
SIAM J. OPTIM. c© 2009 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 357–386

CONVERGENCE ANALYSIS OF DEFLECTED CONDITIONAL
APPROXIMATE SUBGRADIENT METHODS∗

GIACOMO D’ANTONIO† AND ANTONIO FRANGIONI‡

Abstract. Subgradient methods for nondifferentiable optimization benefit from deflection, i.e.,
defining the search direction as a combination of the previous direction and the current subgradient.
In the constrained case they also benefit from projection of the search direction onto the feasible
set prior to computing the steplength, that is, from the use of conditional subgradient techniques.
However, combining the two techniques is not straightforward, especially if an inexact oracle is
available which can only compute approximate function values and subgradients. We present a con-
vergence analysis of several different variants, both conceptual and implementable, of approximate
conditional deflected subgradient methods. Our analysis extends the available results in the litera-
ture by using the main stepsize rules presented so far, while allowing deflection in a more flexible
way. Furthermore, to allow for (diminishing/square summable) rules where the stepsize is tightly
controlled a priori, we propose a new class of deflection-restricted approaches where it is the deflec-
tion parameter, rather than the stepsize, which is dynamically adjusted using the “target value” of
the optimization sequence. For both Polyak-type and diminishing/square summable stepsizes, we
propose a “correction” of the standard formula which shows that, in the inexact case, knowledge
about the error computed by the oracle (which is available in several practical applications) can
be exploited in order to strengthen the convergence properties of the method. The analysis allows
for several variants of the algorithm; at least one of them is likely to show numerical performances
similar to these of “heavy ball” subgradient methods, popular within backpropagation approaches
to train neural networks, while possessing stronger convergence properties.

Key words. convex programming, nondifferentiable optimization, subgradient methods, con-
vergence analysis, Lagrangian relaxation, backpropagation

AMS subject classification. 90C25

DOI. 10.1137/080718814

1. Introduction. We are concerned with the numerical solution of the nondif-
ferentiable optimization (NDO) problem

(1.1) f∗ = inf { f(x) : x ∈ X },

where f : R
n → R is finite-valued and convex (hence, continuous) and X ⊆ R

n is
closed convex. We are specifically interested in the case where X �= R

n, that is, (1.1)
is a constrained NDO problem; X has to be given in a form that allows easy projection
(in most applications X is a very simple polyhedron, such as the nonnegative orthant).
It is customary to assume that f is only known through an oracle (“black box”) that,
given any x ∈ X , returns the value f(x) and one subgradient g ∈ ∂f(x). In order to
make the algorithm more readily implementable, it is useful to contemplate the case
where only an “approximate” subgradient can be obtained; that is, we will allow g to
only satisfy the “relaxed” subgradient inequality f(y) ≥ f(x) + 〈g, y − x〉− ε for all y
and some ε ≥ 0, i.e., to belong to the (larger) ε-subdifferential of f at x, denoted by
∂εf(x). This is particularly useful in Lagrangian relaxation, where the “black box”

∗Received by the editors March 18, 2008; accepted for publication (in revised form) December 17,
2008; published electronically April 24, 2009.

http://www.siam.org/journals/siopt/20-1/71881.html
†Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy

(dantonio@dm.unipi.it).
‡Dipartimento di Informatica, Università di Pisa, Polo Universitario della Spezia, Via dei Colli

90, 19121 La Spezia, Italy (frangio@di.unipi.it).

357

358 GIACOMO D’ANTONIO AND ANTONIO FRANGIONI

requires the approximate solution of a potentially difficult optimization subproblem.
Since in this case ε is precisely the absolute tolerance required, allowing for a “large”
ε may substantially decrease the oracle time required.

We will study solution algorithms for (1.1) belonging to the class of subgradient
methods. These algorithms, introduced by Polyak in his seminal paper from 1969 (see
[31] for a review of the early contributions in the field) have been for a long time the
only computationally viable approach for solving (1.1). Despite the emergence of other
classes of algorithms such as bundle [18, 14] and centers-based methods [11, 28], which
are often more efficient, subgradient approaches may still be a valuable alternative,
especially for very-large-scale problems and if the required accuracy for the solution
is not too high [9, 12].

We consider subgradient methods for (1.1) based on the recurrence equation

(1.2) x̂k+1 = xk − νkdk, xk+1 = PX(x̂k+1),

where PX denotes orthogonal projection on X and dk is the (opposite of the) search
direction, computed using the current (approximate) subgradient gk ∈ ∂εk

f(xk) and
possibly information from the previous iteration, while νk ≥ 0 is the stepsize. While
the original subgradient methods [30] used dk = gk, it soon became clear that some
form of deflection, i.e., using dk = gk + ηkvk, was very important in order to improve
practical performances. One idea was to use vk = dk−1, with ηk chosen in such a
way that 〈dk, dk−1〉 ≥ 0 [7]; this “dampens” the zig-zagging phenomenon whereby the
direction at one step is almost opposite to that of the previous step, yielding very slow
convergence. Another approach is that of “heavy ball” subgradient methods [30, 35],
which rather use vk = xk − xk−1 (called momentum term); while dk−1 and xk − xk−1

are collinear in the unconstrained case (X = R
n), this is not so in general due to the

projection.
Deflection does not, however, cure the other form of zig-zagging, which occurs

when the iterates xk are on the boundary of X and the directions dk turn out to be
almost orthogonal to the frontier. This is a consequence of the fact that, in the original
subgradient iteration, the feasible set X is not considered during the construction of
the direction dk, but only a posteriori. A possible remedy is readily obtained by
simply considering the essential objective fX(x) = f(x) + IX(x) of (1.1), IX being
the indicator function of X . A (ε-)subgradient of fX is said to be a conditional (ε)-
subgradient of f w.r.t. X [22, 24] and can be used instead of gk to compute the search
direction. It is well known that ∂εfX(x) ⊇ ∂εf(x)+∂IX(x) = ∂εf(x)+Nk [18], where
Nk = NX(xk) is the normal cone of X at xk; thus, for iterates xk on the frontier
of X (where Nk �= {0}), one may have, for a given gk produced by the “black box,”
multiple choices of vectors in the normal cone to produce a conditional subgradient
ĝk to be used for computing the direction. The obvious choice is to select the optimal
solution of

argmin
{ ‖ g ‖2 : g ∈ gk + Nk

}
,

which, if f happens to be differentiable at xk and εk = 0, is the steepest descent
direction; hence, in the (unlikely) case that ĝk = 0, one would have proven optimality
of xk. Denoting by Tk = TX(xk) the tangent cone of X at xk, it is well known that
Tk and Nk are polar cones, that is, 〈v, w〉 ≤ 0 for each v ∈ Tk and w ∈ Nk (which is,
in particular, true when xk is in the interior of X , so that Tk = R

n and Nk = {0});
thus, by the Moreau decomposition principle, ĝk is also the solution of

(1.3) ĝk = argmin
{ ‖ g − gk ‖2 : g ∈ −Tk

}
= −PTk

(−gk).

