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Abstract. We study a class of generalized bundle methods for which the stabilizing term can
be any closed convex function satisfying certain properties. This setting covers several algorithms
from the literature that have been so far regarded as distinct. Under a different hypothesis on
the stabilizing term and/or the function to be minimized, we prove finite termination, asymptotic
convergence, and finite convergence to an optimal point, with or without limits on the number of
serious steps and/or requiring the proximal parameter to go to infinity. The convergence proofs leave
a high degree of freedom in the crucial implementative features of the algorithm, i.e., the management
of the bundle of subgradients (β-strategy) and of the proximal parameter (t-strategy). We extensively
exploit a dual view of bundle methods, which are shown to be a dual ascent approach to one nonlinear
problem in an appropriate dual space, where nonlinear subproblems are approximately solved at each
step with an inner linearization approach. This allows us to precisely characterize the changes in
the subproblems during the serious steps, since the dual problem is not tied to the local concept of
ε-subdifferential. For some of the proofs, a generalization of inf-compactness, called ∗-compactness,
is required; this concept is related to that of asymptotically well-behaved functions.
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Introduction. We are concerned with the numerical solution of the primal prob-
lem

(Π) inf
x
{f(x) : x ∈ X},(0.1)

where f : �n → � is finite-valued and convex (hence continuous) and X ⊆ �n is
closed convex. Here f is only known through an oracle (“black box”) that, given
any x ∈ X, returns the values f(x) and z ∈ ∂f(x). To simplify the treatment, we
will assume X = �n until section 8, where the extension to the constrained case is
studied.

We study a class of generalized bundle methods for the solution of (0.1), where
a stabilizing term, which can be any closed convex function satisfying certain weak
conditions, is added to (a model of) f . These methods sample f in a sequence of
tentative points {xi} to gather the f -values {f(xi)} and the bundle of first-order
information β = {zi ∈ ∂f(xi)}. A distinguished vector x̄ is taken as the current
point, and β is used to compute a tentative descent direction d∗ along which the
next tentative point is generated. After a “successful” step, the current point can be
updated; otherwise, the new information is used to enhance β, hopefully obtaining a
better direction at the next iteration.

Several bundle methods proposed in the literature follow this pattern; some of
them can be shown to actually belong to our class. Also, our generalized bundle
methods provide implementable forms for some penalty-based algorithms for struc-
tured convex optimization. All of these algorithms have been analyzed either from
the above primal viewpoint—the minimization of f—or from an application-specific
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dual viewpoint, when f itself is a dual function. A dual analysis of some general
bundle methods exists—indeed, it motivated the development of the very first bun-
dle methods—but it is related to the “local” concept of ε-subdifferential, and it does
not easily extend to a wider class of methods. Instead, we extensively exploit a dual
view of (0.1), where bundle methods are shown to be a penalty function approach to a
“global” dual problem with approximate solution, via an inner linearization approach,
of the penalized problem. The algorithms can be entirely described in terms of this
dual problem; this is interesting for applications and helps in the convergence proofs.

We analyze in detail the features that are relevant for practical implementations,
such as the management of the bundle (β-strategy) and of the proximal parameter
(t-strategy). General rules are given which ensure convergence while leaving a large
degree of freedom in practical implementations. For some variants of the algorithm,
we require f to be ∗-compact, an assumption properly generalizing inf-compactness.
∗-compact functions are asymptotically well behaved [Au97], but our definition seems
to be better suited for the case of bundle methods.

The structure of this paper is the following: section 1 is devoted to the derivation
of the dual viewpoint of generalized bundle methods. Some useful properties of pairs of
primal and dual solutions of the stabilized master problems are proved in section 2. In
section 3, the conditions on the stabilizing term are presented and discussed. Section 4
is devoted to the description of the algorithms and to the discussion of the rules for the
β-strategy and the t-strategy. Convergence proofs of several variants of the algorithm
are given next: section 5 is dedicated to convergence of the null step sequences,
section 6 is dedicated to convergence of the serious step sequences, and section 7 is
dedicated to the “third level” that is necessary for some classes of stabilizing terms.
Some extensions of generalized bundle methods, e.g., to constrained optimization, are
discussed in section 8, the relationships with other algorithms from the literature are
analyzed in section 9, and conclusions are drawn in section 10.

Throughout the paper the following notation is used. The scalar product between
two vectors v and w is denoted by vw. ‖v‖p stands for the Lp norm of the vector v,
and the ball around 0 of radius δ in the Lp norm will be denoted by Bp(δ). Given
a set X, IX(x) = 0 if x ∈ X (and +∞ otherwise) is its indicator function, σX(z) =
supx{zx : x ∈ X} is its support function, and dX(y) = infx{‖x − y‖ : x ∈ X} is
the distance from y to X. Given a function f , ∂εf(x) is its ε-subdifferential at x,
epi f = {(v, x) : v ≥ f(x)} is its epigraph, dom f = {x : f(x) < ∞} is its domain,
and Sδ(f) = {x : f(x) ≤ δ} is its level set corresponding to the f -value δ. Given a
problem

(P) inf[sup
x
]{f(x) : x ∈ X},

v(P) denotes the optimal value of f over X; as usual, X = ∅ ⇒ v(P) = +∞[−∞].

1. Duality for generalized bundle methods. The dual description of gen-
eralized bundle methods relies on a well-established tool from convex analysis, the
conjugate of f (see [HL93b, Chapter X]):

f∗(z) = sup
x
{zx− f(x)}.(1.1)

f∗ is a closed convex function and enjoys several properties; those useful in the paper
are briefly recalled below.

(1.i) (f∗)∗ = f (duality of the conjugate operator),
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(1.ii) f1 ≤ f2 ⇒ f∗1 ≥ f∗2 (“monotonicity” of the conjugate operator),
(1.iii) (f(·+ x))∗(z) = f∗(z)− zx ∀z, x (effect of a simple variable change),
(1.iv) z ∈ ∂εf(x) ⇔ x ∈ ∂εf

∗(z) (duality of the subdifferential
mappings),

(1.v) z ∈ ∂εf(x) ⇔ f(x) + f∗(z) ≤ zx+ ε (characterization of the ε-sub-
differentials),

(1.vi) zx = f(x) + f∗(z) ⇔ z ∈ ∂f(x) (basic relation between the
function values),

(1.vii) zx ≤ f(x) + f∗(z) ∀z, x (Fenchel’s inequality).
A fundamental property of f∗ is that it characterizes all the affine functions

supporting epi f as

zx− ε ≤ f(x) ∀x⇔ sup
x
{zx− f(x)} = f∗(z) ≤ ε.

Note that, when the oracle is called at some point x returning f(x) and z ∈ ∂f(x),
f∗(z) can be calculated via (1.vi); that is, the f∗-values are available if the f -values
are, and vice-versa.

We remark that the above properties hold for any closed convex function; in the
following, we will often take the conjugate of other functions apart from f , most
notably of the “stabilizing term” to be introduced shortly.

1.1. The dual problem. Since f∗ is related with the minimization of f by

v(Π) = inf
x
{f(x)} = − sup

x
{0x− f(x)} = −f∗(0),

we propose the following (apparently weird) dual problem as the dual of (0.1):

(∆) inf
z
{f∗(z) : z = 0}.(1.2)

Problem (1.2) is a reasonable dual, since v(Π) = −v(∆) and it deals with dual objects:
every vector z that is a subgradient of f at some point belongs to dom f∗ (cf. (1.v)).
Furthermore, consider the Lagrangian relaxation of (1.2) w.r.t. the constraints z = 0,
using x̄ as Lagrangian multipliers:

(∆x̄) inf
z
{f∗(z)− zx̄}.(1.3)

From (1.1) and (1.i), one has

−v(∆x̄) = sup
z
{zx̄− f∗(z)} = (f∗)∗(x̄) = f(x̄);

therefore, the dual pricing problem (1.3) can be seen as the problem that the oracle
has to solve for computing f(x̄). From the dual viewpoint, the oracle inputs x̄ and
returns a contact point (f∗(z), z) between epi f∗ and the affine function with slope
(1,−x̄) that supports the set. This notation reveals that (0.1) itself is the Lagrangian
dual of (1.2) w.r.t. the constraints z = 0.

1.2. Approximations of f and bundle algorithms. Our aim is the construc-
tion of an algorithm that solves (0.1)—or, equivalently, (1.2)—given the oracle for f .
A number of bundle algorithms have been proposed for this task, all based on the
idea of using the bundle β for constructing a model fβ of the original function f . The
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model is usually required to be a lower approximation of the function, i.e., fβ ≤ f , so
that the primal master problem

(Πβ,x̄) inf
d
{fβ(x̄+ d)}(1.4)

gives a lower bound on the primal problem (0.1). The optimal solution d∗ of (1.4) is
then used as a (tentative) descent direction, analogously to what is done in Newton
methods. From the dual viewpoint, f∗β ≥ f∗ (cf. (1.ii)) implies that the dual master
problem

(∆β,x̄) inf
z
{f∗β(z)− zx̄ : z = 0}(1.5)

is an upper approximation of the dual problem (1.2).
The most popular model of f is the cutting plane model

f̂β(x) = max
z

{zx− f∗(z) : z ∈ β}, for which(1.6)

f̂∗β(z) = inf
θ



∑
w∈β

f∗(w)θw :
∑
w∈β

wθw = z, θ ∈ Θ


 ,(1.7)

where Θ = {∑w∈β θw = 1, θ ≥ 0} is the unitary simplex [HL93b, Proposition X.3.4.1];

note that dom f̂∗β = conv(β). Using f̂β in (1.4) gives the well-known cutting plane
algorithm [HL93b, Algorithm XII.4.2.1], where the unknown f is replaced with its

known polyhedral outer approximation f̂β . In the corresponding (1.5), the unknown

f∗ is replaced with its known polyhedral inner approximation f̂∗β (a “pin-function”).

1.3. Stabilized master problems. The cutting plane algorithm has some seri-
ous drawbacks, both in theory and in practice. First of all, the primal master problem
(1.4) may be unbounded, that is, the dual master problem (1.5) may be infeasible;
this is usually the case in the first iterations. Furthermore, two subsequent tentative
points can be arbitrarily far apart; this is known as the “instability” of the cutting
plane method. Most bundle methods try to alleviate this problem by introducing
some “stabilizing device” into (1.4). Here, the stabilizing term Dt—a closed convex
function—is added to fβ to discourage points “far away” from x̄, where t > 0 is the
proximal parameter dictating the “strength” of Dt. That is, at each step the stabilized
primal master problem

(Πβ,x̄,t) inf
d
{fβ(x̄+ d) +Dt(d)}(1.8)

is solved, and its optimal solution d∗ is used as a (tentative) descent direction. By
Fenchel’s duality [HL93b, section XII.5.4], the dual of (1.8) is (using (1.iii)) the sta-
bilized dual master problem

(∆β,x̄,t) inf
z
{f∗β(z)− zx̄+D∗

t (−z)}.(1.9)

Under proper assumptions (cf. Lemma 2.1 below), v(∆β,x̄,t) = −v(Πβ,x̄,t). We see
that the primal stabilizing term Dt corresponds to a dual penalty function D∗

t asso-
ciated with the constraints z = 0; (1.9) is a (generalized) augmented Lagrangian of
(1.5). The stabilizing term is a member of a family of functions parameterized in t;
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in the bundle methods proposed so far, t is either a factor, like in Dt =
1
2t‖ · ‖2

2, or
the radius of a ball, like in Dt = IB∞(t). In general, we will not require the function
t→ Dt(d) to have any specific form.

Note that f -values or f∗-values must be stored in memory together with the
subgradients; due to (1.vi) the two choices are equivalent. In the standard notation
of bundle methods, for z ∈ ∂f(x) the linearization error (cf. [HL93b, Definition
XI.4.2.3])

α = f∗(z)− zx̄+ f(x̄) = f(x̄)− f(x)− z(x̄− x) ≥ 0(1.10)

of z w.r.t. x̄ is typically used in place of f∗(z). This notation corresponds to defining
the translated function fx̄(d) = f(x̄+ d)− f(x̄) and its translated model fx̄,β , and to
considering a “local” form of (1.8) that uses fx̄,β [Fr98]. However, the corresponding
dual problem is written in terms of f∗x̄ , i.e., of a family of functions changing with x̄,
rather than in terms of the unique f∗. Furthermore, the notation based on lineariza-
tion errors hides the dependency of some of the subproblem’s data on the current
point x̄; that is why we use f∗-values.

1.4. Stabilization in the original problems. The above duality argument
can also be applied to the original function f ; the stabilized dual problem

(∆x̄,t) inf
z
{f∗(z)− zx̄+D∗

t (−z)}(1.11)

is the (Fenchel) dual of the stabilized primal problem

(Πx̄,t) φt(x̄) = inf
d
{f(x̄+ d) +Dt(d)}.(1.12)

A primal analysis of generalized bundle methods would focus on (1.12), that is, the
calculation of the generalized Moreau–Yosida regularization φt of f in x̄. With a
proper Dt [BPP91], φt has the same set of minima as f but enjoys additional proper-
ties, e.g., smoothness; hence, minimizing φt could be an advantageous alternative to
the minimization of f . Unfortunately, solving (1.12) with the sole help of the black
box for f is as difficult as solving (0.1); therefore, bundle methods resort to a two-level
approach, repeatedly solving the approximation (1.8) until the accumulation of infor-
mation in β makes fβ a “good enough” approximation of f , and only then changing
x̄. If t is properly managed, the whole process eventually solves (0.1).

But a dual analysis of generalized bundle methods is also possible, which focuses
instead on (1.2) and its generalized augmented Lagrangian (1.11), where the con-
straints z = 0 are replaced with the linear term −x̄z (with Lagrangian multipliers x̄)
and the nonlinear term D∗

t (−z) in the objective function. A classical ascent method
would require repeatedly solving (1.11) and updating x̄ using the corresponding first-
order information; unfortunately, solving (1.11)—which is equivalent to (1.12)—is
difficult. On the contrary, (1.9) may be efficiently solvable; furthermore, the oracle
for f solves (1.3), and hence v(∆x̄+d) gives a lower bound on (1.11) if −zd is a linear
lower approximation of D∗

t (−z). Hence, a viable approach is again a two-level one,
where in the inner level a sequence of (1.9) and (1.3) is solved for fixed x̄ in order
to approximate (1.11), while in the outer level the Lagrangian multipliers x̄ and the
parameter t, dictating the “strength” of the penalty function, are updated.

This dual interpretation of bundle methods is related to—although independently
obtained from—the general dual algorithmic scheme of [ACC93]; by taking their “per-
turbation function” ϕ(x, x̄) as f(x − x̄), the Lagrangian dual of (1.3), i.e., (1.2), is
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obtained. However, in our case the relevant dual object is simply the conjugate f∗,
and the whole process takes place in the graph space of f∗. This is confirmed by
[Nu97], where a step in the same direction has been made using the graph of the
ε→ ∂εf(0) multifunction that is equivalent to epi f∗ (cf. section 9.1).

2. Properties of subproblem solutions. The following two lemmas will be
useful in the analysis of the algorithm.

Lemma 2.1. Let fβ and Dt be two closed convex functions such that dom fβ(x̄+
·)∩ int dom Dt �= ∅, and assume that (1.8) and of (1.9) have optimal solutions d∗ and
z∗, respectively; then

v(∆β,x̄,t) = −v(Πβ,x̄,t),(2.1)

−z∗ ∈ ∂Dt(d
∗) and d∗ ∈ ∂D∗

t (−z∗),(2.2)

z∗ ∈ ∂fβ(x̄+ d∗) and x̄+ d∗ ∈ ∂f∗β(z
∗),(2.3)

fβ(x̄+ d∗) + f∗β(z
∗) = z∗(x̄+ d∗),(2.4)

Dt(d
∗) +D∗

t (−z∗) = −z∗d∗.(2.5)

Proof. Equation (2.1) is [HL93b, (X.2.3.2)]. Apply [HL93b, Proposition XII.5.4.1]
with the nonsymmetric assumption [HL93b, (X.2.3.Q.jj′)] to the pair (1.8)–(1.9) to
show that any optimal solution d∗ of (1.8) belongs to ∂[fβ(x̄ + ·)]∗(z∗) ∩ ∂D∗

t (−z∗);
this gives d∗ ∈ ∂D∗

t (−z∗) and, via (1.iii), x̄+ d∗ ∈ ∂f∗β(z
∗). For the rest, apply (1.iv)

and (1.vi).
We remark that Lemma 2.1 works for any closed convex function fβ , even if it is

not a model of f . We will always keep the requirement on fβ to the bare minimum,
in the spirit of [CL93]; this will provide more general results, and it will be useful in
section 8 where extensions of the method are discussed. Also, note that Lemma 2.1
with fβ = f characterizes the properties of the solutions d∗ and z∗ of the primal and
dual stabilized problems (1.12) and (1.11). When fβ ≤ f(⇒ f∗β ≥ f∗ by (1.ii)), the
optimal solutions of the master problems allow us to derive information on those of
the original problems.

