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We present a Cost Decomposition approach for the linear Mul-
ticommodity Min-Cost Flow problem, where the mutual capacity
constraints are dualized and the resulting Lagrangean Dual is
solved with a dual-ascent algorithm belonging to the class of
Bundle methods. Although decomposition approaches to
block-structured Linear Programs have been reported not to be
competitive with general-purpose software, our extensive com-
putational comparison shows that, when carefully imple-
mented, a decomposition algorithm can outperform several
other approaches, especially on problems where the number of
commodities is “large” with respect to the size of the graph. Our
specialized Bundle algorithm is characterized by a new heuris-
tic for the trust region parameter handling, and embeds a spe-
cialized Quadratic Program solver that allows the efficient im-
plementation of strategies for reducing the number of active
Lagrangean variables. We also exploit the structural properties
of the single-commodity Min-Cost Flow subproblems to reduce
the overall computational cost. The proposed approach can be
easily extended to handle variants of the problem.

T he Multicommodity Min-Cost Flow problem (MMCF), i.e.,
the problem of shipping flows of different nature (commod-
ities) at minimal cost on a network, where different com-
modities compete for the resources represented by the arc
capacities, has been widely addressed in the literature since
it models a wide variety of transportation and scheduling
problems.[2, 3, 6, 11, 28, 58, 68] MMCF is a structured Linear Pro-
gram (LP), but the instances arising from practical applica-
tions are often huge and the usual solution techniques are
not efficient enough: this is especially true if the solution is
required to be integral, since then the problem is ��-hard
and most of the solution techniques (Branch & Bound,
Branch & Cut . . . ) rely on the repeated solution of the
continuous version.

From an algorithmic viewpoint, MMCF has motivated
many important ideas that have later found broader appli-
cation: examples are the column generation approach[22] and
the Dantzig-Wolfe decomposition algorithm.[21] This “push-
ing” effect is still continuing, as demonstrated by a number
of interesting recent developments.[31–33, 59]

MMCF problems also arise in finding approximate solu-
tions to several hard graph problems.[10, 43] Recently, some
�-approximation approaches have been developed for the
problem,[36, 60, 64] making MMCF one of the few LPs for

which approximations algorithms of practical interest are
known.[34, 52]

In this work, we present a wide computational experience
with a Cost Decomposition algorithm for MMCF. Decom-
position methods have been around for 40 years, and several
proposals for the “coordination phase”[20, 22, 23, 51, 54, 61] can
be found in the literature. Our aim is to assess the effective-
ness of a Cost Decomposition approach based on a NonDif-
ferentiable Optimization (NDO) algorithm belonging to the
class of “Bundle methods.”[39, 63] To the best of our knowl-
edge, only one attempt[54] has previously been made to use
Bundle methods in this context, and just making use of
pre-existent NDO software: here we use a specialized Bun-
dle code for MMCF. Innovative features of our code include
a new heuristic for setting the trust region parameter, an
efficient specialized Quadratic Program (QP) solver[24] and a
Lagrangean variables generation strategy. Perhaps, the main
contribution of the article is the extensive set of computa-
tional experiences performed: we have tested our implemen-
tation together with several other approaches on a large set
of test problems of various size and structure. Our experi-
ence shows that the Cost Decomposition approach can be
competitive, especially on problems where the number of
commodities is “large” with respect to the size of the graph.

1. Formulation and Approaches
Given a directed graph G(N, A), with n � �N� nodes and m �
�A� arcs, and a set of k commodities, the linear Multicom-
modity Min-Cost Flow problem can be formulated as fol-
lows:

�MMCF� �
min� h� ij c ij

hxij
h

� j xij
h � � j xji

h � bi
h @ i , h �a�

� h xij
h � uij @ i , j , h �b�

0 � xij
h � uij

h @ i , j �c�

where, for each arc (i, j), xij
h is the flow of commodity h, uij

h

and cij
h are respectively the individual capacity and unit cost of

xij
h, and uij is the mutual capacity that bounds the total quan-

tity of flow on (i, j). Constraints (a) and (b) are the flow
conservation and individual capacity constraints for each
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commodity, respectively, while (c) represents the mutual
capacity constraints. In matrix notation, using the node-arc
incidence matrix E of G, MMCF becomes

�MMCF� �
min � h chxh

�
E
···
0
I

· · ·
· · ·
· · ·
· · ·

0
···
E
I
� � � x1

···
xk
� �

�
�

b1

···
bk

u
�

0 � xh � uh @h

This formulation highlights the block-structured nature of
the problem.

MMCF instances may have different characteristics, that
make them more or less suited to be solved by a given
approach: for instance, the number of commodities can be
small, as in many distribution problems, or as large as is the
number of all the possible Origin/Destination pairs, as the
case of traffic and telecommunication problems.

MMCF is the prototype of many block-structured prob-
lems,[33] such as Fractional Packing[59] and Resource Sharing
problems.[31] Common variants of MMCF are the Nonhomo-
geneous MMCF,[4] where (c) is replaced by A[x1 . . . xk] � u,
the Nonsimultaneous MMCF,[56] where the commodities are
partitioned in p “blocks” and only commodities within the
same block compete for the capacity, and the Equal Flow
problem[3] where the flow on a certain set of pairs of arcs is
constrained to be identical.

Several algorithmic approaches have been proposed for
MMCF: among them, we just name Column Generation,[8, 13, 57]

Resource Decomposition,[28, 49, 50] Primal Partitioning,[18, 23]

Specialized Interior Point,[19, 48, 62, 70] Cost Decomposi-
tion,[20, 23, 51, 54, 61, 69] Primal-Dual,[67] and �-approxima-
tion[34, 52] methods. Unfortunately, the available surveys are
either old[5, 45] or concentrated on just the “classical” ap-
proaches[4]: hence, we refer the interested reader to Fran-
gioni,[25] where the relevant literature on the subject is sur-
veyed. Information about parallel approaches to MMCF can
also be found there or in Cappanera and Frangioni[14] (these
articles can be downloaded from http://www.di.unipi.it/
�frangio/).

Our approach belongs to the class of Cost Decomposition
methods: to solve MMCF, we consider its Lagrangean Re-
laxation with respect to the “complicating” constraints (c),
i.e.,

�RMG�� ����

� � h min��ch � ��xh : Exh � bh, 0 � xh � uh� � �u

and solve the corresponding Lagrangean Dual

�DMMCF� max����� :� � 0� .

The advantage of this approach is that the calculation of �(�)
requires the solution of k independent single-commodity
Min-Cost Flow problems (MCF), for which several efficient
algorithms exist. The drawback is that maximization of the
nondifferentiable function � is required.

Many NDO algorithms can be used to maximize �; among
them: the (many variants of the) Subgradient method,[40, 53]

the Cutting Plane approach[44] (that is the dual form of the
Dantzig-Wolfe decomposition),[21, 23, 42] the Analytic Center Cut-
ting Plane approach,[30, 55] and various Bundle meth-
ods.[39, 51, 54] The latter can also be shown[26] to be intimately
related to seemingly different approaches such as smooth
Penalty Function[61] and Augmented Lagrangean[20] algo-
rithms, where � is approximated with a smooth function.
Most of these methods only require at each step a subgradient
g(�) � u � �h xh(�) of �, where (x1(�) . . . xk(�)) is any optimal
solution of (RMG�).

2. The Cost Decomposition Code
It is outside the scope of the present work to provide a full
description of the theory of Bundle methods: the interested
reader is referred to Hiriart-Urruty and Lemaréchal.[39] In
Frangioni,[25, 26] the use of Bundle methods for Lagrangean
optimization and their relations with other approaches
(Dantzig-Wolfe decomposition, Augmented Lagran-
gean. . . ) are discussed in detail.