DEFLECTED CONDITIONAL APPROXIMATE SUBGRADIENT 359

This gives rise to the projected subgradient approach, where dk = −PTk
(−gk). Conver-

gence of approaches using conditional (ε-)subgradients can be proven under common
assumptions on the stepsize [22, 24, 20].

However, to the best of our knowledge, no explicit convergence proof is known
for subgradient methods which combine these two techniques. In [17], a “hybrid”
subgradient approach is proposed which employs deflection when xk lies in the interior
of X and projection when xk is on the boundary; however, one would clearly prefer to
be able to deflect at every iteration. The issue here is that projecting the subgradient
and deflecting simultaneously, i.e., using dk = ĝk + ηkvk, with the above choices of
vk, would hardly result in an efficient approach since dk is unlikely to belong to Tk;
thus, even in the polyhedral case the approach would not produce feasible directions.
Our development is based on two main ideas: first, we restrict ourselves to deflection
formulae akin to

(1.4) dk = αkgk + (1 − αk)vk, αk ∈ [0, 1],

i.e., where the direction is taken as a convex combination of the previous direction
and the current subgradient. This choice can be motivated as follows:

• Any deflection rule where gk is not scaled can be seen as (1.4), where dk

is afterwards scaled by 1/αk, an effect that can alternatively be taken into
account by changing the stepsize νk; for instance, a simple condition over αk

in (1.4) might be used to ensure that 〈dk, dk−1〉 ≥ 0, the original aim of [7].
• Choice (1.4) guarantees that vk ∈ ∂ε′

k
fX(xk) for a proper ε′k—different from

the oracle error εk—which can be explicitly computed (Lemma 2.6) and con-
trolled (Lemmas 3.1 and 4.1), thereby allowing to exploit known results [8, 20].

• This is the choice of volume-like variants of the approach [3, 2, 34], which
have become popular in the important Lagrangian application [25, 16, 15]
due to their ability to (asymptotically) provide primal optimal solutions to
the “convexified relaxation” (although this is not the only means to extract
primal solutions out of a subgradient algorithm [23, 1, 29, 32]).

The second key idea is that, since (1.4) guarantees that the direction is a ε′k-subgradient,
instead of projecting gk, one may (and should) choose to project dk. A closer inspec-
tion reveals that there are actually eight different ways in which this can be done:

ḡk ∈ { gk , ĝk }, vk ∈
{

d̃k−1 , d̂k−1

}
,(1.5)

d̃k = αkḡk + (1 − αk)vk, dk ∈
{

d̃k , d̂k = −PTk

(
−d̃k

) }
,(1.6)

where we assume α1 = 1, thus rendering v1 irrelevant and the formulae well defined.
That is, at each step, one has two (approximate) subgradients gk and vk, each of which
can be individually deflected (or not); their convex combination d̃k is formed, and
either it is directly used as the direction, or it is projected beforehand. Of course, the
combination where no projection is ever performed, apart from that of x̂k, can hardly
be considered a conditional subgradient approach. Similarly, the other three where
dk = d̃k is not projected may be suspected to suffer the zig-zagging phenomenon, as
even projection of gk and use of vk = d̂k−1—which is, indeed, projected, but w.r.t.
the previous iterate xk−1—cannot guarantee that d̃k ∈ Tk. However, even restricting
to the four cases where dk = d̂k, the simple example gk = (1,−1), vk = (−1, 1), xk =
(0, 0), X = R

2
+, and αk = 1/2 shows that the four schemes can provide four different

directions. Actually, it appears that the treatment could be extended to allowing vk to

360 GIACOMO D’ANTONIO AND ANTONIO FRANGIONI

be any convex combination of d̃k−1 and d̂k−1 and similarly for ḡk, but there seems to
be little reason (or sensible way) to choose anything but the extreme cases. Also, note
that the selection between the different projection alternatives can vary arbitrarily at
each iteration.

In this article we present unified convergence results for conditional, deflected,
approximate subgradient algorithms of the form (1.5)/(1.6). We consider both a mod-
ified version of Polyak stepsize, and diminishing/square summable ones; starting from
“abstract” rules requiring the knowledge of f∗, we work our way towards “concrete”
ones which do away with this condition, as originally proposed by Polyak himself [30].
The convergence analysis is centered on the fact that the deflection term vk is, at
every iteration, a conditional ε′k-subgradient for a ε′k that is, in general, different from
the “oracle error” of the current iterate; hence, the proposed approach is a conditional
approximate subgradient method, and as such it falls under the very general study of
[20]. However, in this particular case, the accuracy of the subgradient (ε′k) depends in
a complex way on the deflection parameter (αk) and the specific projection formula
used. We, therefore, provide implementable rules for the selection of αk which ensure
convergence of the approach, as opposed to providing abstract conditions which are
somewhat required to hold. Furthermore, our analysis of corrected rules improves on
the available convergence results even for nondeflected approaches.

2. Preliminary results. In the following, we will always assume a (conditional,
deflected, approximate) subgradient method of the form (1.2) with direction chosen
by (1.5)/(1.6). We will denote by X∗ ⊆ X the optimal solution set of (1.1) and by x∗

any one of its elements; that is, f∗ = f(x∗) > −∞ if X∗ �= ∅. We will assume that

(2.1) gk ∈ ∂σk
f(xk),

i.e., we will denote by σk ≥ 0 the “oracle error,” leaving the notation εk for the
“direction error” (cf. Lemma 2.6), in order to notationally simplify the comparison
with known results [8, 20]. Finally, we denote by fk = f(xk) the sequence of function
values and by f∞ = lim infk→∞ fk its asymptotic value.

For the standard subgradient method (i.e., dk = gk and σk = 0), one way of
ensuring convergence is to guarantee the “nonexpansivity” property

(2.2) ‖xk+1 − x∗‖ ≤ ‖xk − x∗‖,
which is implied by

(2.3) 〈−dk, x∗ − xk〉 ≥ 0,

which, in turn, immediately follows from the definition of dk = gk ∈ ∂f(xk), i.e.,

(2.4) 〈−dk, xk − x∗〉 = 〈dk, x∗ − xk〉 ≤ f(x∗) − fk ≤ 0.

However, when dk �= gk, these properties fail to hold unless the stepsize νk and the
deflection coefficient αk are properly managed. This is illustrated in Figure 2.1.

The crucial property (2.3) requires “moving in a right direction,” i.e., that X∗ ⊆
{ x ∈ R

n : 〈−dk, x − xk〉 ≥ 0 }. For vk = dk−1, (2.3) is implied by

(2.5) 〈dk−1, x
∗ − xk〉 ≤ 0.

