj ] j = 1, . . . , m

Computation of φ(µ) decomposes into the m independent quadratic problems

min { (bj − µ)χi + djχ
2
j : χj ∈ [0, αj] } (19)

that can solved in O(1). By convexity, the Lagrangian dual problem, maxµ∈R φ(µ), is equivalent to (18).
To solve the dual efficiently, consider the solution to (19) parametrized in µ. Temporarily assuming, for
simplicity, that dj > 0 for all j = 1, . . . , m, the unconstrained minimum is

χ̃j(µ) =
µ − bj

2dj

and therefore the optimal solution χ∗

j (µ) of (19) is:

• 0 if (µ − bj)/2dj ≤ 0 ⇒ µ ≤ bj ;

• αj if (µ − bj)/2dj ≥ αj ⇒ µ ≥ 2αjdj + bj ;

• (µ − bj)/2dj if 0 ≤ (µ − bj)/2dj ≤ αj ⇒ µ ∈ [bj , 2αjdj + bj]
(note that αjdj > 0).

It is easy to check that χ∗

j (µ) is nondecreasing in µ; this is expected, since

φ′(µ) = 1 − ∑m
j=1 χ∗

j (µ)

must be nonincreasing since φ is concave. Each variable χj = χ∗

j (µ) gives a fixed contribution to the
derivative outside the given interval [bj, 2αjdj + bj ], while the contribution is linear inside the interval. It is
then easy to find the unique value of µ such that φ′(µ) = 0 (the dual must have an optimal solution since the
primal is surely nonempty and bounded). First, all the 2m extremes of the m intervals bj and 2αjdj + bj are
all inserted in a unique list that is then ordered in nondecreasing sense; let us denote by µ̄1, µ̄2, . . . , µ̄2m the
elements in the list after the ordering. For sufficiently small values of µ—smaller than µ̄1—χ∗

j (µ) = 0 for all
j and therefore φ′(µ) = 1 ⇒ φ is increasing. Then, µ is initialized to µ̄1, that must be the left endpoint bh for
some variable h, the current value β of φ′(µ) is initialized to 1, and the rate of change γ of φ′(µ) is initialized
to 1/dh. Then, the next element µ̄ in the list is looked at: it corresponds either to the left endpoint or to



8.

the right endpoint of the interval corresponding to some variable k. If β − γ(µ̄− µ) ≤ 0, then µ∗ = µ + β/γ
is an optimal solution to the Lagrangian dual (φ′(µ∗) = 0) and an optimal solution to (18) can be derived
from µ∗ in O(m). Otherwise, µ is updated to µ̄ (that surely has a better φ-value) and β = φ′(µ̄) is updated
by subtracting it γ(µ̄ − µ). Then, if µ̄ is the left endpoint of variable k, this also becomes “active”, and
therefore 1/(2dk) is added to γ; instead, if µ̄ is the right endpoint, then k becomes “inactive” and 1/(2dk)
is subtracted to γ. By iterating this procedure, µ∗ is identified within O(m) steps, each one costing O(1);
therefore, (18) is solved in O(m log m) = O(n log n) overall, owing to the cost of ordering the list.

This sketch of solution procedure has to be slightly complicated to take into account all possibilities. First,
note that γ can become zero if there are no “active” variables; in this case µ is immediately advanced to the
next element in the list, since nothing happens to φ′(µ) in the interval. Furthermore, if di = 0 the optimal
solution to (19) is not unique; indeed, we have

χ∗

j (µ) ∈







{0} µ < bj

[0, αj] µ = bj

{αj} µ > bj

.

Thus, in this case the interval where χ∗

j (µ) varies is reduced to a single point, and any χj ∈ [0, αj ] is an
optimal solution there. It is not difficult to extend the above procedure to handle this case, too.

4. Quadratic-cost network design

A directed graph G = (N, A) is given; for each node i ∈ N a deficit di ∈ R is given indicating the amount
of flow that the node demands (negative deficits indicate source nodes). Each arc (i, j) ∈ A can be used up
to a given maximum capacity uij paying a fixed cost cij . Otherwise, no cost is due if (i, j) is not installed
but flow cannot pass through the arc. Additionally, if xij units of flow are sent through an installed arc
(i, j), a quadratic flow cost bijxij + aijx

2
ij is also incurred. The problem is to decide which arcs to install

and how to route the flow in such a way that demands are satisfied and the total (installing + routing) cost
is minimized. The problem can be written as

min
∑

(i,j)∈A cijyij + bijxij + aijx
2
ij

∑

(j,i)∈A xji −
∑

(i,j)∈A xij = di i ∈ N

lijyij ≤ xij ≤ uijyij , yij ∈ {0, 1} (i, j) ∈ A

(20)

This network design problem is NP-hard, since it is a generalization of the sensor placement problem
described in Section 3. A recent application of this general model in a Facility Location setting is given in
[15, 16].