Lemma 2.2. If fβ ≤ f and the hypothesis of Lemma 2.1 hold, then the optimal
value of (1.11) can be bracketed using (1.9) and

∆f = f(x̄+ d∗)− fβ(x̄+ d∗) ≥ 0,(2.6)

i.e., v(∆x̄,β,t)−∆f ≤ v(∆x̄,t) ≤ v(∆x̄,β,t).(2.7)

Proof. v(∆x̄,t) ≤ v(∆β,x̄,t) comes from f∗β ≥ f∗. From (2.2),

D∗
t (−z) ≥ D∗

t (−z∗)− d∗(z − z∗) ∀z.

Add f∗(z) − zx̄ to both sides, then add and remove f∗β(z
∗) − z∗x̄ to the right-hand

side to obtain

f∗(z)− zx̄+D∗
t (−z) ≥ v(∆β,x̄,t)− [f∗β(z

∗)− f∗(z) + (x̄+ d∗)(z − z∗)] ∀z.

Take the inf on z on both sides and recognize the stabilized dual problem (1.11) on
the left and the dual pricing problem (1.3) at x̄ + d∗ plus fβ(x̄ + d∗) (via (2.4)) on
the right.
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For future reference, let us record here the alternative formula

∆f = f∗β(z
∗)− f∗(z) + (x̄+ d∗)(z − z∗),(2.8)

where z ∈ ∂f(x̄+ d∗). (z is an optimal solution of (1.3) at x̄+ d∗.)
Let us briefly comment on the above lemmas. Equation (2.3) shows that the dual

optimal solution z∗ gives, in primal terms, a linear lower approximation of the model
fβ which, by (2.4), is tight in x̄ + d∗. Conversely, by (2.2) the primal direction d∗

gives, in dual terms, a subgradient of D∗
t at −z∗. Lemma 2.2 shows that the gap

between the model and the original function in x̄+d∗ is a measure of the gap between
(1.9) and (1.11); thus, if ∆f = 0, then z∗ is optimal for (1.11) (f∗β(z

∗) = f∗(z∗)), and
d∗ is optimal for (1.12).

If f∗β ≥ f∗, a useful object in the analysis of the algorithms is

α∗ = f∗β(z
∗)− z∗x̄+ f(x̄) ≥ 0(2.9)

(use (1.vii)); using (1.v) in (2.9), one obtains

z∗ ∈ ∂(α∗)f(x̄).(2.10)

Note that all of the above relations are independent of the choice of fβ and Dt; in
the literature, analogous results have usually been obtained algebraically for specific
choices, such as Dt =

1
2t‖ · ‖2

2 and fβ = f̂β . However, not all the results for particular
cases generalize; a relevant example is d∗ = −tz∗, which is central in the analysis of
proximal bundle methods but it is not true in general.

3. Conditions on Dt. Of course, the primal stabilizing term Dt has to satisfy
some conditions. First of all, in order to be able to apply the results of the previous
paragraph, Dt has to be a closed convex function ∀t > 0. Then, a set of weak
properties that suffice for constructing a convergent algorithm is the following:

(P1) ∀t > 0, Dt(0) = 0 and 0 ∈ ∂Dt(0) (Dt is nonnegative).
(P2) ∀t > 0 and ε > 0, Sε(Dt) is compact and 0 ∈ int Sε(Dt) (Sε(Dt) is full-

dimensional).
(P3) ∀t > 0, lim‖d‖→∞Dt(d)/‖d‖ = +∞ (Dt is strongly coercive).
(P4) ∀t > 0, Dt ≥ Dτ for each τ ≥ t (Dt is nonincreasing in t).
(P5) limt→∞Dt(d) = 0 ∀d ({Dt} converges pointwise to the constant zero func-

tion).
We will show that the above conditions on Dt are equivalent to the following

conditions on D∗
t :

(P∗1) ∀t > 0, D∗
t (0) = 0 and 0 ∈ ∂D∗

t (0) (D
∗
t is nonnegative).

(P∗2) ∀t > 0 and ε > 0, Sε(D
∗
t ) is compact and 0 ∈ int Sε(D

∗
t ) (Sε(D

∗
t ) is full-

dimensional).
(P∗3) ∀t > 0, D∗

t is finite everywhere.
(P∗4) ∀t > 0, D∗

t ≤ D∗
τ for each τ ≥ t (D∗

t is nondecreasing in t).
(P∗5) ∀ε > 0, limt→∞ infz{D∗

t (z) : ‖z‖ ≥ ε} = +∞ ({D∗
t } converges “uniformly”

to I{0}).
The following remarks about (P1)–(P5) are useful:
– Having a minimum in 0 where they evaluate to 0, both Dt and D

∗
t are non-

negative functions ∀t > 0.
– As a consequence of (P1) and (P∗1), Dt and D

∗
t are radially nondecreasing,

i.e.,

∀α ≥ 1 Dt(αd) ≥ Dt(d) ∀d and D∗
t (αz) ≥ D∗

t (z) ∀z,(3.1)
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since, e.g., d = (1/α)αd+(1−1/α)0 and, by convexity,Dt(d) ≤ (1/α)Dt(αd)+
(1− 1/α)Dt(0) ≤ Dt(αd) as α ≥ 1 and Dt(αd) ≥ 0.

– Another consequence of (P1) and (1.v) is

Sε(Dt) = ∂εD
∗
t (0) and Sε(D

∗
t ) = ∂εDt(0);(3.2)

a rephrasing of (P2) is therefore that both the level sets of Dt and its ε-
subdifferentials at 0 must be compact, and the same holds for D∗

t .
– (P2) guarantees that the hypothesis of Lemma 2.1 is true, as 0 ∈ int dom Dt

and 0 ∈ dom fβ(x̄ + ·). (This is true even in the constrained case, cf. sec-
tion 8.1, assuming of course that x̄ ∈ X.)

– (P2) and (P∗2) are stated for ε > 0: S0(Dt) and S0(D
∗
t ) may or may not be

full-dimensional, as in the following examples.

z

D*t

d

DtExample
3.1

d

Dt

1/t

z

D*t

1/t

Example
3.2

Dt =
1
2t‖ · ‖2

2, D∗
t = 1

2 t‖ · ‖2
2 Dt =

1
t ‖ · ‖1, D∗

t = IB∞(1/t)

z

D*t

t

d

Dt

t

Example
3.3

Dt = IB∞(t), D∗
t = t‖ · ‖1

– It is intuitive why (P2) and (P∗2) are necessary. The noncompactness of
Sε(Dt) for some ε > 0 means that Dt is constantly 0 along some direction d
and therefore cannot “stabilize” f along d. In fact, all the nonempty level sets
of a closed convex function have the same asymptotic cone [HL93a, Propo-
sition IV.3.2.5], so that S0(Dt) is also noncompact. On the other hand, if 0
belongs to the frontier of dom Dt, then some d is a “forbidden” direction, i.e.,
Dt(αd) = +∞ ∀α > 0.

– Strongly coercive (or 1-coercive) functions increase faster than any linear
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function at infinity; (P3) guarantees that (1.8) has a bounded nonempty set
of optimal solutions.

– Concerning (P4) and (P∗4), note the role of t in Examples 3.1–3.3 above.
– The need for (P4) and (P5) is also intuitively clear: t must make Dt “weaker”

as it grows, and it must be possible to make Dt as weak as desired in order to
avoid “blocking” promising directions. Dually, a penalty term must increase
as the penalty parameter does (see (P∗4)), and it must be equivalent to the
constraints it replaced, at least in the limit (see (P∗5)).

Dt need not be “norm-like” [KCL95, Be96] or a Bregman distance [CT93]; in partic-
ular, it is not necessary that Dt(0) = 0 ⇔ d = 0 [IST94, Ki99]. Also, t→ Dt(d) need
not have the 1/t form.

Theorem 3.1. (P1)–(P5) are equivalent to (P∗1)–(P∗5).
Proof. For the first four properties, the equivalence is pairwise.
1. The equivalence between (P1) and (P∗1) is an easy consequence of (1.iv) and

(1.vi).
2. The equivalence between (P2) and (P∗2) can be obtained as a consequence

of the following little-known result: for any proper convex function D, d̄ ∈
int dom D ⇔ d̄ ∈ int Sδ(D) ∀δ > D(d̄). One of the implications is obvious;
for the other, d̄ ∈ int dom D means that there exists a ball B(d̄, ε) with ε > 0
such that B(d̄, ε) ⊆ int dom D. By [HL93a, Theorem IV.3.1.2], D is Lipschitz
over the ball, i.e., |D(d) −D(d̄)| ≤ L‖d − d̄‖ ∀d ∈ B(d̄, ε) for some constant
L > 0; hence, Sδ(D) ⊇ B(d̄,min{ε, (δ −D(d̄))/L}) as desired.
Using this result, [HL93b, Theorem XI.1.1.4], and (3.2), one has

0 ∈ intSε(Dt) ⇔ 0 ∈ int dom Dt ⇔ ∂εDt(0) compact ⇔ Sε(D
∗
t ) compact.

To complete the proof of the equivalence, simply exchange Dt with D
∗
t .

3. The equivalence between (P3) and (P∗3) is [HL93b, Remark X.1.3.10].
4. The equivalence between (P4) and (P∗4) is (1.ii).
5. For the last step, we will show that [(P1) + (P4) + (P5)] ⇒ (P∗5) and [(P∗1)

+ (P∗4) + (P∗5)] ⇒ (P5).
[(P1) + (P4) + (P5)] ⇒ (P∗5). Due to (3.2) (which requires (P1) ≡ (P∗1)),

(P∗5) can be rewritten as

∀ε > 0 lim
t→∞ inf

z
{D∗

t (z) : ‖z‖ = ε} = +∞.

Now, assume by contradiction that ε > 0 exists such that the limit is not +∞; since
the feasible set is compact and D∗

t is closed, for each t there exists a zt achieving the
inf, and we can write

lim
t→∞D∗

t (zt) ≤M < +∞.

From (1.vii) ∀t ∀d ∀z, Dt(d) +D∗
t (z) ≥ zd; choosing z = zt and using D∗

t (zt) ≤ M ,
one obtains

∀t ∀d Dt(d) ≥ ztd−M.

But all the zt belong to a compact set, and therefore some cluster point z∗ exists with
‖z∗‖ = ε; plugging d∗ = (2M/ε2)z∗ into the above inequality and taking the limit for
t→ ∞, one gets

lim
t→∞Dt(d

∗) ≥ lim
t→∞

(
2M

ε2

)
ztz

∗ −M = 2M −M > 0,
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which contradicts (P5).
[(P∗1) + (P∗4) + (P∗5)] ⇒ (P5). As a preliminary, we must show that for

every d there exists a sufficiently large t̄ such that Dt(d) < +∞ for each t ≥ t̄; due
to (P4) ≡ (P∗4), it is only necessary to show that this happens for at least one t.
Assume by contradiction that one d̄ exists such that d̄ �∈ dom Dt ∀t. Using [HL93a,
Theorem V.2.2.2], one has

∀t ∃zt : ‖zt‖ = 1 sup
d
{ztd : d ∈ dom Dt} ≤ ztd̄.

Now

D∗
t (zt) = supd{ztd−Dt(d)} = supd{ztd−Dt(d) : d ∈ dom Dt}

≤ supd{ztd : d ∈ dom Dt} ≤ ztd̄ (Dt ≥ 0).

Using ‖zt‖ = 1, this finally gives ∀t, D∗
t (zt) ≤ ‖d̄‖2, which contradicts (P∗5). Hence,

each d is in dom Dt for a sufficiently large t.
We now want to prove that (P5) holds, so assume by contradiction that one d̄

exists such that Dt(d̄) ≥ ε > 0 ∀t > 0. (It must be d̄ �= 0 due to (P1) ≡ (P∗1), and
note that we are using (P4) ≡ (P∗4).) Since Dt(d̄) > Dt(0) = 0, 0 �∈ ∂Dt(d̄). In fact,
from the subgradient inequality

Dt(d) ≥ Dt(d̄) + z(d− d̄) ∀d ∀z ∈ ∂Dt(d̄)

one gets for d = 0, using (P1),

zd̄ ≥ Dt(d̄) ≥ ε ∀z ∈ ∂Dt(d̄) ⇒ ‖z‖ ≥ ε′ = ε/‖d̄‖ ∀z ∈ ∂Dt(d̄).

Now, for each t choose any zt ∈ ∂Dt(d̄). Using (1.vi), ‖zt‖ ≥ ε′, and (P1), we obtain

lim
t→∞ inf

z
{D∗

t (z) : ‖z‖ = ε′} ≤ lim inf
t→∞ D∗

t (zt) ≤ lim inf
t→∞ ztd̄−Dt(d̄) ≤ lim inf

t→∞ ztd̄.

There exists a large enough t̄ such that 2d ∈ dom Dt̄; hence, by (3.1), d ∈ dom Dt̄

also. Again using the subgradient inequality, (P4) (which is implied by (P∗4)), and
(P1), we have

∀t ≥ t̄ Dt̄(2d̄) ≥ Dt(2d̄) ≥ Dt(d̄) + zt(2d̄− d̄) ≥ ztd̄,

which finally gives

lim
t→∞ inf

z
{D∗

t (z) : ‖z‖ = ε′} ≤ lim inf
t→∞ ztd̄ ≤ Dt̄(2d̄) <∞,

contradicting (P∗5) and therefore finishing the proof of the theorem.
Condition (P∗5) may be a bit clumsy to check. The following result gives a handy

sufficient condition that should work in most cases.
Theorem 3.2. If (P∗4) holds, {D∗

t } converges pointwise to I{0}, i.e.,

lim
t→∞D∗

t (z) = +∞ ∀z �= 0,

and for any two sequences {ti} → +∞ and {zi} → z̄, where zi ∈ dom D∗
ti , one has

lim inf
t→∞ D∗

ti(zi) ≥ lim
i→∞

D∗
ti(z̄),
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then (P∗5) holds.
Proof. The thesis is obvious if for any fixed ε there exists a t such that dom D∗

t ⊆
B2(ε), since by (P∗4) the domain of D∗

t can only shrink as t increases. Hence, we
can assume that dom D∗

t \B2(ε) is nonempty ∀t. Assume by contradiction that for
some ε > 0 and {ti} → +∞ there exist one δ < ∞ and a sequence {zi} of points
outside B2(ε) such that D∗

ti(zi) ≤ δ ∀i. Let z̄i = (ε/‖zi‖2)zi (the projection of zi
on B2(ε)). By (3.1), D∗

ti(z̄i) ≤ D∗
ti(zi). Now, B2(ε) is a compact set; hence we can

assume {z̄i} → z̄ with ‖z̄‖2 = ε > 0. Using the hypothesis,

∞ = lim
i→∞

D∗
ti(z̄) ≤ lim inf

i→∞
D∗
ti(z̄i) ≤ δ <∞.

All the D∗
t proposed so far satisfy (P∗5); they are either continuous in both z and

t (cf. Examples 3.1, 3.3) or indicator functions of balls shrinking as t increases (cf.
Example 3.2). It is clear from the proof of Theorem 3.2 that these two possibilities—
which in our setting can be mixed—have two distinct ways of ensuring that (P∗5)
holds. Bundle methods using these two different types of stabilizing term, i.e., penalty
and trust-region, have so far been viewed as distinct [HL93b, sections XV.2.1 and
XV.2.2].

