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Abstract

Column generation algorithms are instrumental in many areas of applied optimization,
where linear programs with an enormous number of columns need to be solved. Although
successfully employed in many applications, these approaches suffer from well-known in-
stability issues that somewhat limit their efficiency. Building on the theory developed for
nondifferentiable optimization algorithms, a large class of stabilized column generation
algorithms can be defined which avoid the instability issues by using an explicit stabiliz-
ing term in the dual; this amounts at considering a (generalized) augmented Lagrangian
of the primal master problem. Since the theory allows for a great degree of flexibility in
the choice and in the management of the stabilizing term, one can use piecewise-linear or
quadratic functions that can be efficiently dealt with off-the-shelf solvers. The effective-
ness in practice of this approach is demonstrated by extensive computational experiments
on large-scale Vehicle and Crew Scheduling problems. Also, the results of a detailed com-
putational study on the impact of the different choices in the stabilization term (shape
of the function, parameters), and their relationships with the quality of the initial dual
estimates, on the overall effectiveness of the approach are reported, providing practical
guidelines for selecting the most appropriate variant in different situations.

Key Words: Column Generation, Proximal Point methods, Bundle methods, Vehicle
and Crew Scheduling problems.

Résumé

Pour résoudre les programmes linéaires comportant un très grand nombre de variables,
on fait de plus en plus appel aux méthodes de génération de colonnes. Malgré des succès
remarquables pour plusieurs applications, le comportement des variables duales est sou-
vent instable, ce qui limite leur utilisation. En s’appuyant sur la théorie développée en
optimisation non différentiable, nous proposons un ensemble d’algorithmes stabilisés qui
incluent explicitement un terme de stabilisation à la fonction objectif de la formulation
duale; le problème primal correspond alors à une généralisation du Lagrangien augmenté.
Puisque la théorie permet une grande flexibilité au niveau du choix et de la gestion de ce
terme de stabilisation, on peut faire appel à des fonctions quadratiques, ou encore linéaires
par morceaux, de façon à tirer avantage des avancées récentes des systèmes commerciaux
d’optimisation de programmes linéaires. L’efficacité de cette approche est illustrée par une
expérimentation sur des instances de grandes tailles de problèmes de tournées de véhicules
multi-dépôts ainsi que de problèmes de confection simultanée d’itinéraires d’autobus et
d’horaires de chauffeurs. De plus, nous présentons les résultats détaillés de l’efficacité glob-
ale de l’approche par rapport au choix du terme de stabilisation (forme de la fonction,
paramètres) et de la relation avec la qualité des estimations initiales des variables duales.
Nous faisons quelques suggestions dans la sélection de la variante la plus appropriée pour
certaines situations pratiques.

Mots clés : Génération de colonnes, méthodes de point proximal, méthodes de fais-
ceaux, tournées de véhicules et horaires d’équipes de travail.
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1 Introduction

Column Generation (CG) has proven to be very successful in solving very large scale optimiza-
tion problems, such as those obtained as the result of decomposition/reformulation approaches
applied to some original integer programming formulations. It has been introduced indepen-
dently by Gilmore and Gomory [15] and Dantzig and Wolfe [8] in the early sixties. The
formers proposed to solve the linear relaxation of the Cutting Stock Problem by considering
only a subset of columns representing feasible cutting patterns; other columns are generated,
if needed, by solving a knapsack problem whose costs are the dual optimal multipliers of the
restricted problem. The latters introduced the Dantzig-Wolfe (D-W) decomposition principle,
that consists in reformulating a structured Linear Problem (LP) using the extreme points and
rays of the polyhedron defined by a subset of constraints. These extreme points and rays form
the columns of the constraint matrix of a very large LP. A restricted problem using a sub-
set of extreme points and rays is solved, obtaining optimal dual multipliers that are used to
generate positive reduced cost columns, if any. In both cases, optimality is reached when no
such column exists. Hence, CG consists in solving a restricted version of the primal problem
defined with a small subset of columns and adding columns, if needed, until optimality is
reached.

From a dual viewpoint, adding columns to the master problem is equivalent to adding rows
(cuts) to the dual. The classical Cutting Plane (CP) algorithm is due to Kelley [21]; it solves
convex problems by generating supporting hyperplanes of the objective function. At each
iteration, the dual of the restricted problem in D-W is solved and cuts are added until dual
feasibility, and therefore optimality, are reached. Thus, the column generation, or pricing,
problem in the primal is a separation problem in the dual, seeking for cuts which separate the
current estimate of the dual optimal solution from the true value [13].

Although CG/CP algorithms have been used with success in many applications, difficulties
appear when solving very large scale degenerate problems. It is well-known that primal
degeneracy may cause a “tail-off” effect in column generation. Moreover, instability in the
behavior of dual variables are more frequent and harmful when problems get larger (cf. e.g.
[6, §4(ii)]): it is possible to move from a good dual point to a much worse one, which affects
the quality of columns to be generated in the following iteration, and therefore the overall
convergence speed of the algorithm. This effect can be countered by employing stabilization
approaches.

A first form of stabilization has been proposed in the early seventies within the nondiffer-
entiable optimization community (e.g. [22]): a “good” dual point among those visited so far is
taken to define the stability center, and an explicit Stabilizing Term (ST) that penalizes moves
far from the center is added to the dual objective function. The stability center is changed if
a “sufficiently better” dual point is found. A variety of stabilized algorithms of this kind has
been proposed [19, 20, 23, 26, 32], and a deeper theoretical understanding of the underlying
principles [12, 18, 33] has been achieved over time; we especially refer the interested reader
to [24].

A different form of stabilization involves avoiding extremal solutions in the restricted prob-
lem and insisting that an interior solution has to be used [31]. This can be done for instance
by defining an appropriate notion of center of the localization set (the portion of dual space
where the dual optimal solution is known to be), and calling the oracle on that point in order
to shrink the size of the localization set as rapidly as possible. Although this approach is
ideally alternative to the introduction of an explicit ST, the latest developments indicate that
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explicit stabilization also improves the performances of centers-based stabilized algorithms
[2, 27].

In this paper, we study the practical effect of different variants of explicit STs on the
performances of Stabilized CG (SCG) approaches. The aim of the paper is threefold:

• to briefly overview the issue of instability in CG and remind that a variety of stabiliz-
ing methods [12] can be implemented with relatively few modifications to existing CG
algorithms using standard software tools;

• to prove by computational experiments that different forms of ST can have different
and significant positive impacts in real-world, large-scale, challenging applications;

• to assess, by means of a computational study, the impact of the different choices in the
ST (shape of the function, parameters), and their relationships with the quality of the
initial dual estimates, on the overall effectiveness of the SCG approach.

We limit ourselves to the effect of stabilization on the standard CG approach, i.e., without
any other form of centers-based stabilization. The rationale of this choice is that inserting an
explicit ST is required anyway for optimal performances [2, 27], so developing guidelines about
the best form of the ST is already a relevant issue. Besides, mixing two types of stabilization
would make the contribution of each technique more difficult to ascertain, thus requiring a
separate study.

The paper is organized as follows: in Section 2 the problem is stated, the standard CG
approach is reviewed, its relationships with CP algorithms are underlined and the issues of
the approach are discussed. In Section 3 we present a class of SCG approaches that avoid the
instability problems by using an explicit ST in the dual and we discuss its primal counter-
parts. Then, in Section 4 we describe several STs that fit under the general SCG framework,
discussing the relevant implementation details. Then, in Section 5 we present a set of com-
putational experiments on, respectively, large-scale Multi-Depot Vehicle Scheduling (MDVS)
problems (§5.1) and simultaneous Vehicle and Crew Scheduling (VCS) problems (§5.2), aimed
at proving the effectiveness of the proposed approach in practice. Finally, in Section 6 we
conduct an extensive computational comparison aimed at assessing the impact of the different
choices in the ST, and their relationships with the quality of the initial dual estimates, on the
overall effectiveness of the SCG approach; Section 7 summarizes our observations and draws
some directions for future work.

Throughout the paper the following notation is used. The scalar product between two
vectors v and w is denoted by vw. ‖v‖p stands for the Lp norm of the vector v. Given a
set X, IX(x) = 0 if x ∈ X (and +∞ otherwise) is its indicator function. Given a problem
(F ) inf[sup]{f(x) : x ∈ X}, v(F ) denotes its optimal value; as usual, X = ∅ ⇒ v(F ) =
+∞[−∞].

2 Column Generation and Cutting Planes

2.1 The CG/CP algorithm

We consider a linear program (P ) and its dual (D)

(P )

max
∑

a∈A caxa
∑

a∈A axa = b

xa ≥ 0 a ∈ A

(D)
min πb

πa ≥ ca a ∈ A
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where A is the set of columns, each a ∈ A being a vector of R
m, and b ∈ R

m. In many
applications, the number of columns is so large that they are impossible or impractical to
handle at once; alternatively, the columns just cannot be determined a priori in practice.
However, some structure exists in the set A so that optimization over its elements is possible;
in particular, the separation problem

(Pπ) max{ ca − πa : a ∈ A } ,

can be solved in relatively short time for all values of π ∈ R
m.

In this case, (P ) and (D) can be solved by Column Generation (CG). At any iteration of
the CG algorithm, only a subset B ⊆ A of the columns is handled; this defines the primal and
dual master—or restricted—problems

(PB)

max
∑

a∈B caxa
∑

a∈B axa = b

xa ≥ 0 a ∈ B

(DB)
min πb

πa ≥ ca a ∈ B
.

The optimal solution x̂ to (PB), completed with zeroes as needed, is feasible to (P ), whereas
the optimal solution π̂ to (DB) may be unfeasible for (D); however, checking whether or not
some dual constraint πa ≥ ca for a ∈ A \ B is violated can be accomplished by solving (Pπ)
with π = π̂. If v(Pπ̂) ≤ 0, then π̂ is actually feasible for (D), and therefore (x̂, π̂) is a pair
of primal and dual optimal solutions to (P ) and (D), respectively. Otherwise, the optimal
solution ā of (Pπ̂) identifies the dual constraint πā ≥ cā violated by π̂ (equivalently, one
column ā with positive reduced cost cā − π̂ā) that can be added to B. This iterative process
has to finitely terminate, at least if no column is ever removed from B, because π̂ must change
at every iteration; the dual constraint corresponding to ā separates π̂ from the dual feasible
region. Hence, solving (P ) by CG is equivalent to solving (D) by Kelley’s CP algorithm [21].