Therefore, one may impose (2.3) irrespective of αk by requiring the stepsize to be
small enough; in the figure, x

(a)
k+1 is the point farthest from xk which satisfies this

DEFLECTED CONDITIONAL APPROXIMATE SUBGRADIENT 361

Fig. 2.1. Relationships between νk, αk, and (2.3).

condition. However, (2.2) is satisfied by a possibly larger set of stepsizes; in the
figure, this is represented by point x

(b)
k+1. If, instead, one is wary about limiting the

stepsize and, say, obtains point x
(c)
k+1 in the figure, it is still possible to ensure that

(2.3) holds by imposing that dk is “not too different” from gk, i.e., imposing some
lower bound on αk; this corresponds to direction dk+1 in the figure.

Summarizing, in order to ensure that sufficient conditions for convergence hold,
either the stepsize has to be properly limited in order to allow any deflection, or
the deflection has to be properly limited in order to allow any stepsize. Therefore,
in the following we will separately study two different kinds of subgradient schemes:
stepsize-restricted approaches and deflection-restricted ones. Before doing that, we
provide some technical lemmas that are useful for both.

2.1. Technical lemmas. We start recalling a few known results about the ge-
ometry of the involved points and directions.

Lemma 2.1. Let pk = xk − x̂k; then

〈−pk+1, dk〉 ≤ 0,(2.6)
‖xk+1 − xk‖ ≤ ‖x̂k+1 − xk‖,(2.7)

〈pk+1, xk+1 − xk〉 ≤ 0.(2.8)

Proof. For (2.6) and (2.7), see [17, Lemma 3.9]; for (2.8), see [5, Proposi-
tion 2.2.1].

Lemma 2.2. For any x ∈ X, one has

(2.9) ‖xk+1 − x‖2 ≤ ‖xk − x‖2 − 2νk〈xk − x, dk〉 + ν2
k‖dk‖2.

Proof. Using [5, Theorem 2.2.1] for the first step, one has

‖xk+1 − x‖2 ≤ ‖x̂k+1 − x‖2 = ‖xk − νkdk − x‖2

= ‖xk − x‖2 − 2νk〈xk − x, dk〉 + ν2
k‖dk‖2.

We now proceed with the main technical results, aimed at reproducing (2.2)–(2.4) in
the more general deflected conditional setting.

Lemma 2.3. For each x ∈ X, it holds

(2.10)
〈
d̂k, x − xk

〉
≤ 〈dk, x − xk〉 ≤

〈
d̃k, x − xk

〉
.

362 GIACOMO D’ANTONIO AND ANTONIO FRANGIONI

Proof. From −d̃k = PTk
(−d̃k) + PNk

(−d̃k) = −d̂k + PNk
(−d̃k) one obtains〈

d̃k, x − xk

〉
=

〈
d̂k, x − xk

〉
−

〈
PNk

(
−d̃k

)
, x − xk

〉
≥

〈
d̂k, x − xk

〉
from PNk

(−d̃k) ∈ Nk, (x − xk) ∈ Tk. The rest follows from (1.6).
An immediate consequence of (2.10) is that for any x ∈ X , one has

(2.11) 〈vk+1, x − xk〉 ≤
〈
d̃k, x − xk

〉
.

In all but one case, (2.11) can be complemented by

(2.12) 〈dk, x − xk〉 ≤ 〈vk+1, x − xk〉.

This property is crucial for convergence of the stepsize-restricted approaches, for rea-
sons discussed below; the following lemma proves that it is always satisfied when
dk = d̂k, i.e., in the “truly conditional” variants.

Lemma 2.4. Condition (2.12) holds if

(2.13) dk = d̃k ⇒ vk+1 = d̃k.

Proof. Clearly, (2.12) holds if dk = vk+1; it also holds if dk = d̂k and vk+1 = d̃k

due to (2.10). Thus, the only “bad case” is when dk = d̃k and vk+1 = d̂k.
Lemma 2.5. It holds

(2.14)
〈
d̃k, xk − xk+1

〉
≤ 〈dk, xk − xk+1〉 ≤ νk‖dk‖2.

Proof. For the rightmost inequality in (2.14), we have

〈dk, xk − xk+1〉 = 〈dk, xk − x̂k+1〉 + 〈dk, x̂k+1 − xk+1〉 (for (1.2))
= νk‖dk‖2 + 〈dk, x̂k+1 − xk+1〉 ≤ νk‖dk‖2 (for (2.6)).

The leftmost inequality comes from (2.10) with x = xk+1.
In the spirit of (2.11), (2.14) can be rewritten as

(2.15) 〈vk+1, xk − xk+1〉 ≤ νk‖dk‖2.

Lemma 2.6. At all iterations k, vk+1 ∈ ∂εk
fX(xk), with

(2.16) 0 ≤ εk = (1 − αk) (fk − fk−1 − 〈vk, xk − xk−1〉 + εk−1) + αkσk.

Proof. The proof is by induction over k. For k = 1, α1 = 1 in (1.6)/(1.5) implies
v2 = ḡ1 ∈ ∂σ1fX(x1) (ε1 = σ1 ≥ 0). For the inductive step k > 1, first observe that
vk ∈ ∂εk−1fX(xk−1) immediately implies that

(2.17) ε′k = fk − fk−1 − 〈vk, xk − xk−1〉 + εk−1 ≥ 0,

and therefore, εk ≥ 0. Then, consider any fixed x ∈ X ; from (1.6)〈
d̃k, x − xk

〉
= αk〈ḡk, x − xk〉 + (1 − αk)〈vk, x − xk〉
= αk〈ḡk, x − xk〉 + (1 − αk) (〈vk, x − xk−1〉 − 〈vk, xk − xk−1〉) .

DEFLECTED CONDITIONAL APPROXIMATE SUBGRADIENT 363

Applying (2.11), the inductive hypothesis, and ḡk ∈ ∂σk
fX(xk), we then obtain

〈vk+1, x − xk〉 ≤
〈
d̃k, x − xk

〉
≤ αk(f(x) − fk + σk) + (1 − αk) (f(x)− fk−1 + εk−1 −〈vk, xk −xk−1〉)
= f(x) − fk + (1 − αk) (fk − fk−1 − 〈vk, xk − xk−1〉 + εk−1) + αkσk

(in the last line, we have added and subtracted (1 − αk)fk).
A few remarks about Lemma 2.6 are in order.
1. The lemma proves the anticipated result that the deflection term vk is an

approximate subgradient of fX . While in (2.16) this is true for the previous
iterate xk−1, the well-known information transport property ensures that any
approximate subgradient at xk−1 is also an approximate subgradient at xk,
only with a different approximation. Indeed, from vk ∈ ∂εk−1fX(xk−1) it
is easy to establish that vk ∈ ∂ε′

k
fX(xk), where ε′k is given in (2.17). This

(conditional) ε′k-subgradient is combined with the new σk-subgradient (con-
ditional or not) at xk to obtain the final d̃k, which then is a (conditional)
εk-subgradient at xk for εk = (1 − αk)ε′k + αkσk (cf. (2.16)). Because Nk is
a cone, further projecting d̃k keeps it in the conditional subdifferential.