Again, since cij > 0 (for otherwise yij can surely be fixed to 1), in the continuous relaxation of (20) the
design variables yij can be projected onto the xij ; that is, at optimality yij = xij/uij. The resulting problem
can be efficiently solved by means of (convex) Quadratic Min-Cost Flow (QMCF) algorithms; however, the
bound provided by the continuous relaxation is usually weak.

Applying the results of Section 2 to (20), a Separable Convex-cost NonLinear MCF problem is obtained,
where the flow cost function on each arc is a piecewise linear-quadratic convex cost function. In turn, this
can be rewritten as a QMCF problem

min
∑

(i,j)∈A′ b′ijχij + a′

ijχ
2
ij

∑

(j,i)∈A′ χji −
∑

(i,j)∈A′ χij = di i ∈ N

0 ≤ χij ≤ u′

ij (i, j) ∈ A′

(21)

on a graph G′ = (N, A′) with the same node set and at most 2 times the number of arcs. For each of the
original arcs (i, j), at most two “parallel” copies are constructed. If uij ≤

√

cij/aij (case 2.1), then only one
representative of (i, j) is constructed in G′, with b′ij = bij + aijuij + cij/uij, a′

ij = 0 and u′

ij = uij . Instead,

if uij ≥
√

cij/aij ≥ lij (case 2.2) then two parallel copies of the arc (i, j) have to be constructed in G′:

the first has b′ij = bij + 2
√

aijcij , a′

ij = 0, and u′

ij =
√

cij/aij , while the second has b′ij = bij + 2
√

aijcij ,



9.

a′

ij = aij , and u′

ij = uij −
√

cij/aij. Finally, if lij ≥
√

cij/aij (case 2.3) then two parallel copies of the
arc (i, j) have to be constructed in G′: the first has b′ij = bij + aij lij + cij/lij , a′

ij = 0, and u′

ij = lij ,
while the second has b′ij = bij + 2aij lij , a′

ij = aij , and u′

ij = uij − lij . For this kind of “partitioned”
NonLinear MCF problems—where some of the arcs have strictly convex cost functions, while the other have
linear cost functions—specialized algorithms have been proposed in [8]. In general, any algorithm for Convex
(Quadratic) MCF problems (see e.g., [4]) can be used. While codes implementing these algorithms are either
not available or not very efficient in practice, the off-the-shelf solver Cplex turns out to be quite efficient in
solving these convex QMCFs.

5. Computational Results

In order to assess the behaviour of the Projected Perspective Reformulation technique we implemented it on
the two problems discussed in sections 3 and 4 within a specialized B&B where the perspective relaxation
is solved by computing the projection z(p) as in (14)-(16). We considered the reformulations (18) and (21)
and, for their solution, we applied the specialized O(n log n) algorithm for the Sensor Placement problem
and the Cplex quadratic solver, respectively. We compared the new approach (denoted as P2/R) against
the following ones:

• a B&C on the PR (6) using the Semi-Infinite MILP formulation (denoted as P/C for Perspective Cut
method);

• a B&C on the PR (6) using the MI-SOCP formulation (denoted as CPLEX-SOCP);

• a standard B&C on the continuous relaxation (5) (denoted as CPLEX).

These three alternative methods have all been implemented by means of Cplex B&C solver. In particular,
the P/C method has been coded with a cut-callback function. We point out that the P2/R method
cannot be implemented within the Cplex B&C solver because it is not allowed by a Cplex solve-callback

function. We thus used a simple implementation of a B&B method that can be certainly improved by
adding new features (e.g. strong branching or more sophisticated primal heuristics). We also note that the
solution of the relaxation is to be completed with the values for binary variables yi; they can be derived by
computing y∗

i (xi) as described in Subsection 2.1 substituing the values of xi obtained by solving the convex
quadratic reformulation. All the algorithms have been coded in C++, compiled with GNU g++ 4.0.1 (with
-O3 optimization option) and ran on an Opteron 246 (2 GHz) computer with 2 Gb of RAM, under Linux
Fedora Core 3.

