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Abstract

The short-term Unit Commitment (UC) problem in hydro-thermal power generation is a fundamental
problem in short-term electrical generation scheduling. Historically, Lagrangian techniques have been
used to tackle this large-scale, difficult Mixed-Integer NonLinear Program (MINLP); this requires being
able to efficiently solve the Lagrangian subproblems, which has only recently become possible (efficiently
enough) for units subject to significant ramp constraints. In the last years, alternative approaches have
been devised where the nonlinearities in the problem are approximated by means of piecewise-linear func-
tions, so that UC can be approximated by a Mixed-Integer Linear Program (MILP); in particular, using
a recently developed class of valid inequalities for the problem, called “Perspective Cuts”, significant
improvements have been obtained in the efficiency and effectiveness of the solution algorithms. These
two different approaches have complementary strengths; Lagrangian ones provide very good lower bounds
quickly, but require sophisticated heuristics—which may need to be changed every time that the math-
ematical model changes—for producing actual feasible solutions. MILP approaches have been shown to
be able to provide very good feasible solutions quickly, but their lower bound is significantly worse. We
present a hybrid approach which combines the two methods, trying to exploit each one’s strengths; we
show, by means of extensive computational experiments on realistic instances, that the hybrid approach
may exhibit significantly better efficiency than either of the two basic ones, depending on the degree of
accuracy requested to the feasible solutions.

Key words: Hydro-Thermal Unit Commitment, Mixed-Integer NonLinear Program Formulations, La-
grangian Relaxation.
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1. Introduction

The short-term Unit Commitment (UC) problem in hydro-thermal power generation systems requires
to optimally operate a set of hydro—possibly cascade connected—and thermal generating units, over a
given time horizon (typically one day or one week), in order to satisfy a forecasted energy demand at
minimum total cost. The generating units are subject to some technical restrictions, depending on their
type and characteristics; for hydro units typical constraints concern the discharge rate, spillage limits,
reservoir storage and effect on downstream units. As for the thermal units, they must usually satisfy
minimum up- and down-time constraints and upper and lower bounds over the produced power when the
unit is operational, besides having complex power production and start-up costs. Closely representing
the actual operating behavior of generating units within mathematical optimization models is crucial for
being able to effectively coordinate the production of the generating system taking into account each
unit’s characteristics [30], which is of increasing importance in the ongoing liberalization of the electricity
market in many countries [24]. Indeed, while UC, in the form treated in this paper originated from the
era of monopolistic producers, it has numerous applications even in the liberalized regime; furthermore,
algorithmic approaches developed for the “classical” UC can usually be easily extended to forms of the
problem arising in a market environment [1, 24, 7].

Several variants of UC have been investigated during the last 30 years, and several specialized algo-
rithmic approaches have been proposed for solving, possibly approximately, this problem; in fact, being
UC a large-scale, Mixed-Integer NonLinear Program (MINLP), it is rather difficult to solve instances
of realistic size within the time limits required by operational environments. Among the most efficient
specialized algorithmic approaches for (UC), Lagrangian Relaxation (LR) methods [2, 4, 5, 6, 12, 27, 32]
surely play a major role. These approaches exploit the spatial structure of the problem, that is, the fact
that removing the constraints that tie the different units together one obtains a set of disjoint Single-Unit
Commitment (1UC) problems, requiring to optimally operate one single (hydro or thermal) unit over the
time horizon. Thus, the applicability of LR methods critically depend on being able to optimally solving
the 1UC problems efficiently; in turn, this depend on the specific details of the operational constraints
of the generating units that are represented in the mathematical model. When new constraints have to
be included in the model, they can be relaxed in the same way as “linking” ones, still yielding a correct
lower bound. If this results in too “loose” a relaxation, several approaches can be tried to include the
constraints in the Lagrangian subproblem without changing too much its structure, such as by embedding
it into a Simulated Annealing approach [25] or by deriving proper Benders cuts [26]. Of course, when all
else fails it may be necessary to develop entirely new solution methods [17]. Also, LR approaches typi-
cally require heuristics for producing solutions which actually respect the relaxed constraints, and these
heuristics may also need to be updated each time the underlying mathematical model changes, although
this is not always crucial [22] and “augmented” approaches [4, 11] can be used to devise algorithms which
do not require a combinatorial heuristic at all.

While LR approaches are still the method of choice for very-large-scale instances and/or when very
fast running times are required by the operational environment [22], their inherent “rigidity” justifies the
interest towards methods that are more resilient to (large or small) changes of the mathematical model
of the generating units. In particular, in recent years several authors have reported that Mixed-Integer
Linear Program (MILP) approximated formulations of UC, where the nonlinearities of the problem are
approximated by piecewise-linear function, allow to harness the very efficient available general-purpose,
off-the-shelf MILP solvers to produce very good solutions in relatively short time [8, 9, 28]. It ought to be
remarked that piecewise-linearization (apparently a very crude and trivial technique) can be performed
with different degrees of sophistication; for instance, in [21] it is shown that the use of a set of valid

inequalities for the UC problem, proposed in [16] and based on a nonlinear convex approximation of the
nonconvex objective function of the problem, do improve the performances of MILP-based approaches
with respect to using more ordinary linearizations.