2.2 Special structures in (P )

In many relevant cases, the primal constraint matrix contains, possibly after a rescaling, a set
of convexity constraints; that is, A can be partitioned into k disjoint subsets A1, . . . ,Ak such
that k of the m rows of (P ) correspond to the constraints

∑

a∈Ah
xa = 1 for h = 1, . . . , k. In

particular, this is the case if (P ) is the explicit representation of the convexified relaxation of
a combinatorial optimization problem [13, 24]. When this happens, it is convenient to single
out the dual variables ηh corresponding to the convexity constraints, i.e., to consider (D)
written as

min
∑k

h=1 ηh + πb

ηh ≥ ca − πa a ∈ Ah h = 1, . . . , k

This corresponds to the fact that the separation problem decomposes into k separate opti-
mization problems

(P h
π ) = max{ca − πa : a ∈ Ah} ,

one for each set Ah. Another set A0 may need to be defined if some columns do not belong
to any convexity constraint; these often correspond to rays of the feasible region of separation
problems that are unbounded for π = π̂, but we will avoid this complication for the sake
of notational simplicity. Accordingly, in (PB)/(DB) the set B of currently available columns
is partitioned into the subsets B1, . . . ,Bk. The usefulness of this form lies in the fact that,
defining

φ(π) = πb +
∑k

h=1 v(P h
π ) ,
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one has
v(PB) ≤ v(P ) ≤ v(D) ≤ φ(π̂) .

Hence, φ(π̂) − v(PB) ≤ ε ensures that x̂ is a ε−optimal solution to (P ), thereby allowing
to early terminate the optimization process if ε is deemed small enough. More in general,
improvements (decreases) of the φ-value can be taken as an indication that π̂ is nearer to an
optimal solution π̃ to (D), which may be very useful as discussed below.

2.3 Issues in the CG approach

The CG/CP approach in the above form is simple to describe and, given the availability
of efficient and well-engineered LP solvers, straightforward to implement. However, several
nontrivial issues have to be addressed.

Empty master problem In order to be well-defined, the CG method needs a starting set of
columns such that (PB) has a finite optimal solution, that is, (DB) is bounded below. This is
typically done as follows: assuming without loss of generality that b ≥ 0, artificial columns of
very high negative cost (trippers), each one covering exactly one of the constraints, are added
to (P ), yielding the modified pair or problems

(P̄ )

max
∑

a∈A caxa − Ms
∑

a∈A axa + s = b

xa ≥ 0 a ∈ A , s ≥ 0

(D̄)

min πb

πa ≥ ca a ∈ A

π ≥ −M

(1)

The set of artificial variables s provides a convenient initial B; they can be discarded as soon
as they are found to be zero in the optimal solution of (PB).

Albeit simple to implement, such an initialization phase has issues. Roughly speaking, the
quality of the columns generated by (Pπ) can be expected to be related to the quality of π as
an approximation of the optimal solution π̃ to (D); this ultimately boils down to obtaining
reasonable estimates of the large price M , which however is difficult in practice. This usually
results in π̂ far off π̃ in the initial stages of the CG algorithm, which causes the generation of
bad columns, ultimately slowing down the approach.

Instability The above discussion may have mislead the reader in believing that generating
a good approximation of the dual optimal solution π̃ is enough to solve the problem; unfortu-
nately, this is far from being true. The issue is that there is no control over the oracle; even
if it is called at the very optimal point π̃, there is no guarantee that it returns the whole set
of columns that are necessary to prove its optimality. Indeed, for several separation problems
it may be difficult to generate but one solution (i.e., column) for each call. Thus, in order to
be efficient, a CG algorithm, provided with knowledge about π̃, should sample the dual space
near π̃, in order to force the subproblem to generate columns that have zero reduced cost in
π̃.

However, this is not the case for the standard CG algorithm: even if a good approximation
of π̃ is obtained at some iteration, the dual solution at the subsequent iteration may be
arbitrarily far from optimal. In other words, the CG approach is almost completely unable of
exploiting the fact that it has already reached a good dual solution in order to speed up the
subsequent calculations; this is known as the instability of the approach, which is the main
cause of its slow convergence rate on many practical problems.

One possibility is to introduce some mean to stabilize the sequence of dual iterates. If π̃
were actually known, one may simply restrict the dual iterates in a small region surrounding
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it, forcing the subproblem to generate columns that are almost optimal in π̃ and, consequently,
efficiently accumulate the optimal set of columns. The practical effect of this idea is shown in
Table 1. The first column reports the width of the hyperbox, centered on π̃, to which all dual
iterates are restricted: the first row corresponds to the non-stabilized CG approach. Then,
column “cpu” reports the total cpu time (in seconds), column “itr” reports the number of CG
iterations, column “cols” reports the total number of columns generated by the subproblem
and column “MP iters” reports the total number of simplex iterations performed to solve the
master problem; the percentage of the corresponding measure w.r.t. that of the non-stabilized
approach is shown in brackets.

Table 1: Solving a large scale MDVS instance with perfect dual information

width cpu itr cols MP iters

+∞ 4178.4 509 37579 926161

200.0 835.5 (20.0) 119 (23.4) 9368 (24.9) 279155 (30.1)
20.0 117.9 (2.8) 35 (6.9) 2789 (7.4) 40599 (4.4)
2.0 52.0 (1.2) 20 (3.9) 1430 (3.8) 8744 (0.9)
0.2 47.5 (1.1) 19 (3.7) 1333 (3.5) 8630 (0.9)

Even with a large box width (200.0) there is a significant improvement in solution efficiency;
the tighter the box, the more efficient the algorithm is. This suggests that properly limiting
the changes in the dual variables may lead to substantial improvements in the performances;
of course, the issue is that π̃ is in general not known, so one must account for the case where
the current estimate of the dual optimal solution is not exact.

3 A Stabilized Column Generation approach

To stabilize the CG approach, we exploit some ideas originally developed in the field of
nondifferentiable optimization; in particular, here we will rely upon the theory of [12] to
introduce a general framework for Stabilized Column Generation (SCG) algorithms.

3.1 The stabilized master problems

In order to avoid large fluctuations of the dual multipliers, a stability center π̄ is chosen as an
estimate of π̃, and a proper convex explicit stabilizing term Dτ : R

m → R∪{+∞}, dependent
on some vector of parameters τ , is added to the objective function of (DB), thus yielding the
stabilized dual master problem

(DB,π̄,τ )
min

∑k
h=1 ηh + πb +Dτ (π − π̄)

ηh ≥ ca − πa a ∈ Ah h = 1, . . . , k
. (2)

The optimal solution π̂ of (2) is then used in the separation problem. The ST Dτ is meant
to penalize points “too far” from π̄; at a first reading, a norm-like function can be imagined
there. As already mentioned in the introduction, other, more or less closely related, ways for
stabilizing CP algorithms have been proposed [2, 23]; a thorough discussion of the relationships
among them can be found in [18, 24].
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Solving (2) is equivalent to solving a generalized augmented Lagrangian of (PB), using as
augmenting function the Fenchel’s conjugate of Dτ ; in fact, the Fenchel’s dual of (2) is

(PB,π̄,τ )

max
∑

a∈B caxa − π̄s −D∗
τ (s)

∑

a∈B axa − s = b
∑

a∈B1
xa = 1 xa ≥ 0 , a ∈ B

. (3)

For any convex function f(x), its Fenchel’s conjugate f∗(z) = supx { zx−f(x) } characterizes
the set of all vectors z that are support hyperplanes to the epigraph of f at some point. f∗ is
a closed convex function and enjoys several properties, for which the reader is referred e.g. to
[12, 18]; here we just remind that from the definition one has f∗(0) = −infx { f(x) }. Using
D[t] = 1

2t‖ · ‖
2
2, which gives D∗

[t] = 1
2 t‖ · ‖2

2, one immediately recognizes in (3) the augmented

Lagrangian of (PB), with both a first-order Lagrangian term, corresponding to the stability
center π̄, and a second-order Augmented Lagrangian term, corresponding to the stabilizing
function Dτ , added to the objective function to penalize violation of the constraints, expressed
by the slack variable s. In general, (3) is a nonquadratic augmented Lagrangian [33] of (PB).
Note that Dτ = 0 corresponds to D∗

τ = I{0}; that is, with no stabilization at all (3) collapses
back to (PB). An appropriate choice of D∗

τ will easily make (3) feasible even for “small” B;
indeed, comparing (1) with (3) shows that the trippers in the (1) are nothing but a (very
coarse) stabilization device, only aimed at avoiding the extreme instability corresponding to
an unbounded (DB).

We will denote by (Pπ̄,τ ) and (Dπ̄,τ ), respectively, the stabilized primal and dual problems,
that is, (3) and (2) with B = A. Extending the above derivation to multiple subproblems’
case is straightforward. Also, it is easy to extend the treatment to the case of inequality
constraints in (P ), which produce dual constraints π ≥ 0; they simply correspond to a sign
constraint s ≥ 0 on the slack variables.

3.2 A Stabilized Column Generation framework

The stabilized master problems provide means for defining a general Stabilized Column Gen-
eration framework, such as that of Figure 1.