It is possible to avoid the strong coercivity assumption (P3) (cf. Example 3.2),
provided that other assumptions guarantee that (1.8) is bounded below.
(P3′) f is bounded below, a finite f∗ such that f∗ ≤ v(Π) is known and fβ ≥ f∗ ∀β.
(P∗3′) (1.2) is nonempty, a finite f∗ such that f∗(0) ≤ −f∗ is known and f∗β(0) ≤

−f∗ ∀β.
Note that there are three separate conditions in (P3′): a suitable f∗ must exist, must
be known, and the corresponding “flat” subgradient must be explicitly kept in the
bundle. From the dual viewpoint, (P∗3′) guarantees that 0 is a feasible solution for
(1.9). A more general condition would be requiring fβ to be always bounded below;
with such a model, the cutting plane algorithm could be directly applied without
stabilization. However, the constant zero function is not a valid stabilizing term, even
if (P3) is not enforced, due to the first part of (P2) (compactness).

Two other variants of the above properties allow us to obtain stronger convergence
results:
(P3′′) ∀t Dt is strongly coercive and strictly convex.
(P∗3′′) ∀t D∗

t is finite everywhere and differentiable.
(P5′) ∀t ∂Dt(0) = {0} (Dt is differentiable in 0, i.e., ∇Dt(0) = 0).
(P∗5′) ∀t S0(D

∗
t ) = {0} (D∗

t is strictly convex in 0, i.e., 0 is the unique minimum
of D∗

t ).
(P3′′) is a strengthening of (P3) that allows us to keep the size of β bounded. The
equivalence between (P3′′) and (P∗3′′) is [HL93b, Theorem X.4.1.1]. Under (P5′), 0
is a stationary point of f(x̄+ ·) +Dt if and only if x̄ is a stationary point of f ; with
(P5′) replacing (P5), it is possible to prove convergence without requiring t → ∞.
The equivalence between (P5′) and (P∗5′) is a consequence of (3.2). (P5′) implies
the second part of (P2) (full dimensionality); this is easily seen in the dual, as (P∗5′)
implies the first part of (P∗2) (compactness), since all the level sets of D∗

t share the
same asymptotic cone of S0(D

∗
t ) = {0}.

So far, nothing has been required about the form of the t → Dt(d) functions; in
this very general setting, Dt andDt′ for t �= t′ may be two almost completely unrelated
functions. In some cases, stronger results can be obtained under the following (pretty
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〈 let µ ≥ 1 and ε ≥ 0 be fixed; choose the initial x̄, t, and β 〉 // initialization

do

〈 solve (Πβ,x̄,t) and (∆β,x̄,t) for d
∗ and z∗, respectively 〉; // find a direction

〈 move along d∗, generating some new z and a trial point x 〉; // probe f along d∗

if (a large enough improvement has been obtained) // NS/SS decision

then x̄ = x; // a serious step

〈 add some new z to β, delete some old z from β 〉; // the β-strategy

〈 update t, depending on the previous history 〉; // the t-strategy

while (α∗ + µD∗
t (−z∗) > ε); // stopping condition

Fig. 1. The “two-level” bundle algorithm.

〈 choose the initial x̄, t > 0, ε > 0, and β 〉;
do forever

〈 run the algorithm of Figure 1, ensuring that t ≥ t

and using ε in the stopping criteria 〉
〈 increase t and decrease ε 〉;

enddo

Fig. 2. The “three-level” bundle algorithm.

reasonable) assumptions:

Dt =
1

t
D ⇒ D∗

t =
1

t
D∗(t·),(3.3)

where D satisfies (P2) and (P2) and is finite everywhere (⇒ (P5));

D∗
t = tD∗ ⇒ Dt = tD

(
1

t
·
)
,(3.4)

where D∗ satisfies (P∗1) and (P∗2) and is strictly convex in 0 (⇒ (P∗5) + (P∗5′)).
Of course, conditions equivalent to (P3)/(P∗3) (D strongly coercive/D∗ finite

everywhere) or (P3′)/(P∗3′) will also be required, whereas (P4)/(P∗4) come directly
from the nonnegativity of D/D∗.

Finally, let us record for future use two useful consequences of (P1)–(P5), the
second being just that a penalty method using Dt works.

Lemma 3.3. ∀ε > 0 ∀δ > 0 there exists a t such that Sε(Dt) ⊇ B2(δ)∀t ≥ t.
Proof. {Dt} converges uniformly to 0(·) on every compact set C, i.e., ∀ε > 0 there

exists a t such that Dt(d) ≤ ε ∀d ∈ C,∀t ≥ t: use (P5), [HL93a, Theorem IV.3.1.5],
and the fact that ri dom 0(·) = �n. The result follows, using C = B2(δ), since, due
to (P4), sε(Dt) are nondecreasing in t.

Lemma 3.4. For any fixed x̄, limt→∞ v(Πx̄,t) = v(Π).
Proof. Note that v(Πx̄,t) is nonincreasing in t by (P4). Assume by contradiction

limt→∞ v(Πx̄,t) = v > v(Π), i.e., one d̄ exists such that f(x̄+ d̄) < v: using (P5), we
get

v = lim
t→∞ v(Πx̄,t) ≤ lim

t→∞[f(x̄+ d) +Dt(d̄)] = f(x̄+ d̄) < v.

4. The bundle algorithm. We will analyze two main variants of the generalized
bundle algorithm, described, respectively, in Figures 1 and 2.

The “two-level” bundle algorithm of Figure 1 implements the standard ideas of
a bundle approach: the generalized Moreau–Yosida regularization φt of f (cf. sec-
tion 1.4) is minimized (2nd level), with sequences of consecutive null steps performing
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the approximate computation of φt(x̄) (1st level). The algorithm of Figure 2 adds
another level, where t is forced to increase, possibly to +∞; this is useful for those
cases in which, due to properties of Dt, the standard two-level approach is not able
to guarantee convergence unless t is “large enough.”

In order to obtain a convergent algorithm, assumptions are needed about the
following:

– properties of the stabilizing term Dt,
– choice of the model fβ ,
– properties of the function f ,
– handling of the t parameter (the t-strategy) and the NS/SS decision,
– handling of the bundle (the β-strategy).

The required properties for Dt have been described in the previous section. We will
always assume fβ to be a closed convex function such that fβ ≤ f ; for some results,

fβ will be required to be the cutting plane model f̂β (1.6). The assumptions on the
last three points will be discussed in the following.

4.1. Assumptions on f . For some variants of the algorithm, we will require f
to be a ∗-compact function, i.e., such that

e(l, L) := sup
x
{dSl(f)(x) : x ∈ SL(f)} <∞ ∀L ≥ l > v(Π) ≥ −∞.

Here f is ∗-compact if the excess of any level set SL(f) over Sl(f) is finite; that is, f
never becomes “infinitely flat.”

Let us now briefly present some properties of ∗-compact functions that are useful
in our treatment. (The interested reader is referred to [Fr98] for a more detailed
study.) Recall that a nonempty closed convex set C is compact if and only if its
asymptotic cone

C∞ = {d : x+ αd ∈ C ∀x ∈ C,∀α ≥ 0}
is the set {0} (see [HL93a, Proposition III.2.2.3]); all the nonempty level sets of a
closed convex function f have the same asymptotic cone (see [HL93a, Proposition
IV.3.2.5]), denoted by f∞.

Theorem 4.1. If ∀L > v(Π) there exists a compact set CL such that SL(f) ⊆
CL + f∞, then f is ∗-compact.

Proof. Select L ≥ l > v(Π) and choose any xl ∈ Sl(f) (there must be at least one)
to be kept fixed. From the hypothesis, for any x̄ ∈ SL(f) there exists an xL ∈ CL
and a d ∈ f∞ such that x̄ = xL + d. Since xl + d ∈ Sl(f), we obtain

inf
x
{‖x− x̄‖ : x ∈ Sl(f)} ≤ ‖(xl + d)− (xL + d)‖ = ‖xl − xL‖.

Therefore,

sup
x

{
inf
x
{‖x− x̄‖ : x ∈ Sl(f)} : x̄ ∈ SL(f)

}
≤ sup

x
{‖xl − x‖ : x ∈ CL} <∞, since CL is compact.

Note that CL is not required to be convex, just compact.
Corollary 4.2. All polyhedral functions are ∗-compact.
Proof. The level sets of polyhedral functions are obviously polyhedra. Any poly-

hedron has a minimal representation as the sum of a (compact) polytope and a poly-
hedral cone [Ro70, Theorem 19.1]. The cone appearing in the minimal representation
of each level set can only be f∞.



130 ANTONIO FRANGIONI

Note that the hypothesis of Theorem 4.1 is obviously true if f∞ = {0}, i.e., all
inf-compact functions are ∗-compact. The converse is not true, however, since by
Corollary 4.2 there are ∗-compact functions that are not inf-compact; ∗-compactness
properly generalizes inf-compactness. It is easy to prove that many other functions
are ∗-compact, such as the quadratic ones. ∗-compactness is a powerful assumption,
since it allows us to prove the following result.

Lemma 4.3. If f is ∗-compact, then for any ∞ > L ≥ l > v(Π) and ε > 0 there
exists a t > 0 such that v(Πx̄,t) ≤ l + ε ∀x̄ ∈ SL(f) and t ≥ t.

Proof. Given any x̄ ∈ SL(f), call x̂ the projection of x̄ over Sl(f); since f(x̄) ≤ L,
using ∗-compactness, one has ‖x̂ − x̄‖ ≤ e(l, L) = δ < ∞. By Lemma 3.3, there
exists t such that Sε(Dt) ⊇ B2(δ) ∀t ≥ t, and therefore v(Πx̄,t) ≤ f(x̂) +Dt(x̂− x̄) ≤
l + ε ∀t ≥ t.

Using the above property, we can supplement Lemma 3.4, proving “convergence”
for the optimal value of (1.12) for every “reasonable” choice of the sequences {x̄i} and
{ti}.

Lemma 4.4. If f is ∗-compact, then for any sequence {x̄t} such that f(x̄t) ≤ L <
∞,

v := lim inf
t→∞ v(Πx̄t,t) = v(Π).

Proof. Assume by contradiction that v(Π) < l = v− 3ε for some ε > 0. Applying
Lemma 4.3, we obtain that, for large enough t, v(Πx̄t,t) ≤ v − 3ε + ε. Furthermore,
from the definition of v, there exists a large enough t such that v ≤ v(Πx̄t,t) + ε.
Hence, for this (large enough) t,

v ≤ v(Πx̄t,t) + ε ≤ v − 2ε+ ε+ ε < v.

A final observation has to be made about polyhedral functions. In order to prove
finite convergence results, a natural (but in principle nontrivial) assumption about
the black box is required: as f is characterized by a finite set of vectors and their f∗-
values, (cf. (1.6)), the black box has to return as subgradients only those “extreme”
vectors characterizing f . More generally, one could require

only finitely many different pairs (f∗(z), z) can be returned by the black box.
(4.1)

4.2. Assumptions on the t-strategy and the NS/SS decision. In order
to leave a large degree of freedom in the implementation of the algorithm, we prove
convergence under four general rules; several different t-strategies, with different per-
formances in practice, can be designed following these guidelines [Fr97, Chapter I.5].
Since these rules measure improvements w.r.t. the current value f(x̄), let us introduce
the following notation:

δx̄(d) = f(x̄+ d)− f(x̄) is the actual improvement and(4.2)

δβ,x̄(d) = fβ(x̄+ d)− f(x̄) is the predicted improvement(4.3)

for a step at x̄+d. Note that δx̄(d)−δβ,x̄(d) = ∆f , and that δβ,x̄(d
∗) ≤ 0. (Otherwise,

d = 0 would be a better solution of (1.8) than d∗.) In the following, we will use “SS”
as a shorthand for “serious step,” i.e., an iteration of the algorithm where the current
point x̄ is changed. Analogously, “NS” will stand for “null step,” i.e., an iteration of
the algorithm where x̄ is not changed.
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(4.i) If an SS is performed, then

δx̄(d
∗) ≤ mδβ,x̄(d

∗)(4.4)

for a fixedm ∈ (0, 1); the converse is not required, i.e., an SS may not be done
even if a “considerable” improvement has been obtained, except for what is
required by (4.iii) below.

(4.ii) During a sequence of consecutive NS, t can increase only finitely many times.
(4.iii) During a sequence of consecutive NS, (4.4) can happen only finitely many

times; that is, after finitely many NS, any step such that

δx̄(d
∗) > mδβ,x̄(d

∗)(4.5)

must be accepted.
(4.iv) During a sequence of consecutive NS, at all iterations (but possibly a finite

number) f must be evaluated in x̄ + d∗, and the model f+ of the following
iteration must take into account the corresponding z ∈ ∂f(x̄ + d∗), in the
sense that f∗+(z) ≤ f∗(z).

Let us briefly discuss the above rules. By (4.i), an SS is performed only if a
consistent improvement is obtained. Changing the current point is not mandatory
if some alternative strategy—typically increasing t—appears to be preferable, but,
by (4.iii), this must not happen forever. A reasonable answer to a “bad” step is to
decrease t; increasing t is also possible, but it must be properly limited, e.g., by (4.ii).
Finally, inserting the newly obtained subgradient into β is not mandatory if some
alternative strategy—typically decreasing t—appears to be preferable, but, by (4.iv),
this must not happen forever. Using f∗+ ≥ f∗, (4.iv) is equivalent to f∗+(z) = f∗(z);
from the primal viewpoint, it says that

f(x̄+ d∗) = f+(x̄+ d∗) and z ∈ ∂f+(x̄+ d∗).(4.6)

In some cases, a strengthened form of rule (4.ii) is useful, as follows.
(4.ii′) During a sequence of consecutive NS, t can change only finitely many times.

A consequence of rules (4.ii) (or (4.ii′)), (4.iii), and (4.iv) is that, for any sequence
of consecutive NS, there exists an iteration index h such that for all the subsequent
iterations in the sequence, t is nonincreasing (fixed), δx̄(d

∗) > mδβ,x̄(d
∗), and z is

added to β. In the following, we will often refer to this h.
Inhibiting serious steps allows us to drop the ∗-compactness assumption in some

variants of the algorithm; thus, we will sometimes use the following rule.
(4.iii′) Only finitely many SS are done; after the last one, the stopping condition

becomes ∆f ≤ ε.
This rule is rather abstract, but several practical implementations can be imag-

ined. For instance, the current point can just be kept fixed. Alternatively, if v(Π) is
finite, one could choose some ε > 0 and inhibit SS if δβ,x̄(d

∗) ≥ −ε (a “negligible”
step), as long as the t-strategy is properly managed.

With the three-level algorithm of Figure 2, sometimes the following weakened
form of (4.iii′), which allows any total number of SS to be performed, suffices.
(4.iii′′) For each run of the two-level bundle algorithm, only finitely many SS are

done; after the last one, the stopping condition becomes ∆f ≤ ε.
At the end of this section, let us remark that the very concept of SS, although

apparently primal in nature, has a noteworthy “dual interpretation.” From the dual
viewpoint, a bundle method is an approximated ascent approach to supx{v(∆x,t)},
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where an ascent in the value of the stabilized dual problem (1.11), i.e., v(∆x̄+d∗,t) ≥
v(∆x̄,t), is desired. Unfortunately, the values of v(∆x̄+d∗,t) and v(∆x̄,t) are unknown,
and therefore the condition cannot be checked; however, they can be estimated, us-
ing the dual pricing problem (1.3) (v(∆x) = −f(x)) and the stabilized dual master
problem (1.9), as

v(∆x̄+d∗,t) ≥ v(∆x̄+d∗) and v(∆β,x̄,t) ≥ v(∆x̄,t) ≥ v(∆x̄).

(Remember Lemma 2.1: (∆x̄+d∗) is a linearization of (∆x̄+d∗,t) in −z∗ using the
subgradient d∗.) Now, (4.4) is equivalent, via (2.6), to

v(∆x̄+d∗) ≥ mv(∆β,x̄,t) + (1−m)v(∆x̄).

Therefore, v(∆x̄+d∗) andmv(∆β,x̄,t)+(1−m)v(∆x̄) are taken as estimates of v(∆x̄+d∗,t)
and v(∆x̄,t), respectively, and used to decide whether x̄+d∗ are better multipliers than
x̄. Note that there is a safeguard against “wild” decisions: at least, v(∆x̄+d∗) ≥ v(∆x̄).
Hence, even if v(∆x̄,t) does not actually improve moving to x̄+ d∗, at least its lower
approximation v(∆x̄) does.

4.3. Assumptions on the β-strategy. An important detail of any imple-
mentable bundle method is the β-strategy, i.e., how the information in β is managed
to keep the computational cost of the solution of (1.8)/(1.9) reasonably low. Remov-
ing subgradients from β is important in practice, but heedless removals can impair
convergence of the algorithm. A “minimal” requirement for any β-strategy is the
following.