These two different approaches—LR and MILP-based ones—have complementary strengths. Being
able to solve the combinatorial 1UC problem exactly, due to the sophisticated specialized algorithms
available [17], and owing to the powerful bound-computing properties of Lagrangian methods [14], LR
approaches provide very good lower bounds; coupled with appropriate approaches for minimizing the
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(nondifferentiable) Lagrangian function [13], i.e., solving the corresponding Lagrangian dual, these good
bounds can be obtained efficiently. On the other hand, by their nature LR approaches do not provide
feasible solutions; even when modified for doing so, either by heuristics [22] or by other means [4, 11],
they may not be able to provide solutions whose quality matches the very good accuracy of the lower
bound. Conversely, even when improved by valid inequalities, either specialized for the problem [16] or
general-purpose ones, the lower bound computed by MILP-based approaches is significantly worse than
that of LR approaches, not only at the root node of the enumeration tree, but also after that a very
significant number of nodes have been explored. On the other hand, MILP-based approaches have been
shown to be able to provide very good feasible solutions quickly; often, the very first solution computed
by the rounding heuristics embedded in the efficient, general-purpose, off-the-shelf MILP solvers turns
out to be of very good quality when this gap is computed against the LR lower bound. Unfortunately,
due to the weakness of the MILP lower bound, this is typically not recognized by the method until much
later in the optimization process.

In this paper we present the results of a hybrid approach which combines the two methods, trying
to exploit each one’s strengths; this basically boils down to using the LR bound inside the optimization
process of the MILP-based one. We show that the hybrid approach may exhibit significantly better
efficiency than either of the two basic ones, depending on the degree of accuracy requested to the feasible
solutions. While the hybrid approach is almost never significantly slower than the pure MILP-based one,
due to the very fast computation of the LR lower bound, there are cases—typically, when the required
accuracy to the final solution is either very coarse or very tight—when it does not deliver significant
benefits. Whether or not this happens also depend on the size of the instance to be solved and on its
type (whether it is pure thermal or hydro-thermal). By means of extensive computational experiments on
realistic instances, we devise guidelines giving indications about the appropriateness of the new techniques
in different situations.

The structure of the paper is the following. In Section 2 we present the formulation of the specific form
of UC problem we consider; while we focus, for our results, on a quite “classical” formulation, the idea
could easily be applied to a number of other UC problems, e.g. taking into account market constraints
[1, 10]. In Section 3 we recall the basic ideas of the two algorithmic approaches. Then, in Section 4 we
describe the hybrid approach, present the computational results aimed at evaluating its effectiveness in
different conditions, and we draw some conclusions.

2. The UC model

Consider a set P of thermal units and a set H of hydro cascades, each comprising one or more basin units.
We denote by T = {1, . . . , n} the set of time periods defining the time horizon; the time period “0” will be
used for indicating the initial conditions of the power system. Introducing status and power production
variables of the thermal units, ui

t and pi
t, respectively, with i ∈ P, t ∈ T , the objective function of UC,

representing the total power production cost to be minimized, has the form

∑

i∈P

ci(pi,ui)=
∑

i∈P

(

si(ui) +
∑

t∈T

(

ai
t(p

i
t)

2 + bi
tp

i
t + ci

tu
i
t

)

)

(1)

where ai
t > 0. That is, the power production cost at each hour is customarily represented by a convex

quadratic separable form in the power pi
t variables, neglecting for instance the so called valve points [30].

Fixed production costs are represented by the term ci
tu

i
t, while start-up costs, possibly time-dependent,

are denoted by the nonseparable function si(ui). We do not dwell further upon the specific form of the
si(ui), only assuming that it can be properly represented within a MILP problem [29, 8] and handled
by the procedure used for solving the 1UC problem [17]; most forms of start-up costs arising in practical
problems satisfy both assumptions.

The constraints of UC can be partitioned into three sets: local constraints for thermal units, local
constraints for hydro units, and global (system wide) constraints.

• Local constraints for thermal units : for each thermal unit i ∈ P , let τ i
+ and τ i

− be respectively the
minimum up- and down-time requirements, ∆i

+ and ∆i
− be respectively the maximum ramp-up
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and ramp-down rates, p̄i
min and p̄i

max be respectively the maximum and minimum power output of
unit when operating in steady state, and l̄i and ūi be the maximum power that can be produced
by the unit in the time period where it is committed or decommitted, respectively (this is usually
less than ūi, and may also be less than ∆i

+ and/or ∆i
−). Then, the local constraints corresponding

to each unit i ∈ P are

p̄i
minui

t ≤ pi
t ≤ p̄i

maxui
t t ∈ T (2)

pi
t ≤ pi

t−1 + ui
t−1∆

i
+ + (1 − ui

t−1)l̄
i t ∈ T (3)

pi
t−1 ≤ pi

t + ui
t∆

i
− + (1 − ui

t)ū
i t ∈ T (4)

ui
t ≥ ui

r − ui
r−1 t ∈ T , r ∈ [t − τ i

+, t − 1] (5)

ui
t ≤ 1 − ui

r−1 + ui
r t ∈ T , r ∈ [t − τ i

−, t − 1] (6)

ui
t ∈ {0, 1} t ∈ T (7)

Constant τ i
+ indicates how many further periods after a startup period unit i must remain online,

in order to avoid excessive mechanical stress due to too frequent startup/shutdown procedures that
would in the long term deteriorate the unit’s conditions; analogously, τ i

− indicates how many further
periods after a shutdown period unit i must remain offline. Note that we assume knowledge of the
complete state of each unit prior to the beginning of the current operation, that is, its commitment ui

0

and its generated power pi
0; for the sake of minimum up- and down-time constraints (5), (6), as

well as for the computation of time-dependent startup costs (if any), it is also necessary to know
for how long each unit has been on or off prior to time period 0.