〈 Initialize π̄, τ and B 〉
repeat

〈 solve (DB,π̄,τ )/(PB,π̄,τ ) for π̂ and x̂ 〉
if (

∑

a∈B cax̂a = φ(π̄) and
∑

a∈B ax̂a = b )
then stop
else 〈 solve Pπ̂, i.e., compute φ(π̂) 〉

〈 possibly add some of the resulting columns to B 〉
〈 possibly remove columns from B 〉
if ( φ(π̂) is “substantially lower” than φ(π̄) )
then π̄ = π̂ /*Serious Step*/
〈 possibly update τ 〉

while( not stop )

Figure 1: The general SCG algorithm
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The algorithm generates at each iteration a tentative point π̂ for the dual and a (possibly
unfeasible) primal solution x̂ by solving (DB,π̄,τ )/(PB,π̄,τ ). If x̂ is feasible and has a cost equal
to the lower bound φ(π̄), then it is clearly an optimal solution for (P ), and π̄ is an optimal
solution for (D). More in general, one can stop whenever φ(π̄)−

∑

a∈B(ca − π̄a)x̂a − π̄b (≥ 0)
and ‖

∑

a∈B ax̂a − b‖ are both “small” numbers: this means that x̂ is both almost optimal for
the stabilized problem (Pπ̄,τ ) (with all columns) and almost feasible for (P ), and therefore a
good solution for (P ) if the slight unfeasibilty can be neglected. Otherwise, the new columns
generated using π̂ are added to B. If φ(π̂) is “substantially lower” than φ(π̄), then it is worth
to update the stability center: this is called a Serious Step (SS). Otherwise π̄ is not changed,
and we rely on the columns added to B for producing, at the next iteration, a better tentative
point π̂: this is called a Null Step (NS). In either case the stabilizing term can be changed,
usually in different ways according to the outcome of the iteration. If a SS is performed, then
it may be worth to lessen the penalty for moving far from π̄. Conversely, a NS might be due
to an insufficient stabilization, thereby suggesting to increase the penalty. The algorithm can
be shown to finitely converge to a pair (π̃, x̃) of optimal solutions to (D) and (P ), respectively,
under a number of different hypotheses; the interested reader is referred to [12].

Note that when no convexity constraints are present in (P ), the φ-value is not available and
therefore π̄ can only be updated when the stabilized primal and dual problems are solved to
optimality. In this case the SCG algorithm reduces to a (nonquadratic) version of the Proximal
Point (PP) approach [30, 33] applied to the solution of (D). Indeed, the Bundle-type SCG
algorithm can be seen [12] as a PP approach where the stabilized dual problem (Dπ̄,τ ) is in
turn iteratively solved by CP, with an early termination rule that allows to interrupt the
inner solution process, and therefore update π̄, (much) before having actually solved (Dπ̄,τ )
to optimality. This suggests that adding a redundant convexity constraint to (P ), in order to
have the corresponding dual variable η and therefore the φ-value defined, may be beneficial
to the overall efficiency of the CG approach; this is confirmed by the results in §5.1 and §5.2.

4 Stabilizing functions

The SCG approach is largely independent on the choice of the stabilizing term Dτ : stabilizing
(DB) corresponds to allowing the constraints of (PB) to be violated, but at a cost. Thus, the
actual form of the problem to be solved only depends on D∗

τ (s), allowing for several different
STs to be tested at relatively low cost in the same environment.

A number of alternatives have been proposed in the literature for Dτ or, equivalently, for
the (primal) penalty term D∗

τ . In all cases, Dτ is separable and therefore so is D∗
τ , that is

Dτ (d) =
∑m

i=1 Ψτ [i](di) D∗
τ (s) =

∑m
i=1 Ψ∗

τ [i](si)

where both d = π − π̄ and the slack variables s take values in R
m, and Ψt : R → R ∪ {+∞}

is a family of functions depending on a subvector t of the parameters vector τ .

The boxstep method The boxstep method [26] uses Ψt = I[−t,t], that is, it establishes a
trust region of radius τ around the stability center. In the primal viewpoint this corresponds
to Ψ∗

t = t| · |, i.e., to a linear penalty. Note that the absolute value forces one to split the
vector of slack variables into s = s+− s− with s+ ≥ 0 and s− ≥ 0. Thus, the boxstep method
is a simple modification of (1); however, in this case the cost of the artificial columns need not
be very high, as the iterative process that changes π̄ will eventually drive the dual sequence
to a point where any chosen cost is large enough. On the other hand, since the sign of π̃ − π̄
is unknown, both sides must be penalized. Yet, the boxstep method have shown lackluster
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performances in practice due to a difficult choice of the parameters τ [i] = ti, that is, the cost
of the trippers. The basic observation is that if ti is “small” then one of the corresponding
trippers s±i will be in the primal optimal solution, and therefore π̄ = ±ti; in other words, the
estimate of the (corresponding entry of the) dual optimal solution is only dependent on the
guess ti and owes nothing to the rest of the data of the problem. Conversely, if ti is “large”
then s+

i = s−i = 0 and no stabilization at all is achieved. Thus, typically either ti is too large
and little stabilization is achieved, or ti is too small and very short steps are performed in the
dual space, unduly slowing down convergence.

The dual boxstep method The method of [20] uses Ψ∗
t = I[−1/t,1/t], and therefore Ψ = |·|/t.

Because of nonsmoothness of Dτ at 0, the algorithm requires a large enough penalty to
converge [12]; since the primal penalty is a trust region, its radius has to be shrank in order to
ensure that eventually s will converge to zero. Also, boundedness of the dual master problem
is not granted. This algorithm has never been shown to be efficient in practice, and there is
hardly reason to prefer it to the boxstep method.

The proximal bundle method The proximal bundle method [18, 32] uses τ = [t] (although
scaled variants have sometimes been proposed [3]) and Ψt = 1

2t(·)
2 ⇒ Ψ∗

t = 1
2t(·)2. Therefore,

both the primal and dual master problems are convex quadratic problems with separable
quadratic objective function. Since both Dτ and D∗

τ are smooth at 0, the algorithm will
converge even for vanishing t and using “extreme” aggregation [12]; also, the dual master
problem is always bounded. Bundle methods have proven efficient in several applications, even
directly related to CG approaches, not least due to the availability of specialized algorithms
for solving the master problems [11]; see e.g. [6, 13, 24] for some review.

The linear-quadratic penalty function In [28], the linear-quadratic ST

Ψ∗
t,ε(s) = t

{

s2/ε if s ∈ [−ε, ε]

|s| otherwise
Ψt,ε(d) =

{ ε
4td

2 if d ∈ [−t, t]

+∞ otherwise

is proposed as a smooth approximation of the nonsmooth exact penalty function t| · | for
(PB,π̄,τ ). This can be seen as a modification of the boxstep method where nonsmoothness at
zero of D∗

τ is avoided, keeping all other positive aspects: convergence for vanishing τ , easy
aggregation, boundedness of the dual master problem. However, this smoothing comes at the
cost of a quadratic master problem similar to that of the proximal bundle approach, while,
since ε is assumed to be small, the stabilizing effect should not be too different, qualitatively
speaking, from that of the boxstep approach. It should also be remarked that the approach of
[28] is a pure penalty method, i.e., the concept of stability center is ignored (π̄ = 0 all along)
and convergence is obtained by properly managing t and ε.

kkk-piecewise linear penalty function The advantage of the quadratic ST over the linear
ones can be thought to be that it has “infinitely many different pieces”; this somewhat avoids
the need for a very accurate tuning of the tripper costs in order to attain both stabilization
and a dual solution π̄ that actually takes into account the problem’s data. Clearly, a similar
effect can be obtained by a piecewise-linear function with more than one piece. Reasonable
requirements to any stabilizing function are that the steepest slope must be such as to guar-
antee boundedness of (DB,π̄,τ ) (cf. M in (1)), and that Dτ should be smooth at 0 (that is, D∗

τ
should be strictly convex at zero) so that convergence can be attained even for fixed or van-
ishing τ [12], and a primal optimal solution can be efficiently recovered [5]. A first attempt in
this direction has been made in [10], where a 3-piecewise function is proposed that somewhat
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merges [26] with [20]: a linear stabilization is used, but only outside of a small region where
violation of the constraints is not penalized. However, this may suffer from the same short-
comings of the Boxstep method, in that the penalties must be high to ensure boundedness
(and, more in general, to avoid the same unstable behavior as CG), so only small moves in
the non-penalized region may ultimately be performed, slowing down convergence. All this
suggests to use a 5-piecewise stabilizing function with two sets of penalties: “large” ones to
ensure stability, and “small” ones to allow for significant changes in the dual variables, i.e.,

Ψt(d) =























−(ζ− + ε−)(d + Γ−) − ζ−∆− if d ≤ −(Γ− + ∆−)
−ε−(d − ∆−) if −(Γ− + ∆−) ≤ d ≤ −∆−

0 if −∆− ≤ d ≤ ∆+

+ε+(d − ∆+) if ∆+ ≤ d ≤ (∆+ + Γ+)
+(ε+ + ζ+)(d − Γ+) + ζ+∆+ if (∆+ + Γ+) ≤ d

(4)

whose corresponding 6-piecewise primal penalty is

Ψ∗
t (s) =































+∞ if s < −(ζ− + ε−)
−(Γ− + ∆−)s − Γ−ε− if −(ζ− + ε−) ≤ s ≤ −ε−

−∆−s if −ε− ≤ s ≤ 0
+∆+s if 0 ≤ s ≤ ε+

+(Γ+ + ∆+)s + Γ+ε+ if ε+ ≤ s ≤ (ζ+ + ε+)
+∞ if s > (ζ+ + ε+)

(5)

where t = [ζ±, ε±,Γ±,∆±]. This corresponds to defining s = s−2 + s−1 − s+
1 − s+

2 , with

ζ+ ≥ s+
2 ≥ 0 ε+ ≥ s+

1 ≥ 0 ε− ≥ s−1 ≥ 0 ζ− ≥ s−2 ≥ 0

in the primal master problem, with objective function

(π̄ − ∆− − Γ−)s−2 + (π̄ − ∆−)s−1 − (π̄ + ∆+)s+
1 − (π̄ + ∆+ + Γ+)s+

2 .

Hence, the primal master problem is still a linear program with the same number of constraints
and a linear number of new variables. Clearly, this generalizes both (1) and all previous
piecewise-linear STs; with a proper choice of the constants, (PB,π̄,τ ) can be assumed to always
be feasible. Piecewise-linear STs with more pieces can be used, at the cost of introducing
more slack variables and therefore increasing the size of the master problem. We have found
5-pieces to often offer the best compromise between increased stabilization effect and increased
size of the master problems, as the following paragraphs will show.