2. If σk is known, then both εk and ε′k are computable, i.e., they can easily be
kept updated during the algorithm’s operations. Thus, the natural (although
seldom effective in practice) early stopping rule based on checking whether
||gk|| (or ||ḡk||) and σk are “small” can be complemented with the analogous
one checking ||vk|| and ε′k. Even better yet, this may be used to select αk. For
instance, the value of αk which minimizes ‖d̃k‖ can be found by a closed for-
mula, while the one which minimizes ‖d̂k‖ requires a more costly constrained
quadratic problem, albeit a specially structured one [13]. This would bring
the subgradient algorithm very close to a Bundle method with “minimal”
bundle [18, 14], a la [2].

3. The above discussion proves that if (2.13) holds, then dk ∈ ∂εk
fX(xk), i.e.,

the approach is a (conditional) εk-subgradient algorithm, where εk is given
by the (complicated) (2.16). In fact, this is true if vk+1 = dk; it is also true if
vk+1 = d̃k and dk = d̂k, as projecting leaves into the εk-subdifferential. The
only case where the property may not hold is when dk = d̃k and vk+1 = d̂k

(cf. Lemma 2.4), since then we know only that the projected object is a εk-
subgradient, which does not mean that the unprojected one is such.

4. The development of the present paragraph, upon which all the following re-
sults hinge, does not extend to “heavy ball” subgradient methods. This is
so despite the fact that vk+1 = (xk − xk+1)/νk would at first seem a good
candidate for a definition of the deflection term which may fit the present
theory; for instance, it would satisfy (2.15). However, such a definition may
violate the crucial (2.11), which geometrically means that for all x ∈ X , the
angle between x− xk and −vk+1 is not larger than the angle between x− xk

and −d̃k. Consider the simple example where X = R
2
+, f(x) = 〈(−1, 1), x〉,

x1 = (1, 1), ν1 = 2, and the oracle outputs g1 = (−1, 1) = ∇f(x1) (i.e.,
σ1 = 0); in this case, g1 = d̃1 = d̂1 = d1, x̂2 = (3,−1), and x2 = (3, 0). It is
then easy to choose x ∈ X that violates (2.11); in fact, v2 = (x1 − x2)/2 =
(−1, 1/2) /∈ ∂fX(x1) = {g1}. While the momentum term may be an approx-
imate subgradient for a tolerance larger than εk, there does not seem to be
any way to compute that error a priori. Indeed, all the available analyses

364 GIACOMO D’ANTONIO AND ANTONIO FRANGIONI

of “heavy ball” subgradient methods treat the momentum term basically as
“noise”; therefore, either its use worsens the convergence properties of the
algorithm [27], or the momentum parameter is required to vanish [35]. How-
ever, the approach where ḡk = gk and vk+1 = dk = d̂k might be expected to
numerically behave quite similarly to a “heavy ball” one; in fact, especially
when νk is “small” and X is a polyhedron, one can expect the effect of the
projection in (1.2) to be “small,” i.e., that dk = d̂k and xk+1 − xk be almost
collinear. In this sense, the deflected conditional methods analyzed in this
paper may offer a provably convergent alternative to “heavy ball” ones which
is likely to be similarly effective; numerical experiments will be required to
verify whether this is actually the case.

A final remark must also be done on a possible occurrence which does not seem to
have been explicitly considered in previous analyses about approximate subgradient
methods. Let’s start with an obvious observation.

Observation 2.7. Let σ∗ = lim supk→∞ σk < +∞ be the asymptotic maximum
error of the black box; if f∗ > −∞, then no subgradient method can be guaranteed to
provide a solution with absolute error strictly smaller than σ∗ for all possible choices
of the starting point x1.

Proof. It is consistent with the hypotheses that σk ≥ σ∗ for all k (say, σk is
nonincreasing with the iterations and σ∗ is the limit), x1 is chosen in such a way
that f(x1) = f∗ + σ∗, and the oracle always returns gk = 0 when called upon x1.
Therefore, dk = 0 and xk = x1 for all k whatever the choices in (1.2), (1.5), and (1.6):
the algorithm is unable to move away from x1; thus, the obtained error is σ∗.

Subgradient methods typically assume dk �= 0; this is not an issue in the “exact”
case because in the (very unlikely) event that gk = 0 the algorithm can be promptly
terminated as xk is optimal. Analogously, for an approximate method with constant
error σk = σ∗ for all k, finding gk = 0 allows us to conclude that xk is σ∗-optimal and
therefore, to terminate the algorithm because no better accuracy can be expected, as
shown above. However, it may rather be the case that σk is not constant; this, for
instance, makes particular sense in Lagrangian relaxation (cf. section 5.1). So, the
case may arise where σk > σ∗ and f∗ + σ∗ < fk ≤ f∗ + σk; the oracle may legally
choose to return gk = 0, which may result in dk = 0. Stopping the algorithm is not
a solution in this case, but something has to be done, because the stepsize formulae
are not well defined; in practice, this would likely thrash any numerical code. Yet,
the solution is simple: as shown in the above observation, dk = 0 leaves no other
choice to the algorithm than xk+1 = xk. This is less dramatic than its loop-inducing
aspect would initially suggest. In fact, if σk = σ∗, it is just an indication that the
algorithm has converged to its maximum possible precision. If not, it means that the
oracle can provide “more accurate” first-order information about the function in xk

“if instructed to do so”; in other words, calling the oracle again on the same xk will
either at length provide a nonzero gk, or σk will converge to σ∗. We will just have to
add specific provisions for handling the issue.

3. Stepsize-restricted approaches. We now proceed to proving convergence
of the variants which choose to restrict the stepsize, leaving full scope for (almost)
any choice of αk. We will first present “abstract” conditions, in order to lay the
foundations for fully implementable, target-level-like approaches.

3.1. Polyak stepsize. We start analyzing the—apparently new—corrected
Polyak stepsize:

(3.1) 0 ≤ νk = βk
fk − f∗ − γk

‖dk‖2
= βk

λk

‖dk‖2
, 0 ≤ βk ≤ αk ≤ 1,

DEFLECTED CONDITIONAL APPROXIMATE SUBGRADIENT 365

where λk = fk − f∗ − γk. For (3.1) to have meaning, it is unavoidable to assume

(3.2) f∗ > −∞.

Compared with the uncorrected Polyak stepsize (e.g., [20]), (3.1) is different in two
aspects: first, βk ≤ 1 while usually βk ∈ (0, 2); second, the correction term “−γk” at
the numerator. While the presence of γk may look surprising, we will show that a
proper choice of the correction may substantially improve the convergence properties
of the approach. However, it also introduces a significant complication in the analysis,
as for γk > 0, λk can be negative; this leaves βk = 0 ⇒ νk = 0 as the only possible
choice for satisfying (3.1). In other words, (3.1) implies

(3.3) λk < 0 ⇒ βk = 0.