• Local constraints for hydro cascade units : each cascade h ∈ H is composed by a set H(h) (possibly
containing only one element) of individual hydro units; for each j ∈ H(h), variables qj

t , vj
t and

wj
t represent respectively discharged water, the volume of the reservoir and the spilled water at

time period t ∈ T . Constants v̄j
min and v̄j

max represents respectively the minimum and maximum
volume for the reservoir, q̄j

max represents the technical maximum of discharged water (the technical
minimum is assumed to be zero in order to avoid nonlinearities in the model), while w̄j

t represents
the natural inflows at time period t ∈ T . Finally, let S(j) be the (possibly empty) set of the
immediate predecessors of unit j—those whose discharge and spillage reaches j without passing
through other reservoirs—and tkj be the water time delay from plant k ∈ S(j) to the basin feeding
plant j. Then, the local constraints corresponding to each unit j ∈ H(h) are:

0 ≤ qj
t ≤ q̄j

max t ∈ T (8)

v̄j
min ≤ vj

t ≤ v̄j
max t ∈ T (9)

vj
t − vj

t−1 = w̄j
t − wj

t − qj
t

+
∑

k∈S(j)

(

qk
t−tkj

+ wk
t−tkj

)

t ∈ T (10)

Note that, in order for the balance equations (10) to be well-defined, we assume knowledge of the
volume of each reservoir at t = 0, as well as water discharged and spilled at all time periods prior
to t = 1 for which the water is still arriving to one of the downstream basins (i.e., those k ∈ S(j)
such that t < tkj).

• Global constraints : for each time period t ∈ T , let d̄t be the forecasted load to be satisfied, and
for each hydro unit j let αj be the power-to-discharged-water efficiency (assumed constant to avoid
nonlinearities); then, the system-wide constraints—linking the different units among themselves—
are:

∑

i∈P

pi
t +

∑

h∈H

∑

j∈H(h)

αjqj
t = d̄t t ∈ T (11)
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While not present in the instances used in Section 4, spinning reserve constraints, which ensure
that a fraction of the maximum power of active units is kept available to face unforeseen events in
the electrical grid, can be easily added to the formulation either in the “standard” formulation (e.g.
[6]) or in the more sophisticated one recently proposed in [8].

We refer to UC as the problem of minimizing (1) subject to constraints (2)—(11); this is a large-scale,
Mixed-Integer Nonlinear Program, which is difficult to solve for the size required by practical applications.
Although US has been historically motivated by the centralized decision environments prevalent in the
past, it is still well-suited for being employed in today’s free market regime, both at the stage where
GenCos need to optimize their production schedule once that their own load profile has been established
by the market procedures, and within approaches for computing optimal bidding strategies [1, 24, 10, 7].
For future reference, we will denote the set defined by constraints (2)—(7) for a given thermal unit i ∈ P
as U i, and the set defined by constraints (8)—(10) for a given hydro cascade h ∈ H by Hh.

It should be remarked that the above model contains several simplifying assumptions whereby several
phenomenon occurring in reality are either disregarded or (most often, linearly) approximated. For
instance, the power-to-discharged-water efficiency represented by the linear function of coefficient αj in
(11) is in reality a nonlinear function due to the effect of the water level in the basin on the water potential
energy released in the turbines. Furthermore, hydro units typically have nonzero technical minima for
discharged water (the smallest quantity of discharged water necessary to operate the turbines), analogous
to the technical minimum p̄i

min of thermal units (cf. 2)), as well as cavitation points, which make their
feasible operating set nonconvex. As for thermal units, their power production cost increases dramatically
in a small neighborhood of the so-called valve points [30]. Although the above simplifying assumptions
are widely accepted in the literature, more sophisticated models including them are possible. They would
typically require either more integer variables, or more nonlinear (and nonconvex) terms in the formulation
(1)—(11), likely rendering it significantly more difficult to solve by MINLP (or MILP-based) approaches.
As for LR ones, the impact of each modeling change on the 1UC subproblems to be solved would need
to be assessed, and specialized solution approaches might need to be developed. While both avenues are
possible, slight modifications of the mathematical models are more likely to be allowed (without too much
impact on effectiveness) by a MILP-based approach, rather than by a LR one; this largely explains the
practical interest on this kind approach. On the other hand, if the modeling improvements substantiate
into additional linear constraints (possibly linking to additional variables), then relaxing all the added
constraints in a Lagrangian fashion would leave the same 1UC problems as in the present case. Thus,
the approach presented in this paper is likely to be applicable, and significant, also for more involved UC
models.