5 Practical impact of stabilization

We first report some experiments on large-scale practical problems, aimed at proving that
different forms of stabilization can indeed have a significant positive impact in real-world,
challenging applications. These results have been obtained using a customized version of the
state-of-the-art, commercial GenCol code [9].

5.1 The Multiple-Depot Vehicle Scheduling problem

The Multiple-Depot Vehicle Scheduling problem (MDVS) can be described as follows. A set
of p tasks have to be covered by vehicles, each with a maximum capacity, available at d
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different depots. Vehicles can be seen as following a path (cycle) in a compatibility network,
starting and ending at the same depot. Using a binary variable for each feasible path, of
which there are exponentially many, the problem can be formulated as a very-large-scale
Set Covering (SC) problem with p + d constraints. Due to its large size, MDVS is usually
solved by branch-and-price where linear relaxations are solved by CG [17, 29]; given the set of
multipliers produced by the master problem, columns are generated by solving d shortest path
problems, one for each depot, on the compatibility network. We are interested in stabilizing
the CG process at the root node; the same process, possibly adapted, may then be used for
any other branch-and-price node.

The test problems Test problem sets are generated following the scheme of [7]. The cost
of a route has two components: a fixed cost due to the use of a vehicle and a variable cost
incurred on arcs. The instances, described in Table 2, are the same used in [4]; for each
instance, the number p of tasks, the number d of depots, and the number a (in units of one
million) of arcs of the compatibility network are reported.

Table 2: MDVS: instances’ characteristics

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p 400 400 400 400 800 800 1000 1000 1200 1200
d 4 4 4 4 4 4 5 5 5 4
a 0.21 0.21 0.21 0.20 0.76 0.82 1.30 0.97 1.50 1.10

Initialization All stabilization approaches that are tested use the same initialization proce-
dure; by performing a depot aggregation procedure (see [5] for more details), an instance of
the Single Depot Vehicle Scheduling problem (SDVS) can be constructed which approximates
the MDVS instance at hand. SDVS is a minimum cost flow problem over the compatibility
network, and therefore can be solved in polynomial time. Its primal optimal solution may
be used to compute an initial integer feasible solution for MDVS as well as an upper bound
on the integer optimal value, while the corresponding dual solution is feasible to (D) and
provides a lower bound on the linear relaxation optimal value. This dual point is used as
initial π̄ in the algorithm.

Pure Proximal approach Experiments with a Pure Proximal (PP) approach on these
instances have already been performed in [4]; however, no direct comparison with the use of
a 3-piecewise ST, nor with a Bundle-type approach, was attempted there. Since there are
many possibilities for the parameters’ setting strategy, we used an improved version of the
PP strategy found to be the best in [4]. The ST are kept symmetric and the parameters
∆± are kept fixed to a relatively small value (5). The outer penalty parameters ζ± have
their intial values equal to 1 (the right-hand side of stabilized constraints), which ensures
boundedness of the master problem à-la (1). Since the problem contains no explicit convexity
constraint, Serious Steps are performed only when no positive reduced column is generated,
i.e., optimality of (Pπ̄,τ ) is reached. In this case, the penalty parameters ǫ± and ζ± are reduced
using different multiplying factors α1, α2 ∈]0, 1[. If the newly computed dual point is outside
the outer hyperbox, the outer intervals are enlarged, i.e., Γ±

i is multiplied by a factor β ≥ 1.
Several triplets (α1, α2, β) produced performant algorithms. Primal and dual convergence
is ensured by using full dimensional trust regions that contain 0 in their interior and never
shrink to a single point, i.e., ∆± ≥ ∆ > 0 at any CG iteration. Both a 3-pieces and a 5-pieces
ST are tested; the 3-pieces function is obtained from the 5-pieces one by simply removing the
small penalties.
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Bundle-type approach When fixed costs are sufficiently large, the number of vehicles b̄
obtained by solving the SDVS problem in the initialization phase is the minimum possible
number of vehicles; the instances considered here use a large enough fixed cost to ensure
this property. Thus, a redundant constraint ensuring that at least b̄ vehicles are used can
be safely added to the problem; this is not meant to serve as a cutting plane in the sense
of Branch&Cut methods—indeed, in itself it typically does not impact the master problem
solution—but rather to allow defining a proper objective function φ, and therefore to use
a Bundle-type approach, where the stability center is updated (much) before optimality of
CG applied to the stabilized problem is reached. For the rest, the same parameters strategy
used in the PP case is adopted here. While different strategies may help in improving the
performances of the Bundle-type approach, we found this simple one to be already quite
effective; furthermore, this ensures a fair comparison where the different efficiency of the
different approaches cannot be due to different strategies for updating the τ parameters.

Results Results are given in Table 3 for standard column generation (CG), the pure proximal
approach with 3-pieces and 5-pieces ST (PP-3 and PP-5, respectively), and the Bundle-type
approach (BP). In this table, rows labeled “cpu”, “mp”, and “itr” report respectively the total
and master problem computing times (in seconds) and the number of CG iterations needed
to reach optimality.

Table 3: Computational results for MDVS problems

Pb p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

cpu CG 139.0 176.6 235.4 158.9 3138.1 3966.2 3704.3 1741.5 3685.2 3065.2
PP-3 79.9 83.9 102.5 70.3 1172.5 818.7 1440.2 1143.3 1786.5 2282.8
PP-5 31.3 36.4 37.8 27.8 481.9 334.6 945.7 572.3 1065.2 2037.4
BP 25.5 27.9 34.5 21.4 294.5 257.2 639.4 351.7 545.2 1504.5

itr CG 117 149 200 165 408 524 296 186 246 247
PP-3 82 92 104 75 181 129 134 145 144 189
PP-5 47 47 49 45 93 64 98 83 86 150
BP 37 43 44 36 57 53 59 49 51 101

mp CG 88.4 124.5 164.8 104.8 1679.4 2003.7 1954.6 924.8 1984.2 1742.6
PP-3 44.0 46.6 59.6 42.0 571.5 399.4 740.4 542.5 858.3 1350.5
PP-5 12.9 16.3 16.6 9.8 188.8 128.2 428.2 256.5 541.9 1326.0
BP 9.9 13.7 14.9 10.1 100.2 70.0 329.3 206.3 334.2 982.5

Analyzing the results leads to the following conclusions:

• all stabilized approaches are substantially better that the standard CG, in terms of
computation time, on all problems; this is mainly due to the reduction of the number
of iterations, a clear sign that stabilization do actually improve the convergence of the
dual iterates;

• both PP algorithms improve standard CG substantially; however, PP-5 clearly outper-
forms PP-3 on all aspects, especially total computing time and iterations number, while
in turn being outperformed by BP;

• the improvement is more uniform among PP-5 and BP for small size problems, but as
the size grows BP becomes better and better; this is probably due to the fact that for
larger problems the initial dual solution is worse, and the good performances of PP are
more dependent on the availability of a very good initial dual estimate to diminish the
total number of (costly) updates of π̄, while the cost for updating π̄ is substantially less
for BP;



12 G–2007–109 – Revised Les Cahiers du GERAD

• BP has a slightly higher average master problem computation time per iteration than
PP, especially for larger instances; this may be explained by higher master problem
reoptimization costs due to a larger number of Serious Steps.

Thus, the larger size of the master problem associated to a 5-pieces ST does not increase
too much the master problem cost, at least not enough to vanish the effect of the better
stabilization achieved w.r.t. 3-pieces only. Yet, a 5-pieces ST is clearly more costly than a
3-pieces one. A possible remedy, when m is too large, is to penalize only a subset of the
rows, i.e., to only partially stabilize the dual vector π. Identifying the “most important” dual
variables, such as those with largest multiplier, or those whose multiplier varies more wildly,
can help in choosing an adequate subset of rows to be penalized. Alternatively, one may
choose the number of pieces dynamically, and independently, for each dual variable. In fact,
at advanced stages of the process many dual components are near to their optimal value; in
such a situation, the outer segments of the ST are not needed, and the corresponding variables
may be eliminated from the primal master problem. By doing so, in the last stages of the
solution process one should have a 3-pieces function that allows small number of stabilization
variables and ensures primal feasibility. We have experimented with this 5-then-3 strategy,
and although we don’t report full results for space reasons, these seem to be able to further
improve the performances of the SCG approach by about 10%–20%, although the improvement
is larger for smaller instances, and tends to diminish as the size of the instance grows.

5.2 The Vehicle and Crew Scheduling problem

The simultaneous Vehicle and Crew Scheduling problem (VCS), described in [16], requires
to simultaneously optimally design trips for vehicles (buses, airplanes, . . . ), which cover a
given set of work segments, and the duties of the personnel required to operate the vehicles
(drivers, pilots, cabin crews, . . . ). This problem can be formulated, similarly to MDVS, as a
very-large-scale SC problem where each column is associated to a proper path in a suitably
defined network.

However, the need of expressing the time at which events take place, in order to synchronize
vehicles and crews, makes the separation subproblem much more difficult to solve than in the
MDVS case; when formulated as a Constrained Shortest Path (CSP) problem using up to 7
resources, its solution can be very expensive, especially for the last CG iterations, because
some resources are negatively correlated. The solution time for the subproblem can be reduced
by solving it heuristically, using an idea of [14]. Instead of building a unique network in which
CSPs with many resources need to be solved, hundreds different subnetworks, one for each
possible departure time, are built. This allows to take into account several constraints that
would ordinarily be modeled by resources while building the subnetworks. Of course, solving
a (albeit simpler) CSP problem for each subnetwork would still be very expensive; therefore,
only a small subset, between 10 and 20, of subnetworks are solved at each CG iteration. The
subproblem cost thus becomes much cheaper, except when optimality has to be proved, and
therefore all the subnetworks have to be solved. It must be remarked at this point that,
because not all the subproblems are solved at every CG iteration, the actual value of φ is not
known, and therefore the standard descent rule of Bundle methods cannot be directly used.
In our implementation we simply moved the stability center whenever the decrease for the
evaluated components alone was significant; a theoretical study of conditions guaranteeing
convergence of CG approaches with partial solution of the separation problem can be found
in [25].
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The test problems We use a set of 7 instances taken from a real-world urban bus scheduling
problem. They are named pm, where m is the total number of covering constraints in the
master problem. Their characteristics are presented in Table 4, where p, k, |N | and |A| are re-
spectively the total number of constraints in the master problem, the number of subnetworks,
and the size (number of nodes and arcs) of each subnetwork.