Thus, whenever γk > 0 the algorithm can—unlike more common approaches—“visit”
the same point more than once, meaning that special care is required to avoid stalling.
This is also true for the case (that cannot be excluded; cf. Observation 2.7) when
dk = 0, which leaves (3.1) not well defined. In order to overcome this limitation, it is
useful to introduce the following weaker form of (3.1):

(3.4) 0 ≤ νk‖dk‖2 ≤ βkλk, 0 ≤ βk ≤ αk ≤ 1,

which is well defined even if dk = 0. We will also impose the following strengthened
form of (3.3):

(3.5)
λk ≥ 0 ⇒ (αk ≥) βk ≥ β∗ > 0,
λk < 0 ⇒ αk = 0 (⇒ βk = 0);

intuitively, this means that positive stepsizes do not vanish unless the (approximate)
optimum is approached.

Lemma 3.1. Under (3.1), (3.2), and (3.5), it holds

(3.6)
εk ≤ (1 − αk)(fk − f∗) + σ̄k, where

σ̄k =
{

σ1 k = 1
(1 − αk)(σ̄k−1,−αk−1γk−1) + αkσk otherwise.

Proof. Again, the proof is by induction on k. For k = 1, as in Lemma 2.6
α1 = 1 ⇒ ε1 = σ1. For the inductive step, using (2.16) we have

εk = (1 − αk) (fk − fk−1 − 〈vk, xk − xk−1〉 + εk−1) + αkσk

≤ (1 − αk)
(

fk − fk−1 + νk−1‖dk−1‖2 + εk−1

)
+ αkσk

due to (2.15). Now, from (3.4) we have νk−1‖dk−1‖2 ≤ βk−1λk−1, while (3.5) implies
βk−1λk−1 ≤ αk−1λk−1. In fact, this is true when λk−1 ≥ 0 since βk−1 ≤ αk−1, and it
is also true when λk−1 < 0 since βk−1 = αk−1 = 0. Hence, the inequality chain can
be continued as

(1 − αk) (fk − fk−1 + αk−1(fk−1 − f∗ − γk−1) + εk−1) + αkσk

≤ (1 − αk)(fk − fk−1 + αk−1(fk−1 − f∗ − γk−1)
+ (1 − αk−1)(fk−1 − f∗) + σ̄k−1) + αkσk

= (1 − αk)(fk − f∗) + [(1 − αk) (σ̄k−1 − αk−1γk−1) + αkσk] ,

where in the second passage, we have invoked the inductive hypothesis.

366 GIACOMO D’ANTONIO AND ANTONIO FRANGIONI

Corollary 3.2. Under (2.13), (3.1), and (3.2), for each x̄ ∈ X, it holds

(3.7) 〈dk, x̄ − xk〉 ≤ αk(f∗ − fk) + [f(x̄) − f∗ + σ̄k] .

Proof. Using (2.12) (which holds due to (2.13) for Lemma 2.4), (2.16), and (3.6),
one has

〈dk, x̄ − xk〉 ≤ 〈vk+1, x̄ − xk〉 ≤ f(x̄)−fk+εk ≤ f(x̄)−fk+(1−αk)(fk−f∗)+σ̄k.

Note how much simpler the analysis is of the nondeflected case: no result like
Lemma 3.1 is needed, as αk = 1 implies εk = σk with no assumptions at all on the
stepsize. The extra flexibility given by the added term γk allows us to obtain different
estimates for the error at each iteration: it is easy to show by induction that in the
interesting “extreme” case,

(3.8) γk = σk ⇒ σ̄k = αkσk

deflection may even increase the accuracy of the available first-order information when
optimality is “near” (fk ≈ f∗). Conversely, the uncorrected Polyak stepsize gives

(3.9) γk = 0 ⇒ σ̄k = (1 − αk)σ̄k−1 + αkσk.

Allowing to “aim at a different value than” f∗ is necessary in practice, as f∗ is
usually unknown; besides, using a nonzero γk may be beneficial even if f∗ is known,
as discussed later on. Clearly, one would like a nonnegative γk: in fact, the error σ̄k

corresponding to a γk < 0 is always worse (not smaller) than the one corresponding to
γk = 0. This means that while “aiming higher than f∗” (γk > 0) may be beneficial,
“aiming lower than f∗” (γk < 0) is, in general, not. However, “aiming too high” is also
dangerous, and γk = σk is clearly the “extreme case,” at least asymptotically; when
fk − f∗ ≈ σk, having γk > σk systematically may make λk < 0 for all k, effectively
grinding the algorithm to a halt (cf. Observation 2.7). So, a natural assumption would
be γk ≤ σk; this would immediately imply σ̄k ≥ 0. However, this is not required to
hold; rather, we rely on the following asymptotic results, which require much less
stringent assumptions.

An important object in the analysis is σ̄∗ = lim supk→∞ σ̄k. For the corrected
Polyak stepsize with γk = σk, σ̄k is “simple” (cf. (3.8)); thus, σk and σ̄k “behave in
the same way” for k → ∞. We will show in the following that, due to (3.5), this is
also true for the uncorrected Polyak stepsize (γk = 0). If γk can be negative, however,
“extra noise” is added which depends upon

(3.10) γ̄ = − min { γ∗ = lim infk→∞ γk , 0 } .

Lemma 3.3. Under (3.1), (3.2), and (3.5), if λk ≥ 0 for infinitely many k, then

σ̄∗ ≤ σ∗ + γ̄(1 − β∗)/β∗.

Proof. Note that whenever λk < 0 ⇒ αk = 0, all the information generated in
iteration k is “lost” to subsequent iterations. In fact,

σ̄k+1 = (1 − αk+1)(σ̄k − αkγk) + αk+1σk+1

= (1 − αk+1) ((1 − αk)(σ̄k−1 − αk−1γk−1) + αkσk − αkγk) + αk+1σk+1

= (1 − αk+1)(σ̄k−1 − αk−1γk−1) + αk+1σk+1,

DEFLECTED CONDITIONAL APPROXIMATE SUBGRADIENT 367

and the same obviously also happens to all other relevant algorithmic quantities, e.g.,
xk and dk. Thus, assuming only that λk ≥ 0 infinitely many times, we can restrict our
attention to the iterations where this happens (⇒ αk ≥ β∗ due to (3.5)) and simply
disregard all the others. Note that for γk ≤ 0 (e.g., the uncorrected Polyak stepsize),
the hypothesis λk ≥ 0 is always verified.

We want to prove that for each ε > 0 and all sufficiently large h, one has σ̄h ≤
σ∗ + γ̄(1 − β∗)/β∗ + ε. By the definition of σ∗ and γ̄, an analogous result holds for
the “original” sequences: however, chosen a fixed constant q > 0, for a sufficiently
large k, σh ≤ σ∗ + ε/4 and −γh ≤ γ̄ + qε for all h ≥ k. It is then easy to verify by
induction that for h ≥ k,

(3.11) σ̄h ≤ σ̄k(1 − β∗)h−k + σ∗ + γ̄(1 − β∗)/β∗ + ε/2.