Bundle methods are iterative NDO algorithms that visit a
sequence of points {�i} and, at each step, use (a subset of) the
first-order information 	 � {	�(�i), g(�i)
} (the Bundle) gath-
ered so far to compute a tentative ascent direction d. In the
“classical” Bundle method, d is the solution of

��	t� min
�1/ 2	� i�	 gi
 i	2 � �1/t��	
 :

� i�	 
 i � 1, 
 � 0� ,

where gi � g(�i), �i � �(�i) � gi(��  �i)  �(�� ) is the
linearization error of gi with respect to the current point �� and
t � 0 is the trust region parameter. From the “dual viewpoint,”
(�	t) can be considered as an approximation of the steepest
�-ascent direction finding problem; from the “primal view-
point,” (�	t) can be regarded to as a “least-square version”
of the Master Problem of Dantzig-Wolfe decomposition. The
Quadratic Dual of (�	t) is

��	t� maxd��	�d� � 1/ 2t	d	2� ,

where �	(d) � mini�	 {�i � gid} is the Cutting Plane model,
i.e., the polyhedral upper approximation of � built up with
the first order information collected so far. A penalty term
(sometimes called stabilizing term), weighted with t, penal-
izes “far away” points in which �	 is presumably a “bad”
approximation of � (Figure 1): hence, t measures our “trust”
in the Cutting Plane model as we move farther from the
current point, playing a role similar to that of the trust radius
in Trust Region methods. Once d has been found, the value
of �(�� � d) and the relative subgradient are used to adjust
t.[47, 63] The current point �� is moved (a Serious Step) only if
a “sufficient” increase in the value of � has been attained:
otherwise (a Null Step), �� is not changed and the newly
obtained first-order information is used to enrich the Cutting
Plane model. Actually, when solving MMCF the “� � 0”
constraints must be taken into account: this leads to the
extended problem

���	t� maxd��	�d� � 1/ 2t	d	2: d � � �� � ,
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which guarantees feasibility of the tentative point, and can
still be efficiently solved.[24]

Our Bundle algorithm is described in Figure 2. At each
step, the predicted increase v � �	(d) is compared with the
obtained increase �� � �(�)  �(�� ), and a Serious Step is
performed only if �� is large enough relative: in this case, t
can also be increased. Otherwise, the “reliability” of the
newly obtained subgradient is tested by means of the “av-
erage linearization error” �: if g is not believed to improve
the “accuracy” of �	, t is decreased. The IncreaseT� and
DecreaseT� functions are implemented as shown in Figure
3: both the formulas are based on the idea of constructing a
quadratic function that interpolates the restriction of � along
d passing through (�, �(�)) and (�� , �(�� )), and choosing t as its
maximizer. The latter formula is obtained by assigning the
value of the derivative in �� ,[47] while the former one is rather
obtained by assigning the value of the derivative in �.[25] The
IncreaseT� heuristic guarantees that t will actually increase
ª dg � 0, which is exactly the (SS.ii) condition in Schramm
and Zowe.[63] Using two different heuristics has proven to
be usually better than using only one of them.

The m2 parameter, controlling the decrease of t, should be
chosen “large” (�3): the result is that t is changed almost
only in the early stages of the algorithm’s operations.
Smaller values of m2 cause t to decrease too quickly, so
yielding a very long sequence of “short” steps. This setting
is remarkably different from the one usually suggested in
the literature, i.e., �0.9[47, 63]: the reason might be that La-
grangean functions of Linear Programs are qualitatively dif-
ferent from other classes of nondifferentiable functions, hav-
ing an enormous number of facets that makes them
extremely “kinky.” The choice of the other parameters is far
less critical: m1 seems to be properly fixed to 0.1, the (abso-
lute and relative) safeguards on t almost never enter into
play and the heuristics for increasing and decreasing t are
capable of correcting blatantly wrong initial estimates t0. If t*
has been chosen sufficiently large, upon termination the
current point �� is guaranteed to be an �-optimal solution of
DMMCF: although selecting t* is in principle difficult, in
practice it can be easily guessed by looking at a few test
executions of the code.

An innovative feature of our code is the Lagrangean Vari-
ables Generation (LVG) strategy: rather than always working
with the full vector of Lagrangean multipliers, we maintain
a (hopefully small) set of “active” variables and only solve
the restricted (��	t). Every p1 (�10) iterations, we add to the
active set all “inactive” variables having the corresponding
entry of d strictly positive; this is also done for the first p2

(�30) iterations, and when the algorithm would terminate
because the STOP condition is verified. Usually, almost all
the active variables reveal themselves in the first few itera-
tions, and the active set is very stable. Note that, from the
primal viewpoint, the LVG strategy is a row generation
scheme, where a complicating constraint is added only if it
is violated by the primal unfeasible solution corresponding
to d.[16]

The LVG strategy has a dramatic impact on the time spent
in solving (��	t), which is reduced by up to a factor of 5 even
on small instances. Clearly, the LVG strategy can be benefi-
cial only if the QP solver efficiently supports the online
creation and destruction of variables of subproblem (��	t):
this is the case of the specialized solver used in the code,[24]

which employs a two-level active set strategy for handling the
d � �� constraints. The availability of the specialized solver
has been crucial for developing an efficient Bundle code:
other than supporting the LVG strategy, it is much faster
than non-specialized QP codes in solving sequences of (��	t)
problems. This has been shown in Frangioni[24] by compar-
ing it with two standard QP codes (interestingly enough,

Figure 1. Effect of the stabilizing term; for t1 � t2 � t3, di
are the optimal solutions.

Figure 2. The “main” of the MMCFB code.

Figure 3. The heuristic t-strategies.
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one of them being exactly the QP solver used for the previ-
ous Bundle approach to MMCF[54]), which have been out-
performed by up to two orders of magnitude; since the
coordination cost ranges from 1% to 20% of the total running
time, a Bundle algorithm using a non-specialized QP solver
would rapidly become impractical as the instances size in-
creases.

To keep the size of the Bundle low, we delete all the
subgradients that have 
i � 0 for more than a fixed number
(�20) of consecutive iterations. We do not perform subgra-
dients aggregation, since it usually has a negative impact on
the total number of iterations.

In most cases, and especially if k is large, most of the time
is spent in solving the MCF subproblems; hence, it is impor-
tant to use a fast MCF solver with efficient reoptimizing
capabilities. However, in many classes of instances the MCF
subproblems have a special structure that can be exploited:
the typical case is when all individual capacities uij

h are either
0 or �� and there is only one source node for each com-
modity, that is when the subproblems are Shortest Path Tree
problems (SPT). In our C�� code, Object-Oriented Pro-
gramming techniques have been used to accomplish this:
MCF subproblems are solved with an implementation of the
Relaxation algorithm,[7] while SPT subproblems are solved
with classical Shortest Path algorithms.[35] Even on small
problems with few commodities, this gives a speedup of up
to four.

Object-Oriented Programming techniques have also been
used in order to make it easy to develop specialized or
extended versions. In fact, we already developed a parallel
version of the code,[14, 25] as well as extended versions for
computing lower bounds for the Fixed Charge MMCF[15, 25]

and for the Reserve Problem.[25] Only minor changes would
be required for solving the Nonhomogeneous MMCF, while
the Nonlinear commodity-separable MMCF would only require
the availability of a suitable nonlinear MCF solver.

Finally, we remark that, unlike other dual algorithms, our
code is a “complete” MMCF solver, in that upon termination
it not only gives a dual optimal solution �� , but also a primal
optimal solution

x� � �x� 1 . . . x� k� � � i�	�xi
1 . . . xi

k�
 i ,

where xi
h is the solution of the h-th MCF with costs ch � �i

and 
 is the solution of the latest (��	t). Obtaining x� requires
keeping the flow solutions of the k MCFs relative to any
subgradient in 	, hence it may considerably increase the
memory requirements of the code; therefore, this feature has
been made optional in the code, and in our experiments we
have not used it. The impact on the running times, however,
is negligible (always well under 5%).

3. The Other Codes
One of the objectives of this research was to understand
where a modern Cost Decomposition code stands, in terms
of efficiency, among the solution methods proposed in the
literature: hence, an effort has been made to compare
MMCFB with recent alternative MMCF solvers. The effi-
ciency of Cost Decomposition methods is controversial: al-

though they have been used with success in some applica-
tions, many researchers[37, 38] would agree that “. . . the
folklore is that generally such schemes take a long time to
converge so that they’re slower than just solving the model
as a whole, although research continues. For now my advice,
unless [ . . . ] your model is so huge that a good solver can’t
fit it in memory, is to not bother decomposing it. It’s prob-
ably more cost effective to upgrade your solver, if the algo-
rithm is limiting you . . . ”[27] However, if Cost Decomposi-
tion approaches are of any value, MMCF is probably the
application where such a value shows up, as demonstrated
by our experiments.

3.1 A General-Purpose LP Solver
In principle, any LP solver can be used to solve MMCF:
actually, our experience shows that (according to above
statement) commercial general-purpose LP solvers can be
the best choice for solving even quite large instances. This
should not be surprising, since these codes are the result of
an impressive amount of work and experience obtained
during many years of development, and exploit the state of
the art in matrix factorization algorithms, pricing rules, so-
phisticated data structures, preprocessing and software
technology. CPLEX 3.0[17] is one of the best commercial LP
solvers on the market: it offers Primal and Dual simplex
algorithms, a Network simplex algorithm for exploiting the
embedded network structure of the problems and a Barrier
(Interior Point) algorithm.