Table 4: VCS: instances’ characteristics

p199 p204 p206 p262 p315 p344 p463

p 1096 1123 1134 1442 1734 1893 2547
k 822 919 835 973 1039 1090 1238
|N | 1528 1577 1569 1908 2180 2335 2887
|A| 3653 3839 3861 4980 6492 7210 9965

The algorithms We tested different stabilized CG approaches for the VCS problem. Some-
what surprisingly, a PP stabilized CG approach turned out to be worse than the non-stabilized
CG. This is due to the fact that a PP stabilized algorithm needs to optimally solve the subprob-
lem many times, each time that optimality of the stabilized problem has to be proved. Thus,
even if the CG iterations number is reduced by the stabilization, the subproblem computing
time, and hence the total computing time, increases. Even providing very close estimates
of dual optimal variables is not enough to make the PP approach competitive. Instead, a
Bundle-type approach, that does not need to optimally solve the stabilized problem except
at the very end, was found to be competitive.

For implementing the Bundle-type approach, an artificial convexity constraint was added
to the formulation, using a straightforward upper bound on the optimal number of duties. As
for the MDVS case, after a Serious Step the stabilizing term is decreased using proper simple
rules, while after a Null Step the stabilizing term is kept unchanged. Note that since each
dual variable must be in [−1, 1], this property is preserved while updating the stability center.

Results Results of the experiments on VCS are given in Table 5. The meaning of the rows
in this Table is the same as in Table 3, except that running times are in minutes.

Table 5: Computational results for VCS

p199 p204 p206 p262 p315 p344 p463

cpu CG 26 26 30 68 142 238 662
BP 12 13 14 40 73 163 511

itr CG 167 129 245 263 239 303 382
BP 116 119 173 160 213 201 333

mp CG 13 9 14 35 43 90 273
BP 3 3 4 7 19 20 93

The results show that, as expected, stabilization reduces the number of CG iterations. Also,
the use of a Bundle-type approach, as opposed to a PP one, allows this reduction in iteration
time to directly translate into a reduction of the total computing time. This happens even if
the subproblem computing time is increased, as it is the case for the largest problem p463,
for which CG requires 662 − 273 = 389 minutes, while BP requires 511 − 93 = 418 minutes.
Thus, the Bundle-type approach once again proves to be the best performing stabilization
procedure among those tested in this paper.
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6 Assessing the impact of stabilizing term choices

We now present a computational study aimed at more precisely assessing the impact of the
different choices in the ST (shape of the function, parameters), and their relationships with
the quality of the initial dual estimates, on the overall effectiveness of the SCG approach.
The SCG algorithm uses a Bundle-type approach where the ST is symmetrical, as in previous
sections. To avoid any artifact due to the dynamic updating of the ST parameters, the ST
is kept unchanged both for Null and Serious steps. Updating π̄ is done whenever no columns
are generated or 10−4 relative improvement of lower bound value occurs.

Instances For our study we have selected one “easy” and two “difficult” classes of instances.
The easy ones are the MDVS instances described in §5.1; for these, optimization is stopped
whenever a relative gap ≤ 10−7 is reached, or the maximum number of 700 CG iterations is
reached. The first group of difficult instances is the Long-Horizon Multiple-Depot Scheduling
(LH-MDVS) benchmark used in [1]. These are randomly generated MDVS instances where
the horizon is extended from one day up to a whole week; as a consequence the routes are
longer, and the columns in an optimal solution have many ones, which may make the CG
process very inefficient [1]. 14 instances are considered, 2 for each horizon length from 1 to 7
days; for the results they are arranged into three groups, “lh1” (4 instances) with horizons 1
and 2 days, “lh2” (6 instances) with horizons 3, 4, and 5 days, and “lh3” (4 instances) with
horizons 6 and 7 days. For these, optimization is stopped whenever a relative gap ≤ 10−4

or the maximum number of 1500 CG iterations is reached. Finally, we examine Urban Bus
Scheduling (UBS) instances [7]. These are randomly generated in the same way as MDVS
instances with one additional resource constraint that need to be satisfied by routes, which
makes them more difficult to solve than ordinary MDVS instances, albeit less than LH-MDVS
ones. We consider two instances for each number of tasks in {500, 700, 1000, 1200, 1500, 2000};
they are denoted “unsi”, where n is the number of tasks (divided by 100) and i is the seed
number used to initialize the random number generator. The same stopping criteria as for
LH-MDVS are used.

Stabilizing terms For our experiments, we compared quadratic STs (the Proximal Bundle
method) and piecewise-linear STs with, respectively, one piece (Boxstep), three pieces [10]
and five pieces [4]. A particular effort has been made to compare different functions with
analogous setting of the parameters, in order to be able to separate the role of the “shape”
of the function from that of the parameters defining its “steepness”. Thus, the ST have been
constructed as follows:

• The quadratic ST (Q) only depends on one single parameter t. We defined five possible
values for t, of the form t = 10j for j ∈ T = {7, 5, 3, 2, 1}.

• Similarly, the Boxstep ST (1P) only depends on the single parameter ∆. We defined the
five possible values {1000, 500, 100, 10, 1} for ∆. Note that t and ∆ have qualitatively
the same behavior: the larger they are, the “less stabilized” the dual iterates are.

• The 3-pieces linear ST (3P) is built using the values of ∆ as interval widths, and com-
puting the slope parameter ε so that the ST is tangent to the corresponding quadratic
ST; the values of t, ∆, and ε therefore satisfy tε = 2∆.

• Finally, 5-pieces linear ST (5P) are built from the 3-pieces ones as follows. For each
value of (∆, ε), the interval (right or left) is split into two sub-intervals with equal width
∆/2. The slope parameters are computed in a unique way: if ε > 1.0 for the 3-pieces
ST, then the outer slope parameter takes value 1.0 (actually the absolute value of the
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right-hand side bi) and the inner slope parameter takes value (ε − 1.0), otherwise both
slopes take the value ε/2.

Thus, there are 5 Q algorithms, 5 1P algorithms, and as much as 25 3P and 5P algorithms.
However, not all pairs of parameters actually make sense, as several combinations lead to
values of ε that are either “too small” or “too large”. This is described in Table 6, where:

• cases where ε < 10−5 are marked with “(∗)”, and are dropped due to possible numerical
problems;

• cases where ε < 2 · 10−3 are marked with “(◦)”, and are dropped, too, since the tests
showed that for those values the behaviour of the corresponding SCG algorithm is very
close to the behaviour of the standard CG algoritm;

• for every ∆ with several ε ≥ 1.0 (marked with “(2)”), we consider only one with ε = 1.1,
since all right-hand sides of constraints to be stabilized are equal to 1.

Table 6: Quadratic-Linear correspondance

∆\t 107 105 103 102 10

1000 2 · 10−4 (◦) 2 · 10−2 2 (2) 20 (2) 2 · 102 (2)
500 10−4 (◦) 10−2 1 (2) 10 (2) 102 (2)
100 2 · 10−5 (◦) 2 · 10−3 2 · 10−1 2 (2) 20 (2)
10 2 · 10−6 (∗) 2 · 10−4 (◦) 2 · 10−2 2 · 10−1 2 (2)
1 2 · 10−7 (∗) 2 · 10−5 (◦) 2 · 10−3 2 · 10−2 2 · 10−1

Initial dual points In order to test the effect of the availability of good dual information
on the performances of the SCG algorithm, we also generated, starting from the known dual
optimal solution π̃, perturbed dual information, to be used as the starting point, as follows:

• α-points: the initial points have the form απ̃ for α ∈ {0.9, 0.75, 0.5, 0.25, 0.0}, i.e., are
a convex combination between the optimal dual solution π̃ and the all-0 dual solution
(which is feasible) that is typically used when no dual information is available.

• Random points: the initial points are chosen uniformly at random in a hyper-cube
centered at π̃, and so that their distance in the ‖.‖∞ norm from π̃ is comprised into a
given interval [δ1, δ2] for the three possible choices of (δ1, δ2) in {(0, 0.5), (0, 1), (0.5, 1)}.

Note that α-points are likely to be better dual information than random points, since they
are collinear to the true optimal dual solution π̃.

6.1 MDVS: using initial dual α-points

First we consider the results obtained using initial dual α-points for different values of α.
Table 7 compares k-pieces linear STs among them. Each tested variant corresponds to a
column, whose headers indicate the shape of the ST (1P, 3P, or 5P) and the values of ∆ and
t (where applicable). This table is divided in two parts:

• the topmost part reports results for each of the MDVS instances averaged w.r.t. the five
possible values of α; for each algorithm, both the mean and the standard deviation of
the total number of CG iterations needed to reach optimality is reported;

• the bottom part of the table reports results for each of the five possible values of α
averaged w.r.t. the 10 possible MDVS instances; for each algorithm, the mean of the
total number of CG iterations needed to reach optimality is reported.
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This table is arranged for decreasing values of ∆, i.e., for increasing strength of the stabi-
lizing term; for each value, all k-pieces STs are compared, with different values of t where
applicable, with again t ordered in decreasing sense. Thus, roughly speaking, the penalties
become stronger going from left to right: the leftmost part of this table corresponds to “weak”
penalties and the rightmost part corresponds to “strong” penalties.

Table 7 contains a wealth of information, that can be summarized as follows:

• Already weak penalties produce significantly better results than standard CG; this prob-
ably means that the large interval value (∆ = 1000) is not actually that large, consid-
ering that the penalty becomes +∞ outside the box.

• Initially, the performances improve when ∆ decreases, and is best for medium stabiliza-
tions; however, when ∆ further decreases the performances degrade, ultimately becom-
ing (much worse) than these of standard CG, meaning that too strong a stabilization
forces too many steps to be performed.