3. The two algorithmic approaches

3.1. The Lagrangian Relaxation approach

The LR approach is based on dualizing the coupling constraints (11) via a vector of Lagrangian multiplier
λ = [λt]t∈T , thereby forming the Lagrangian Relaxation of (UC)

L(λ) =
∑

i∈P

φ1
i (λ) +

∑

h∈H

φ2
h(λ) +

∑

t∈T

λtd̄t (12)

where

φ1
i (λ) = min

{

ci(pi,ui) − λpi : (pi,ui) ∈ U i
}

φ2
h(λ) = min

{

− λ
∑

j∈H(h) αjqj : [qj ]j∈H(h) ∈ Hh
}

Is is well known (e.g., [14]) that for each λ ∈ Rn, L(λ) is a lower bound on the optimal value of UC.
Therefore, one is interested in the λ

∗ such that this lower bound is the best (maximum), i.e., in the
optimal solution of the Lagrangian Dual of UC:

max { L(λ) : λ ∈ R
n } . (13)
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Since L(·) is a convex but non differentiable function, proper algorithms must be chosen for solving (13);
bundle methods [13], particularly in their disaggregated variant [2], have been repeatedly reported to be
quite efficient in solving (13), much more so [6] than alternative algorithms such as subgradient methods
[3, 32]. Since this approach requires the repeated solutions of 1UC problems, one for each unit and for each
iteration of the bundle method, it can only be computationally effective if these problems can be solved
very efficiently. For hydro units, Hh turns out to be a single-commodity flow problem, and therefore the
corresponding 1UC can be solved by means of the very efficient available network flow techniques (e.g.
[15, 18, 23] and the references therein). For thermal units, a Dynamic Programming (DP) procedure has
recently been proposed in [17] which can solve 1UC problems with ramping constraints in O(n3) overall
for the formulation of U i used in this paper; note the DP procedure is quite general, and can work with
any analytic convex function as well as under less restrictive assumptions on the behavior of the units
than those in force here.

However, solving (13) is not, in general, enough to solve (UC); even for λ = λ
∗, the optimal solution

to (12) is not guaranteed to—and will not in general—satisfy the relaxed constraints (11). Two possible
ways have been proposed for dealing with this problem:

• either combinatorial heuristics are run at every step of the iterative solution of (13), thus for several
different values of λ, that use the infeasible optimal solution of the corresponding (12) to produce
a feasible solution for (UC) [2, 3, 6, 5, 12, 32, 22];

• or the Lagrangian problem is modified with further terms that try to enforce feasibility of the
obtained solutions [4, 11].

Both approaches have been reported to obtain good results, especially for large-scale instances and when
the maximum allotted running time is small. However, another class of approaches has recently been
shown to hold promises for not-so-large scale instances and if running times are less of an issue, especially
if the quality of the obtained solution is of paramount importance.

3.2. The MILP approximation approach

On the outset, MILP-based approaches are quite simple; the nonlinear part of the objective function is
(piecewise) linearized, in order to make UC tractable by the efficient MILP solvers available. How the
linearization is performed, however, is not a secondary issue. Since the nonlinear structure is identical for
each time period and thermal unit, for notational simplicity in this paragraph we consider both indices i
and t fixed and we drop them. The issue is then how to best represent the quadratic objective function

f(p, u) = ap2 + bp + cu (14)

by means of a piecewise-linear one. There are some well-known ways in which this can be done, but
a more effective way has been recently proposed in [21] based on ideas developed in [16]. Because
the function f(p, u) in (14) is in principle only relevant at points (p, u) of its (disconnected) domain
D = [0, 0] ∪ [p̄min, p̄max] × {1}, it makes sense to consider its convex envelope of f(p, u) over D, that
is, the convex function with the smallest (in set–inclusion sense) epigraph containing that of f , can be
shown [16] to be

h(p, u)=







0 if p = 0 and u = 0,
ap2/u + bp + cu if up̄min ≤ p ≤ up̄max, u∈(0, 1]
+∞ otherwise.

(15)

This function is strongly related with a well-known object in convex analysis, the perspective function

g(p, u) = u f(p/u) of f(p), whose epigraph defines a cone pointed in the origin and having as “lower
shape” that of f(p). Since 0 < u ≤ 1, it is immediate to verify that h(p, u) ≥ f(p, u) for all (p, u) ∈ D;
therefore, h is a better objective function for a continuous relaxation of UC (the model obtained by
replacing the integrality constraints (7) with just u ∈ [0, 1]). Because h(p, u) is a convex function, it
is possible to solve such continuous relaxation efficiently; however, it is a “more nonlinear” function
than f(p, u), which we already aim at making “less nonlinear” in order to be able to employ MILP
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techniques. It should be remarked at this point that a reformulation of (15) in terms of second order

cone constraints is possible which would allow to exploit the growing availability of solvers for problems
incorporating such constraints in order to tackle the problem [19]; however, for the class of problems of
interest here the following alternative, first proposed in [16] and further developed in [21], turns out to
be more appropriate. By defining a further variable v intended to denote the function value, (15) can be
replaced by the following infinite set of linear inequalities:

v ≥ (2ap̄ + b)p + (c − ap̄2)u p̄ ∈ [p̄min, p̄max] (16)

We refer to each inequality in (16) as a perspective cut (P/C); it simply defines the unique supporting
hyperplane to the function passing from (0, 0) and (p̄, 1). While it is clearly impossible to employ an
exact representation of h(p, u) in these terms, an approximation of the function can be easily defined as
follows:

• each term of the form (14) is removed from the objective function and replaced with the corre-
sponding new variable v; other terms in the objective function not containing p and u, e.g., those
related to variable startup costs [29], are kept untouched;

• k points p̄h, h = 1, . . . , k are arbitrarily selected in the interval [p̄min, p̄max], and the corresponding
k constraints of (16) with p̄ = p̄h are added to the formulation.