In our experimentation, to make the comparisons mean-
ingful, efforts have been made to use CPLEX in its full
power by repeatedly solving subsets of the test problems
with different combinations of the optimization parameters,
in order to find a good setting. CPLEX can identify the
network structure embedded in a LP, and efficiently solve
the restricted problem to obtain a good starting base for the
“Pure” Primal and Dual (PP and PD) simplex algorithms:
the performances of the resulting “Hybrid” Primal and Dual
algorithms (HP and HD) are reported in Table I, where
Size � mk is the number of variables of the LP and figures
are the average running times over groups of several prob-
lems of the same size. From these results, we see that a Dual
approach can be 30 times faster than a Primal one, and that
the “warm start” speeds up the solution by up to a factor of
70, so that the Hybrid Dual version can be 400 times faster
than the Pure Primal one. Hence, it is not unfair to regard

Table I. Different Simplex Options for CPLEX

Size PP PD HP HD

5125 9.02 2.72 4.73 1.36
16000 50.90 23.47 21.37 6.07
25000 81.05 14.15 22.65 5.41
47850 504.04 124.33 25.48 10.06
68225 1393.63 42.24 18.96 8.10
61275 1646.35 254.13 185.04 78.94
207733 16707.66 492.33 244.89 44.67
257700 13301.88 556.39 165.56 48.55
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CPLEX as a semi-specialized algorithm for network-struc-
tured problems. Other details, such as the pricing strategy,
can have a dramatic impact on the number of iterations and
hence on the performance: Table II reports a comparison
between the four available pricing rules for the Dual sim-
plex, the standard dual pricing HD1 and three variants of
the steepest-edge rule HD2-4. Performance improvements of
up to a factor of 15 (and more, since the instances marked
with “*” had taken much longer than 1000 seconds to ter-
minate) can be obtained by selecting the appropriate rule.

3.2 A Primal Partitioning Code
PPRN 1.0[12] is an available (in .a format at ftp://ftp-
eio.upc.es/pub/onl/codes/pprn/libpprn) recent imple-
mentation of the Reduced Gradient algorithm for the Non-
linear MMCF, i.e., a Primal Partitioning approach when
applied to the linear case. In their computational experi-
ence,[18] the authors show that it generally outperforms the
known Primal Partitioning code MCNF85.[46] In our experi-
ence, PPRN has never shown to be dramatically faster then
CPLEX: however, this should not lead to the conclusion that
it is inefficient. In fact, PPRN is a primal code, and it is
definitely much faster than the primal simplex of CPLEX:
hence, it can be regarded as a good representative of its class
of methods.

Again, an appropriate tuning of its (several) parameters
can significantly enhance the performances. The most im-
portant choice concerns the Phase 0 strategy, i.e., whether the
starting base is obtained from any feasible solution of the k
MCF subproblems rather than from their optimal solutions
(as in the “warm start” of CPLEX). As shown in Table III,
exploiting the optimal solutions decreases the running times
by up to a factor of 20 (Opt vs. Feas columns): moreover,
appropriate selection of the pricing rule[12] can result in a
speedup of Table III, as shown in Table IV.

3.3 Interior Point Codes
A beta version of IPM, a specialized Interior Point code for
MMCF,[19] has been made available by the author for com-
parison purposes. Like most Interior Point methods, IPM
must solve at each step a linear system with matrix
A �2 AT, where A is the full nk � m(k � 1) coefficient
matrix of the LP. Rather than calculating a Cholesky factor-
ization of such a matrix, however, IPM uses a Precondi-
tioned Conjugate Gradient method where, at each step, k
independent m � m subsystems are solved. The code does

not currently handle zero individual capacities (uij
h � 0), that

were present in all but one of the classes of instances that we
tested; the obvious workaround, i.e., setting uij

h to some very
small number and/or cij

h to some very large number, might
result in numerical problems, yet the code was able to solve
(almost) all the instances.

Since only indirect comparisons were possible for the
other specialized Interior Point methods (Cf. Section 3.5), we
also tested two general-purpose Interior Point LP solvers:
CPLEX 3.0 Barrier (that will be referred to as IPCPLEX) and
LOQO 2.21,[65, 66] a recent implementation of the primal-dual,
path following, predictor-corrector approach. Also in this case,
the parameters were tuned in order to get the best perfor-
mances: the most important choice is the one between “my-
opic” (Minimum Local FillIn) and “global” (Priority Mini-
mum Degree modified Cholesky and Multiple Minimum
Degree respectively) heuristics for columns ordering when
computing the LLT factorization of A �2 AT. For IPCPLEX,
the myopic heuristic is more efficient; this is shown in Table
V, where for both of MMD and MLF, the two columns with
“L” and “R” report the time obtained with Leftward and
Rightward Cholesky factorization (another possible degree
of freedom). The table also shows that the total number of
iterations is very small, and that it is not always possible to
find the “best” setting for a given parameter (MMD-L is
better than MMD-R on small problems and worse on larger
ones). For LOQO, the global heuristic is uniformly better,
but does not dramatically improve the performances; this
difference is not surprising, since the two codes use different
(normal equations and reduced-KKT respectively) approaches
to matrix factorization.

Table II. Different Pricing Rules for CPLEX

Size HD1 HD2 HD3 HD4

5125 4.08 1.36 2.11 1.34
16000 19.65 5.99 11.00 6.08
25000 18.24 6.16 19.71 5.39
47850 13.35 11.95 51.03 10.00
68225 8.05 10.76 71.59 8.06
61275 1000* 54.07 152.36 79.16
207733 1000* 88.38 681.27 44.88
257700 57.53 92.58 846.65 48.48

Table III. Phase 0 Options for PPRN

Size Opt Feas

7125 2.21 6.89
18250 7.87 29.62
28750 7.76 53.68
50783 9.43 43.24
63850 32.33 145.39
91250 11.24 271.73
207867 55.62 425.68
268200 29.28 626.73

Table IV. Pricing Rules for PPRN

Size P1 P3

7125 21.99 64.02
18250 8.40 41.41
28750 30.13 32.84
50783 8.98 25.99
63850 4.67 5.88
91250 42.06 53.50
207867 31.85 36.33
268200 8.90 16.38
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3.4 A Column Generation Code
A limited comparison was also possible with BCG, a modern
Column Generation code,[9] developed for repeatedly solv-
ing MMCF subproblems in a Branch & Price approach to the
Integer MMCF, and using CPLEX for solving the “Master”
problem at each iteration. The BCG code was not directly
available; however, the authors kindly shared the test in-
stances and the results (even some not reported in the arti-
cle), allowing an indirect comparison. It should be noted
that, in its present version, BCG only solves the undirected
MMCF, although only minor modifications would be
needed to extend it to the directed case. Hence, the compar-
ison is not completely satisfactory. However, the efficiency
of a Column Generation code depends on many important
implementation details, and it would not have been fair to
compare MMCFB with some (most likely naive) implemen-
tation of ours. Hence, we preferred to keep this limited
comparison with a sophisticated code such as BCG. The
relative performances of LP-based Cost Decomposition
methods like the Column Generation approach (but see also
Frangioni[25, 26]) and QP-based ones like MMCFB are cur-
rently under research, and will be the subject of a future
article.

3.5 Other Codes
The above codes do not exhaust all the proposed computa-
tional approaches to MMCF: indirect comparison have been
made also with other Interior Point methods,[62, 70] different
Cost Decomposition approaches[61, 69] and �-approximation
algorithms.[33] The comparison concerns the PDS problems
(Cf. 4.3), that are difficult MMCFs with large graphs but few
commodities and MCF subproblems: hence, the results do
not necessarily provide useful information on other classes
of instances, such as those arising in telecommunications,
which are characterized by a large number of commodities.
Furthermore, the codes were ran on a heterogeneous set of
computers, ranging from (vector or massively parallel) su-
percomputers to (clusters of) workstations, making it diffi-
cult to extract meaningful information from the running
times reported.

No comparison at all was possible with Resource Decom-
position approaches[49] or Primal-Dual methods[67]: how-
ever, the available codes are at least sufficient to draw an
initial picture of the current scenery of computational ap-
proaches to MMCF. Hopefully, other tests will come to
further enhance our understanding.

4. The Test Problems
The other fundamental ingredient for obtaining a meaning-
ful computational comparison is an adequate set of test

problems. Some data sets and random generators of MMCFs
have been used in the literature to test some of the proposed
approaches: however, many of these test problems are small,
and even the larger ones have a small number of commod-
ities. This is probably due to the fact that, with most of the
methods, the cost for solving an MMCF grows rapidly with
k, so that problems with hundreds of commodities have for
long time been out of reach. For our experiments, some
known data sets have been gathered that might be consid-
ered representative of classes of instances arising in practice:
when no satisfactory test problems were available, different
random generators have been used to produce data sets
with controlled characteristics. All these instances, and some
others, can be retrieved at http://www.di.unipi.it/di/
groups/optimize/Data/MMCF.html together with an in-
stance-by-instance output for all the codes listed in Section 3.
We hope that this database will grow and will form the basis
for more accurate computational comparisons in the future.