Definition 4.5. A β-strategy is weakly monotone if, during a sequence of con-
secutive NS, for each i ≥ h the optimal value of (1.9) is monotonically nonincreasing
or, equivalently, the optimal value of (1.8) is monotonically nondecreasing.

The equivalence between the two conditions in Definition 4.5 is (2.1). A weakly
monotone β-strategy ensures at least convergence (to some value) of the optimal value
of (1.8)/(1.9) during a sequence of consecutive NS. The definition does not specify how
that monotonicity is obtained; a pretty minimal assumption on fβ is the following.

Definition 4.6. A β-strategy is monotone if, during a sequence of consecutive
NS, for each i ≥ h

f∗βi+1
(z∗i ) ≤ f∗βi

(z∗i ),(4.7)

or, equivalently,

fβi+1(x̄+ d) ≥ fβi(x̄+ d∗i ) + z∗i (d− d∗i ) ∀d.(4.8)

The equivalence between (4.7) and (4.8) can be easily proved using (2.4) and
(1.1). A monotone β-strategy is weakly monotone; since ti+1 ≤ ti ⇒ D∗

ti+1
≤ D∗

ti for
i ≥ h, v(∆x̄,βi+1,ti+1) ≤ f∗βi+1

(z∗i ) − z∗i x̄ +D∗
ti+1

(−z∗i ) ≤ f∗βi
(z∗i ) − z∗i x̄ +D∗

ti(−z∗i ) =
v(∆x̄,βi,ti).

The practical implementation of a monotone β-strategy depends on the model.
For the cutting plane model f̂β , at each iteration the following two moves can be
considered:

– remove some z from β (removal),

– add z∗ to β (aggregation), with f∗-value f̂∗β(z
∗).

Rewriting (1.9) with fβ = f̂β in the following equivalent form (cf. (1.7))

inf
θ
{Σz∈β(f∗(z)− zx̄)θz +D∗

t (−Σz∈βzθz) : Σz∈βθz = 1, θ ≥ 0},(4.9)
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it is clear that aggregation offers one way for implementing a monotone β-strategy.
If—as often happens—(1.9) is actually solved via (4.9), an alternative is to just avoid
discarding all the z ∈ β whose corresponding optimal multiplier θ∗z is strictly positive,
as

f̂∗β(z
∗) =

∑
z∈β

f∗(z)θ∗z and z∗ =
∑
z∈β

zθ∗z .

In principle, no more than n+1 of the optimal multipliers need to be strictly positive,
although in practice whether or not such a minimal solution is obtained depends on
the actual solver; even for D∗

t = 1
2 t‖ · ‖2

2, active-set algorithms [Ki89, Fr96] would
guarantee it, while interior-point algorithms may not. The above discussion justifies
the following result.

Lemma 4.7. If fβ = f̂β and, during a sequence of consecutive NS, for each
iteration after h either all the z such that θ∗z > 0 are kept in β or z∗ is added to β
with f̂∗β(z

∗) as the corresponding f∗-value, then the β-strategy is monotone.
A monotone β-strategy allows us to keep the size of β bounded (down to 2); if

(P3′′) does not hold, however, it is not sufficient to guarantee convergence [Fr97, sec-
tion I.4.2]. A stronger property has to be used, which essentially inhibits all removals
at length.

Definition 4.8. A β-strategy is strictly monotone if it is monotone and, if some
z has been removed from β, no other removal is permitted until v(Πβ,x̄,t) increases by
a fixed µ > 0.

A strictly monotone β-strategy guarantees convergence for every choice of Dt;
although it does not give any finite bound on the size of β, it can still be practical.
Furthermore, there is a trade-off between the size of β—hence the computational cost
of (1.9)—and the speed of convergence of the overall process [HL93b, section XIV.4.5];
a small β is a good choice only in some cases [CFG01].

Finally, if f is a polyhedral function, finite termination to an optimal solution
can be proved, provided that aggregation is properly limited.

Definition 4.9. A β-strategy is safe if only finitely many aggregations are done.

5. Convergence of NS sequences (1st level). The convergence proof is di-
vided into three parts. In this section we assume that no SS occurs, i.e., we examine
infinite sequences of consecutive NS; we shall show that these sequences allow us
to compute the generalized Moreau–Yosida regularization with any finite precision.
Therefore, in the next section we will be allowed to disregard what happens between
two consecutive SS, i.e., focus on the convergence of the minimization process of the
generalized Moreau–Yosida regularization (2nd level). Finally, in section 7 we will
discuss the convergence of the 3rd level.

In this section, the iteration index i denotes the ith NS of the (only) infinite
sequence of consecutive NS that the algorithm is supposed to perform, and therefore
the current point x̄ is fixed. The iteration index h is the one implied by the rules
(4.ii) (or (4.ii′)), (4.iii), and (4.iv). To simplify the notation, let (∆i) and (Πi) denote,
respectively, the dual and primal stabilized master problems (1.9) and (1.8) solved

in that iteration; z∗i and d∗i their solutions; fi(f̂i) the corresponding (cutting plane)
model; zi the subgradient reported by the evaluation of f(x̄ + d∗i ); δi the predicted
improvement; and so on. Also, we will use the shorthand index “+” for “i+ 1.”

In the following, we will always assume that (P1), (P2), (P4), and (P5) hold;
additional assumptions will be explicitly listed. The first step in the convergence
proof is to show that the algorithm is well defined, i.e., that the primal and dual
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stabilized master problems have optimal solutions. This requires (P3) or (P3′), as
well as minimal assumptions on fβ .

Lemma 5.1. Under the hypothesis of Lemma 2.1, if either (P3′) or (P3) hold,
then (∆i) and (Πi) attain finite optimal solutions z

∗
i and d

∗
i , respectively.

Proof. If (P3′) holds, then from fi ≥ f∗ we have that fi(x̄+d)+Dti(d) > f(x̄) ∀d �∈
Sδ(Dti), where δ = f(x̄) − f∗. Since Sδ(Dti) is compact by (P2), the infimum must
be finitely attained. Otherwise (P3) holds, i.e., Dt is strongly coercive; hence fβ(x̄+
·) + Dt(·) is strongly coercive too. (Strongly coercive functions increase faster than
any linear function at infinity, and any convex function is minorized by an affine
function [HL93a, Proposition IV.1.2.1].) Therefore, (Πi) has a bounded nonempty
set of optimal solutions [HL93a, Remark IV.3.2.8]. Finally, [HL93a, Theorem X.2.3.2]
shows that an optimal z∗i exists for (∆i) whenever an optimal d∗i exists for (Πi).

We will now focus on proving the boundedness of the sequences {d∗i } and/or {z∗i },
under a set of different assumptions.

Lemma 5.2. Under the hypothesis of Lemma 2.2, if (P3′) holds, then {d∗i } and
{z∗i } are bounded.

Proof. Boundedness of {d∗i } was in fact established in Lemma 5.1, as Dti(d
∗
i ) ≤

δ = f(x̄)−f∗ and, by (P4), Sδ(Dti) ⊆ Sδ(Dth); the latter is compact by (P2). By (2.3)
and fi ≤ f , z∗i is an εi-subgradient of f at x̄+d∗i for εi = ∆fi = f(x̄+d∗i )−fi(x̄+d∗i ) ≥
0; since f is finite everywhere, and therefore bounded over any compact set, and
fi ≥ f∗, εi ≤ ε̄ < ∞. Hence, z∗i ∈ ∂ε̄f(x̄ + d∗i ) ∀i ≥ h. The image of a compact
set in int dom f = �n under the ε̄-subdifferential mapping (see [HL93b, Proposition
XI.4.1.2]) is compact.

Thus, (P3′)/(P∗3′) guarantee the boundedness of both solution sequences. In all
the development, the first part of (P2) (compactness) is only used in Lemma 5.2, and
therefore it could be dropped if (P3) holds; however, strong coercivity implies the
boundedness of the level sets [HL93a, Proposition IV.3.2.5.(ii)], and hence there is no
loss of generality—and a gain in symmetry—in requiring it to hold in general.

In Lemma 5.2, the boundedness of {z∗i } is obtained as a consequence of the
boundedness of {d∗i }, finiteness of f , and fi ≥ f∗; with basically the same argument,
it is possible to prove the boundedness of {d∗i }, given the boundedness of {z∗i } and
(P3)/(P∗3).

Lemma 5.3. Under the hypothesis of Lemma 2.2, if (P∗3) holds and {z∗i } is
bounded, then {d∗i } is bounded.

Proof. By (2.2), d∗i ∈ ∂D∗
ti(−z∗i ). From ti ≤ th(⇒ D∗

th
≥ D∗

ti by (P∗4)), it is clear
that d∗i must also be an ε-subgradient of D∗

th
for a proper ε; indeed, it is easy to check

that d∗i is a εi-subgradient of D
∗
ti at −z∗i for εi = D∗

th
(−z∗i ) ≥ D∗

th
(−z∗i )−D∗

ti(−z∗i ) ≥
0. Since, by (P∗3), D∗

th
is finite convex (hence continuous) and {z∗i } is bounded,

εi ≤ ε̄ < ∞. Hence, d∗i ∈ ∂ε̄D
∗
th
(−z∗i ) ∀i ≥ h; reasoning as in Lemma 5.2, we obtain

that {d∗i } is bounded.
Boundedness of {z∗i } under (P3)/(P∗3) is not easy to establish in general; however,

when obtained, it allows us to prove the boundedness of all the relevant sequences, as
the same argument proves boundedness of {zi}, given the boundedness of {d∗i }.

Lemma 5.4. Under the hypothesis of Lemma 2.1, if {d∗i } is bounded, then the
sequences {f∗(zi)} and {zi} obtained by evaluating f(x̄+ d∗i ) are bounded.

Proof. Since f is finite everywhere and zi ∈ ∂f(x̄ + d∗i ), we can invoke [HL93a,
Remark VI.6.2.3] to conclude that all the zi belong to a compact set. Also, −f(0) ≤
f∗(zi) = zi(x̄+ d∗i )− f(x̄+ d∗i ), which is bounded above since both {d∗i } and {zi} are
bounded and f is bounded below over any compact set.
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Note that the above results do not depend on the β-strategy. Indeed, there are
several situations in which the boundedness of {d∗i } is “free”; among them, let us
mention the following:

– dom(Dth) is compact (Dt is a “trust region,” cf. Example 3.3), as dom(Dti) ⊆
dom(Dth) by (P4);

– (P3) holds and dom(f∗) is compact (f is globally Lipschitz, e.g., polyhedral),
as dom(f∗i ) ⊆ dom(f∗) and Lemma 5.3 gives boundedness of {d∗i }.

Conversely, let us mention that the boundedness of {d∗i } implies the boundedness of

{z∗i } whenever the cutting plane model f̂β is used, as from (1.7) every z∗i belongs to
the convex hull of {zi} and, from Lemma 5.4, the latter set is bounded whenever {d∗i }
is.

5.1. Results with a weakly monotone β-strategy. We will now prove some
results which only require a weakly monotone β-strategy and fβ ≤ f . The basic
observation is that, with a weakly monotone β-strategy, by Definition 4.5 we have,
∀i ≥ h,

D∗
ti(−z∗i ) ≤ f∗i (z

∗
i )− z∗i x̄+ f(x̄) +D∗

ti(−z∗i ) = v(∆i) + f(x̄) ≤ v(∆h) + f(x̄) <∞
(5.1)

(use (1.vii) and f∗i ≥ f∗). In the proximal bundle case (D∗
t = 1

2 t‖ · ‖2
2), where

d∗i = −tiz∗i , (5.1) proves the boundedness of {d∗i }; this is also true in the more general
case, provided that Dt has the form (3.3). The proof relies on the following “primal
view” of (5.1),

Dti(0)−Dti(d
∗
i )− (−z∗i )(0− d∗i ) ≤ v(∆h) + f(x̄) <∞(5.2)

(use (2.5) and (P1)); (5.2) can be expressed by saying that the linearization error (cf.
(1.10)) in 0, made by approximating Dti with its linearization in d∗i using slope −z∗i ,
is bounded.

Lemma 5.5. Under the hypothesis of Lemma 2.2, if (P3) holds, a weakly mono-
tone β-strategy is used, and Dt has the form (3.3), then {d∗i } is bounded.

Proof. From (2.2), −z∗i ∈ ∂Dti(d
∗
i ); since Dt has the form (3.3), defining z̄∗i :=

tiz
∗
i , we have that −z̄∗i ∈ ∂D(d∗i ). Hence, (5.2) can be written as

1

ti
D(0)− 1

ti
D(d∗i )−

1

ti
(−z̄∗i )(0− d∗i ) ≤ ε <∞,

whence D(0)−D(d∗i )− (−z̄∗i )(0− d∗i ) ≤ εti ≤ εth <∞.
Now, call V̄ε(d̄) the set of all d such that the linearization error in d̄, made by

approximating D with its linearization in d using any z ∈ ∂D(d), is smaller than
ε. Since D is strongly coercive, V̄ε(d̄) is compact for any d̄ and any fixed ε [HL93b,
Proposition XI.4.2.6.(i)].

An alternative result does not require (3.3) but rather that ti remain bounded
away from zero; actually, in this case the boundedness of {z∗i } is obtained, which, in
view of Lemma 5.3, is a stronger result.

Lemma 5.6. Under the hypothesis of Lemma 2.2, if (P3) holds, a weakly mono-
tone β-strategy is used, and ti ≥ t > 0 (t is bounded away from 0), then the sequences
{f∗i (z∗i )} and {z∗i } are bounded.

Proof. From (5.1), (P∗4), and t ≤ ti we have D∗
t (−z∗i ) ≤ v(∆h) + f(x̄) <∞; the

level sets of D∗
t are compact from (P∗2), and hence {z∗i } is bounded. Looking again
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at (5.1), we notice that f∗i (z
∗
i ) is bracketed between bounded quantities; hence it is

also bounded.
In practice, t should not become too small anyway, so the condition in the above

lemma is not really binding; yet, in many cases it can simply be dropped.

5.2. Convergence with a monotone β-strategy. The above boundedness
results are instrumental for proving the actual convergence of a sequence of NS, that is,
the fact that the stabilized master problems (1.8) and (1.9) can be used to approximate
the stabilized problems (1.12) and (1.11) within any required degree of accuracy. Due
to (2.7), it is only necessary to prove that {∆fi} → 0. With a monotone β-strategy,
this requires (P∗3′′).

Consider the (convex) function

ri(z) := f∗i (z)− zx̄+ f(x̄),

so that ri(z) + D∗
ti(z) is, but for the constant f(x̄), the objective function of (∆i);

from f∗i ≥ f∗ and (1.vii), ri ≥ 0. Now define

ζi := zi − z∗i and zi(γ) := z∗i + γζi.

From Definition 4.6 (f∗+(z
∗
i ) ≤ f∗i (z

∗
i )) and (4.iv) (f∗+(zi) ≤ f∗(zi)) we have that,

∀γ ∈ [0, 1],

hi(γ) := [f∗i (z
∗
i )(1− γ) + f∗(zi)γ − zi(γ)x̄+ f(x̄)] +D∗

ti(−zi(γ))
≥ [f∗+(z

∗
i )− z∗i x̄+ f(x̄)](1− γ) + [f∗+(zi)− zix̄+ f(x̄)]γ +D∗

ti(−zi(γ))
≥ r+(z

∗
i )(1− γ) + r+(zi)γ +D∗

t+(−zi(γ)) ≥ r+(zi(γ)) +D∗
t+(−zi(γ)).

(We have also used t+ ≤ ti ⇒ D∗
t+ ≤ D∗

ti and the convexity of r+.) Therefore,
defining

(ϑi) min
γ

{hi(γ) : γ ∈ [0, 1]},

vi(z) :=

{
ri(z) +D∗

ti(−z) if z = zi(γ) for some γ ∈ [0, 1],

+∞ otherwise,

one clearly has

v(ϑi) ≥ min
z

{v+(z)} ≥ v(∆+) + f(x̄).

We will study the behavior of v(ϑi) during sequences of consecutive NS to estimate the
convergence speed of v(∆i). In practice, this corresponds to the “aggressive” mono-
tone β-strategy, where aggregation is performed at every step and all subgradients
but z∗i and zi are discarded.