Starting from the exact MINLP formulation (1)—(11), this produces an approximate MILP formulation
with |P ||T | more continuous variables and k|P ||T | more constraints. A relevant feature of this approach is
that it is very easy to make it dynamic, using the standard mechanisms that MILP solvers make available
for implementing the so-called “Branch&Cut” approaches. In fact, one can choose a small set of initial
constraints, solve the continuous relaxation and, if u∗ > 0, check whether the solution [v∗, p∗, u∗] satisfies
the P/C (16) for p̄ = p∗/u∗; if not, the thus obtained cut can be added to the MILP model, which is
then re-solved. Thus, any required degree of approximation of the original objective function to UC can
be obtained without starting with a formulation with a very large k. Furthermore, the values p̄ which
generate the constraints are automatically selected during the approach, which is arguably preferable to
choosing them a-priori without any knowledge of the structure of the continuous solutions which will be
generated.

4. The hybrid approach

4.1. Motivation

We now briefly recall some results obtained during previous computational experiments [22, 21], in order
to motivate the introduction of the hybrid approach. We compare results obtained from the following
algorithms:

• LR is the Lagrangian approach of §3.1 without any heuristic, i.e., which only computes a valid lower
bound on the optimal value of the problem;

• LRH is the same Lagrangian approach where heuristics are ran to obtain feasible solutions (of
course, this also attains the same valid lower bound as LR);

• PCFDk is the approach whereby the P/C formulation is initially constructed with only two P/Cs
per variable, the ones corresponding with p̄min and p̄max, and a Branch&Cut approach is initiated,
using the highly regarded commercial solver Cplex 9.1, where additional P/Cs, up to a maximum
of k (a user-configurable parameter) per variable, are dynamically generated as needed as described
in the previous paragraph. As in [21], we test two values for k, namely k = 4 and k = ∞ (the latter
corresponding to no preset limit to the number of P/Cs).

Note that both approaches are heuristic ones, since the MILP solver stops when its perceived gap is
less than the given threshold, but that gap does not accurately measure the true one. In fact, PCFDk
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computes the upper bound using a lower approximation of the true cost function, and therefore the bound
is not a-priori valid. In our results, however, all the reported gaps have been computed by re-evaluating
the objective function value of the integer solution provided by the solver using the “true” quadratic
objective function (1), in order to be able to compare the results of both approaches.

For our tests, we have used two sets of randomly generated realistic pure thermal and hydro-thermal
instances, with number of thermal units ranging from 10 to 200 and number of hydro units ranging from
10 to 100, on a daily problem (n = 24). The generator produces a generating set with “small”, “medium”
and “large” thermal units in realistic proportions; the characteristics of each unit are then randomly
generated within a set of realistic parameters, depending on the type of the unit. Ramping restrictions
are also randomly generated within realistic measures, resulting in large units to require between two
and three hours to ramp from the technical minimum to the technical maximum. For simplicity, all the
instances have time-invariant start-up costs. The UC instances are freely available at

http://www.di.unipi.it/optimize/Data

and have already been used in [22, 21]. The tests have been performed on an Opteron 246 (2 GHz)
computer with 2 GigaBytes of RAM, running Linux Fedora Core 3.

The results are displayed in Table 1 and Table 2. In the tables, column “p” reports the total number
of thermal generating units, while column “h” reports the total number of hydro units. The first half
of the tables, with h = 0, is therefore composed by “pure thermal” instances; each row reports averaged
results of 5 instances of the same size. Columns “LR” and “LRH” report results for the two Lagrangian
algorithms, while columns “PCFD4” and “PCFD∞” report results for the MILP-based ones. In all cases,
column “time” reports the required running time (in seconds), column “gap” reports the obtained gap
(in percentage) between the (true) objective function value of the integer feasible solution reported by
the formulation and the best valid lower bound we know for each instance (LR does not produce any
feasible solution, so this information is not reported), and column “dgap” reports the obtained gap (in
percentage) between the (best) lower bound by each algorithm and the best valid upper bound we know
for each instance. The same best upper bound and lower bounds are used for computing the gaps for
both formulations, so that the gaps can be compared. Form the MILP-based approaches, column “nds”
reports the total number of expored nodes in the Branch&Bound tree.

The results of the two tables differ only for one critical parameter, i.e., the stopping tolerance for
Cplex; in Table 1 this is set to the relatively “relaxed” value of 0.5%, while in Table 2 this is left to the
default value for Cplex, i.e. the much stricter 0.01%. Of course, this does not impact on the results of
the Lagrangian approaches, which are reported twice only for reading convenience. In both cases we set
a time limit of 10000 seconds to Cplex; however, while in the lower accuracy case this limit was never
even approached, in the higher accuracy case the solver had most often to stop for having depleted the
allotted time without reaching the desired accuracy threshold.

The results in Table 1 show that the approaches have complementary strengths. The Lagrangian
approach is very efficient, especially if it is only required to compute the lower bound (“LR” columns);
producing feasible solutions only come at a further significant expense, in relative terms, and the obtained
gaps are often worse than those of the MILP approach, except for the largest instances, especially hydro-
thermal ones. On the other hand, while the MILP approach often provides better-quality solutions with
a very limited (if at all) recourse to enumeration (cf. columns “nds”), this comes at the expense of a
significantly longer running time, especially as the size of the instances grows; furthermore, the quality
of the global lower bound is significantly worse than that computed by the Lagrangian approach.