4.1 The Canad Problems
The first data set is made of 96 problems, generated with two
random generators (one for bipartite and the other for gen-
eral graphs) developed to test algorithms for the Fixed
Charge MMCF problem.[15] A parameter, called capacity ratio,
is available as a “knob” to produce lightly or heavily capac-
itated instances. As MMCFs, these instances have proven a
posteriori to be quite “easy”; on the contrary, the corre-
sponding Fixed Charge problems are known to be “hard,”
and hence the efficient solution of “easy” MMCFs can still
have an interest. Furthermore, this data set is the only one
having instances where the number of commodities is con-
siderably larger that the number of nodes (up to 400 vs. 30),
as in some real applications. The instances are divided into
the three groups: 32 bipartite problems (group A) with mul-
tiple sources and sinks for each commodity; 32 nonbipartite
problems (group B) with single source/sink for each com-
modity; and 32 nonbipartite problems (group C) with mul-
tiple sources and sinks for each commodity.

The characteristics of the instances are shown in Table 6
(Section 5.1): for each choice of (k, n, m), two “easy” and two
“hard” instances have been generated.

4.2 The Mnetgen Generator
Mnetgen[1] is a well-known random generator. An im-
proved version has been developed for our tests, where the
internal random number generator has been replaced with
the standard drand48� routine, the output file format has
been “standardized”[41] and a minor bug has been fixed. A
total of 216 problems have been generated with the follow-
ing rules: the problems are divided in 18 groups of 12

Table V. Some Examples from CPLEX-Barrier Optimization Parameters Tuning

k n m Size Iter MMD-L MMD-R MLF-L MLF-R

10 50 625 6250 12 37.70 30.97 33.24 27.84
10 50 625 6250 12 37.35 30.98 33.13 27.60

100 30 518 51800 12 3709.12 3344.74 1789.23 1829.65
100 30 519 51900 13 4036.83 3382.39 1927.01 1935.82
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problems each, each group being characterized by a pair
(n, k) for n in {64, 128, 256} and k in {4, 8, . . . , n } (as Mnetgen
cannot generate problems with k � n). Within each group, 6
problems are “sparse” and 6 are “dense,” with m/n respec-
tively equal to about 3 and 8. In both these subgroups, 3
problems are “easy” and 3 are “hard,” where an easy prob-
lem has mutual capacity constraints on 40% of the arcs and
10% of the arcs with an “high” cost, while these figures are
80% and 30% respectively for a hard problem. Finally, the 3
subproblems characterized by the 4-tuple (n, k, S, D) (S �
{sparse, dense}, D � {easy, hard}) have respectively 30%,
60%, and 90% of arcs with individual capacity constraints.
Randomly generated instances are believed to be generally
“easier” than real-world problems; however, the “hard”
Mnetgen instances, especially if “dense,” have proven to be
significantly harder to solve (by all the codes) than both the
“easy” ones and instances of equivalent size taken from the
other sets of test problems.

4.3 The PDS Problems
The PDS (Patient Distribution System) instances derive from
the problem of evacuating patients from a place of military
conflict. The available data represents only one basic prob-
lem, but the model is parametric in the planning horizon t (the
number of days): the problems have a time-space network
whose size grows about linearly with t. This characteristic is
often encountered in MMCF models of transportation and
logistic problems. However, in other types of applications k
also grows with the planning horizon, while in the PDS
problems k is a constant (11); hence, the larger instances have
a very large m/k ratio.

4.4 The JLF Data Set
This set of problems has been used in Jones et al.[42] to test
the DW approach to MMCF: it contains various (small)
groups of small real-world problems with different struc-
tures, often with SPT subproblems and with never more
than 15 commodities.

4.5 The Dimacs2pprn “Meta” Generator
Several MMCFs, especially those arising in telecommunica-
tions, have large graphs, many commodities and SPT sub-
problems; all these characteristics are separately present in
some of the previous data sets, but never in the same in-
stance. To generate such instances, we developed a slightly
enhanced version of the dimacs2pprn “meta” generator,
originally proposed by Castro and Nabona,[18] that allows a
great degree of freedom in the choice of the problem struc-
ture. Dimacs2pprn inputs an MCF in DIMACS standard
format (ftp://dimacs.rutgers.edu/pub/netflow), i.e., a
graph G� with arc costs c�, node deficits b� , arc capacities u� and
three parameters k, r, and f, and constructs an MMCF with k
commodities on the same graph G� . Deficits and capacities of
the i-th subproblem are a “scaling” of those of the original
MCF, i.e., k numbers {r1 . . . rk} are uniformly drawn at ran-
dom from [1 . . . r] and the deficits and individual capacities
are chosen as bh � rhb� and uh � rhu� ; costs cij

h are indepen-
dently and uniformly drawn randomly from [0 . . . c�ij]. The
mutual capacities u are initially fixed to f�u, and eventually
increased to accommodate the multiflow obtained by solv-

ing the k MCFs separately (with random costs uncorrelated
with the cij

h), in order to ensure the feasibility of the instance.
At the user’s choice, the individual capacities can then be set
to ��. This is a “meta” generator since most of the structure
of the resulting MMCF is not “hard-wired” into the gener-
ator, like in Mnetgen, but depends on the initial MCF; in
turn, this initial MCF can be obtained with a random gen-
erator. For our tests, we used the well-known Rmfgen,[29]

which, given two integer values a and b, produces a graph
made of b squared grids of side a, with one source and one
sink at the “far ends” of the graph. For all 6 combinations of
a in {4, 8} and b in {4, 8, 16}, an “easy” and a “hard” MCF
have been generated with maximum arc capacities respec-
tively equal to 1/2 and 1/10 of the total flow to be shipped.
Then, for each of these 12 MCFs, 4 MMCFs have been
generated, with k in {4, 16, 64, 256}, r � 16, and f � 2k (so that
the mutual capacity constraints were four times “stricter”
than the original capacities u� ), yielding a total of 48 instances
with up to one million of variables.

4.6 The BHV Problems
Two sets of randomly generated undirected MMCFs have
been used to test the Column Generation approach of Barn-
hart, Hane, and Vance.[9] In both sets, the commodities are
intended to be Origin/Destination pairs, but the commodi-
ties with the same origin can be aggregated in a much
smaller number of single origin—many destinations flows.
The 12 “qx” problems all have 50 nodes, 130 arcs (of which
96 are capacitated) and 585 O/D pairs that can be aggre-
gated into 48 commodities, yielding a total LP size of 6.2 �
103; a posteriori, they have proven to be quite easy. The 10
“r10-x-y” problems all have 301 nodes, 497 arcs (of which
297 are capacitated) and 1320 O/D pairs that can be aggre-
gated into 270 commodities, yielding a total LP size of 1.3 �
105. The group is divided into 5 “r10-5-y” and 5 “r10-55-y”
instances that are similar, but for the fact that the arc capac-
ities in the first group are integral while those in the second
one are highly fractional: the two subgroups have proven to
be of a surprisingly different “difficulty.”

5. Computational Results and Conclusions
In this paragraph, we report on the comparison of MMCFB
with the codes described in Section 3 on the test problems
described in Section 4. The approaches being very different,
it appears that the only performance measure that allows a
meaningful comparison is the running time. In the follow-
ing, we report CPU time in seconds needed to solve the
different problems; the loading and preprocessing times
have not been included. Information like the number of
iterations (with different meanings for each code) or the time
spent in different parts of the optimization process (e.g., for
computing � and solving (�	t)) has not been reported in the
tables for reasons of space and clarity: all these data are
however available at the above mentioned Web page.

Unless explicitly stated, the times have been obtained on
a HP9000/712-80 workstation: for the codes run on different
machines, the original figures will be reported and a quali-
tative estimate of the relative speed has been obtained—if
possible—by comparing the SPECint92 and SPECfp92 fig-
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ures (97.1 and 123.3, respectively, for the HP9000/712-80).
For MMCFB, CPLEX (both simplex and Interior Point) and
LOQO, the required relative precision was set to 106: in
fact, the reported values of the optimal solution always
agree in the first 6 digits. PPRN do not allow such a choice,
but it always obtained solutions at least as accurate as the
previous codes. Upon suggestion of the authors, the relative
precision required for IPM was instead set to 105, as
smaller values could cause numerical difficulties to the PCG:
in fact, the values obtained were often different in the sixth
digit. The precision of the BCG code is not known to us, but
should be comparable: the other codes will be explicitly
discussed later.

In all the following tables, b (�m), if present, is the num-
ber of arcs that have a mutual capacity constraint, and, for
large data sets, each entry is averaged from a set of instances
with similar size � mk. The columns with the name of a code
contain the relative running time; “*” means that some of the
instances of that group could not be solved due to memory
problems, “**” means that the code aborted due to numer-
ical problems, and “***” indicates that the computation had
to be interrupted because the workstation was “thrashing,”
i.e., spending almost all the time in paging virtual memory
faults.

5.1 The Canad Problems
The results of the three groups of instances A, B, and C are
summarized in Table VI: they are also visualized in Figures

4–6 for the three groups separately, where the running time
of each algorithm is plotted as a function of the size.