Due to (P∗3′′), D∗
ti is differentiable, and hence so is hi; from (2.2), we have d∗i =

∇D∗
ti(−zi(0)); hence by (2.6)

h′i(0) = f∗(zi)− f∗i (z
∗
i )− (zi − z∗i )(x̄+ d∗i ) = −∆fi.(5.3)

Using (1.vi) and (2.4), the NS condition (4.5) can be written as

zi(x̄+ d∗i )− f∗(zi)− f(x̄) > m[z∗i (x̄+ d∗i )− f∗i (z
∗
i )− f(x̄)];
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hence

h′i(0) < (1−m)[z∗i (x̄+ d∗i )− f∗i (z
∗
i )− f(x̄)].

From (1.vi), −z∗i d∗i = Dti(d
∗
i ) +D∗

ti(−z∗i ) ≥ D∗
ti(−z∗i ); hence

h′i(0) < (1−m)[−f∗i (z∗i ) + z∗i x̄−D∗
ti(−z∗i )− f(x̄)] = −(1−m)hi(0).(5.4)

Using (5.4) it is possible to show, adapting standard results from smooth optimization
[OR70], that {−h′i(0) = ∆fi} → 0 if {z∗i } is bounded and (P∗3′′) holds. In the general
case, this requires some assumptions on the behavior of ti, the simplest one being rule
(4.ii′).

Theorem 5.7. Under the hypothesis of Lemma 2.2, if (P∗3′′) holds, rule (4.ii′)
is in force, a monotone β-strategy is used, and {z∗i } is bounded, then {∆fi} → 0.

Proof. Wait until the iteration h implied by rules (4.ii′), (4.iii), and (4.iv): ti =
t ∀i ≥ h. The boundedness of {z∗i }, together with Lemma 5.3 ((P∗3′′) ⇒ (P∗3)) and
Lemma 5.4, implies that {zi} is also bounded; therefore, the set

Z := conv({z∗i } ∪ {zi})
is compact and contains all the segments [z∗i , zi]. From (P∗3′′), D∗

t is differentiable
and therefore continuously differentiable [HL93a, Remark VI.6.2.6] on Z; that is, ∇D∗

t

is continuous, and therefore uniformly continuous, on the compact set Z. Note that
if ∇D∗

t (z
∗
i ) = d∗i = d∗+ = ∇D∗

t (z
∗
+), then ∆f+ = 0 as, from (4.6), f(x̄ + d∗i ) =

f+(x̄+ d∗i ) = f+(x̄+ d∗+). Hence

sup{‖∇D∗
t (z

′)−∇D∗
t (z

′′)‖ : z′, z′′ ∈ Z} > 0.

The reverse modulus of continuity of ∇D∗
t over Z

κ(v) := inf{‖z′ − z′′‖ : ‖∇D∗
t (−z′)−∇D∗

t (−z′)‖ ≥ v, z′, z′′ ∈ Z}
is an F -function, i.e., nondecreasing and such that κ(0) = 0 and κ(v) > 0 for v > 0
[OR70, Definition 14.2.6]. (Our definition of κ is nonstandard, in that dom κ may
not be the whole �+, but we will always evaluate κ at points of its domain.)

We claim the existence of an F -function ρ such that

v(∆i)− v(∆+) ≥ hi(0)− v(ϑi) ≥ ρ(−h′i(0)) > ρ((1−m)hi(0)),

which clearly implies that {−h′i(0) = ∆fi} → 0 and {hi(0)} → 0 and therefore proves
the theorem. (Note that {v(∆i)} is bounded below, as v(∆i) ≥ −f(x̄).) The function
ρ estimates how much of the decrease “promised” by h′i(0) is actually attained in the
optimal solution of (ϑi).

A special case for which the estimate is easy is zi = z∗i , i.e., ζi = 0: the correspond-
ing hi(γ) is linear, the optimal solution of (ϑi) is γ = 1, and hi(1) = hi(0) + h′i(0);
hence ρ ≡ 1.

Otherwise, for the reverse modulus of continuity of h′i over [0, 1] one has

σi(v) := inf{|γ′ − γ′′| : |h′i(γ′)− hi(γ
′′)| ≥ v, γ′, γ′′ ∈ [0, 1]}

≥ 1

‖ζi‖ inf{‖(γ′ − γ′′)ζi‖ : ‖(∇D∗
t (−zi(γ′))−∇D∗

t (−zi(γ′′)))ζi‖
≥ v, γ′, γ′′ ∈ [0, 1]}

≥ 1

‖ζi‖ inf

{
‖z′ − z′′‖ : ‖∇D∗

t (z
′)−∇D∗

t (z
′′)‖ ≥ v

‖ζi‖ , z
′, z′′ ∈ Z

}
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(note that ζi �= 0), and therefore

σi(v) ≥ 1

‖ζi‖κ
(

v

‖ζi‖
)
.(5.5)

Now, define

γ∗ := inf
γ

{
γ ≥ 0 : h′i(γ) ≥

1

2
h′i(0)

}
≥ σi

(
−1

2
h′i(0)

)
.(5.6)

(1/2 is arbitrary; any strictly positive number would do.) By (5.3), if γ∗ = 0, then
∆fi = 0 and the theorem is proved. Otherwise, the following two cases may arise.

If γ∗ ≥ 1, then γ = 1 is the optimal solution of (ϑi) and h
′
i(γ) ≤ 1

2h
′
i(0) ∀γ ∈ [0, 1].

(h′i is nondecreasing since hi is convex.) In particular, h′i(1) ≤ 1
2h

′
i(0) < 0, and

therefore

hi(1) + h′i(1)(0− 1) ≤ hi(0) ⇒ hi(1) ≤ hi(0) +
1

2
h′i(0).

If γ∗ < 1, then by the mean-value theorem there exists some γ̄ ∈ (0, γ∗) such that

hi(γ
∗) = hi(0) + h′i(γ̄)γ

∗ ⇒ hi(γ
∗) ≤ hi(0) +

1

2
h′i(0)γ

∗.

Hence, using (5.5) and (5.6),

v(∆i)− v(∆+) ≥ hi(0)− hi(γ
∗) ≥ − 1

2‖ζi‖h
′
i(0)κ

(
− 1

2‖ζi‖h
′
i(0)

)
.

Thus, the claim is proved with ρ(v) = v
2 min

{
1, 1

diam(Z)κ
(

v
2diam(Z)

)}
, where diam(Z) <

∞ is the maximum distance of any two points in Z.
In the above proof, rule (4.ii′) is needed because t → D∗

t (z) may be almost any
function; rule (4.ii) suffices, thereby allowing {ti} → 0, if this function is “simple.”

Theorem 5.8. Under the hypothesis of Lemma 2.2, if (P∗3′′) holds, a monotone
β-strategy is used, {z∗i } is bounded, and D∗

t has either the form (3.3) or the form
(3.4), then {∆fi} → 0.

Proof. With the notations of Theorem 5.7, let D∗
t = tD∗ and call κi and κ the

reverse modulus of continuity of ∇D∗
ti and of ∇D∗, respectively, on Z. It is easy to

check that

σi(v) ≥ 1

‖ζi‖κi
(

v

‖ζi‖
)

≥ 1

‖ζi‖κ
(

v

ti‖ζi‖
)

≥ 1

‖ζi‖κ
(

v

th‖ζi‖
)
,

as ti ≤ th and κ is nondecreasing. If Dt =
1
tD instead, one has D∗

t (z) =
1
tD

∗(tz) and
therefore ∇D∗

t (z) = ∇D∗(tz); simple calculations yield

σi(v) ≥ 1

‖ζi‖κi
(

v

‖ζi‖
)

≥ 1

ti‖ζi‖κ
(

v

‖ζi‖
)

≥ 1

th‖ζi‖κ
(

v

‖ζi‖
)
,

where κ is the reverse modulus of continuity of ∇D∗ on the (compact) set {tz : z ∈
Z, t ∈ [0, th]}. In both cases, the proof of Theorem 5.7 can be easily adapted by using
the above functions in place of the reverse modulus of continuity of D∗

t for the fixed
t provided by rule (4.ii′).



GENERALIZED BUNDLE METHODS 139

The similar theorem [Au87, Theorem 2.3] (with a different proof) is proved for
a fixed t and Dt of the form (3.3), differentiable and satisfying (P3′′). Note that
differentiability—which would at first appear to be a natural assumption—is necessary
in the dual rather than in the primal, the critical property ofDt being strict convexity.
It is also interesting to note that in [Au87] a primal notation is used, but (1.9) is
developed—only for the simple case β+ = {z∗i , zi}—as a tool for proving [Au87,
Theorem 2.3].

The above theorems rely on the compactness of Z, which is a consequence of
the boundedness of {z∗i }. The latter is, in several cases, either free or a consequence
of the boundedness of {d∗i }, which may not require ti bounded away from 0 (cf.
Lemma 5.5). Thus, these results generalize those available for the proximal bundle
method. Indeed, applying Theorem 5.7 to D∗

t = 1
2 t‖ · ‖2

2, whose reverse modulus of
continuity is κ(v) = v/t (that does not depend on Z), one obtains an estimate that
is only a 1/2 factor—due to the arbitrary 1/2 in the proof—away from the tightest
possible one, if aggregation is allowed:

v(∆i)− v(∆+) ≥ (1−m)(v(∆i) + f(x̄))

2
min

{
1,

(1−m)(v(∆i) + f(x̄))

ti‖zi − z∗i ‖2
2

}
.

The above estimate was obtained in [Fr97, Theorem I.2.2.2] (apart from a minor error)
with basically the same arguments of Theorem 5.7, only using ad hoc relations.

Finally, note that all the results until now do not require fβ to be the cutting
plane model, and therefore they can be used in the analysis of “nonstandard” bundle
methods [GM91].

5.3. Convergence with a strictly monotone β-strategy. When (P3′) does
not hold, a monotone β-strategy does not guarantee convergence [Fr97, section I.4.2],
and strict monotonicity is required. Furthermore, the following strengthened form of
the rule in (4.iv)

∃ an index h such that,∀i > j ≥ h, f∗(zj) = f∗i (zj)(5.7)

is required; that is, at length the “accuracy” of f∗β as a model of f∗ cannot “deterio-
rate” once it has become “exact” in the dual points zi.

Theorem 5.9. Under the hypothesis of Lemma 2.2, if (5.7) holds, a strictly
monotone β-strategy is used, and {d∗i } is bounded, then {∆fi} → 0.

Proof. By (2.3), x̄+ d∗i ∈ ∂f∗i (z
∗
i ); hence, using (5.7),

f∗(zj)− (x̄+ d∗i )zj ≥ f∗i (zj)− (x̄+ d∗i )zj ≥ f∗i (z
∗
i )− (x̄+ d∗i )z

∗
i ∀i > j.(5.8)

From zi ∈ ∂f(x̄+ d∗i ) and z
∗
i ∈ ∂fi(x̄+ d∗i ) (cf. (2.3)), using (1.vi), one has

∆fi = f(x̄+ d∗i )− fi(x̄+ d∗i ) = f∗i (z
∗
i )− f∗(zi) + (x̄+ d∗i )(zi − z∗i ).(5.9)

Using (5.8) in (5.9) to eliminate z∗i , one obtains

∆fi ≤ min
i>j

{f∗(zj)− f∗(zi) + (x̄+ d∗i )(zi − zj)}.(5.10)

Sending j → ∞, the min in (5.10) goes to 0 since {d∗i } is bounded, and hence, by
Lemma 5.4, {zi} and {f∗(zi)} are also bounded. (Extract a subsubsequence such that
both the z-values and the f∗-values converge to a cluster point.)

The proof of Theorem 5.9 is essentially that of [HL93b, Theorem XII.4.2.3] for
the cutting plane method, working in the dual space rather than in the primal space.
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This shows the usefulness of our dual treatment, as the primal proofs of convergence
of proximal and trust-region bundle methods are not easy to unify. Also, note that t
is not even mentioned in the proof, and hence nothing prevents ti → 0.

It is easy to verify that the cutting plane model f̂β with a strictly monotone β-
strategy guarantees (5.7). A strictly monotone β-strategy is weakly monotone, i.e.,
v(Πi) is nondecreasing; since it is also upper bounded by f(x̄), it is clear that it
can increase by any fixed quantity µ > 0 only finitely many times. Hence, after
some iteration h, no information is removed from β. Now, from (1.7) one has that

f̂∗i (zj) ≤ f∗(zj) ∀i > j(zj ∈ βi), but f̂
∗
i ≥ f∗.

Finally, note that this theorem requires the boundedness of {d∗i } (which implies

that of {zi}) but not of {z∗i }. With fβ = f̂β , however, this is actually not an advan-
tage, since, as we noted previously, in this case the boundedness of {d∗i } implies that
of {z∗i }.

5.4. Overall NS convergence result. We have shown that, under a number of
different assumptions on the function, the model, and the stabilizing term, {∆fi} → 0
during infinite sequences of NS. In view of (2.7), this means that NS can be used
to approximate (1.12) and (1.11) as closely as desired. This is more easily seen if
t is fixed at length (e.g., rule (4.ii′) is in effect); then, an infinite sequence of NS
solves (1.12) and (1.11) for the current point x̄ and the fixed t. Compactness of
{d∗i } is typically required, and that of {z∗i } is usually available as well; hence, by the
lower semicontinuity of the objective functions, subsequences of {d∗i } and {z∗i } can
be extracted which converge to finite optimal solutions, respectively, for (1.12) and
(1.11).

From the algorithmic viewpoint, {∆fi} → 0 implies the finite termination of the
sequences of NS for ε > 0; this uses the following basic relation about the predicted
improvement:

−δi ≥ −δi −Dti(d
∗
i ) = −fi(x̄+ d∗i ) + f(x̄)−Dti(d

∗
i ) = α∗

i +D∗
ti(−z∗i ) = 0(5.11)

(use Dti ≥ 0, (2.4), (2.5), and (2.9)).
Theorem 5.10. Assume that {∆fi} → 0; if ε > 0, then after finitely many

consecutive NS either the stopping condition of the algorithm in Figure 1 holds or an
SS is done; otherwise (ε = 0), {D∗

ti(−z∗i )} → 0, and {α∗
i } → 0.

Proof. Assume that infinitely many NS are done; (4.5) can be rewritten, using
(4.2) and (4.3) first and then (5.11), as

∆fi > −(1−m)δi ≥ (1−m)[α∗
i +D∗

ti(−z∗i )].(5.12)

Since {∆fi} → 0, both {α∗
i } and {D∗

ti(−z∗i )} must go to zero; if ε > 0, then the
stopping condition of the algorithm in Figure 1 eventually holds.

Note that, in general, {D∗
ti(−z∗i )} → 0 does not imply {z∗i } → 0; consider the

case where D∗
t is a “trust region” (cf. Example 3.2) and/or {ti} → 0.

The above development can be extended to the case where δi in (4.4)/(4.5) is
replaced with δi = δi+Dti(d

∗
i ); this corresponds to checking f(x̄+d∗i ) against v(Πi) =

fi(x̄ + d∗i ) +Dti(d
∗
i ) rather than against fi(x̄ + d∗i ). In fact, it is easy to check that

(5.12) can be obtained as well from (5.11) and the modified from of (4.5) using δi. As
observed in [HL93b, section XV.3], [Ki99, section 5], this descent test is weaker than
(4.4) (δi ≥ δi), and therefore it may reduce the number of NS.

5.5. The polyhedral case. Finite termination of NS sequences requires ε > 0
and m < 1; in general, there is no chance of solving (∆x̄,t) to optimality, i.e., of
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obtaining fi(x̄+d
∗
i ) = f(x̄+d∗i ), unless f is polyhedral. A finite convergence theorem

for NS sequences can be proved for two different sets of assumptions, basically corre-
sponding to those of Theorem 5.7 (with a safe β-strategy) and those of Theorem 5.9

(with fβ = f̂β).
Theorem 5.11. Assume that {∆fi} → 0, f is polyhedral, and (4.1) is satisfied.

If either (P∗3′′) holds, rule (4.ii′) is in effect, and a safe β-strategy is used, or fβ = f̂β
and a strictly monotone β-strategy is used, then after finitely many consecutive NS
either the stopping condition of the algorithm in Figure 1 holds or an SS is done, even
if ε = 0 and m = 1.

Proof. Assume by contradiction that the stopping condition does not hold and
that ∆fi = δx̄(d

∗
i )− δi ≥ δx̄(d

∗
i )−mδi > 0 for infinitely many i.