The above results are fully confirmed by these reported in Table 2 for the higher accuracy setting of
0.01%. While this setting produces solutions of much better quality, it does so at the expense of a dramatic
increase of running times. It is particularly striking that, with the exception of the smallest instances, the
lower bound computed by the MILP approaches improves much less than the upper bound; in most cases,
it is much worse—up to almost an order of magnitude—than that computed by the Lagrangian approach
in a tiny fraction of the time, despite enumeration of several tens of thousands of Branch&Bound nodes.

It should be remarked at this point that the gaps reported in the above tables are “abstract”, in the
sense that they are obtained with respect to the best known solutions; therefore, the “perceived” gaps of
both approaches are typically higher. In particular, the MILP approach, while computing quite accurate
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LR LRH PCFD∞ PCFD4

p h dgap time time gap gap dgap nds time gap dgap nds time
10 0 0.677 0.24 0.75 0.99 0.28 0.291 0 0.80 0.30 0.297 0 0.86
20 0 0.472 0.46 1.83 0.56 0.33 0.298 0 3.00 0.36 0.283 0 2.51
50 0 0.086 1.25 4.84 0.28 0.18 0.278 0 13.08 0.19 0.279 0 14.17
75 0 0.076 2.22 9.41 0.34 0.22 0.267 0 22.58 0.19 0.261 2 36.62

100 0 0.059 3.68 14.74 0.33 0.20 0.257 0 36.51 0.17 0.262 0 34.31
150 0 0.048 6.14 21.20 0.17 0.12 0.175 10 169.68 0.11 0.184 4 104.68
200 0 0.049 8.52 34.80 0.09 0.14 0.179 12 235.60 0.10 0.178 0 183.01
20 10 0.072 0.59 1.76 0.39 0.15 0.166 0 2.51 0.30 0.162 5 4.18
50 20 0.004 1.46 6.36 0.06 0.13 0.084 0 10.93 0.10 0.083 10 19.06
75 35 0.011 3.20 15.01 0.04 0.03 0.058 95 64.80 0.05 0.030 115 70.55

100 50 0.010 5.44 24.74 0.04 0.04 0.068 40 60.78 0.05 0.068 15 47.62
150 75 0.008 8.85 37.41 0.02 0.05 0.059 115 216.33 0.05 0.059 115 194.10
200 100 0.005 12.95 50.91 0.01 0.03 0.050 135 342.69 0.02 0.050 0 155.36

Table 1: Comparing LR, LRH, PCFD4 and PCFD∞ at low accuracy

LR LRH PCFD∞ PCFD4

p h dgap time time gap gap dgap nds time gap dgap nds time
10 0 0.677 0.24 0.75 0.99 0.02 0.020 523 17 0.02 0.021 434 12
20 0 0.472 0.46 1.83 0.56 0.02 0.015 28795 3547 0.02 0.017 40837 3915
50 0 0.086 1.25 4.84 0.28 0.09 0.136 25266 10000 0.09 0.138 29980 10000
75 0 0.076 2.22 9.41 0.34 0.09 0.164 25067 10000 0.08 0.162 27185 10000

100 0 0.059 3.68 14.74 0.33 0.07 0.166 19126 10000 0.06 0.168 21066 10000
150 0 0.048 6.14 21.20 0.17 0.05 0.156 14570 10000 0.05 0.159 16093 10000
200 0 0.049 8.52 34.80 0.09 0.05 0.166 8912 10000 0.06 0.166 10123 10000
20 10 0.072 0.59 1.76 0.39 0.02 0.018 10666 268 0.02 0.018 11026 249
50 20 0.004 1.46 6.36 0.06 0.00 0.024 104880 7285 0.01 0.023 118062 6496
75 35 0.011 3.20 15.01 0.04 0.01 0.025 96879 10000 0.01 0.028 85757 10000

100 50 0.010 5.44 24.74 0.04 0.01 0.034 96148 10000 0.01 0.037 99305 10000
150 75 0.008 8.85 37.41 0.02 0.01 0.043 67230 10000 0.01 0.043 68664 10000
200 100 0.005 12.95 50.91 0.01 0.01 0.040 45682 10000 0.01 0.039 47011 10000

Table 2: Comparing LR, LRH, PCFD4 and PCFD∞ at high accuracy

primal solutions, is typically unable to properly recognize their accuracy due to its weak lower bound (an
occurrence not at all infrequent for difficult combinatorial optimization problems).

4.2. The hybrid approach

The previous results suggest trying to combine the strengths of the two approaches, that is, the very
efficient computation of an extremely accurate lower bound of the Lagrangian approach with the effective
heuristic of the MILP one. For this, a hybrid approach can be simply devised which works as follows:

• first, the Lagrangian lower bound is computed (without any heuristic for producing feasible solu-
tions);

• then, the MILP approach is started, but the MILP solver is provided with knowledge of the lower
bound computed in the previous section, which it then can use to terminate the search as soon as
a solution with the prescribed accuracy is reached.

Given the sophisticated tools made available to the (expert) user by the currently available off-the-shelf
MILP solvers, in particular, the Cplex callback functions have been used for this task.