• Something similar happens for t: for good values of ∆, a larger t (for 3P and 5P) is
typically worse than a smaller one. For ∆ = 10, where three different values of t are
available, the middle value is the best, indicating again that a good compromise value
has to be found.

• Boxstep (1P) profits more from good initial dual points, achieving the overall best
performance for α = 0.9 and ∆ = 100; however its performance is strongly dependent
on α, and quickly degrades as the initial point get worse. Indeed, 3P and especially
5P are much more robust: the standard deviation is usually much smaller. This is
not always true, in particular for strong penalties where 1P behaves very badly, which
means that it consistently behaves so; indeed, 3P and 5P are much less affected by the
parameters values being extremal, i.e. too weak or too strong.

• With only one exception (p5 for ∆ = 100), for each value of ∆ there is one value of t such
that either 3P or 5P outperforms 1P. Most of the time 5P gives the best performance,
and indeed it is the overall fastest algorithm for all values of α except the extreme ones.
The improvement of 5P over 3P is somewhat smaller than that seen in §5; this is likely
to be due to our “artificial” choice of the constants, intended to mimic the quadratic
penalty rather than to be suited to the instances at hand, indicating that the extra
flexibility of 5P requires some effort to be completely exploited.

Table 8 compares in a similar fashion the k-pieces ST and the quadratic one; we focus on
the values of ∆ which provide the best results, hence some of the worst performing cases of
the linear STs are eliminated to allow for better readability. This table is organized similarly
to Table 7, except that algorithms are grouped for t first and for ∆ second, both ordered
in decreasing sense; this allows to better compare Q with the piecewise-linear functions with
similar shape, while keeping the same qualitative ordering of penalties.

The results in Table 8 can be commented as follows:

• For weak penalties (t = 107, t = 105), 1P performs better than Q that is in turn better
than 3P and 5P; weak Q is probably too weak, and the infinite slope of 1P is the most
important factor for its relatively good performances. 3P and 5P are weaker than Q
since they underestimate it.

• As t decreases, Q becomes better than 1P, and initially it outperforms 3P and 5P;
however, while Q becomes more and more competitive w.r.t. 1P as α decreases (the
quality of the initial dual point worsens), so do 3P and 5P w.r.t. Q, and for low-quality
initial points they become better than Q.
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Table 7: Comparing linear STs using α−initial dual points

∆ 1000 500 100 10 1

alg CG 1P 3P 5P 1P 3P 5P 1P 3P 5P 1P 3P 5P 1P 3P 5P

t 105 103 105 103 105 103 105 103 103 102 103 102 103 102 10 103 102 10 102 10 102 10

p1 avg 134 85 110 79 110 72 80 118 72 120 65 122 74 58 75 58 408 115 73 110 113 73 111 255 123 96 126 97

dev 0.08 0.07 0.06 0.02 0.03 0.13 0.09 0.02 0.1 0.07 0.45 0.04 0.06 0.04 0.13 0.45 0.05 0.06 0.13 0.07 0.04 0.05 0.36 0.04 0.03 0.02 0.04

p2 avg 151 92 117 92 114 84 84 115 83 111 77 119 84 81 80 83 387 118 88 130 112 104 145 306 133 110 126 107

dev 0.08 0.05 0.03 0.04 0.04 0.11 0.03 0.04 0.04 0.17 0.49 0.05 0.19 0.05 0.12 0.39 0.04 0.17 0.14 0.09 0.04 0.12 0.36 0.02 0.08 0.04 0.07

p3 avg 183 117 162 114 161 99 109 163 96 158 89 129 103 80 94 81 473 156 97 122 150 106 150 442 168 122 166 125

dev 0.08 0.04 0.08 0.03 0.05 0.11 0.05 0.04 0.03 0.04 0.47 0.04 0.05 0.03 0.23 0.44 0.04 0.05 0.17 0.02 0.06 0.09 0.41 0.02 0.03 0.03 0.05

p4 avg 137 83 124 83 115 80 79 123 76 120 76 115 81 75 78 74 396 122 79 99 128 81 111 271 131 101 127 100

dev 0.05 0.07 0.07 0.04 0.04 0.17 0.05 0.08 0.04 0.16 0.45 0.06 0.13 0.05 0.13 0.38 0.03 0.03 0.13 0.05 0.05 0.06 0.36 0.05 0.07 0.05 0.04

p5 avg 592 343 481 256 468 222 260 498 223 493 194 200 274 241 278 279 544 474 346 388 475 332 406 620 481 336 489 335

dev 0.07 0.04 0.05 0.05 0.05 0.03 0.03 0.04 0.05 0.08 0.35 0.13 0.32 0.09 0.36 0.36 0.04 0.17 0.2 0.06 0.16 0.17 0.29 0.05 0.16 0.01 0.14

p6 avg 505 195 394 177 384 150 158 423 149 422 126 151 177 125 181 121 556 368 192 205 369 194 239 599 386 203 377 205

dev 0.04 0.02 0.06 0.02 0.05 0.08 0.03 0.07 0.05 0.07 0.33 0.08 0.19 0.11 0.2 0.37 0.02 0.03 0.29 0.06 0.03 0.17 0.38 0.03 0.05 0.04 0.04

p7 avg 287 152 271 125 275 110 125 284 110 281 107 181 164 141 160 159 554 289 185 244 275 183 286 601 286 204 282 193

dev 0.09 0.04 0.06 0.04 0.05 0.11 0.04 0.04 0.03 0.17 0.49 0.17 0.35 0.15 0.4 0.38 0.08 0.04 0.09 0.08 0.06 0.11 0.36 0.11 0.08 0.11 0.03

p8 avg 192 126 172 108 178 96 107 190 97 187 94 184 139 115 142 118 466 183 150 174 181 152 179 508 189 156 188 154

dev 0.09 0.05 0.06 0.04 0.08 0.12 0.08 0.06 0.06 0.14 0.54 0.21 0.28 0.16 0.27 0.44 0.08 0.09 0.21 0.1 0.1 0.2 0.25 0.04 0.07 0.06 0.12

p9 avg 258 161 224 127 215 109 140 225 110 223 101 179 130 140 130 170 505 222 178 235 219 179 233 531 242 178 232 183

dev 0.09 0.07 0.04 0.05 0.04 0.14 0.08 0.03 0.04 0.12 0.57 0.1 0.32 0.11 0.37 0.46 0.11 0.13 0.25 0.06 0.13 0.28 0.03 0.07 0.14 0.04 0.12

p10 avg 298 214 244 144 238 120 177 242 128 257 120 254 146 163 147 207 566 232 160 302 231 151 329 655 244 176 246 176

dev 0.21 0.1 0.04 0.02 0.06 0.19 0.05 0.02 0.06 0.14 0.61 0.07 0.36 0.05 0.31 0.35 0.13 0.11 0.14 0.08 0.11 0.16 0.04 0.13 0.06 0.05 0.03

α

0.9 avg 274 139 227 133 226 113 112 236 113 238 91 68 122 84 119 83 214 218 139 155 215 139 179 541 231 155 235 156

0.75 avg 274 157 228 130 224 109 130 236 111 236 99 100 128 100 132 112 380 221 148 187 222 147 205 305 237 160 231 161

0.5 avg 274 167 231 126 225 115 132 240 115 232 105 174 137 125 141 149 561 225 154 217 230 163 223 516 239 167 232 168

0.25 avg 274 161 227 131 225 118 142 237 116 240 109 229 144 147 146 161 650 230 160 215 228 166 240 518 237 175 238 171

0 avg 274 159 236 133 230 117 145 242 118 240 120 247 155 155 146 170 623 245 173 232 233 163 248 514 248 185 245 181
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Table 8: Comparing quadratic vs linear ST using α−initial dual points

t 107 105 103 102 10

alg CG 1P Q 1P 3P 5P Q 1P 3P 5P Q 1P 3P 5P Q 1P 3P 5P Q

∆ 1000 500 1000 1000 100 1000 500 100 1000 500 100 10 100 10 100 10 1 10 1 10 1

p1 avg 134 85 100 80 110 110 88 122 79 72 74 72 65 75 63 408 58 73 58 73 188 255 110 96 111 97 423

dev 0.08 0.06 0.13 0.07 0.02 0.04 0.45 0.06 0.02 0.04 0.03 0.07 0.04 0.22 0.45 0.06 0.06 0.13 0.04 0.18 0.36 0.13 0.03 0.05 0.04 0.46

p2 avg 151 92 112 84 117 114 103 119 92 83 84 84 77 80 86 387 81 88 83 104 243 306 130 110 145 107 385

dev 0.08 0.03 0.11 0.05 0.04 0.02 0.49 0.03 0.04 0.05 0.04 0.17 0.05 0.07 0.39 0.19 0.17 0.12 0.04 0.36 0.36 0.14 0.08 0.12 0.07 0.34

p3 avg 183 117 146 109 162 161 125 129 114 96 103 99 89 94 103 473 80 97 81 106 261 442 122 122 150 125 494

dev 0.08 0.08 0.11 0.04 0.03 0.03 0.47 0.08 0.04 0.04 0.05 0.04 0.03 0.38 0.44 0.05 0.05 0.23 0.06 0.39 0.41 0.17 0.03 0.09 0.05 0.37

p4 avg 137 83 115 79 124 115 98 115 83 76 81 80 76 78 73 396 75 79 74 81 235 271 99 101 111 100 499

dev 0.05 0.06 0.17 0.07 0.04 0.03 0.45 0.07 0.08 0.06 0.04 0.16 0.05 0.37 0.38 0.13 0.03 0.13 0.05 0.43 0.36 0.13 0.07 0.06 0.04 0.37

p5 avg 592 343 422 260 481 468 288 200 256 223 274 222 194 278 213 544 241 346 279 332 336 620 388 336 406 335 583

dev 0.07 0.04 0.03 0.04 0.05 0.03 0.35 0.05 0.04 0.13 0.05 0.08 0.09 0.3 0.36 0.32 0.17 0.36 0.16 0.37 0.29 0.2 0.16 0.17 0.14 0.29