If (P∗3′′) holds, (5.3) gives h′i(0) = −∆fi < 0, and therefore v(∆+) > v(∆i); we
can conclude that the set {v(∆i)} must be infinite. But the assumptions on f and
the safe β-strategy ensure that there are only finitely many different possible sets β;
after the iteration h implied by rule (4.ii′), v(∆i) can have only finitely many different
values (x̄ and t are fixed).

For the other case (fβ = f̂β and a strictly monotone β-strategy), note that if the

pair (f∗(zi), zi) already belongs to βi, then ∆fi = 0. (Use (1.6) and f̂i ≤ f .) Now,
Definition 4.8 and {∆fi} → 0 ensure that, at length, removals are inhibited; by (4.1),
only finitely many “new” pairs (f∗(zi), zi) can ever be generated, which yields the
contradiction.

6. Convergence of SS sequences (2nd level). Having proved convergence of
the NS sequences, in the following we disregard what happens between two consecutive
SS. However, we are not allowed to entirely disregard NS; in fact, it may happen
that only finitely many SS are done, so that a “tail” of (possibly infinitely many)
consecutive NS is done after the last SS. In order to deal with the two different cases—
finitely many and infinitely many serious steps—in a unified way, in this section we
will use the following notation: the index i denotes the ith serious step if at least i SS
are performed; otherwise it denotes the (i − k)th NS of the only infinite sequence of
NS that starts right after that the last SS (the kth) is performed. With this notation,
x̄i, d

∗
i , z

∗
i , δi, . . . refer to the status of the algorithm just before the change of the

current point occurring at step i, if any.
The standing assumption for all the results in this section is

conditions sufficient to guarantee {∆fi} → 0 during an infinite sequence of NS hold.

Several different such conditions exist, as we have shown in the previous sections.
About the model, without further notice, we will require only fi ≤ f .

The first step for proving the convergence of the SS sequences consists in bounding
the decrease that each step obtains. From (4.4), f(x̄+)−f(x̄i) ≤ mδi; hence this boils
down to bounding the predicted improvement δi, for which one can use (5.11) and
the stopping condition:

−δi ≥ 1

µ
α∗
i +D∗

ti(−z∗i ) =
1

µ
[α∗
i + µD∗

ti(−z∗i )] >
ε

µ

(use µ ≥ 1 and α∗
i ≥ 0). Hence

f(x̄i) ≤ f(x̄0) +m


∑
j<i

δj


 ≤ f(x̄0)− m

µ


∑
j<i

α∗
j + µD∗

tj (−z∗j )

 .(6.1)
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Note that (6.1) holds even if δi in (4.4) is replaced by δi = δi +Dti(d
∗
i ), as discussed

in section 5.4. Finite termination, at least, is at hand whenever f := limi→∞ f(x̄i) >
−∞.

Lemma 6.1. If f > −∞ and ε > 0, then only finitely many iterations can be
done.

Proof. By Theorem 5.10, only finitely many NS can be done between two consec-
utive SS; from (6.1), −∞ < f ≤ f(x̄0)−mεi/µ, and therefore only finitely many SS
can be done.

Lemma 6.1 gives no information about how “good” the obtained solution is when
the algorithm stops. Without qualification, nothing can be said; if Dt is nonsmooth
in 0—(P5′) does not hold—the fact that 0 is optimal for (1.12) does not imply that x̄
is optimal for (0.1); i.e., a minimum of the generalized Moreau–Yosida regularization
φt may not be a minimum of f .

6.1. Convergence under (P5′)/(P∗5′). The immediate effect of assumption
(P5′)/(P∗5′) is to guarantee convergence of the dual iterates to 0, provided that
f > −∞ and t remains bounded away from zero.

Theorem 6.2. If f > −∞, (P∗5′) holds, ti ≥ t > 0, and ε = 0, then {α∗
i } → 0

and {z∗i } → 0.
Proof. Since ε = 0, {D∗

ti(−z∗i )} → 0 and {α∗
i } → 0. This is guaranteed by the

stopping condition if the algorithm terminates finitely, by Theorem 5.10 if finitely
many SS are done, and by (6.1) and f > −∞ if infinitely many SS are done.

Under (P5′), {D∗
ti(−z∗i )} → 0 and ti ≥ t imply that {z∗i } → 0; in fact, from (P∗4)

{D∗
t (−z∗i )} → 0, so that from (P∗2) all the z∗i belong to a compact set (a proper

level set of D∗
t ) and, extracting a subsequence if necessary, {z∗i } → z∗. D∗

t is lower
semicontinuous; hence

0 = lim inf
i→∞

D∗
t (−z∗i ) ≥ D∗

t (z
∗) ≥ 0.

Due to (P∗5′), D∗
t (z

∗) = 0 ⇔ z∗ = 0.
The requirement on t can be weakened if D∗

t has the special form (3.4) (which
implies (P∗5′)). In fact, by (6.1) and f > −∞,

∞ >
m

µ

(∑
i→∞

α∗
i + µD∗

ti(−z∗i )
)

≥ m

(∑
i→∞

tiD
∗(−z∗i )

)
.

Hence, we can replace ti ≥ t with the milder condition

if infinitely many SS are done, then
∑
i→∞

ti = ∞

and still be guaranteed that {D∗(−z∗i )} → 0. In turn, this implies {z∗i } → 0, since
all the z∗i belong to a proper level set of D∗, which is compact by (P∗2), and D∗ is
strictly convex in 0. Note that, by Theorem 5.8, under proper conditions (3.4) allows
us to drop ti ≥ t > 0 for sequences of NS also.

Therefore, in the following we will assume that

either t is bounded away from zero
(6.2)

or D∗
t has the form (3.4) and

∑
i→∞

ti = ∞.
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Yet, without qualification, convergence of the dual iterates does not imply convergence
of the function values; a possibility is the usual “asymptotic complementary slackness”
condition.

Theorem 6.3. If (P∗5′) and (6.2) hold, ε = 0, and lim infi→∞ z∗i x̄i = 0, then
{f(x̄i)} → v(Π).

Proof. If f = −∞, then {x̄i} is a minimizing sequence, so assume f > −∞; the
hypotheses of Theorem 6.2 are satisfied. From (2.9) and f∗β ≥ f∗,

z∗i x̄i = f∗i (z
∗
i ) + f(x̄i)− α∗

i ≥ f∗(z∗i ) + f(x̄i)− α∗
i .

Taking the lim inf on both sides and using the hypothesis, we obtain

0 = lim inf
i→∞

z∗i x̄i ≥ lim inf
i→∞

[f∗(z∗i ) + f(x̄i)− α∗
i ]

≥ lim inf
i→∞

f∗(z∗i ) + lim inf
i→∞

f(x̄i) + lim inf
i→∞

−α∗
i .

Now, use {z∗i } → 0 and {α∗
i } → 0 (by Theorem 6.2), {f(x̄i)} → f , and the lower

semicontinuity of f∗ to obtain 0 ≥ f∗(0)+f , i.e., v(Π) = −f∗(0) ≥ f ; since f ≥ v(Π),
the thesis is proved.

Under (P∗5′), if {x̄i} has a cluster point x∗—which happens, for instance, if only
finitely many serious steps are done—then x∗ is optimal for (0.1); in fact, Theorem 6.2
applies, and therefore {z∗i x̄i} → 0 as {z∗i } → 0. This could have been directly proved
in primal notation using (2.10), the fact that {α∗

i } → 0, and [HL93b, Proposition
XI.4.1.1]. Hence, the bundle algorithm converges at least if f is inf-compact; however,
something better can be done.

Theorem 6.4. If (P∗5′) and (6.2) hold, ε = 0, and f is ∗-compact, then
{f(x̄i)} → v(Π).

Proof. Assume by contradiction that v(Π) < l = f − λ for λ > 0, and let x̂i be
the projection of x̄i over Sl(f). Since f(x̄i) is nonincreasing, f(x̄i) ≤ f(x̄0) = L ∀i;
therefore, by ∗-compactness, ‖x̂i − x̄i‖ ≤ e(l, L) <∞ ∀i. From (2.10), f(x̄i) ≥ f and
the ε-subgradient inequality

f − λ = f(x̂i) ≥ f(x̄i) + z∗i (x̂i − x̄i)− α∗
i ≥ f − ‖z∗i ‖ · ‖x̂i − x̄i‖ − α∗

i

that yield the desired contradiction since, from Theorem 6.2, {z∗i } → 0 and {α∗
i } →

0.
Theorem 6.4 in fact proves that a ∗-compact f is asymptotically well-behaved

(a.w.b.) [Au97]. A sequence {xi} is a stationary sequence for the function f if two
sequences {zi} → 0 and {εi} → 0 exist such that zi is an εi-subgradient of f at xi; f
is a.w.b. if every stationary sequence is a minimizing sequence. In [Au97] it is proved
that f is a.w.b. if and only if all the following three functions

r(l) = inf
x

{
inf
z
{‖z‖ : z ∈ ∂f(x)} : f(x) = l

}
,

k(l) = inf
x

{
inf
z

{
f ′
(
x,

z

‖z‖
)

: z ∈ ∂f(x)

}
: f(x) = l

}
,

l(l) = inf
x

{
(f(x)− l)

dSl(f)(x)
: f(x) > l

}

are strictly positive for each l > v(Π); by Theorem 6.4, ∗-compactness is another
sufficient condition for “well-behavedness.” A result quite similar to Lemma 4.4, in
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a more general setting, can be found in [Au97], but it requires weak coercivity of
f(0 ∈ ri dom f∗). Clearly, ∗-compact functions need not be weakly coercive (take an
affine function). On the other hand, weak coercivity ensures convergence of the primal
iterates as well as of the function values [Au97, Theorem 6], and therefore it can be
a convenient alternative to ∗-compactness when stronger convergence properties are
required.

Note that, even when {x̄i} is guaranteed to be a minimizing sequence, stopping as
soon as x̄i is ε-optimal for some fixed ε > 0 is not straightforward. Indeed, an estimate
of the quality of x̄i is available only if z∗i = 0, since then x̄i is α

∗
i -optimal (use (2.10)).

In practice, the stopping condition has to require that z∗i is “small enough”; this is
the meaning of the extra stopping parameter µ ≥ 1. For D∗

t in the special form (3.4),
for instance, µ makes the stopping condition be that of t∗ = tµ ≥ t; in our experience,
guessing a value of µ that produces a true ε-optimal solution is usually fairly easy.

6.2. The polyhedral case. If f is polyhedral (⇒∗-compact), one can prove
finite convergence for ε = 0; of course, this first requires finite convergence of the 1st
level. The basic result is that, at length, the primal stabilized master problem (1.8)
is equivalent to its nonstabilized version; this follows from the next technical lemma.

Lemma 6.5. Assume that f is polyhedral, (4.1) is satisfied, fβ = f̂β, and a safe β-
strategy is used; for any function h∗ satisfying (P∗1) and (P∗5′) there exists a constant
Ψf > 0 such that, however fixed β, if a z ∈ ∂f̂β(x) exists such that h

∗(z) < ψf , then

0 ∈ ∂f̂β(x).
Proof. From (4.1) and the safe β-strategy, there is only a finite number of differ-

ent possible β. Since each f̂β has only a finite set of possible different subdifferentials
[HL93a, Corollary VI.4.3.2], there is a finite set Γf containing all possible subdiffer-

entials of some f̂β at some point x. Let ψ(Z) = infz∈Z{h∗(z)} (≥ 0 due to (P∗1)) and
ψf = min{ψ(Z) : Z ∈ Γf , ψ(Z) > 0} > 0; ψ(Z) = 0 for any Z such that h∗(z) < ψf
for some z ∈ Z. Closedness of the subdifferentials and h∗(z) = 0 ⇔ z = 0 (via (P∗5′))
do the rest.

Note that, when f itself is polyhedral, there exists one finite β such that f = f̂β ;
hence, a fortiori for each h∗ there exists a ψf > 0 such that z ∈ ∂f(x) and h∗(z) <
ψf ⇒ x is optimal for (Π).

Theorem 6.6. Under the hypotheses of Theorem 5.11 and Lemma 6.5, if f is
bounded below, ti = t > 0, (P∗5′) holds, ε = 0, and m = 1, then the two-level bundle
algorithm finitely solves (Π).

Proof. Setting m = 1 and ε = 0 is allowed by Theorem 5.11; after finitely many
consecutive NS, either the algorithm stops or f̂i(x̄i + d∗i ) = f(x̄i + d∗i ) and an SS
is done. If the algorithm stops, by ε = 0 one has α∗

i = 0 and, from (P5′), z∗i = 0;
therefore, x̄i is optimal (cf. (2.10)). Hence, assume by contradiction that infinitely
many SS are done; by (6.1) and the boundedness of f , as in the proof of Theorem 6.2,

we get {D∗
t (−z∗i )} → 0. Since z∗i ∈ ∂f̂i(x̄i + d∗i ), applying Lemma 6.5 with h∗ = D∗

t

shows that, for large enough i, 0 ∈ ∂f̂i(x̄i + d∗i ); i.e., x̄i + d∗i is a minimum of f̂i.

Hence, at length every f(x̄i) is a minimum of some f̂β ; but from the hypotheses there
are only finitely many different sets β, which contradicts f(x̄+) > f(x̄i).

Note that, as for Theorem 6.2, the requirement over t can be weakened if D∗
t has

the form (3.4).
Let us mention that setting m = 1 all along is only the simplest possibility; what

is really required is that only finitely many “inexact” SS (with ∆f > 0) be performed
between two “exact” SS (with ∆f = 0). Hence, m can be reset to any value < 1 after
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each exact SS, provided that it is set to 1 after finitely many consecutive (inexact)
SS.

7. Convergence of the 3rd level. If (P∗5′) does not hold, convergence requires
t → ∞ and therefore the “three-level” bundle algorithm of Figure 2. Hence, let us
once again change our notation: from now on, the index i refers to the end of the ith
call to the algorithm of Figure 1, with t = ti and ε = εi > 0, from within the cycle of
the “three-level” bundle algorithm. Therefore, the standing assumption is now

conditions sufficient to guarantee finite termination

of the two-level bundle algorithm hold.

We also assume that {ti} → ∞ and {εi} → 0.

7.1. Primal convergence. It is instructive to compare Lemma 5.4 with The-
orem 6.4. In the former—where x̄ is fixed—the optimal values of (1.12) converge to
that of (0.1) without the ∗-compactness assumption, while in the latter—where SS
are allowed—it is required. The same happens with the bundle algorithm.

Theorem 7.1. If f is ∗-compact, then limi→∞ f(x̄i) = v(Π).
Proof. Since ti ≥ ti, {ti} → ∞. The stopping condition implies v(∆i) ≤ εi−f(x̄i),

i.e., v(Πi) + εi ≥ f(x̄i), and since v(Πx̄i,ti) ≥ v(Πi), we obtain v(Π) ≤ f(x̄i) ≤
v(Πx̄i,ti) + εi; now apply Lemma 4.4.

Note that ∗-compactness is used in Lemma 4.4 ⇒ Theorem 7.1 without any
reference to a stationary sequence; hence, unlike Theorem 6.4, a.w.b.-ness could not
be used here. Furthermore, {ti} → ∞ is required in order to solve (Π) with “infinite
accuracy”; a suitably large t suffices for obtaining any finite accuracy (of course, f
must be bounded below). In fact, using Lemma 4.3, it is easy to show that, if f is
bounded below, then for any starting point x̄0 and any fixed ε > 0 there exists a t̄
such that v(Πx̄i,t̄) ≤ v(Π)+ ε (use f(x̄i) ≤ f(x̄0)). Given a suitable estimate of t̄, the
two-level bundle algorithm can directly solve (Π) with any finite accuracy.

Eliminating the ∗-compactness assumption is possible, at the cost of inhibiting—
at length—the serious steps, i.e., using rule (4.iii′). In this case, t needs to go all the
way up to ∞.

Theorem 7.2. With rule (4.iii′) in force, lim infi→∞ f(x̄i + d∗i ) = v(Π).
Proof. Wait for the last SS to be performed, and call x̄(= x̄i) the fixed current

point. Assume by contradiction that lim infi→∞ f(x̄ + d∗i ) − 2δ > v(Π) for some
δ > 0; hence, there exists a d̄ such that f(x̄ + d̄) ≤ f(x̄ + d∗i ) − 2δ ∀i. Due to (P5)
and {ti} → ∞, Dti(d̄) ≤ δ for a large enough i; therefore

v(Πx̄,ti) ≤ f(x̄+ d̄) +Dti(d̄) ≤ f(x̄+ d∗i )− δ ≤ f(x̄+ d∗i ) +Dti(d
∗
i )− δ.