An interesting feature of this approach is that it combines the flexibility of MILP-based algorithms
with the efficiency that is only possible by using specialized algorithms like the Lagrangian ones. In
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fact, Lagrangian approaches, while historically among the best options for solving UC problems of large
size, have been reported to be difficult to adapt to the specific needs of actual operational environments.
Despite several attempts to make up for this drawback (e.g. [11]), the interest in approaches based on
more flexible tools like MILP solvers has been steadily increasing [8, 9, 31], especially since the combined
effect of algorithmic advances and hardware improvements have brought large-scale UC problems on the
verge of being routinely solvable by these tools. Being the UC model employed in this paper a quite
general one, most adaptations required to tailor it to different operational environments would lead to
further constraints (and possibly variables) w.r.t. those listed in (2)—(11); by relaxing these constraints,
the approach described in §3.1 can still be used to solve the Lagrangian problem. Thus, at the cost of
an increased number of Lagrangian multipliers, the lower bound computation can be extended to many
different versions of UC problems, as shown e.g. in [7]. This could require substantial modifications in
the heuristic for a Lagrangian-only approach [20], but it would be relatively simpler to implement if the
upper bound is instead provided by a MILP-based approach; thus, the flexibility is retained while the
effective available specialized approaches can still be used.

We now present results aimed at assessing the effectiveness of the hybrid approach over the standard
MILP-based one. The results are presented in Tables 3 to 6. In each table, the columns “LB” refer to
the hybrid approach, whereas the columns “NoLB” refer to the standard MILP-based one; the meaning
of “gap” and “time” is the same as the previous tables. The difference between each table only lies in
the accuracy required to the MILP solver before stopping, which is 0.5% (the same value as in Table 1)
for Table 3, 0.1% for Table 4, 0.05% for Table 5, and, finally, 0.01% (the same value as in Table 2) for
Table 6. In all cases, same the upper limit of 10000 seconds of running time is kept.

PCFD4 PCFD∞

NoLB LB NoLB LB
p h gap time gap time gap time gap time

10 0 0.28 0.80 0.34 0.97 0.30 0.86 0.37 1.06
20 0 0.33 3.00 0.32 3.60 0.36 2.51 0.36 3.16
50 0 0.18 13.08 0.19 27.46 0.19 14.17 0.20 16.39
75 0 0.22 22.58 0.25 28.82 0.19 36.62 0.22 28.05

100 0 0.20 36.51 0.15 41.44 0.17 34.31 0.16 60.16
150 0 0.12 169.68 0.10 148.88 0.11 104.68 0.11 136.18
200 0 0.14 235.60 0.08 323.36 0.10 183.01 0.08 258.57
20 10 0.15 2.51 0.17 4.21 0.30 4.18 0.24 6.34
50 20 0.13 10.93 0.10 26.96 0.10 19.06 0.10 12.51
75 35 0.03 64.80 0.06 59.47 0.05 70.55 0.10 75.23

100 50 0.04 60.78 0.04 44.95 0.05 47.62 0.05 66.61
150 75 0.05 216.33 0.02 244.05 0.05 194.10 0.04 228.32
200 100 0.03 342.69 0.03 253.59 0.02 155.36 0.02 217.56

Table 3: Comparing the hybrid and the standard approach, accuracy 0.5%

For the low accuracy of 0.5% (Table 3), the hybrid approach does not deliver any significant benefit;
indeed, while at times (e.g. p = 200, h = 100) a positive effect can be seen, in general the improved lower
bound is not useful. This is clearly explained by the fact that for this setting the MILP approach most
often terminates at the root node (cf. Table 1), or after very little branching; thus, improving the bound
cannot have any significant effect. Especially for the small-sized instances, the small absolute increase in
running time due to the Lagrangian bound computation most often results in a sizable relative worsening
of the efficiency of the approach.

The situation is radically different for all mid- to large-scale pure thermal instances when the accuracy
is set to 0.1%, as shown in Table 4. While the standard approach cannot solve any instance with p > 50
(and very few of those with p = 50) with the prescribed accuracy within the allotted time limit, the
hybrid approach solves very efficiently all instances with p ≥ 100. The reason, as evident from the results
reported in Tables1 and 2, is that the Lagrangian lower bound accuracy actually increases as n does.
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PCFD4 PCFD∞

NoLB LB NoLB LB
p h gap time gap time gap time gap time

10 0 0.10 12.45 0.10 12.70 0.10 9.77 0.10 9.97
20 0 0.10 1295.28 0.10 2201.87 0.10 1169.94 0.10 1157.22
50 0 0.09 8279.78 0.11 4084.79 0.10 10000.00 0.11 4014.01
75 0 0.07 10000.00 0.09 3974.94 0.07 10000.00 0.09 2286.03

100 0 0.07 10000.00 0.09 289.01 0.06 10000.00 0.09 94.56
150 0 0.05 10000.00 0.06 193.38 0.05 10000.00 0.08 207.86
200 0 0.05 10000.00 0.07 337.33 0.06 10000.00 0.07 315.88
20 10 0.07 31.38 0.09 14.31 0.07 41.08 0.08 30.01
50 20 0.02 41.86 0.05 27.22 0.02 47.62 0.04 12.92
75 35 0.03 64.45 0.06 57.95 0.04 81.77 0.06 71.03

100 50 0.03 40.61 0.04 41.42 0.04 60.20 0.05 62.85
150 75 0.02 232.99 0.02 235.04 0.04 191.52 0.04 203.18
200 100 0.03 240.38 0.03 231.35 0.02 198.25 0.02 206.66

Table 4: Comparing the hybrid and the standard approach, accuracy 0.1%

However, hydro-thermal instances typically attain an accuracy of 0.1% (or higher) very quickly even when
the threshold is set to 0.5%, which means that the Lagrangian lower bound cannot be of much help in
this case; this is in fact confirmed by the results in the table.