In fact, the result is clearly true for h = k, while for the inductive step

σ̄h = (1 − αh)(σ̄h−1 − αh−1γh−1) + αhσh

≤ (1 − αh)
[

σ̄k(1 − β∗)h−1−k + σ∗ + γ̄/β∗ + qε + ε/2
]
+ αh(σ∗ + ε/4)

≤ (1 − β∗)σ̄k(1 − β∗)h−1−k + σ∗ + γ̄(1 − β∗)/β∗ + ε[(1 − αh)(q + 1/2) + αh/4],

where in the second step, we have used −αh−1γh−1 ≤ αh−1(γ̄ + qε) ≤ γ̄ + qε and the
inductive hypothesis. Now, since q + 1/2 > 1/4, we have

(1 − αh)(q + 1/2) + αh/4 ≤ (1 − β∗)(q + 1/2) + β∗/4 = (1 − β∗)q − β∗/4 + 1/2.

Thus, by ensuring that (1− β∗)q − β∗/4 ≤ 0 (e.g., choosing q = β∗/(4(1− β∗))), one
has finally proven that (3.11) holds. It is now sufficient to choose h ≥ k such that
σ̄k(1 − β∗)h−k ≤ ε/2 to prove the thesis.

While Lemma 3.3 provides a convenient estimate for the case where nothing can
be said upon γk, it is clear that for γk “large enough” w.r.t. σk, something more can
be said: in fact, for γk = σk, as we have already noted, σ̄k = αkσk (without any
assumption on λk). The “extra” factor αk in the error estimate is relevant for the
convergence analysis, as we shall see soon. However, replicating it when γk < σk (but
it is “large enough”) is not straightforward; a useful result is the following.

Lemma 3.4. Under conditions (3.1), (3.5), λk ≥ 0 for infinitely many k and

(3.12) γ∗ ≥ ξσ∗ ξ ∈ [0, 1] :

• for any ε > 0 there exists a k such that for all h ≥ k,

(3.13) γk ≥ ξσk
h − ε;

• for any ε > 0 there exists a k such that for all large enough h ≥ k,

(3.14) σ̄h ≤ σk
h(1 − (1 − αh)ξ) + ε,

where σk
h = max { σp : h ≥ p ≥ k } ≤ σk

∞ = sup { σp : p ≥ k }.
Proof. As in Lemma 3.3, we can assume that λk ≥ 0 ⇒ αk ≥ β∗ at every iteration.

From the definitions of γ∗ and σ∗, however, fixed ε1 and ε2, for large enough k one
has γk ≥ infp≥k γp ≥ γ∗ − ε1 and σk

h ≤ σk
∞ ≤ σ∗ + ε2 for all h ≥ k, combining which

gives (3.13). As for (3.14), choose any ε > 0 and select a sufficiently large k (which
exists for (3.13)) such that

γk ≥ ξσk
h − εβ∗/(2 − 2β∗).

368 GIACOMO D’ANTONIO AND ANTONIO FRANGIONI

Then, we can prove by induction that for all h ≥ k,

(3.15) σ̄h ≤ σ̄k(1 − β∗)h−k + σk
h(1 − (1 − αh)ξ) + ε/2.

In fact, the result is clearly true for h = k, while for the inductive step

σ̄h = (1 − αh)(σ̄h−1 − αh−1γh−1) + αhσh

≤ (1 − αh)
[

σ̄k(1 − β∗)h−1−k + σk
h−1(1 − (1 − αh−1)ξ) + ε/2 − αh−1γh−1

]
+ αhσh

≤ (induction) (1 − β∗)σ̄k(1 − β∗)h−1−k + (1 − αh)
[

σk
h−1(1 − (1 − αh−1)ξ) + ε/2

(choice of k) − αh−1(ξσk
h−1 − εβ∗/(2 − 2β∗))

]
+ αhσh

≤ [β∗ ≤ αh]σ̄k(1 − β∗)h−k + (1 − αh)
[

σk
h−1(1 − ξ) + ε/(2 − 2β∗)

]
+ αhσh

≤ [αh−1 ≤ 1]σ̄k(1 − β∗)h−k + (1 − αh)σk
h(1 − ξ) + ε/2 + αhσk

h

= σ̄k(1 − β∗)h−k + σk
h(1 − (1 − αh)ξ) + ε/2,

where in the penultimate line we have used σh ≤ σk
h, σk

h−1 ≤ σk
h, β∗ ≤ αh, and ξ ≤ 1.

It is now sufficient to choose h large enough such that σ̄k(1 − β∗)h−k ≤ ε/2 to prove
(3.14).

Hence, taking a “sufficiently large” γk asymptotically “shaves away” a fraction of
(1−αk), depending on ξ, from σ∗; for ξ = 1, one has 1− (1−αk)ξ = αk as expected.
Note that the hypothesis “λk ≥ 0 sufficiently often,” crucial for both the lemmas
above, is by no means trivial to attain for a positive γk.

Given the above results, convergence of the uncorrected Polyak stepsize under con-
ditions (3.5) and (3.9) can be partly analyzed using results from [20]. In particular, for
an exact oracle (σk ≡ 0), condition (3.1) turns out to imply [20, equation (7.28)], i.e.,

there exist ξ ∈ [0, 1) εk ≤ 1
2
ξ(2 − βk)(fk − f∗).

In fact, (3.1), and therefore, (3.6) hold; furthermore, since β∗ ≤ βk ≤ αk, one has

1 − αk ≤ 1 − βk ≤ (1 − βk/2)− βk/2 = (1 − βk/2) − β∗/2.

Thus, choosing ξ such that

1 > ξ ≥ 1 − β∗/(2 − βk) ≥ 1 − β∗/2 > 0,

our conditions imply [20, (7.28)]; under the additional assumption X∗ �= ∅, [20, The-
orem 7.17(ii)] proves convergence to an optimal solution.

The same reference also allows us to (partly) analyze the case with error (σ∗ > 0)
of an “asymptotically nondeflected” method, i.e., one where limk→∞ αk = 1; this
requires conditions ensuring that the sequence fk is bounded (above), plenty of which
are analyzed in [20, section 6]. In fact, in this case (3.6) and Lemma 3.3 imply that
lim supk→∞ εk = σ∗, and we can invoke [20, Theorem 7.17(i)] to conclude that

(3.16) f∞ ≤ f∗ + 2σ∗/(2 − βmax),

where βmax = supk βk(≤ 1). However, the above results are not completely satisfac-
tory: the convergence of the case with errors is not established unless under a very
strong condition, and (3.16) implies that the algorithm may only be able to find a
solution whose accuracy is twice as bad as the inherent oracle error σ∗, unless the

DEFLECTED CONDITIONAL APPROXIMATE SUBGRADIENT 369

maximum step is “artificially restricted,” possibly impacting practical convergence
rates (actually, βk ∈ (0, 2) in [20], thus, that multiplying factor can become arbi-
trarily large). We, therefore, provide a specific analysis of the more general deflected
conditional approximate method.