If compared to the faster code, the general-purpose Inte-
rior Point solvers are 2 to 3 orders of magnitude slower on
groups B and C and 1 to 2 on group A; furthermore, they
were not able to solve the largest instances due to memory
or numerical problems. The specialized IPM is (approxi-
mately) 3 to 20 times faster on group A, 20 to 70 times faster
on group B, and 10 to 40 times faster on group C: however,
it is almost never competitive with any of MMCFB, CPLEX,
and PPRN. Among those latter solvers, MMCFB is 10 to 40
times faster than CPLEX and 5 to 20 times faster than PPRN
on all instances; an exception is the first half of group A,
where MMCFB is less than 2 times slower. These are “diffi-
cult” small instances with few commodities, where MMCFB
requires considerably more � evaluations than for all the
other problems. This may lead to the conjecture that
MMCFB is not competitive on “difficult” instances, but the
following experiences will show that this is true only if the
number of commodities is also small.

5.2 The Mnetgen Problems
The Mnetgen problems have a wide range of different char-
acteristics, from small to very large sizes (more than 5 � 105

variables), and from small to very large m/k ratios. Table VII
and Figure 7 summarize the results we have obtained; the
times are the averages taken over 12 problems with the same
(n, k).

Table VI. Results for Groups A, B, and C of the Canad Problems

k n m size MMCFB Cplex PPRN IPM LOQO IPCplex

A 10 50 400 4000 2.37 1.27 2.13 3.38 13.59 11.76
10 50 625 6250 3.40 1.99 2.18 9.13 49.83 34.82
10 100 1600 16000 3.01 3.66 4.66 17.87 100.09 **
10 100 2500 25000 3.04 4.24 6.13 31.42 387.88 **

100 50 400 40000 0.76 10.31 10.23 18.53 472.95 358.47
100 50 625 62500 2.43 89.96 29.79 42.49 2609.69 1729.01
100 100 1600 160000 1.39 28.95 28.00 103.04 * *
100 100 2500 250000 1.46 36.51 27.03 174.03 * *

B 40 20 230 9200 0.06 0.90 0.26 6.11 193.53 100.64
40 20 289 11560 0.06 1.14 0.28 3.71 154.13 176.97

200 20 229 45800 0.24 5.56 2.02 26.61 645.80 988.65
100 30 517 51700 0.45 6.16 3.93 29.25 9895.41 1988.24
200 20 287 57400 0.36 7.54 3.52 32.45 888.71 1343.36
100 30 669 66900 0.25 7.07 1.64 32.11 14016.83 2915.02
400 30 519 207600 1.03 30.18 24.96 145.15 * ***
400 30 688 275200 1.19 38.32 23.32 170.14 * ***

C 40 20 230 9200 0.23 1.02 0.37 5.64 223.79 108.88
40 20 289 11560 0.15 1.22 0.31 5.79 182.43 189.19

200 20 229 45800 0.90 7.86 6.23 22.92 727.55 1044.92
100 30 517 51700 1.10 8.05 6.51 25.99 12126.88 2156.04
200 20 287 57400 0.51 6.93 4.28 25.85 947.17 1429.17
100 30 669 66900 0.79 8.76 4.24 32.18 16093.50 3392.77
400 30 519 207600 3.26 48.21 38.53 129.10 * ***
400 30 688 275200 3.62 60.87 42.69 167.04 * ***
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Again, the general-purpose Interior Point codes are not
competitive, but this time the specialized IPM is better than
both CPLEX and PPRN on the instances with large k (greater
than 32): the speedup also increases with both m and k,
reaching over an order of magnitude in the (256, 256) in-
stances. However, MMCFB is even faster, outperforming the
simplex-based codes by about three orders of magnitude on

the largest instances. Furthermore, the hard and dense (256,
256) problems could be solved by neither CPLEX nor PPRN
in reasonable time: they were stopped after having run for
several days without producing any result. Therefore, the
corresponding entries in Table VII, marked with a “�,” are
actually (mild) estimates.

However, a closer examination of the results enlightens

Figure 4. Canad problems, bipartite graphs (group A).

Figure 5. Canad problems, generic graphs (group B).
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the weakness of MMCFB on large instances with few com-
modities. This is better seen in Tables VIII–X, and the cor-
responding Figures 8–10, where the ratio between the run-
ning times of CPLEX (respectively, PPRN and IPM) and
MMCFB is reported for different values of (n, k)—the entries
marked with a “*” are those based on estimates, and should
actually be larger. MMCFB is slower than CPLEX by up to a
factor of 4 for instances with a large m/k ratio: more disag-
gregated data about some “critical” 256-nodes problems are

reported in Table XI for a better understanding of the phe-
nomenon. Noticeably, “hard” problems (h) are really harder
to solve, for all the codes, than “easy” ones (e) of the same
size; moreover, they are much harder than, e.g., Canad
problems of comparable size, since a 1.6 � 105 variables (100,
100, 1600) Canad instance can be solved in 1.5 seconds, while
a hard 1.5 � 105 variables (64, 256, 2300) Mnetgen instance
requires over 350 seconds.

On problems with few commodities, MMCFB is about 2

Figure 6. Canad problems, generic graphs (group C).

Table VII. Aggregated Results on the Mnetgen Problems

k n m b Size MMCFB Cplex PPRN IPM LOQO IPCplex

4 64 362 148 1.4e�3 0.07 0.22 0.13 1.44 1.73 1.45
8 64 371 183 3.0e�3 0.26 0.50 0.52 4.26 9.22 7.56

16 64 356 191 5.7e�3 1.08 2.01 3.41 16.03 58.96 40.14
32 64 362 208 1.2e�4 3.42 12.99 22.04 43.27 190.76 98.73
64 64 361 213 2.3e�4 8.53 115.99 147.10 114.19 244.66 216.44

4 128 694 293 2.8e�3 0.58 0.54 0.85 6.45 7.18 6.49
8 128 735 363 5.9e�3 2.57 1.81 4.79 26.32 66.65 50.56

16 128 766 424 1.2e�4 11.30 17.31 40.57 116.26 683.47 394.19
32 128 779 445 2.5e�4 27.72 212.09 503.48 346.91 * *
64 128 784 469 5.0e�4 44.04 1137.05 2215.48 719.69 * *

128 128 808 485 1.0e�5 52.15 5816.54 6521.94 1546.91 * *

4 256 1401 570 5.6e�3 7.54 2.38 9.88 51.00 50.70 40.37
8 256 1486 743 1.2e�4 25.09 15.48 105.89 208.10 568.02 377.87

16 256 1553 854 2.5e�4 60.85 180.06 955.20 844.09 * *
32 256 1572 907 5.0e�4 107.54 1339.46 6605.45 1782.47 * *
64 256 1573 931 1.0e�5 144.75 7463.14 18467.73 3441.62 * *

128 256 1581 932 2.0e�5 223.13 35891.37 61522.94 9074.31 * *
256 256 1503 902 3.8e�5 445.81 110897� 187156� 17279.00 * *

379
A Bundle-Type Approach to Multicommodity Flow Problems



times slower than CPLEX when the instances are easy, and
about 4 times slower in the case of hard ones. Conversely, as
the number of commodities increases, the relative efficiency
(the Cplex% and PPRN% columns) of MMCFB is larger on
hard instances than on easy ones, and it increases with the
problem size. This is probably due to the fact that the num-
ber of � evaluations depends on the “hardness” of the
instance, but much less on k, while the number of simplex
iterations tends to increase under the combined effect of m

and k. This is true for both (the dual) CPLEX and (the
primal) PPRN, possibly indicating that decomposition meth-
ods may inherently perform better on many-commodities
problems.

As we expected, IPM was less affected by the “difficulty”
of the instance than all the other codes: in fact, the relative
efficiency of MMCFB (the IPM% column) is lower on hard
instances, confirming that the Interior Point approach is
especially promising on difficult problems. However, since

Figure 7. Aggregated results on the Mnetgen problems.

Table VIII. Ratio Between CPLEX and MMCFB Times—Problems in the Same Row Have Fixed n and Varying k

4 8 16 32 64 128 256

64 2.93 1.90 1.87 3.80 13.60
128 0.93 0.70 1.53 7.65 25.82 111.53
256 0.32 0.62 2.96 12.46 51.56 160.85 251*

Table IX. Ratio Between PPRN and MMCFB Times—Problems in the Same Row Have Fixed n and Varying k

4 8 16 32 64 128 256

64 1.73 1.98 3.16 6.45 17.25
128 1.47 1.86 3.59 18.17 50.30 125.06
256 1.31 4.22 15.70 61.42 127.58 275.72 424*
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MMCFB is more and more competitive with IPM as k in-
creases, IPM is likely to be competitive only on hard in-
stances with small k: this is confirmed by the next data set,
and by noting that (see Figure 10) the relative efficiency of
MMCFB decreases as n increases for small k, but increases
with n for large k. Yet, these results must be taken with some
care: in all the Mnetgen instances there are arcs with uij

k � 0,
that have been given a tiny capacity and a huge cost, and
this workaround may have an adverse effect on the perfor-
mance of IPM that is currently impossible to estimate.