We generated 180 random instances of the Sensor Placement problem, grouped in 6 classes with 30
instances each. The first 4 classes contain instances with either 2000 or 3000 sensors and have either high
or low quadratic costs. In the former (“h”), fixed costs are uniformly chosen in the interval [1, n] while
quadratic costs are uniformly chosen in the interval [n, Cmax], where Cmax ∈ {10n, 20n, 30n}. In the latter
(“l”), fixed costs are randomly generated in the interval [n, Bmax], where Bmax ∈ {10n, 20n, 30n}, while
quadratic costs are randomly generated in the interval [1, n]. The last two classes are generated starting from
random instances of the Partition problem, according to the NP-hardness proof for the Sensor Placement
problem in [2]. We considered 2000 and 3000 Partition items ranging in the intervals [100,1000], [500,1000],
[1,100000]. Table 1 reports the obtained results.

For the Network Design Problem we generated 360 problems, grouped into 12 classes with 30 instances
each, as follows:

- the underlying flow networks with 1000, 2000, or 3000 nodes have been generated by netgen [17],
where: (i) the minimum arc cost is 1 and the maximum is randomly generated between 10 and 100,
(ii) the total supply ds is randomly generated between 100 and 1000, and (iii) the minimum arc
capacity is 0.05ds and the maximum arc capacity is randomly generated in the interval [0.2ds, 0.4ds];

- the fixed costs which are either low or high with respect to the linear costs generated by netgen, i.e.,
cij is uniformly generated either in [0.5bij , bij ] (“l”) or in [3bij , 10bij] (“h”);



10.

name P2/R CPLEX
time nodes av. t/n time nodes av. t/n gap

2000-h 0.39 1 0.39 1020.51 223293 0.01 4.03
2000-l 0.09 1 0.09 101.58 3713 0.03 0.00
3000-h 0.92 1 0.92 1057.09 144406 0.01 7.18
3000-l 0.21 1 0.21 270.49 5724 0.05 0.00
PTN-2000 0.43 1 0.43 1018.13 4149 0.25 2.98
PTN-3000 1.02 1 1.02 1008.42 568 1.79 3.14

name P/C CPLEX - SOCP
time nodes av. t/n time nodes av. t/n gap

2000-h 47.74 924 30.43 1066.02 507 2.11 207.04
2000-l 17.02 1 17.02 49.32 38 7.60 0.00
3000-h 91.24 88 74.09 1069.73 332 3.24 412.54
3000-l 40.27 1 40.27 135.95 72 12.08 0.00
PTN-2000 94.30 6 56.93 23.79 1 23.80 0.00
PTN-3000 202.63 6 114.72 53.74 1 53.74 0.00

Table 1: Results for the Sensor Placement problem

- the quadratic costs which are either low or high with respect to the linear costs generated by netgen,
i.e., aij is uniformly generated either in [3bij , 10bij] (“l”) or in [100bij, 1000bij] (“h”).

Table 2 reports the obtained results.