Theorem 3.5. Under conditions (2.13), (3.1), (3.2), and (3.5), it holds that
(i) let Δ = σ∗ + γ̄((1 − β∗)/β∗ + αmax/2), αmax = supk αk (≤ 1), Γ =

infk 2αk − βk(≥ β∗); if lim supk→∞ γk ≤ 2Δ/Γ, then

f∞ ≤ f∗ + 2Δ/Γ;

(ii) if γ∗ = ξσ∗ for ξ ∈ [0, 1] (⇒ γ̄ = 0), then

f∞ ≤ f∗ + σ∗(ξ + 2(1 − ξ)/Γ);

(iii) under choice (3.8), f∞ ≤ f∗+σ∗; furthermore, if X∗ �= ∅, then a subsequence
of {xk} converges to some x∞ ∈ X such that f(x∞) = f∞, and if, in addition,
σ∗ = 0, then the whole sequence converges to x∞, and x∞ ∈ X∗.

Proof. For any x̄ ∈ X , using (2.9) one has

‖xk+1 − x̄‖2 − ‖xk − x̄‖2 ≤ −2νk〈dk, xk − x̄〉 + ν2
k‖dk‖2 = κk.

Due to (3.5), λk < 0 ⇒ νk = αk = βk = 0 ⇒ κk = 0; furthermore, dk = 0 ⇒ κk = 0.
In fact, the algorithm may “visit” the same point more than once, either because
λk < 0 or because dk = 0; in all other cases,

κk = −2βk
λk

‖dk‖2
〈dk, xk − x̄〉 + β2

k

λ2
k

‖dk‖2

≤ (for (3.1)) 2βk
λk

‖dk‖2
(αk(f∗ − fk) + [f(x̄) − f∗ + σ̄k]) + β2

k

λ2
k

‖dk‖2

= (for (3.7)) βk
λk

‖dk‖2
[2(αk(f∗ − fk) + f(x̄) − f∗ + σ̄k) + βkλk]

= βkηk,(3.17)

where ηk = −(2αk − βk)(fk − f∗) + 2(f(x̄) − f∗ + σ̄k) − βkγk.
Point i. Assume by contradiction that for some ε > 0, one has fk−f∗ ≥ f∞−f∗ ≥

2Δ/Γ + ε. From the hypothesis on γk, it follows that at length λk ≥ ε/2 (clearly,
taking huge positive γk will easily force λk to be always zero, and this has to be
avoided; however, this point is actually useful only when γk < 0). Then, dk = 0 can
only happen finitely many times. In fact, due to (2.13) we know that dk ∈ ∂εk

f(xk)
(cf. Remark 3 after Lemma 2.6); thus, dk = 0 ⇒ xk is a εk-optimal solution, i.e.,
fk − f∗ ≤ εk. From (3.6), this gives fk − f∗ ≤ σ̄k/αk. So, assume this happens
infinitely many times; from Lemma 3.3, for any ε′ > 0 there exist some k such that

fk − f∗ ≤ (σ∗ + γ̄(1 − β∗)/β∗ + ε′)/αk.

On the other hand, from the initial ab absurdo hypothesis, the definition of Δ and
the fact that Γ ≤ 2αk − βk ≤ αk one has

fk − f∗ ≥ 2Δ/Γ + ε ≥ (σ∗ + γ̄((1 − β∗)/β∗ + αmax/2))/αk + ε,

which easily yields a contradiction. Thus, at length λk ≥ 0 and dk �= 0, we then have

ηk ≤ −Γ(fk − f∗) + 2(f(x̄) − f∗) + 2(σ∗ + γ̄(1 − β∗)/β∗ + ε1) + βk(γ̄ + ε2)
≤ (for Lemma 3.3 and the definition of γ̄)

− 2Δ − Γε + 2ε3 + 2(σ∗ + γ̄((1 − β∗)/β∗ + αmax/2)) + 2ε1 + ε2,

370 GIACOMO D’ANTONIO AND ANTONIO FRANGIONI

where ε3 = f(x̄) − f∗ can be chosen arbitrarily small by properly choosing x̄ and ε1,
ε2 can be chosen arbitrarily small by taking k large enough. Thus, picking ε1, ε2, and
ε3 small enough one has that ηk ≤ −Γε/2 < 0 for all k. Hence, (3.17) shows that for
all k large enough,

‖xk+1 − x̄‖2 − ‖xk − x̄‖2 ≤ −βk
Γλkε

2‖dk‖2
< 0.

This implies that the sequence ‖xk − x̄‖ is nonincreasing, i.e., {xk} is bounded; finite-
ness of f thus implies that {fk} is bounded above, and therefore, by (3.6), {εk} is
bounded above by some ε̄ < +∞. Since the image of a compact set in int dom f = R

n

under the ε̄-subdifferential mapping is compact [18, Proposition XI.4.1.2], ‖dk‖ is
bounded above by some constant D < +∞. Furthermore, βk and λk are bounded
below; thus, summing between k and h ≥ k gives

0 ≤ ‖xh+1 − x̄‖2 ≤ ‖xk − x̄‖2 − (k − h)β∗Γε2/
(
4D2

)
,

which, for h large enough, yields the contradiction.
Point ii. Assume by contradiction that for some ε > 0, one has fk − f∗ ≥

f∞ − f∗ ≥ σ∗(ξ + 2(1 − ξ)/Γ) + ε. Since γ∗ = ξσ∗ and 2(1 − ξ)/Γ ≥ 0, at length
λk ≥ ε/2. Also, dk = 0 can happen only finitely many times; in fact, reasoning as in
the previous case, we have, using Lemma 3.4, that if dk = 0 for k large enough, then

fk − f∗ ≤ (
σk

h(1 − (1 − αh)ξ) + ε′
)
/αk = σk

h(ξ + (1 − ξ)/αk) + ε′/αk

for any arbitrary ε′ > 0 and all h ≥ k. But for an arbitrary ε′′ > 0, σk
h ≤ σ∗ + ε′′

(again, for k large enough and all h ≥ k). On the other hand, from the initial ab
absurdo hypothesis and Γ ≤ αk, one has

fk − f∗ ≥ σ∗(ξ + 2(1 − ξ)/αk) + ε,

which gives the desired contradiction (αk is bounded below). Then, we can assume
λk ≥ 0 and dk �= 0 and examine the “crucial” quantity ηk. For this case, using again
Lemma 3.4 we have

ηk ≤ −(2αh − βh)(fh − f∗) + 2ε3 + 2(σk
h(1 − (1 − αh)ξ) + ε2) − βh

(
ξσk

h − ε1

)
,

where ε3 = f(x̄) − f∗ can be chosen arbitrarily small by properly choosing x̄ and ε1,
ε2 can be chosen arbitrarily small by taking k large enough and h ≥ k large enough.
Using again σk

h ≤ σ∗ + ε′′ for an arbitrary ε′′ > 0 (k large enough and all h ≥ k), the
inequality chain can then be continued as

ηk ≤ −(2αh − βh)
(
fh − f∗ − ξσk

h

)
+ 2σk

h(1 − ξ) + 2(ε3 + ε2 + ε1)
≤ −(2αh − βh)(fh − f∗ − ξσ∗) + 2σ∗(1 − ξ) + μ,

where μ can be chosen small enough by properly adjusting k, h, and x̄. Thus, using
the hypothesis, one obtains that ηk can be made to be negative and nonvanishing,
which yields the contradiction as in the previous case.