5.3 The PDS Problems
As shown in Table XII and Figure 11, several PDS instances
were solved up to t � 40: the LP sizes range from 4.1 � 103 to
2.4 � 105, but k is always 11, so that the m/k ratio for PDS40
is about 2 � 103.

The two general-purpose Interior Point codes were not
able to solve instances larger than PDS15 due to memory
problems, but even for the smaller instances they were al-
ways one order of magnitude slower than the simplex-based
codes. For t � 18, CPLEX outperforms both PPRN and
MMCFB, but as the size increases the gap lessens, and for

the largest instances MMCFB outperforms CPLEX by a fac-
tor of four; also, for t � 24, PPRN is competitive with
CPLEX, and for larger instances the specialized simplex is
better than the generic one of a factor of two. However,
neither CPLEX nor PPRN were able to solve PDS40 due to
memory problems, while MMCFB solved the problem, al-
though it required more than 6 hours. The only other code
that was capable of solving all the instances is IPM; for t �
33, it has analogous—but slightly better—performance than
MMCFB.

Since PDS problems have m/n � 3, it is possible (and
instructive) to compare the results with that on hard (.h) and
easy (.e) “sparse” Mnetgen instances: Table XIII shows that
MMCFB solves a hard Mnetgen instance much faster than a
PDS instance of similar size. The running times of the other
methods for these pairs of Mnetgen and PDS instances are
far less different: however, the difference tends to increase
when k ��11 in the Mnetgen instance. The PDS problems are
considered difficult, but the “measure of difficulty” has
never been explicitly stated: by taking it as the solution time
required by a simplex method, it would be possible to assert

Table X. Ratio Between IPM and MMCFB Times—Problems in the Same Row Have Fixed n and Varying k

4 8 16 32 64 128 256

64 19.69 16.24 14.85 12.66 13.39
128 11.14 10.23 10.29 12.52 16.34 29.66
256 6.77 8.29 13.87 16.57 23.78 40.67 38.76

Figure 8. Ratio between CPLEX and MMCFB times—for each k, the columns correspond to different n.
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that the Mnetgen instances are about as hard, but they can
be efficiently solved by MMCFB. This statement can be
criticized, however it is reasonable that a Cost Decomposi-

tion method performs better on problems where the overall
“difficulty” is given by a large k rather than by a large m.

On the PDS problems, it is also possible to try a compar-

Figure 9. Ratio between PPRN and MMCFB times—for each k, the columns correspond to different n.

Figure 10. Ratio between IPM and MMCFB times—for each k, the columns correspond to different n.
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ison with some of the other approaches proposed in the
literature. This is done in Table XIV with PDS1, 10, 20, 30,
and 40.

The other approaches considered are:

• the parallel Nonlinear Jacobi Algorithm (ZaA) applied to
the Augmented Lagrangean of Zakarian,[69] which was
run on a Thinking Machine CM-5 with 64 processors, each
one (apparently) capable of about 25 SPECfp92;

• the linear-quadratic exact penalty function method (PZ)
of Pinar and Zenios,[61] which was run on a Cray Y-MP
vector supercomputer, whose performances with respect
to scalar architectures are very hard to assess;

• the �-approximation algorithm (GK) of Grigoriadis and
Khachiyan,[33] which was run on an IBM RS6000-550
workstation (83.3 SPECfp92, 40.7 SPECint92); the largest
instances were solved to the precision of 4–5 significant
digits;

• the specialized Interior Point method (SM) of Shultz and
Meyer,[62] which was run on a DECstation 3100 (whose
SPEC figures are unknown to us) and that obtained solu-
tions with 8 digits accuracy; and

• a modification and parallelization of the above (ZaG) that
was run on a cluster of SPARCstation 20 workstations[70];
unfortunately, the exact model is not specified, so that the
(SPECfp92, SPECint92) can be anything between (80.1,
76.9) and (208.2, 169.4).

Unfortunately, extracting significant information from the
figures is very difficult due to the different machine used.
However, it is clear that, for these instances, the �-approxi-

mation algorithm provides good solutions in a very low
time: in Table XV, optimal objective function values (ob-
tained with CPLEX), lower bounds obtained by MMCFB
and upper bounds obtained by GK are compared. The re-
ported Gaps for GK are directly drawn from Grigoriadis and
Khachiyan,[33] except for the last two problems for which an
estimate of the exact optimal objective function value had
been used in Grigoriadis and Khachiyan.[33]

Among the other methods, the two parallel ones seem to
provide good results, since MMCFB could not surely
achieve a speedup larger than 11 (on the same machines):
however, the comparison is very difficult, and it is perhaps
better not to attempt any comment. A remark can instead be
done about the concept of “solution” that is underneath
some of the figures in the table: many of the codes—for
instance (GK), (SM), and (ZaG)—use heuristic stopping cri-
teria, essentially performing a fixed number of iterations
before stopping. A posteriori, the solutions are found to be
accurate, but the algorithm is not capable of “certifying” it
by means of appropriate primal-dual estimates of the gap.

5.4 The JLF Problems
Table XVI shows the results obtained on some JLF problems,
those with SPT subproblems: despite the small number of
commodities, MMCFB is still competitive on the “xterm.y”
and “Assadx.y” sets. The “Chenx” problems are more “dif-
ficult” than the others, since they require an order of mag-
nitude more time to be solved than the “xterm.y” instances
of comparable size. For this data set, the Interior Point codes
are competitive with, and IPM largely outperforms, all the

Table XI. Disaggregated Data About Some 256-Node Problems

k m type MMCFB Cplex PPRN IPM Cplex % PPRN % IPM %

4 779 s/e 0.99 0.68 1.47 8.97 0.69 1.49 9.06
4 781 s/h 7.30 1.73 5.93 26.59 0.24 0.81 3.64
4 2021 d/e 3.21 1.76 5.88 42.06 0.55 1.83 13.09
4 2021 d/h 18.65 5.36 26.22 126.38 0.29 1.41 6.78

8 795 s/e 1.98 1.85 5.74 26.55 0.93 2.90 13.41
8 798 s/h 12.62 4.52 15.67 83.88 0.36 1.24 6.65
8 2171 d/e 21.32 10.09 55.33 181.09 0.47 2.60 8.49
8 2177 d/h 64.44 45.46 346.82 540.88 0.71 5.38 8.39

16 799 s/e 5.56 6.15 28.16 65.87 1.11 5.07 11.85
16 831 s/h 21.76 19.97 77.01 208.20 0.92 3.54 9.57
16 2280 d/e 45.74 54.53 272.50 735.33 1.19 5.96 16.08
16 2303 d/h 170.33 639.59 3443.10 2366.96 3.76 20.21 13.90

32 816 s/e 11.01 20.52 100.64 197.00 1.86 9.14 17.90
32 820 s/h 47.16 164.15 488.98 451.94 3.48 10.37 9.58
32 2331 d/e 79.03 464.85 1205.80 1391.59 5.88 15.26 17.61
32 2321 d/h 292.98 4708.31 24626.37 5089.33 16.07 84.06 17.37

64 825 s/e 20.20 116.21 522.45 437.24 5.75 25.86 21.64
64 801 s/h 54.73 362.61 1197.35 699.22 6.63 21.88 12.78
64 2337 d/e 146.11 5239.85 7298.90 3818.54 35.86 49.95 26.13
64 2330 d/h 357.97 24133.90 64852.23 8811.50 67.42 181.17 24.62
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others, confirming the potential advantage of the Interior
Point technology on “hard” instances. However, such small
MMCFs are well in the range of general-purpose LP solvers,

so that it makes little sense to use ad-hoc technology. In this
case, other issues such as availability, ease-of-use and reop-
timization should be taken into account.