When the inner loop terminates, ∆fi ≤ εi; hence, using (2.6) and v(Πx̄,ti) ≥ v(Πi),

εi + v(Πx̄,ti) ≥ εi + v(Πi) ≥ ∆fi + v(Πi) = f(x̄+ d∗i ) +Dti(d
∗
i ),

which leads to εi ≥ f(x̄+ d∗i )+Dti(d
∗
i )− v(Πx̄,ti) ≥ δ, contradicting {εi} → 0.

7.2. Dual convergence. From the dual viewpoint, {x̄i + d∗i } is a maximizing
sequence for the Lagrangian dual of (1.2) w.r.t. the constraints z = 0 (cf. section 1),
and {zi} are the optimal solutions of the corresponding dual pricing problems (1.3),
with x̄ = x̄i+d∗i . Further, from f∗ ≤ f∗i and (2.8), the alternative stopping condition
of (4.iii′) (∆fi ≤ εi) gives

f∗(z∗i )− z∗i (x̄i + d∗i ) ≤ f∗i (z
∗
i )− z∗i (x̄i + d∗i ) ≤ f∗(zi)− zi(x̄i + d∗i ) + εi,
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i.e., z∗i is an εi-optimal solution for (1.3) with x̄ = x̄i + d∗i . Using (1.v) in the above
relation gives

z∗i ∈ ∂εif(x̄+ d∗i ),

i.e., εi-optimal solutions for (1.3) are εi-subgradients of f ; this is of particular interest
when f itself is a dual function (cf. section 9). Thus, if {x̄i+d∗i } → x∗ and {z∗i } → z∗,
then z∗ ∈ ∂f(x∗) [HL93b, Proposition XI.4.1.1]; one would like to show that {z∗i } → 0
whenever f is bounded. This is possible, and it does not require ∗-compactness.

Theorem 7.3. If f is bounded below and rule (4.iii′) is in force, then {z∗i } → 0.
Proof. Using (2.1) and Dti ≥ 0, we obtain

−v(∆i) = v(Πi) = fi(x̄i + d∗i ) +Dti(−z∗i ) ≥ fi(x̄i + d∗i ).

Using the previous relation with the stopping condition of (4.iii′), ∆fi = f(x̄i+ d∗i )−
fi(x̄i + d∗i ) ≤ εi, gives, together with boundedness of f and monotonicity of {εi},

v(∆i) ≤ −fi(x̄i + d∗i ) ≤ εi − f(x̄i + d∗i ) ≤ ε0 − v(Π) <∞.

Now, using (2.9) and f∗i ≥ f∗, one obtains

∞ > v(∆i) = f∗i (z
∗
i )− z∗i x̄i +D∗

ti(−z∗i ) ≥ D∗
ti(−z∗i )− f(x̄i).

By rule (4.iii′), only finitely many serious steps are done, hence at length, f(x̄i) = f(x̄)
for a fixed x̄; by (P∗5), ‖z∗i ‖2 ≥ ε > 0 for infinitely many i and {ti} → ∞ imply
{D∗

ti(−z∗i )} → ∞.
Note that, if f is bounded below, a dual proof of Theorem 7.1 exists, using

Theorem 7.3 ({z∗i } → 0) and the fact that {x̄i} is a stationary sequence; however, the
case of f unbounded below would need a separate treatment (a.w.b.-ness is tailored
over bounded functions with unbounded level sets).

7.3. The polyhedral case. The three-level bundle method allows us to drop
assumption (P5′) from the finite termination proofs in the polyhedral (⇒∗-compact)
case. Indeed, for bounded polyhedral functions one can prove the following strength-
ened form of Lemma 4.4, where zt and dt denote the optimal solutions of (∆x̄,t) and
(Πx̄,t), respectively.

Lemma 7.4. If f is polyhedral and bounded below, then for each L < ∞ there
exists a t > 0 such that x̄ + dt is an optimal solution of (Π) ∀t > t and x̄ such that
f(x̄) ≤ L.

Proof. Fix any x̄ such that f(x̄) ≤ L; it is easy to show, mirroring Theorem 7.3,
that {zt} → 0 for t → ∞ (use D∗

t (−zt) − L ≤ D∗
t (−zt) − f(x̄) ≤ f∗(zt) − ztx̄ +

D∗
t (−zt) = v(∆x̄,t) ≤ −v(Π) <∞ and (P∗5)). Then, using zt ∈ ∂f(x̄+ dt) (cf. (2.3))

and Lemma 6.5 with h∗ = ‖ · ‖, we obtain that, for large enough t, 0 ∈ ∂f(x̄ + dt);
i.e., x̄+ dt is a minimum of f .

This result allows us to derive a finite convergence proof; since f is polyhedral,
we can directly fix εi = 0 and use rule (4.iii′′).

Theorem 7.5. Under the hypotheses of Theorem 5.11 and Lemma 6.5, if εi = 0 ∀i
and rule (4.iii′′) is in force, then the three-level bundle algorithm finitely solves (Π).

Proof. From Theorem 5.11, we know that only finitely many consecutive NS can
be done: either the normal stopping rule fires or an SS is performed. However, from
rule (4.iii′′), only finitely many SS can be done; hence, either the stopping rule fires, or
a sequence of consecutive NS is started. Theorem 5.11 tells us that such a sequence
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finitely produces ∆f = 0; hence the two-level bundle algorithm finitely terminates
with either α∗ +D∗

t (−z∗) = 0 or ∆f = 0.
If α∗

i + D∗
ti(−z∗i ) = 0 happens infinitely many times, α∗

i = 0 and (2.10) tell us
that z∗i ∈ ∂f(x̄i). Theorem 7.3 shows that ‖z∗i ‖ → 0 as {ti} → ∞; hence, applying
Lemma 6.5 with h∗ = ‖·‖ shows that, for large enough i, 0 ∈ ∂f(x̄i), i.e., x̄i is optimal
for (Π). If ∆fi = 0 happens infinitely many times, recall from (2.7) that this means
that d∗i is optimal for (Πx̄i,ti) and use Lemma 7.4.

Let us remark that the three-level bundle algorithm applied to a polyhedral f
lacks a convenient stopping criterion; either x̄i or x̄i + d∗i at some point becomes
optimal, but there is no easy way to tell when this happens. In order to be able to
stop, either the solver of (∆β,x̄,t) should always return z∗ = 0 whenever it can, or an
estimate of t of Lemma 7.4 should be available.

8. Extensions. The generalized bundle algorithm presented in the previous
paragraphs can incorporate a number of important algorithmic variants. For in-
stance, (4.iv) allows us to seamlessly add a line search on d∗, provided only that, at
length, the unit step is always probed. (4.i)–(4.iii) allow us to adapt the curved search
approach of [SZ92] to our more general setting; other t-strategies, originally devised
for Dt =

1
2t‖ · ‖2

2, can be adapted as well [Fr97, section I.5]. Multiple [ε-]subgradients
can be added to β at each call of the oracle if the latter is—as happens in some
applications—capable of providing them. Finally, it should not be hard to extend
the proofs of convergence to the case in which f is not computed exactly, following
what is done in [GV97, Ki99]. More complex extensions are discussed in the following
section.

8.1. The constrained case. Generalized bundle methods can cope with con-
straints x ∈ X if X is a closed convex set. Basically, all that is needed is to insert full
knowledge about X into (1.8), i.e., to solve at each iteration

(Πβ,x̄,t) inf
d
{fβ(x̄+ d) +Dt(d) : (x̄+ d) ∈ X}.(8.1)

Problem (8.1) can be viewed as (1.8) using the restricted model fX,β = fβ+IX , which
is a model of the actual function to be minimized, the restricted function fX = f+IX .
Under the natural assumption that x̄ ∈ dom fβ ∩ X, the dual of (8.1) is just (1.9)
with f∗β replaced by

f∗X,β(z) = (fβ + IX)∗(z) = inf
w
{f∗β(z − w) + σX(w)}(8.2)

(see [HL93b, Theorem X.2.3.1]) as (IX)∗ = σX . The problem can be written in a
“direct” form, avoiding the complicated-looking infimal convolution (8.2), by means
of the simple variable change z = z̄ + w:

(∆β,x̄,t) inf
z̄,w

{f∗β(z̄) + σX(w)− x̄(z̄ + w) +D∗
t (−z̄ − w)}.(8.3)

The extension of the theory is not completely straightforward: fX is not finite ev-
erywhere, and fX,β is a model of fX rather than of f . Hence, (2.3)/(2.4) are
valid with fX,β replacing fβ ; in particular, we have that z∗ ∈ ∂fX,β(x̄ + d∗). On
the other hand, the black box produces subgradients of f rather than of fX , i.e.,
z ∈ ∂f(x̄ + d∗)(x̄ + d∗ ∈ X); there is an “asymmetry” that has to be taken into
account.
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The main observation is that some of the properties of z∗ have now to be referred
to z̄∗. In fact, from f∗X,β(z

∗) = f∗β(z̄
∗)+σX(w∗) and z∗ ∈ ∂fX,β(x̄+ d∗), using (1.vi),

we obtain

[f∗β(z̄
∗)− z̄∗(x̄+ d∗) + fβ(x̄+ d∗)] + [σX(w∗)− w∗(x̄+ d∗) + IX(x̄+ d∗)] = 0.

By (1.vii) both quantities in square brackets are nonnegative, and therefore both must
be zero; hence, by (1.vi) we get z̄∗ ∈ ∂fβ(x̄ + d∗) (and w∗ ∈ ∂IX(x̄ + d∗)). Thus, in
the constrained case one has to carefully distinguish z̄∗ from z∗. For instance, when
aggregation is done, it is z̄∗, together with its f∗-value f∗i (z̄

∗
i ), that is added to β

instead of z∗; the inequality in Definition 5.6 becomes

f∗i (z̄
∗
i ) ≥ f∗+(z̄

∗
i ).(8.4)

In this setting, Lemma 5.2 proves that {z̄∗i }, rather than {z∗i }, is bounded; however,
Lemma 5.1 and Lemmas 5.3–5.6 do not change. The boundedness of {z̄∗i } also implies
that of {z∗i } under certain assumptions, as the following lemma shows.

Lemma 8.1. If (P∗3) holds, D∗
t has the form (3.4), and {z̄∗i } is bounded, then

{z∗i } is bounded.
Proof. Since (z̄∗i , w

∗
i ) is the optimal solution of (8.3) and σX(w∗

i ) − x̄w∗
i ≥ 0 as

x̄ ∈ X, we have

f∗i (z̄
∗
i )− x̄z̄∗i +D∗

i (−z̄∗i − w∗
i )

≤ f∗i (z̄
∗
i ) + σX(w∗

i )− x̄(z̄∗i + w∗
i ) +D∗

i (−z̄∗i − w∗
i ) ≤ f∗i (z̄

∗
i )− x̄z̄∗i +D∗

i (−z̄∗i ),
and therefore

D∗
i (−z̄∗i − w∗

i ) ≤ D∗
i (−z̄∗i ).(8.5)

Since D∗
t has the form (3.4), we can divide both sides of (8.5) by ti to obtain

D∗(−z̄∗i − w∗
i ) ≤ D∗(−z̄∗i ).

Since, by (P∗3), D∗ is finite everywhere and {z̄∗i } is bounded, the left-hand side is
finite; therefore, all z∗i = −z̄∗i − w∗

i belong to a level set of D∗, which is compact by
(P∗2).

In order to extend the proof of Theorem 5.7, “asymmetric” definitions of hi and
ri,

hi(γ) := [f∗X,i(z
∗
i )(1− γ) + f∗(zi)γ − zi(γ)x̄+ f(x̄)] +D∗

ti(−zi(γ)),
ri(z) := f∗X,i(z)− zx̄+ f(x̄) = f∗X,i(z)− zx̄+ fX(x̄) ≥ 0,

are required. Using (8.4), one obtains

f∗X,i(z
∗
i ) = f∗i (z̄

∗
i )+σX(w∗

i ) ≥ f∗+(z̄
∗
i )+σX(w∗

i ) ≥ inf
w
{f∗+(z∗i−w)+σX(w)} = f∗X,+(z

∗
i ),

while from (4.iv) and σX(0) = 0,

f∗(zi) ≥ f∗+(zi) = f∗+(zi) + σX(0) ≥ inf
w
{f∗+(zi − w) + σX(w)} = f∗X,+(zi);

now, proceeding as in section 5.2 v(ϑi) = v(∆+) + f(x̄) is readily obtained. Further-
more, (2.6)/(2.8) can be written (in an asymmetric fashion) as

∆f = f(x̄+ d∗)− fX,β(x̄+ d∗) = f∗X,β(z
∗)− f∗(z) + (x̄+ d∗)(z − z∗),(8.6)
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which easily gives the equivalent to (5.4),

h′i(0) = −∆fi < −(1−m)[f∗X,i(z
∗
i )− z∗i x̄+D∗

ti(−z∗i ) + f(x̄)] = −(1−m)hi(0),

which allows us immediately to extend the proofs of Theorems 5.7 and 5.8 to the
constrained case. Note that D∗

t = 1
2 t‖·‖2

2 has both the forms (3.3) and (3.4); therefore,

exploiting Lemma 8.1, our convergence results for fβ = f̂β generalize the best ones
known for the proximal bundle case.

The only difficulty in extending the proof of Theorem 5.9 comes from the fact
that (5.7) does not guarantee f∗X,i(zh) = f∗X(zh) ∀i ≥ h. However, fX,i ≥ fi and (5.7)
give f∗X,i(zh) ≤ f∗i (zh) = f∗(zh); thus, operating as in Theorem 5.9, one obtains the
equivalent to (5.8):

f∗(zh)− (x̄+ d∗i )zh ≥ f∗X,i(z
∗
i )− (x̄+ d∗i )z

∗
i ∀i > h.

Combined with the “asymmetric” definition (8.6) of ∆fi (with z = zi), this gives
(5.10). All the other results in section 5 plainly extend to the constrained case.

It is then easy to check that almost all other results in section 6 and section 7
remain valid, with the only provision being that we look at fX , rather than at f ,
as the actual function to be minimized. In particular, note that, by (8.1), x̄ + d∗ is
always feasible and rule (4.iv) can be satisfied. The only exceptions are the results
about polyhedral functions, which also require X to be a polyhedral set. In fact,
it is easy to prove that Lemma 6.5 fails if X is not polyhedral, as fX may have
infinitely many different subdifferentials (take f affine and X = B2(δ)). However, if
f satisfies condition (4.1) and X is polyhedral, then fX has finitely many different
subdifferentials; this allows us to extend Lemma 6.5 and all the subsequent results.

Finally, let us mention that, when X is a polyhedron Hx ≤ h, (8.3) boils down
to

(∆β,x̄,t) inf
z,ω

{f∗β(z) + ωh− x̄(z + ωH) +D∗
t (−z − ωH) : ω ≥ 0}

(ω being the “dual” variables). In this case, it is not even required that all the defining
inequalities of X be known in advance; when an unfeasible x is probed, the black box
should just return +∞ and some “extremal” violated inequality. (Assumption (4.1)
on the black box must be satisfied.) Clearly, only finitely many steps are required to
eventually acquire a complete description of X.

8.2. Decomposable functions. Another important extension is a different
treatment of decomposable functions,

f(x) =
∑
h∈K

fh(x),

where 1 < |K| = k < ∞; examples are cost-decomposition approaches to block-
structured convex problems [PZ92, GK95, CFG01]. Here, the computation of each
fh(x̄) gives a zh ∈ ∂fh(x̄); rather than aggregating this information into the unique
z =

∑
h∈K zh, one may keep it in a disaggregated form [Ki95, GV97], where β is

partitioned into k disjoint subsets βh and there is one model fhβ for each fh. The
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disaggregated subproblems

(Πβ,x̄,t) infd

{∑
h∈K

fhβ (x̄+ d) +Dt(d)

}
,

(∆β,x̄,t) infz

{∑
h∈K

(fhβ )
∗(zh)−

(∑
h∈K

zh

)
x̄+D∗

t

(
−
∑
h∈K

zh

)}

are then solved instead of the aggregated versions. Using the disaggregated model
fKβ =

∑
h∈K fhβ is well known to be potentially beneficial: in the polyhedral case, for

instance, f̂Kβ is a (much) better description of f than the ordinary aggregate model

f̂β .
It is easy to show that the “critical” properties are inherited by the disaggregated

model fKβ if they hold for all the fhβ individually. For (4.iv), for instance, one has

that (fh+)
∗(zh) ≤ (fh)∗(zh) ∀h implies

f∗(z) =
∑
h∈K

(fh)∗(zh) ≥
∑
h∈K

(fh+)
∗(zh) ≥ inf

z̄

{∑
h∈K

(fh+)
∗(z̄h) :

∑
h∈K

z̄h = z

}
= (fK+ )∗(z).