p6 avg 505 195 318 158 394 384 199 151 177 149 177 150 126 181 109 556 125 192 121 194 300 599 205 203 239 205 610

dev 0.04 0.05 0.08 0.02 0.02 0.01 0.33 0.06 0.07 0.08 0.05 0.07 0.11 0.06 0.37 0.19 0.03 0.2 0.03 0.41 0.38 0.29 0.05 0.17 0.04 0.23

p7 avg 287 152 223 125 271 275 155 181 125 110 164 110 107 160 118 554 141 185 159 183 316 601 244 204 286 193 568

dev 0.09 0.04 0.11 0.04 0.04 0.03 0.49 0.06 0.04 0.17 0.05 0.17 0.15 0.12 0.38 0.35 0.04 0.4 0.06 0.44 0.36 0.09 0.08 0.11 0.03 0.32

p8 avg 192 126 162 107 172 178 126 184 108 97 139 96 94 142 112 466 115 150 118 152 212 508 174 156 179 154 513

dev 0.09 0.03 0.12 0.05 0.04 0.02 0.54 0.06 0.06 0.21 0.08 0.14 0.16 0.27 0.44 0.28 0.09 0.27 0.1 0.43 0.25 0.21 0.07 0.2 0.12 0.4

p9 avg 258 161 213 140 224 215 152 179 127 110 130 109 101 130 132 505 140 178 170 179 263 531 235 178 233 183 539

dev 0.09 0.07 0.14 0.07 0.05 0.03 0.57 0.04 0.03 0.1 0.04 0.12 0.11 0.19 0.46 0.32 0.13 0.37 0.13 0.45 0.03 0.25 0.14 0.28 0.12 0.38

p10 avg 298 214 204 177 244 238 148 254 144 128 146 120 120 147 153 566 163 160 207 151 339 655 302 176 329 176 594

dev 0.21 0.05 0.19 0.1 0.02 0.02 0.61 0.04 0.02 0.07 0.06 0.14 0.05 0.47 0.35 0.36 0.11 0.31 0.11 0.39 0.04 0.14 0.06 0.16 0.03 0.28

α

0.9 avg 274 139 200 112 227 226 149 68 133 113 122 113 91 119 84 214 84 139 83 139 134 541 155 155 179 156 269

0.75 avg 274 157 200 130 228 224 148 100 130 111 128 109 99 132 94 380 100 148 112 147 199 305 187 160 205 161 431

0.5 avg 274 167 203 132 231 225 147 174 126 115 137 115 105 141 114 561 125 154 149 163 286 516 217 167 223 168 585

0.25 avg 274 161 202 142 227 225 149 229 131 116 144 118 109 146 139 650 147 160 161 166 338 518 215 175 240 171 662

0.0 avg 274 159 203 145 236 230 149 247 133 118 155 117 120 146 151 623 155 173 170 163 390 514 232 185 248 181 658
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• As t further decreases in the strong range, 3P and 5P become better than Q (for selected
values of ∆); again, a worse quality of the initial point has much less of an impact on
3P and 5P than on Q, as testified by the standard deviation values.

Thus, the 3- and 5-pieces linear STs offer more robustness and good performances in most
cases. Quadratic STs produce acceptable, sometimes very good, improvement if t is neither
too large nor too small, and they seem somewhat more capable of exploiting the availability of
a good initial dual point. For very good initial dual points, 1P with a carefully selected value
of ∆ provides the best performances; however this choice is the least robust, and Q is clearly
a much less risky choice if one does not want to handle multiple stabilization parameters.
One final observation is that the good behaviour of 1P with large α is likely to be due to the
fact that the initial dual point has the same structure as an optimal one, since the all-zero
dual solution is feasible in our case (the same situation postulated in [25]); results may be
less favorable to 1P, and perhaps to Q, too, if this is not the case.

6.2 MDVS: using randomly generated initial dual points

We now turn to randomly generated initial dual solutions; since these are somewhat more
difficult to solve, we only require a relative gap of 10−4 to be reached. Table 9 reports the
results obtained using randomly generated initial dual points; each column reports averaged
results (number of iterations required to reach optimality) for a group of instances, “md1”
being those with 400 tasks, “md2” being those with 800 tasks, and “md3” being the remaining
ones with 1000 or 1200 tasks. This table is arranged similarly to Tables 7 and 8, except for
being transposed; thus, penalties become stronger going from the top to the bottom of the
table.

The results in Table 9 confirm the importance of a properly structured initial point for
1P, as its performances are substantially worse than these obtained using α-points. Q now
shows much better performances than 1P almost everywhere, except for very strong penalties;
furthermore, it attains the best performances in some cases ((δ1, δ2) = (0.0, 0.5)). However,
in all other cases the 3-pieces and especially the 5-pieces ST, with a proper choice of the
parameters, are more efficient than Q; besides, the latter is sometimes considerably more
affected by the choice of the initial points, whereas 3P and 5P are most often largely insensitive
to this. Thus, k-pieces linear ST seem capable to offer both performances and robustness
without requiring initial dual points with specific structure or high quality.

6.3 LH-MDVS: using randomly generated initial dual points

We now report on the same experiments of the previous section on the much more difficult
LH-MDVS instances; indeed, the maximum of 1500 iterations allowed to SCG approaches
is far less than the maximum number of iterations needed by standard CG. The results are
presented in Table 10, that has the same structure as Table 9; only, since not all instances are
solved to the prescribed accuracy within the allotted iteration limit, a further column “slv”
is added which reports the total number of instances, across the three groups, for which the
algorithms did actually stop for having reached a gap less than 10−4.

The results mostly mirror those previously shown. With no choice of ∆ the boxstep (1P)
solves all instances of a group within 1500 iterations (cf. column “slv”); only occasionally
it even solves more instances than CG. 3P encountered more difficulties with these more
challenging instances, but still did much better than standard CG in all cases, and performed
very well in more than half of the cases. For these instances 5P performed significantly better



20 G–2007–109 – Revised Les Cahiers du GERAD

Table 9: MDVS: using randomly generated initial dual points

δ1—δ2 0.0—0.5 0.0—1.0 0.5—1.0

t alg ∆ md1 md2 md3 md1 md2 md3 md1 md2 md3

CG 151 549 259 151 549 259 151 549 259

107 1P 1000 632 700 700 611 700 700 529 600 514
Q 115 367 207 114 376 198 114 361 200

105 1P 500 414 527 543 520 421 393 550 627 345

3P 500 126 447 222 131 434 226 126 437 221

5P 500 127 437 218 125 434 225 122 440 230

Q 101 240 144 101 246 145 104 259 143

103 1P 1e2 212 255 176 331 274 285 293 337 261

3P 1000 96 232 123 94 216 121 94 221 121
500 83 189 103 85 182 107 80 185 107
100 85 203 130 85 201 123 85 206 132

5P 1000 84 181 107 87 182 109 84 184 110
500 74 156 99 74 155 97 74 156 95
100 82 193 130 86 199 137 84 203 139

Q 54 118 71 87 157 111 111 141 113

102 1P 1e1 300 464 468 312 471 503 300 517 544

3P 100 63 129 92 71 137 94 65 147 93
10 80 211 142 82 207 138 82 221 146

5P 100 58 122 97 72 123 94 60 136 97
10 79 203 140 82 218 149 86 215 155

Q 184 190 193 369 386 447 352 396 468

10 1P 1 320 651 509 363 683 487 294 700 508

3P 10 96 226 198 118 213 174 97 213 192
1 91 221 160 89 224 161 88 237 167

5P 10 122 364 214 117 256 190 117 254 202
1 92 235 156 84 225 163 92 248 161

Q 456 673 618 531 700 675 491 700 688

than 3P across the board, much more evidently so than in the easier MDVS cases. However,
the best performing ST for LH-MDVS, basically always attaining the best results (for carefully
chosen t) is Q, except for the case of too strong penalty function where 5P and 3P significantly
outperformed it.

6.4 UBS: relative gap evolution

Finally, we report results for the UBS instances; these have also been obtained with randomly
generated initial dual points, with (δ1, δ2) = (0.0, 1.0). In Table 11 we first report detailed
results for all 12 instances; this table is organized exactly as Table 9.

The results in Table 11 basically confirm those previously seen: 1P is not significantly
more (and often much less) efficient than standard CG, 3P and 5P significantly outperform
1P, with 5P most often being preferable to 3P, Q is most often a good choice, even superior to
5P, except for high penalty values. There seem to be some relationship between the difficulty
of the instances and the trends seen in the results: UBS are more difficult than MDVS but
easier than LH-MDVS, and this seems to impact in a predictable way on the relative behavior
of the different STs. In particular, 5P is discernibly better than 3P, less in LH-MDVS but
more in MDVS. Similarly, Q appears to often be the better choice, less than in the more
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Table 10: LH-MDVS: using randomly generated initial dual points

δ1—δ2 0.0—0.5 0.0—1.0 0.5—1.0

t alg ∆ lh1 lh2 lh3 slv lh1 lh2 lh3 slv lh1 lh2 lh3 slv

CG 629 1866 3588 6 629 1866 3588 6 629 1866 3588 6

107 1P 1000 1500 1500 1500 0 1500 1500 1500 0 1500 1500 1500 0

Q 448 1283 1500 9 446 1247 1500 8 458 1249 1500 9

105 1P 500 1208 1500 1500 1 1500 1500 1500 0 1224 1500 1500 1

3P 500 494 1265 1500 8 494 1283 1500 8 510 1306 1500 8

5P 500 483 1231 1484 9 483 1251 1486 9 489 1227 1498 9

Q 331 880 1314 12 343 882 1316 12 330 878 1331 12

103 1P 100 624 1500 1500 4 476 1374 1500 7 452 1382 1500 8

3P 1000 370 1443 1500 6 384 1394 1500 7 382 1442 1500 6
500 298 1161 1500 9 314 1186 1487 9 315 1183 1500 8
100 245 651 1155 13 249 696 1189 13 258 688 1209 13