Table XII. Results for the PDS Problems

t n m b Size MMCFB Cplex PPRN IPM LOQO IPCplex

1 126 372 87 4.1e�3 0.70 0.81 1.12 3.80 7.38 3.76
2 252 746 181 8.2e�3 5.66 2.12 5.60 13.38 23.57 14.52
3 390 1218 303 1.3e�4 13.10 5.32 15.88 32.22 93.91 42.93
4 541 1790 421 2.0e�4 50.18 12.87 33.74 73.98 316.32 102.07
5 686 2325 553 2.6e�4 127.03 19.54 60.16 120.34 799.49 215.09
6 835 2827 696 3.1e�4 129.92 41.97 112.3 296.30 1118.41 387.11
7 971 3241 804 3.6e�4 241.13 79.31 171.64 536.86 1860.80 635.53
8 1104 3629 908 4.0e�4 287.03 96.61 221.46 429.26 2171.42 1039.43
9 1253 4205 1048 4.6e�4 424.59 147.93 272.28 667.90 3523.90 2281.92

10 1399 4792 1169 5.3e�4 928.14 207.64 467.49 823.81 5437.82 3485.19
11 1541 5342 1295 5.9e�4 813.08 324.78 499.58 1167.99 7820.92 5961.47
12 1692 5965 1430 6.6e�4 828.58 373.35 560.25 1625.69 11785.1 6522.1
13 1837 6571 1556 7.2e�4 1033.7 315.61 945.13 2060.11 15922.9 8281.6
14 1981 7151 1684 7.9e�4 2198.5 524.05 1325.3 2172.29 19033.1 10276.9
15 2125 7756 1812 8.5e�4 1666.6 885.88 1431.1 3054.57 * *
18 2558 9589 2184 1.1e�5 2237.47 2132.57 3093.51 5182.26 * *
20 2857 10858 2447 1.2e�5 3571.58 3766.72 5213.73 8910.87 * *
21 2996 11401 2553 1.3e�5 3541.34 5823.80 7475.30 8237.08 * *
24 3419 13065 2893 1.4e�5 5796.18 11936.5 10817.8 9151.14 * *
27 3823 14611 3201 1.6e�5 8761.89 28790.4 14670.2 11687.2 * *
30 4223 16148 3491 1.8e�5 10343.2 51011.5 18995.0 13935.1 * *
33 4643 17840 3829 2.0e�5 15459.3 54351.3 28869.6 12537.9 * *
36 5081 19673 4193 2.2e�5 17689.2 * 34453.8 17519.3 * *
40 5652 22059 4672 2.4e�5 22888.5 * * 20384.2 * *

Figure 11. Results for the PDS problems.
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5.5 The dimacs2pprn Problems
Due to the previous results, the general-purpose Interior
Point codes were not run on this data set, that contains the
largest instances of all. As described in Section 4.5, for any
given dimension a hard and an easy instance have been

constructed: the results are separately reported in Table XVII
and Table XVIII respectively (note the difference in the
number of mutual capacity constraints, b). As in the Mnet-
gen case, CPLEX ran out of memory on the largest instances,
and PPRN was sometimes stopped after having run for a

Table XIII. Mnetgen and PDS Problems of the Same Size

k n Size MMCFB Cplex PPRN IPM

16.256.e 16 256 12789 5.56 6.15 28.16 65.87
16.256.h 16 256 13301 21.76 19.97 77.01 208.20

PDS3 11 390 13398 13.10 5.32 15.88 32.22

32.256.e 32 256 26123 11.01 20.52 100.64 197.00
32.256.h 32 256 26229 47.16 164.15 488.98 451.94

PDS5 11 686 25575 127.03 19.54 60.16 120.34

64.256.e 64 256 52779 20.20 116.21 522.45 437.24
64.256.h 64 256 51264 54.73 362.61 1197.35 699.22

PDS10 11 1399 52712 928.14 207.64 467.49 823.81

256.256.e 256 256 210859 183.37 4173.05 16150.89 3346.51
256.256.h 256 256 212480 316.59 16222.97 27625.40 6735.61

PDS33 11 4643 196240 15459.30 54351.30 28869.60 12537.90

Table XIV. Comparison with Approaches from the Literature for the PDS Problems

Cplex MMCFB ZaA PZ GK SM ZaG

1 1 1 7 840
10 208 928 65 232 123 1920 45
20 3767 3572 497 1225 372 8220 253
30 51012 10343 557 5536 765 19380 654
40 22889 858 1448 38160 1434

Table XV. Comparison of the Relative Gap of MMCFB and GK

n

Cplex MMCFB GK

O.F. Value O.F. Value Gap O.F. Value Gap

1 29083930523 29083906658 8e07 2.90839E�10 3e09
2 28857862010 28857838002 8e07 2.88579E�10 6e08
3 28597374145 28597348614 9e07 2.85974E�10 108
4 28341928581 28341903396 9e07 2.83419E�10 2e07
5 28054052607 28054035803 6e07 2.80541E�10 3e07
6 27761037600 27761015915 8e07 2.77611E�10 5e07
7 27510377013 27510253762 4e06 2.75107E�10 1e05
8 27239627210 27239603634 9e07 2.72399E�10 9e06
9 26974586241 26974456167 5e06 2.69749E�10 1e05

10 26727094976 26727038830 2e06 2.67280E�10 3e05
20 23821658640 23821637841 9e07 2.38232E�10 7e05
30 21385445736 21385443262 1e07 2.13888E�10 2e04
40 18855198824 18855181456 9e07 1.88595E�10 2e04
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very long time without producing a result (the “�” entries):
IPM also experienced memory problems on the largest in-
stances, with 1.2 millions of variables. Note that a 2.5 � 105

variables MMCF requires about 11, 20, and 129 megabytes of

memory to be solved by MMCFB, PPRN, and CPLEX, re-
spectively: MMCFB requires an order of magnitude less
memory than CPLEX.

The results obtained from these instances confirm those

Table XVI. Results for Some of the JLF Problems

k n m b Size MMCFB Cplex PPRN IPM LOQO IPCplex

10term 10 190 510 146 5100 0.27 0.84 1.07 9.16 26.17 10.97
10term.0 10 190 507 143 5070 0.23 0.78 0.70 7.04 28.29 13.10
10term.50 10 190 498 134 4980 2.00 0.82 1.22 7.97 18.05 11.60
10term.100 10 190 491 127 4910 2.40 0.86 1.10 8.69 19.21 10.58
15term 15 285 796 253 11940 4.81 3.39 11.57 41.35 210.94 106.98
15term.0 15 285 745 202 11175 1.94 2.72 10.23 30.35 123.21 47.15

Chen0 4 26 117 43 468 0.30 0.25 0.32 0.25 0.44 0.38
Chen1 5 36 174 65 870 0.98 0.64 0.73 0.41 0.99 0.77
Chen2 7 41 358 155 2506 5.98 4.89 3.77 1.59 4.17 3.91
Chen3 15 31 149 56 2235 1.22 5.18 1.96 1.10 3.12 2.62
Chen4 15 55 420 176 6300 25.49 83.39 20.05 5.92 46.92 32.75
Chen5 10 65 569 242 5690 52.58 48.74 48.12 5.24 21.18 15.53

assad1.5k 3 47 98 98 294 0.03 0.11 0.09 0.36 0.39 0.22
assad1.6k 3 47 98 98 294 0.01 0.08 0.06 0.39 0.37 0.22
assad3.4k 6 85 204 95 1224 0.08 0.33 0.55 1.41 4.26 1.44
assad3.7k 6 85 204 95 1224 0.10 0.29 0.56 1.57 4.22 1.41

Table XVII. Results of the “Hard” Dimacs2pprn Instances

k n m size b MMCFB Cplex PPRN IPM

4 64 240 9.6e�2 240 0.46 0.32 0.37 1.23
4 128 496 2.0e�3 112 1.30 1.05 2.36 2.65
4 256 1008 4.0e�3 1007 21.50 8.85 14.82 23.13
4 256 1088 4.4e�3 192 0.36 1.38 2.22 8.86
4 512 2240 9.0e�3 447 5.97 14.39 32.26 63.44
4 1024 4544 1.8e�4 960 39.76 70.41 178.06 266.79

16 64 240 3.8e�3 240 0.44 1.23 1.68 7.58
16 128 496 7.9e�3 112 4.31 19.72 29.75 24.74
16 256 1008 1.6e�4 240 64.79 230.82 550.11 437.41
16 256 1088 1.7e�4 192 1.08 5.38 22.14 39.70
16 512 2240 3.6e�4 448 14.15 218.55 479.96 540.90
16 1024 4544 7.3e�4 960 69.59 1079.63 2796.85 2363.02

64 64 240 1.5e�4 240 2.89 50.70 92.77 51.55
64 128 496 3.2e�4 112 9.23 222.65 562.71 410.42
64 256 1008 6.5e�4 1008 94.07 3256.52 10011.30 4556.57
64 256 1088 7.0e�4 192 4.37 93.14 535.47 283.19
64 512 2240 1.4e�5 448 37.69 2362.37 7146.33 2703.51
64 1024 4544 2.9e�5 960 215.70 18763.9 52787.6 22899.4

256 64 240 6.1e�4 240 17.52 668.27 1415.55 258.87
256 128 496 1.3e�5 112 48.72 3525.27 11443.50 501.80
256 256 1008 2.6e�5 1008 458.36 56756.9 200000� 6069.46
256 256 1088 2.8e�5 192 15.30 821.86 7832.38 1475.91
256 512 2240 5.7e�5 448 448 218.84 138225.0 22266.8
256 1024 4544 1.2e�6 960 898.51 * 400000� *
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obtained from the previous data sets: MMCFB is faster than
the two simplex-based codes on all but the smallest in-
stances, IPM is competitive with both CPLEX and PPRN on
instances with large k but MMCFB is even more efficient—
for k � 256 it is always more than an order of magnitude
faster than the other codes, approaching the three orders of
magnitude as m increases. Yet, especially on large problems,
MMCFB spends most of the time in the SPT solver, which
suggests that substantial improvements should be obtained
by making use of reoptimization techniques in the SPT
algorithms.