name P2/R CPLEX
time nodes av. t/n time nodes av. t/n gap

1000-h-h 0.05 1 0.05 108.80 35630 0.28 0.00

1000-h-l 0.31 5 0.05 1037.63 324447 0.01 0.02

1000-l-h 0.05 1 0.05 163.67 46685 0.18 0.00

1000-l-l 0.32 5 0.05 1046.89 304305 0.01 0.01

2000-h-h 0.10 1 0.10 690.09 101868 0.11 0.00

2000-h-l 45.42 278 1.10 1031.75 141485 0.01 0.06

2000-l-h 0.09 1 0.09 858.22 131954 0.03 0.00

2000-l-l 8.78 63 0.10 1036.79 140877 0.01 0.04

3000-h-h 0.15 1 0.15 1041.96 88541 0.01 0.00

3000-h-l 71.02 269 0.17 1051.93 73591 0.01 0.12

3000-l-h 0.15 1 0.15 988.74 89209 0.12 0.00

3000-l-l 19.05 79 0.16 1062.45 85878 0.01 0.04

name P/C CPLEX - SOCP
time nodes av. t/n time nodes av. t/n gap

1000-h-h 17.03 3 10.14 967.30 26 62.86 0.01

1000-h-l 5.89 25 0.38 79.17 46 16.98 0.00

1000-l-h 8.89 4 4.60 620.77 21 38.62 0.00

1000-l-l 4.68 22 0.33 30.46 63 17.37 0.00

2000-h-h 57.09 7 13.84 895.70 8 207.60 0.01

2000-h-l 51.60 348 0.72 252.98 36 27.65 0.00

2000-l-h 42.3 6 16.57 525.35 9 63.35 0.00

2000-l-l 20.60 131 0.51 252.82 193 40.02 0.00

3000-h-h 117.30 11 18.90 564.41 2 407.97 0.01

3000-h-l 140.47 584 1.39 366.95 27 36.76 0.00

3000-l-h 101.18 12 12.01 372.16 4 89.53 0.01

3000-l-l 45.43 153 0.89 292.41 83 62.39 0.00

Table 2: Results for Network Design problems

For our experiments we fixed a time limit of 1000 seconds. All problems where solved at optimality within
this time limit with the P2/R and the P/C methods, therefore we do not report the gap at termination



11.

for them. For all methods, we report the running time in seconds, the number of B&B nodes and the
average time for node. As expected from previous results [11, 13], the P/C method overcomes CPLEX
B&C algorithm both with standard and SOCP formulations. However, the newly proposed P2/R approach
significantly overcomes the P/C method. This is mainly because of the much faster specialized solution
methods used for the relaxations, which significantly reduces the effort required at each node. Furthermore,
P/C approximates the true perspective relaxations by means of a finite number of cutting planes, thereby
introducing some (small) approximation errors; these seem to cause the generation of more B&C nodes
w.r.t. the “exact” solutions provided by P2/R.

6. Conclusions

In this paper we describe a new method, called Projected Perspective Relaxation (P2/R), to solve the Per-
spective Relaxation of Mixed-Integer Nonlinear Programming problems with convex objective function and
semicontinuous variables. The new method is based on a reformulation which projects the problem onto the
subspace of the continuous variables only. The P2/R method requires three simplifying hypotheses: each
semicontinuous variable xi is univariate, the corresponding binary variable yi is not involved in other con-
straints, and the objective functions fi(xi) are convex quadratic. The Perspective Relaxation is reformulated
as a piecewise convex quadratic programming problem with at most two pieces for each semicontinuous vari-
able in the original model, and then the resulting model is further reformulated by defining a new variable
associated with each convex quadratic piece, thus obtaining a new convex quadratic programming problem
with at most twice the number of continuous variables. This in turn means that the resulting relaxation
has at most the same number of variables of the original Perspective Relaxation; moreover, P2/R contains
only convex quadratic functions, as opposed to rational convex functions (the perspective functions), and
the structure of the constraints is now simplified by the elimination of the relaxed binary variables.

We applied the P2/R method to two cases where we can exploit the structure of the resulting relaxations
to speed up the overall solution method: a Sensor Placement problem and a (single-commodity) Network
Design problem. In the Sensor Placement problem we obtained a simple continuous knapsack problem with
a number of variables that is at most twice the number of possible sensors; in the Network Design problem
we obtained a Min Cost Network Flow Problem with at most two copies of the arcs of the original graph.
For both problems we carried on an extensive computational experience showing that the new method
overcomes the Cplex B&C method on both the original continuous quadratic relaxation and the Second
Order Cone Programming implementation of the Perspective Relaxation, as well as the Perspective Cuts
method implemented by a cut-callback function within the Cplex B&C solver. We point out that the
P2/R method is the first nonlinear technique that improves on the linearization technique of Perspective
Cuts in the two applications here presented.

Finally we outline two directions for future research:

• On the one hand, the P2/R approach is likely to be applicable to several other problems. In a nutshell,
the two applications of the present paper show respectively knapsack and flow structures, which are
found in many other problems. A relevant one is Multicommodity Network Design [6] which, especially
when approached through decomposition techniques [9], actually displays both [7, 10]. Another example
are portfolio optimization problems [11], which typically display very few (e.g. two) knapsack-like
constraints; while they also typically sport a non-separable function, the PR idea can still be applied,
e.g. by means of appropriate diagonalization tricks [12]. However, several combinatorial structures
such as paths, cuts, assignments and many others for which specialized algorithms exist are found in
applications; each of them is a potential candidate for successfull application of the P2/R idea.

• On the other hand, it would be interesting to relax some or all of the three basic hypotheses of
Section 2. While the hypotheses A1) and A3) do not look to be particularly restrictive, in that they
are satisfied by most of the applications of the semicontinuous variables described in the literature
so far, hypothesis A2) forbids to improve the bound by means of valid inequalities concerning the yi

variables, and therefore relaxing it may lead to performance improvements for current applications.
This does not look to be straightforward, though, as yi variables have been “projected away” from the
formulation.