PCFD4 PCFD∞

NoLB LB NoLB LB
p h gap time gap time gap time gap time

10 0 0.06 15.42 0.06 15.72 0.06 11.63 0.06 11.85
20 0 0.06 2473.11 0.06 2440.86 0.06 2470.49 0.06 2499.97
50 0 0.09 10000.00 0.09 8113.35 0.09 10000.00 0.10 8489.08
75 0 0.09 10000.00 0.09 10002.22 0.08 8256.79 0.08 8259.00

100 0 0.07 10000.00 0.07 8018.89 0.06 10000.00 0.06 6538.84
150 0 0.05 10000.00 0.06 5151.71 0.05 10000.00 0.06 6151.20
200 0 0.05 10000.00 0.05 6255.99 0.06 10000.00 0.06 6271.77
20 10 0.06 73.26 0.06 73.00 0.06 71.19 0.06 68.40
50 20 0.01 623.95 0.02 34.44 0.01 269.34 0.03 44.53
75 35 0.02 177.50 0.03 59.37 0.02 124.85 0.03 100.47

100 50 0.02 438.39 0.04 39.45 0.02 665.37 0.05 60.00
150 75 0.02 1669.30 0.02 224.67 0.01 1144.10 0.04 201.31
200 100 0.02 1082.41 0.03 238.81 0.01 451.98 0.02 202.94

Table 5: Comparing the hybrid and the standard approach, accuracy 0.05%

Further increasing the accuracy to 0.05% confirms the trend previously seen; the higher accuracy clearly
requires a longer running time to be achieved, but still the hybrid approach is significantly more efficient
than the standard one, as Table 5 shows. The effect is now visible also on hydro-thermal ones; while the
increased accuracy results in increased running time for both approaches, the standard one now requires
up to an order of magnitude more (cf. p = 100, h = 50) than the hybrid one.

The highest setting of 0.01% (the same as Table 2) confirms the basic trend. The two approaches are
now equivalent on the pure thermal instances; the better lower bound provided by the Lagrangian is no
longer enough to allow the hybrid approach to terminate before the time limit (for p > 20), hence the
only effect of the Lagrangian computation is to make the hybrid approach ever so slightly slower than
the standard one. However, on hydro-thermal instances the hybrid approach is again significantly more
effective than the standard one; while the latter fails to solve all large-scale instances, the former does,
resulting in a speedup of up to a factor of 50 (cf. p = 50, h = 20).
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PCFD4 PCFD∞

NoLB LB NoLB LB
p h gap time gap time gap time gap time

10 0 0.02 16.66 0.02 16.84 0.02 12.49 0.02 12.80
20 0 0.02 3547.24 0.02 3699.26 0.02 3914.50 0.02 3946.51
50 0 0.09 10000.00 0.09 10001.25 0.09 10000.00 0.09 10001.25
75 0 0.09 10000.00 0.09 10002.22 0.08 10000.00 0.08 10002.22

100 0 0.07 10000.00 0.07 10003.68 0.06 10000.00 0.06 10003.68
150 0 0.05 10000.00 0.05 10006.14 0.05 10000.00 0.05 10006.14
200 0 0.05 10000.00 0.05 8248.37 0.06 10000.00 0.06 10008.52
20 10 0.02 268.49 0.02 263.40 0.02 248.75 0.02 255.95
50 20 0.00 7285.00 0.01 841.26 0.01 6495.96 0.01 121.86
75 35 0.01 10000.00 0.01 5033.34 0.01 10000.00 0.01 5045.42

100 50 0.01 10000.00 0.01 1198.73 0.01 10000.00 0.01 5789.69
150 75 0.01 10000.00 0.01 3376.87 0.01 10000.00 0.01 1145.61
200 100 0.01 10000.00 0.01 1182.27 0.01 10000.00 0.01 463.46

Table 6: Comparing the hybrid and the standard approach, accuracy 0.01%

5. Conclusions

In this paper, we have proposed an hybrid MILP-Lagrangian approach to hydro-thermal Unit Commit-
ment problems; this require the nontrivial combination of several algorithmic techniques including convex
nondifferentiable optimization, nonlinear optimization, and polyhedral techniques for mixed-integer opti-
mization. By means of computational experiments, we have shown that for an appropriate combination
of type (pure thermal or hydro thermal) and size of the instance, and for specific choices of the required
accuracy threshold, the hybrid approach is substantially more effective than the standard MILP-based
one. Thus, the newly proposed approach allows for more finely tuning of the trade-off between accuracy
of the obtained solution and required running time with respect to the pure Lagrangian one; hence, we
believe that the proposed algorithm can be valuable for those operating environments where the accuracy
of the obtained solution is a crucial parameter. An interesting feature of the approach is that it combines
the flexibility of MILP-based algorithms with the efficiency that is only possible by using specialized al-
gorithms, thereby being flexible enough to suit the needs of most operating environments while retaining,
at least in part, the traditional superior performances of Lagrangian approaches.
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