5P 1000 298 1203 1484 9 293 1172 1450 9 314 1166 1473 10
500 240 882 1377 11 246 900 1362 11 253 885 1347 11
100 233 528 867 14 244 559 948 14 239 566 931 14

Q 136 283 396 14 155 323 457 14 152 317 460 14

102 1P 10 505 1284 1500 8 611 1484 1500 5 546 1435 1500 5

3P 100 191 578 1085 13 199 755 915 10 200 626 1131 13
10 216 418 573 14 222 469 717 14 226 466 713 14

5P 100 164 436 793 14 170 519 822 14 175 481 797 14
10 217 396 518 14 220 447 685 14 225 444 641 14

Q 282 293 676 14 617 864 1249 10 608 777 1362 12

10 1P 1 969 1500 1500 4 1133 1500 1500 2 1106 1500 1500 3

3P 10 205 308 448 14 248 571 610 14 232 575 540 14
1 224 434 526 14 247 529 757 14 297 501 702 14

5P 10 234 303 614 14 270 636 651 14 250 618 491 14
1 249 442 532 14 257 608 880 14 263 485 682 14

Q 838 1486 1500 5 1233 1500 1500 2 1163 1500 1500 3

difficult LH-MDVS instances but more than in the easier MDVS instances. All this seems to
indicate that, at least on this test bed, smoother ST tend to be more and more efficient as the
difficulty of the instance grows; while 1P can be very efficient on the easy MDVS instances
with a very good initial dual point, Q is definitely the best choice on the very difficult LH-
MDVS instances with random initial point, and 3P and 5P seems to fall in the middle. This
does not contradict the results in [6], while painting a richer and possibly more interesting
picture. It is worth reminding again that all this holds for a very “rigid” setting, i.e., no
on-line tuning of the steepness of the ST and a fixed choice of the intermediate parameters
in 5P, which in our opinion is more likely to damage the latter than Q, which has infinitely
many slopes. However, the results seem to indicate that more flexible ST, like 5P and Q, may
definitely have a role in building efficient SCG approaches for very difficult instances.

We finish our analysis by presenting, in Table 12, results depicting the evolution of the
relative gap w.r.t the number of iterations. Three groups of UBS instances were formed:
“ubs1” contains instances with 500 and 700 tasks, “ubs2” contains instances with 1000 and
1200 tasks, and “ubs3” contains instances with 1500 and 2000 tasks. For each group, the four
gap values 10−1, 10−2, 10−3, and 10−4 were considered; in Table 12, for each group and ST
the average numbers of CG iterations needed to decrease the gap starting from the previous
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Table 11: Detailed results for UBS instances

t alg ∆ u5s0 u5s1 u7s0 u7s1 u10s0 u10s1 u12s0 u12s1 u15s0 u15s1 u20s0 u20s1

CG 106 132 158 169 321 300 371 506 858 785 1004 989

107 1P 1000 1500 285 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500

Q 98 97 143 152 331 304 361 471 681 694 871 1105

105 1P 500 1373 209 1500 1020 1500 1500 1500 1500 1500 664 231 729

3P 500 99 125 169 181 458 321 394 590 944 1012 1251 1375

5P 500 111 113 164 193 404 362 441 602 920 816 1230 1490

Q 81 92 111 110 188 166 206 220 339 271 298 357

103 1P 100 336 167 350 328 675 417 953 315 690 286 260 391

3P 1000 75 85 107 98 169 149 181 188 277 243 233 335
500 72 75 90 88 141 133 155 167 243 191 181 230
100 77 80 101 102 171 156 178 203 342 270 279 399

5P 1000 71 74 97 87 154 131 150 159 248 191 194 239
500 62 68 82 78 122 107 130 129 199 139 158 186
100 77 76 99 99 166 155 175 196 317 304 297 412

Q 107 55 108 80 171 171 119 93 195 163 106 108

102 1P 10 259 458 349 461 645 534 698 725 811 787 763 950

3P 100 55 60 77 69 107 95 114 116 199 124 150 245
10 106 125 99 131 167 154 176 274 309 336 391 448

5P 100 52 59 70 83 109 89 104 209 187 118 159 227
10 107 80 102 140 171 154 178 268 388 380 372 499

Q 364 261 384 327 427 451 452 337 529 388 296 404

10 1P 1 361 391 559 462 729 748 879 1098 1397 1472 1500 1500

3P 10 134 140 183 172 198 297 213 320 278 270 362 370
1 111 119 128 143 182 171 210 254 407 372 368 516

5P 10 147 136 199 186 250 328 265 305 301 370 393 389
1 104 113 103 131 192 189 194 291 371 361 355 501

Q 506 486 634 877 1352 1273 1485 1125 1500 1276 995 1276

value is reported, with a blank entry indicating that the gap could not be reached within the
1500 iterations limit.

The results in Table 12 confirm that 1P is very slow in obtaining even the very coarse preci-
sion of 10−1, clearly indicating that a lot of effort is ill-spent due to an inefficient stabilization
which prevents from obtaining good columns early on. The lower bound improvements ba-
sically mirror the general efficiency of the algorithms, with a fast initial convergence being
strictly (positively) correlated with a good overall efficiency of the approach; 3P, 5P and Q
show the same relative behavior seen in Table 11. This once again shows the importance,
provided that the strength of the ST is properly chosen, of rapidly obtaining a good estimate
of the optimal dual solution for the overall efficiency of a SCG approach.

7 Conclusions

Using a general theoretical framework developed in the context of NonDifferentiable Optimiza-
tion, a generic Stabilized Column Generation algorithm is defined where an explicit Stabilizing
(resp. Penalty) Term is added to the dual (resp. primal) master problem in order to stabilize
the dual iterates. The general framework leaves great freedom for a number of crucial details
in the implementation, such as the “shape” of the ST, the specific choices of its parameters,
influencing its “strength”, and the strategies for the on-line updating of these parameters.
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Table 12: Gap evolution for UBS instances

ubs1 ubs2 ubs3

t alg ∆ 10−1 10−2 10−3 10−4 10−1 10−2 10−3 10−4 10−1 10−2 10−3 10−4

107 1P 1000 1188 5 3 1500 1500

Q 89 23 8 3 319 31 13 5 788 34 13 4

105 1P 500 1005 12 7 2 1500 750 22 7 2

3P 500 108 23 12 2 394 33 9 5 1095 36 11 4

5P 500 109 25 9 4 406 30 12 4 1063 36 11 5

Q 66 20 10 3 151 28 13 4 269 34 11 4

103 1P 100 236 11 38 10 501 2 53 34 317 0 56 34

3P 1000 55 23 11 3 125 31 12 3 221 37 10 4
500 46 24 9 2 99 34 12 4 135 60 12 4
100 57 21 10 2 133 30 12 3 268 27 16 12

5P 1000 48 23 9 3 102 30 13 4 168 35 11 4
500 39 21 10 2 77 32 11 3 123 32 12 3
100 55 20 10 4 126 33 11 4 258 30 20 25

Q 33 17 12 25 85 22 13 19 83 25 15 21

102 1P 10 291 64 14 14 514 110 19 8 669 144 10 5

3P 100 32 21 10 3 63 29 8 8 150 8 7 16
10 56 17 12 31 136 23 13 22 275 25 37 35

5P 100 32 19 8 7 62 26 12 28 130 7 12 24
10 57 17 10 24 135 22 12 25 288 25 50 48

Q 265 9 52 8 346 0 45 26 315 0 41 48

10 1P 1 305 81 23 34 691 119 22 33 1322 108 5 32

3P 10 38 24 56 40 79 45 76 58 223 0 80 18
1 57 17 20 32 138 24 13 30 294 25 55 43

5P 10 39 23 66 39 90 31 119 47 201 0 149 14
1 56 17 19 21 140 21 16 40 288 25 50 34

Q 461 111 35 19 1037 244 8 20 1144 109 5 4

A crucial aspect of this approach is the availability of convexity constraints which allow to
define an objective function, whose value can be monitored in order to evaluate whether the
tentative dual point, where CG is performed, is better than the stability center. This allows
to move away from Proximal Point approaches, which already offer better performances than
non-stabilized CG ones, and towards Bundle-type approaches, which typically outperform PP
ones, being the only viable alternative in some cases (cf. §5.2).

We have computationally analyzed several different STs, as well as a large number of
different choices for the parameters, in several practical applications using a state-of-the-art
Column Generation code. The results show that a careful choice of the parameters may
lead to very substantial performance improvements w.r.t. non-stabilized CG approaches. An
extensive computational experience, aimed at determining guidelines for the selection of the
shape of the ST, has shown evidence that “simple” STs, with one or three pieces, may be the
best choice for easier instances, especially if a very good estimate of the dual optimal solution
is available. However, as the instances become more difficult to solve, and the quality of the
initial dual solution deteriorates, “more complex” STs become more efficient. In particular, a
5-pieces linear ST seems to offer a good compromise between flexibility and implementation
cost, allowing to obtain very good results most of the time, only provided one avoids falling
into extreme cases where the penalty is either too week or too strong.
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In conclusion, we believe that the present results show that stabilized column generation
approaches have plenty of as yet untapped potential for substantially improving the perfor-
mances of solution approaches to linear programs of extremely large size. It will be interesting
to verify if the present findings extend to approaches combining centers-based stabilization
with explicit introduction of a stabilizing term, as predicated in [2, 27]. Also, it is surely
worth testing whether the recently proposed modified form of Bundle approach of [25] im-
proves performances significantly w.r.t. the ones tested in this paper, and/or changes in some
way the guidelines for the selection of the shape of the ST obtained in this context.

References

[1] A. Oukil, H. Ben Amor, and J. Desrosiers Stabilized Column Generation for Highly Degener-
ate Multiple-Depot Vehicle Scheduling Problems, Computers & Operations Research, 33(4),
910–927, 2006.

[2] F. Babonneau, C. Beltran, A. Haurie, C. Tadonki, and J.-Ph. Vial Proximal-ACCPM: a ver-
satile oracle based optimization method, in Advances in Computational Management Science
Volume 9, Springer, 67–89, 2007.
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