12.

References

[1] A. Agnetis, E. Grande, P. Mirchandani, and A. Pacifici, “Covering a line segment with variable radius
discs,” Computers & Operations Research, vol. 36, no. 5, pp. 1423–1436, 2009.

[2] A. Agnetis, E. Grande, and A. Pacifici, “Demand allocation with latency cost functions,” CoRR,
vol. abs/0810.1650, 2008.

[3] S. Aktürk, A. Atamtürk, and S. Gürel, “A strong conic quadratic reformulation for machine-job as-
signment with controllable processing times,” Operations Research Letters, vol. 37, no. 3, pp. 187–191,
2009.

[4] J. Castro and N. Nabona, “An Implementation of Linear and Nonlinear Multicommodity Network
Flows,” European J. of Operational Research, vol. 92, pp. 37–53, 1996.

[5] S. Ceria and J. Soares, “Convex programming for disjunctive convex optimization,” Mathematical Pro-

gramming, vol. 86, pp. 595–614, 1999.

[6] T. Crainic, A. Frangioni, and B. Gendron, “Multicommodity Capacitated Network Design,” in Telecom-

munications Network Planning (Soriano, P. and Sanso, B., eds.), pp. 1–19, Kluwer Academics Publisher,
1999.

[7] T. Crainic, A. Frangioni, and B. Gendron, “Bundle-based Relaxation Methods for Multicommodity
Capacitated Fixed Charge Network Design Problems,” Discrete Applied Mathematics, vol. 112, pp. 73–
99, 2001.

[8] R. De Leone, R. Meyer, and A. Zakarian, “A Partitioned ε-Relaxation Algorithm for Separable Convex
Network Flow Problems,” Computational Optimization and Applications, vol. 12, pp. 107–126, 1999.

[9] A. Frangioni, “About Lagrangian Methods in Integer Optimization,” Annals of Operations Research,
vol. 139, pp. 163–193, 2005.

[10] A. Frangioni and B. Gendron, “0-1 Reformulations of the Multicommodity Capacitated Network Design
Problem,” Discrete Applied Mathematics, vol. 157, no. 6, pp. 1229–1241, 2009.

[11] A. Frangioni and C. Gentile, “Perspective Cuts for 0-1 Mixed Integer Programs,” Mathematical Pro-

gramming, vol. 106, no. 2, pp. 225–236, 2006.

[12] A. Frangioni and C. Gentile, “SDP Diagonalizations and Perspective Cuts for a Class of Nonseparable
MIQP,” Operations Research Letters, vol. 35, no. 2, pp. 181 – 185, 2007.

[13] A. Frangioni and C. Gentile, “A Computational Comparison of Reformulations of the Perspective Re-
laxation: SOCP vs. Cutting Planes,” Operations Research Letters, vol. 37, no. 3, pp. 206–210, 2009.

[14] A. Frangioni, C. Gentile, and F. Lacalandra, “Tighter Appro-ximated MILP Formulations for Unit
Commitment Problems,” IEEE Transactions on Power Systems, vol. 24, no. 1, pp. 105–113, 2009.

[15] O. Günlük, J. Lee, and R. Weismantel, “MINLP Strengthening for Separable Convex Quadratic
Transportation-Cost UFL,” IBM Research Report RC24213, IBM Research Division, 2007.

[16] O. Günlük and J. Linderoth, “Perspective relaxation of MINLPs with indicator variables,” in Proceedings

13th IPCO (A. Lodi, A. Panconesi, and G. Rinaldi, eds.), vol. 5035 of Lecture Notes in Computer Science,
pp. 1–16, 2008.

[17] D. Klingman, A. Napier, and J. Stutz, “NETGEN: A program for generating large scale capacitated
assignment, transportation, and minimum cost flow network problems,” Management Science, vol. 20,
no. 5, pp. 814–821, 1974.

[18] R. Stubbs and S. Mehrotra, “A branch-and-cut method for 0-1 mixed convex programming,” Mathe-

matical Programming, vol. 86, pp. 515–532, 1999.



13.

[19] M. Tawarmalani and N. Sahinidis, “Convex extensions and envelopes of lower semi-continuous func-
tions,” Mathematical Programming, vol. 93, pp. 515–532, 2002.

[20] J. Zamora and I. Grossmann, “A global MINLP optimization algorithm for the synthesis of heat ex-
changer networks with no stream splits,” Comput & Chem. Engin., vol. 22, pp. 367–384, 1998.