Analogously, it is possible to show that if (4.7)/(5.7) hold for all the fhβ , then they

hold for fKβ . Thus, the analysis of the previous paragraphs immediately extends
to the “disaggregated” variant of generalized bundle methods, independently on the
stabilizing term Dt. Of course, these results can be used together with those of
section 8.1 to construct a disaggregated constrained generalized bundle method.

9. Comparisons. A number of algorithms that have been proposed in the liter-
ature can be shown to be special cases of, or closely related to, the generalized bundle
algorithm.

9.1. Other bundle approaches. The algorithm in Figure 1 covers the proximal
bundle method [HL93b, Algorithm XV.3.3.4], where Dt =

1
2t‖ · ‖2

2 and D∗
t = 1

2 t‖ · ‖2
2.

A dual interpretation of this method is well known [HL93b, section XV.2.4]: (1.9) is
a Lagrangian relaxation of the problem of finding the steepest ε-descent direction for
f̂β in x̄. Historically, this dual interpretation motivated the development of the first
bundle methods; however, it has drawbacks in that (1.9) (resp., (1.11)) is described
in terms of a “local” object, the ε-subdifferential of fβ (resp., f) in x̄, so that it is
difficult to relate two problems corresponding to different current points. Conceptual
descent methods have been proposed, based on this dual interpretation, where the L2-
norm in the dual is replaced with any norm ||| · ||| (see [HL93a, Algorithm VIII.2.1.5]);
however, this does not readily extend to other forms of bundle methods, where Dt is

– 1
t ‖ · ‖p for p ≥ 1 (in practice, the L1- and L∞-norms) [KCL95];

– 1
th(|||d|||), where ||| · ||| is any norm and h is a convex continuous and dif-
ferentiable function with invertible derivative such that h(0) = h′(0) = 0
[Be96];

– 1
tD(d) for D strictly convex, strongly coercive, differentiable, and finite ev-
erywhere [Au87];

– the indicator function of the ball of radius t under some norm ||| · |||; this
amounts to restricting the next trial point inside a trust region [HL93b, Al-
gorithm XV.2.1.1].
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It is easy to see that conditions (P1)–(P5) are less restrictive than all those above.
Remarkably, the convergence proofs for the first three cases, whereDt(0) = 0 ⇔ d = 0,
are quite different from those used in the fourth case, where Dt(d) = 0 in some ball
around the origin. Our analysis is the first that covers both situations in a uniform
way. Furthermore, our analysis is the first that fully exploits duality. In [Be96] it was
noted that using a norm ||| · ||| in the primal leads to some dual problem involving the
conjugate norm ||| · |||∗, much in the spirit of [HL93a, Algorithm VIII.2.1.5], but this
was not extended to a dual interpretation of the algorithm. In [Au87], (1.9) is only
used to prove [Au87, Theorem 2.3]. In other cases duality was completely overlooked,
even when linear duality could have been used [KCL95]. A first step towards this
development was done in [Fr97], where D∗

t = 1
t ‖ · ‖p with p ∈ {1, 2,∞} was studied;

due to the interpretation of (1.9) in terms of ε-subgradients, those bundle variants
had an interest on their own, as a bundle algorithm with a dual trust region was one
of the open questions in [HL93b, Remark XV.2.5.1].

Other approaches directly related to generalized bundle methods are proximal-
type algorithms; there, the stabilized problem (1.12) is solved with a “nonuniform”
stabilizing term, which depends on x̄ as well as on t. This is used to incorporate
constraints in the stabilizing term, which also serves as a barrier function to keep
the iterates feasible. Stabilizing terms studied in the literature are either D-functions
[Ec93, CT93],

Dx̄,t(d) =
1

t
(ψ(x̄+ d)− ψ(x̄)−∇ψ(x̄)d),

where ψ is a fixed strictly convex and differentiable function such that the level sets
of Dx̄,t are compact, or ϕ-divergences [IST94, IT95, Te97],

Dx̄,t(d) =
1

t

∑
i=1,...,n

x̄iϕ

(
x̄i + di
x̄i

)
,

where ϕ is a fixed univariate function that is (among other things) continuously dif-
ferentiable, strictly convex, and such that ϕ(1) = ϕ′(1) = 0. These stabilizing terms
satisfy (P1), (P4), and (P5), and they have bounded level sets [IST94] which contain
0 in the interior if x̄ lies in the zone of Dx̄,t (int dom ψ in the first case and �n++ in
the second), where proximal-type algorithms work. Conditions parallel to (P3) and
(P3′) are also required: boundedness of f , that corresponds to (P3′), is widely used,
but in [CT93] the requirement is rather im ∇ψ = �n, i.e., dom ψ∗ = �n, i.e., (P∗3)
as

D∗
x̄,t(z) =

1

t
ψ∗(tz +∇ψ(x̄))− x̄(tz +∇ψ(x̄)) + ψ(x̄).

In both cases, Dx̄,t is differentiable and Dx̄,t(d) = 0 ⇔ d = 0; this is not required in
our approach, even though both differentiability (in 0) and strict convexity help to
enhance (different parts of) the convergence proofs. Also, all of the above methods
require the exact solution of (1.12), which is a rather strong condition. Finally, our
dual viewpoint extends the one that has been developed for proximal-type algorithms,
which is limited to the case in which (0.1) is itself a Lagrangian dual (cf. section 9.2).

The differentiability of Dx̄,t, but not strict convexity, is dropped in [Ki98], where
B-functions are introduced; there, the compactness requirement is also different.
(There is no need for “local” compactness, as the solution of (1.12) is assumed to
be given.) An implementable version of the proximal method using B-functions, the
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bundle Bregman proximal method, is then proposed in [Ki99]. The analysis provides
strong convergence results, for instance allowing inexact solution of the stabilized
master problem and avoiding the ∗-compactness assumption. However, it does not
subsume the results of the present article, which do not require the stabilizing term
to be a B-function. Furthermore, our “more technical” (cf. [CL93, Remark 4.6]) dual
proof of Theorem 5.7 provides estimates on the rate of convergence during NS se-
quences, and we don’t require fβ to be the cutting plane model, thereby allowing
easy extensions, e.g., to the disaggregated case (cf. section 8.2).

Finally, a related but different approach can be found in [Nu97]. There, the dual
object is the graph of the ε→ ∂εf(0) mapping, which is equivalent (modulo a rotation)
to epi f∗. The approach in [Nu97] can be summarized, in our notation, as follows: at

each step i, find a separating hyperplane between epi f̂∗i and the point (−f
i
, 0), where

f
i
is the best f -value found so far. The hyperplane must be nonvertical, i.e., in the

form (1,−xi); it is easy to check that (1,−xi) is a separating hyperplane if and only if

f̂i(xi) ≤ f
i
. Condition (P∗3′) is required in order to ensure that f̂∗i (0) < ∞. Not all

choices of separating hyperplanes give a convergent algorithm; in [Nu97], an abstract
rule is given, and an implementation is proposed under the form of the min-problem

inf
σ,z

{|||(−f
i
, 0)− (σ, z)||| : (σ, z) ∈ epi f̂∗i },(9.1)

where ||| · ||| is any norm whose dual optimal solution provides xi. Problem (9.1) is
clearly related to (1.9) (cf. [Fr98]), but with a decidedly different flavor. On one hand,

in (9.1) the cost function of the f̂∗-values need not be linear, but, on the other hand,
D∗
t in (1.9) need not be norm-like. Furthermore, the treatment in [Nu97] ignores the

concept of current point and the updating of the proximal parameter t.
To conclude this section, let us mention that there are important classes of bun-

dle methods that are not covered by our analysis: such are proximal level meth-
ods [LNN95], [HL93b, Algorithm XV.2.3.1], analytic center cutting plane methods
[Ne95, GV97], dual ε-descent algorithms [HL93b, Algorithm XIV.3.4.2], algorithms
based on a biobjective view of the direction finding problem [Fu98], and Newton-type
bundle methods [LS98, LV98, MSQ98]. The extension of our theory to some of the
above algorithms might be possible and is currently under research.

9.2. Algorithms for structured convex problems. It is well known that,
under proper assumptions [HL93b, Chap. XII], the convex problem

(P) sup
u
{c(u) : h(u) = 0, u ∈ U}(9.2)

is equivalent to its Lagrangian dual (0.1), where

(Dx̄) f(x̄) = sup
u
{c(u) + x̄h(u) : u ∈ U}.(9.3)

Here,

f∗(z) = sup
x

{
− sup

u
{c(u) + x(h(u)− z) : u ∈ U}

}
(9.4)

= − sup
u
{c(u) : h(u) = z, u ∈ U}.(9.5)

((9.4) is the Lagrangian dual of (9.5), whence the identity.) Thus, −f∗ is the value
function of (9.2) w.r.t. the constraints h(u); plugging (9.5) into (1.11), one obtains

(Dx̄,t) sup
u
{c(u) + x̄h(u)−D∗

t (−h(u)) : u ∈ U}.(9.6)
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Hence, generalized bundle methods applied to a Lagrangian dual are approximated
generalized augmented Lagrangian approaches to the solution of (9.2). If c and h are

affine, and the cutting plane model f̂β is used, in view of (1.7) the stabilized dual
master problem (1.9) becomes

(Dβ,x̄,t) inf
z


inf

θ



∑
u∈β

−c(u)θu :
∑
u∈β

h(u)θu = z, θ ∈ Θ


− zx̄+D∗

t (−z)



= sup
u
{c(u) + x̄h(u)−D∗

t (−h(u)) : u ∈ Conv(β) = Uβ},

(9.7)

where β is now considered a set of optimal solutions ui ∈ U of the dual pricing
problem (1.3) such that zi = h(ui). Thus, the generalized bundle method uses an
inner linearization approach, where U is substituted with its inner linearization Uβ , to
approximately solve (Dx̄,t). In fact, let u∗ be the optimal solution of (9.7); from (4.7),
the sequence {z∗i = h(u∗i )} of optimal solutions of (1.9) corresponds to a sequence
{u∗i } of α∗

i -optimal solutions for (9.3) (cf. section 6.1). If {z∗i } → 0 and {α∗
i } → 0,

any cluster point of {u∗i } is optimal for (9.2). Similar results hold for inequality
constraints h(u) ≤ 0.

Hence, generalized bundle methods are related to nonquadratic penalty meth-
ods. For instance, in [PZ92, PZ94], (9.6) is considered with x̄ = 0 and D∗

t (z) =
t
∑

i Φ
∗
ε(zi) ⇒ Dt(z) = t

∑
i Φε(

1
t di) for some ε > 0 and

Φ∗
ε(zi) =




z2
i

2ε
if − ε ≤ zi ≤ ε,

|zi| − ε

2
otherwise,

Φε(di) =




ε

2
d2
i if − 1 ≤ di ≤ 1,

+∞ otherwise.

Here Φε is a smooth approximation of the nonsmooth exact penalty function t‖z‖1.
The algorithm of [PZ94] requires us to compute an exact optimal solution u∗ of
(9.6) for given t and ε, and then either increases t if ‖h(u∗)‖∞ > ε (u∗ is not ε-
feasible), or decreases ε otherwise. The suggested procedure for solving (9.6), used
in [PZ92], is simplicial decomposition, i.e., inner linearization. Hence, in the affine
case the algorithm in [PZ94] is very similar to a three-level bundle algorithm that
never performs SS. The only difference is that ε is not decreased to improve the
approximation of (9.6) (which is assumed to be exactly solved, although this may not
be practical) but rather to forceDt to behave more and more like t‖·‖1; however, this is
permitted by our theory. Thus, a generalized bundle method with the above D∗

t offers
an alternative to the algorithm of [PZ94], which may be more efficient because (9.6)
is only approximately solved and changes of x̄ are allowed. Furthermore, we remark
that, although Φε is mentioned in [PZ94], the corresponding stabilized primal master
problem is not described there; however, the corresponding (1.9) is a box-constrained
quadratic problem that could be solved with specialized codes (see [Ki89, Fr96]) more
efficiently than the nonlinear problem (9.7).

A similar idea has been used to develop ε-approximation algorithms for
(block-)structured convex problems [GK95]. In order to solve (9.2) (with h(u) ≤ 0),
(9.6) (with x̄ = 0) is considered, where

D∗
t (z) = ln

∑
i

etzi .(9.8)
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This D∗
t is a smooth approximation of t‖z‖∞, i.e., (lnn) + t‖z‖∞ ≥ D∗

t (z) ≥ t‖z‖∞.
Problem (9.6) is then approximately solved with an inner linearization approach, i.e.,
solving (9.7) and using the gradient of D∗

t in z∗ (resp., u∗) to generate a new point
z (resp., u). At each step, only the “minimal” bundle {u∗, u} is kept. (D∗

t satisfies
(P∗3′′)). This approach is not exactly a generalized bundle method, as D∗

t is not
zero in the feasible region. However, generalized bundle methods could use slightly
modified forms of the above exponential penalty function while allowing changes in
x̄.

10. Conclusions. We have proved convergence of several variants of generalized
bundle methods; different convergence properties can be obtained according to the
characteristics of the function to be minimized and of the stabilizing term employed.
The statements of the properties needed for convergence allow great flexibility in the
implementation of the algorithm; several different t-strategies and β-strategies, which
are well known to be crucial in practice, can be fitted within this framework.

Our conditions on Dt are less restrictive than those in [Au87, KCL95, Be96],
are different from those in [Ki99], and allow a unified treatment of “penalty-like”
and “trust-region-like” stabilizing terms [HL93b, sections XV.2.1 and XV.2.2], which
have so far been considered as distinct. Very little regularity is required for Dt(d) as a
function of t. Weak requirements on f , such as ∗-compactness, avoid stronger require-
ments on Dt. A distinguishing feature of our analysis is the extensive exploitation of
a new dual viewpoint of bundle methods. Some algorithms that have been proposed
outside the bundle framework [PZ94, GK95] can be shown to be closely related to our
class.

Our results suggest that practical implementations of generalized bundle algo-
rithms are possible with several different nonquadratic stabilizing terms; examples
are primal and/or dual trust regions based on “linear” (L1- or L∞-)norms, which
require the solution of just a linear program at each step. Preliminary computational
experiences [Be96] seem to confirm the effectiveness of these approaches. Other sta-
bilizing terms, e.g., exponential or linear-quadratic, may exhibit better convergence
in practice than the L2-norm, and thus compensate for the more difficult subproblem
to be solved.

Finally, it may be possible to extend these results to an even larger class of bundle
algorithms.
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[CL93] R. Correa and C. Lemaréchal, Convergence of some algorithms for convex minimiza-

tion, Math. Programming, 62 (1993), pp. 261–275.
[CT93] G. Chen and M. Teboulle, Convergence analysis of a proximal-like minimization al-

gorithm using Bregman functions, SIAM J. Optim., 3 (1993), pp. 538–543.
[CFG01] T. G. Crainic, A. Frangioni, and B. Gendron, Bundle-based relaxation methods for

multicommodity capacitated fixed charge network design problems, Discrete Appl.
Math., 112 (2001), pp. 73–99.

[Ec93] J. Eckstein, Nonlinear proximal point algorithms using Bregman functions with appli-
cations to convex programming, Math. Oper. Res., 18 (1993), pp. 292–226.

[Fr96] A. Frangioni, Solving semidefinite quadratic problems within nonsmooth optimization
algorithms, Comput. Oper. Res., 23 (1996), pp. 1099–1118.

[Fr97] A. Frangioni, Dual Ascent Methods and Multicommodity Flow Problems, Ph.D. Disser-
tation, TD 5/97, Dipartimento di Informatica, Università di Pisa, Pisa, Italy, 1997.
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