The results are also illustrated by Figures 12–17, where
the ratio of the running times of CPLEX, PPRN, and IPM vs.
MMCFB is reported for “hard” and “easy” instances sepa-
rately. It is interesting to note that the relative efficiency of
MMCFB with respect to the simplex-based codes for k � 4 is
lower on easy problems than on hard ones, while the con-
verse is true for the relative efficiency of MMCFB with
respect to IPM.

5.6 The BHV Problems
Among the available specialized solvers, only MMCFB is
capable of solving undirected instances; the three general-
purpose LP solvers can be adapted for the task, but, due to
the very poor results obtained by the IP codes, only CPLEX
was actually run on these data sets. The times for the Col-
umn Generation algorithm (BCG) were obtained on an IBM
RS6000-590 workstation, credited for 121.6 SPECint92 and

259.7 SPECfp92, i.e., essentially twice as fast as the HP9000/
712-80: Table XIX shows that on the easy “px” problems
MMCFB is 10 times faster than BCG. The results on the other
data set, shown in Table XX, are quite surprising: the two
methods are essentially equivalent on the (highly fractional)
“r10-55-y” instances, but MMCFB is able to solve the similar
(integral) “r10-5-y” instances 30 times faster, while BCG
needs about twice the time. A rationale for the behavior of
MMCFB exists: a smaller number of trees is likely to be
necessary to form the optimal flow as a convex combination
in the integral data case. However, it is unclear why the
same should not be true for the CG code: should it be proved
that this is due to the Bundle-type approach, the result could
be rather interesting.

5.7 Conclusions
The above computational experience shows that MMCFB
can be a valuable tool for solving MMCFs with many com-
modities: to stress one figure, MMCFB solved the hard,
dense (256, 256) Mnetgen instances in less than 20 minutes,
but more than 6 and 10 days were needed by CPLEX and
PPRN respectively, while IPM required a little less than 5
hours. As the experience with the dimacs2pprn data set
shows, MMCFs with over one million of variables can be
solved in less than 15 minutes of CPU time by a low-end
computer, provided that the subproblems have a SPT struc-
ture. In a companion article,[14] we also show that a some-
what “naive” parallelization of MMCFB obtains very good

Table XVIII. Results of the “Easy” Dimacs2pprn Instances

k n m size b MMCFB Cplex PPRN IPM

4 64 240 9.6e�2 48 0.07 0.17 0.16 0.54
4 128 496 2.0e�3 112 0.18 0.24 0.26 1.61
4 256 1008 4.0e�3 239 1.12 1.81 3.40 5.37
4 256 1088 4.4e�3 191 0.08 0.54 1.80 4.17
4 512 2240 9.0e�3 447 0.75 6.41 12.08 35.58
4 1024 4544 1.8e�4 960 1.84 14.02 34.84 101.49

16 64 240 3.8e�3 48 0.14 0.88 1.51 3.19
16 128 496 7.9e�3 112 0.66 3.50 7.67 10.88
16 256 1008 1.6e�4 240 3.53 20.27 65.31 63.66
16 256 1088 1.7e�4 192 0.37 3.42 8.05 31.60
16 512 2240 3.6e�4 448 2.24 43.30 275.89 166.14
16 1024 4544 7.3e�4 960 6.64 74.82 1286.26 514.74

64 64 240 1.5e�4 48 1.37 11.03 34.00 19.72
64 128 496 3.2e�4 112 2.12 25.80 109.97 51.61
64 256 1008 6.5e�4 240 15.75 445.28 1395.74 333.13
64 256 1088 7.0e�4 192 2.75 47.05 339.72 195.77
64 512 2240 1.4e�5 448 8.83 261.62 4492.95 754.25
64 1024 4544 2.9e�5 960 32.18 978.31 22511.3 3411.4

256 64 240 6.1e�4 48 9.21 208.90 694.94 94.94
256 128 496 1.3e�5 112 11.36 401.02 2662.57 228.16
256 256 1008 2.6e�5 240 96.34 7324.71 28435.0 1340.8
256 256 1088 2.8e�5 192 13.33 474.34 5270.80 1178.85
256 512 2240 5.7e�5 448 85.17 * 81419.1 4236.8
256 1024 4544 1.2e�6 960 159.33 * 400000� *
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Figure 12. CPLEX/MMCFB ratio for easy problems.

Figure 13. CPLEX/MMCFB ratio for hard problems.
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Figure 14. PPRN/MMCFB ratio for easy problems.

Figure 15. PPRN/MMCFB ratio for hard problems.
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Figure 16. IPM/MMCFB ratio for easy problems.

Figure 17. IPM/MMCFB ratio for hard problems.
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parallel efficiencies on a massively parallel computer for the
same instances for which the sequential code is more com-
petitive, i.e., when k is large. Conversely, MMCFB does not
appear to be a good choice for problems with a small num-
ber of commodities, unless the instances are very large: the
PDS problems show that MMCFB can be competitive even
on problems with m/k ratio larger than 1000, but the
speedup with respect to simplex-based codes is far smaller
than on many-commodities problem.

The general-purpose Interior Point solvers are not com-
petitive with the other approaches, and they are not able to
solve even moderately-sized instances due to excessive
memory requirements. However, the specialized one dra-
matically improves on them and it is competitive on difficult
problems with few commodities: it is also competitive with
the simplex-based methods, although not with MMCFB, for
large values of k. Among the latter, CPLEX is (sometimes
consistently) faster than PPRN on the Mnetgen and
dimacs2pprn problems, while the converse is true for the
Canad ones: however, on the largest (difficult) PDS prob-
lems PPRN neatly outperforms CPLEX.

The Column Generation code was found (on a limited set
of problems) to be less effective than MMCFB, even though
in some cases not dramatically. For the subset of the prob-
lems where the speedup is really impressive, it is still not
clear which features of the codes determine such difference,
and further investigation is needed. Finally, the indirect
comparison with methods from the literature seems to indi-
cate that alternative approaches can be at least comparably
efficient, or even much more efficient for rapidly finding
approximate solutions, at least on some classes of problems.
Even more clearly, however, they show the need for further
computational studies that help in assessing the effective-
ness of the various approaches on different classes of prob-
lems: we hope that this work proves to be useful as a step in
this direction.
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Catalunya.

13. H. CHEN and C.G. DEWALD, 1974. A Generalized Chain Label-
ling Algorithm for Solving Multicommodity Flow Problems.
Comput. & Op. Res. 4, 437–465.

14. P. CAPPANERA and A. FRANGIONI, 1996. Symmetric and Asym-
metric Parallelization of a Cost-Decomposition Algorithm for
MultiCommodity Flow Problems. Technical Report TR 36/96,
Dipartimento di Informatica, Università di Pisa (submitted to
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(submitted to Discrete Applied Mathematics).

16. P. CARRARESI, A. FRANGIONI, and M. NONATO, 1996. Applying
Bundle Methods to Optimization of Polyhedral Functions: An
Applications-Oriented Development. Ricerca Operativa 25, 5–49.

17. CPLEX OPTIMIZATION, 1994. Using the CPLEX� Callable Li-
brary Version 3.0, CPLEX Optimization Inc.

18. J. CASTRO and N. NABONA, 1996. An Implementation of Linear
and Nonlinear Multicommodity Network Flows. EJOR 92, 37–
53.

19. J. CASTRO, 1999. A Specialized Interior Point Algorithm for
Multicommodity Network Flows, to appear on SIAM J. on Op-
timization.

20. P. DHARMA and J.A. SHAPIRO, 1995. Augmented Lagrangeans
for Linearly Constrained Optimization Using AMPL. CIV 518
Final Report.

21. G.B. DANTZIG and P. WOLFE, 1960. The Decomposition Principle
for Linear Programs. Op. Res. 8, 101–111.

22. L.R. FORD and D.R. FULKERSON, 1958. A Suggested Computa-
tion for Maximal Multicommodity Network Flows. Mgmt. Sci. 5,
79–101.

23. J.M. FARVOLDEN, W.B. POWELL, and I.J. LUSTIG, 1993. A Primal
Partitioning Solution for the Arc-Chain Formulation of a Mul-
ticommodity Network Flow Problem. Op. Res. 41, 669–693.

24. A. FRANGIONI, 1996. Solving Semidefinite Quadratic Problems
Within Nonsmooth Optimization Algorithms. Computers & O.R.
23, 1099–1118.

25. A. FRANGIONI, 1997. Dual-Ascent Methods and Multicommod-
ity Flow Problems. Ph.D. Thesis TD 5/97, Dipartimento di Infor-
matica, Università di Pisa.
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