Point iii. Finally, consider choice (3.8) and assume by contradiction that fk−f∗ ≥
f∞ − f∗ ≥ σ∗ + ε; hence, γk = σk ≤ σ∗ + ε/2 ⇒ λk ≥ ε/2 > 0 for k large enough.
Again, dk = 0 cannot happen infinitely many times; in fact, for dk = 0 we have
fk − f∗ ≤ σ̄k/αk = σk (cf. (3.8)), which immediately yields a contradiction with

DEFLECTED CONDITIONAL APPROXIMATE SUBGRADIENT 371

fk − f∗ ≥ σ∗ + ε if k can be arbitrarily large. Then, again at length we have λk ≥ 0
and dk �= 0, and ηk simplifies to

(3.18) ηk = −(2αk − βk)λk + 2(f(x̄) − f∗) ≤ −Γλk + 2ε3,

where ε3 = f(x̄)−f∗ can be chosen arbitrarily small; since both Γ and λk are bounded
away from zero, this yields a contradiction as in the previous cases. Clearly, this
point is a very simplified form of Point ii; however, the hypothesis on the relationship
between γk and σk is weaker than (3.12) for ξ = 1 if the sequences are nonmonotone.

Assume now that X∗ �= ∅: choosing as x̄ some x∗ ∈ X∗ shows (cf. (3.18))
that ‖xk+1 − x∗‖ is nonincreasing, and therefore, {xk} is bounded. Extracting
a subsequence ki such that fki → f∞ and a subsubsequence converging to some
x∞ ∈ X (which exists by boundedness of {xk} and closedness of X), we have that
f(x∞) = f∞ by continuity of f . Now, if σ∗ = 0, then clearly x∞ ∈ X∗; thus,
lim infk→+∞ ‖xk+1 − x∞‖ = 0. But we know that at length ‖xk+1 − x∞‖ is nonin-
creasing, therefore, {xk} → x∞.

The previous theorem not only generalizes [20, Theorem 7.17] to the deflected
context, but also significantly improves on known results even for the nondeflected
case. For the original Polyak stepsize (3.9), the extra “noise” introduced by deflection
considerably worsens the error bound in the “inexact” case: only by asking that
limk→∞ αk = 1—that is, asymptotically inhibiting deflection—and by requiring very
short steps (which is presumably bad in practice), a method with an error close to σ∗

is obtained. Besides, convergence of iterates seems to be lost for good. However, the
corrected stepsize (3.8) makes up for both issues and even improves the convergence
results: the final error is exactly σ∗, the minimum possible one (cf. Observation 2.7),
and convergence of subsequences is attained also in the inexact case. If choosing the
correction equal to the error (γk = σk) is not possible, e.g., because σk is unknown,
ensuring that at least asymptotically the two are related helps in bounding the final
error; this will be very useful in the next section.

It may be worth remarking that the algorithm may exhibit some “nonstandard”
behavior:

• As already remarked (first in Lemma 3.3), it may happen that for some k < h,
one has λk−1 > 0, λp ≤ 0 for all k ≤ p < h, and λh > 0; that is, the algorithm
has “got stuck” in xk−1 for some iterations, but it has finally “escaped” at
iteration h. Then, it is clear that all the information generated at steps
k, . . . , h − 1 is “lost”: since αp = 0 for k ≤ p < h, dh−1 = dk and εh−1 =
εk. Essentially, all the “useless” information has been discarded, and the
algorithm has resumed business as usual as soon as a “useful” (approximate)
subgradient has been found.

• It may happen that at some iteration k, the algorithm finds an xk with an
accuracy fk − f∗ greater than, or equal to, that prescribed by Theorem 3.5;
then, an infinitely long tail of iterations may start where λh < 0 ⇒ αh =
βh = νh = 0 and/or dh = 0, and therefore, the algorithm will “get stuck”
on xk (xh = xk) for all h > k. This is not an issue though: a solution with
the “maximum possible” accuracy has, indeed, been finitely obtained, and,
as in the proof of Observation 2.7, the subsequent iterations are only useful
to “wait for σh to converge to σ∗.”

In hindsight, (3.8)—and therefore, its “approximate version” (3.12)—also has a clear
rationale. Whenever one obtains a function value that is off the optimal one by less
than the current accuracy of the function computation (that is, fk ≤ f∗ + σk), then

372 GIACOMO D’ANTONIO AND ANTONIO FRANGIONI

either the algorithm should be promptly terminated or the accuracy of the function
computation should be increased (σk decreased). In fact, as shown in Observation 2.7,
in such a situation gk = 0 ∈ ∂σk

f(xk) may be legally returned by the black box (xk

is a σk-optimal solution); in other words, “basically any” gk can be generated by the
black box from that moment on, and no improvement in the function value should be
expected, except by pure chance, unless σk eventually decreases enough to allow for
positive stepsizes in (3.1). However, condition (3.8) does not come for free: it assumes
knowledge of σk that is not required by (3.1)—which already is not implementable
in general as f∗ is unknown—with (3.9). Yet, both requirements can be done away
simultaneously, disposing of (3.2) in the process, with the target value approaches
described next.

3.2. Target value stepsize. The methods of section 3.1 are, in most situations,
not directly implementable as they require knowledge of the value f∗, obtaining which
is typically the main reason why (1.1) is solved in the first place. In the nondeflected
setting, this can be avoided with the use of other forms of stepsizes, such as diminish-
ing/square summable ones [20], that do not require knowledge of f∗. However, when
deflecting, (some form of) knowledge of f∗ is required anyway in order to bound the
maximum error εk of dk as a subgradient in xk, which is central in our analysis; this
makes diminishing stepsizes less attractive in our context.

There is another known workaround for this problem: a target value stepsize,
whereby f∗ is approximated by some estimate, that is properly revised as the algo-
rithm proceeds. The usual form of the estimate is the target level fk

lev = fk
ref − δk,

where fk
ref ≥ f∗ is the reference value and δk > 0 is the threshold. The target level is

used instead of f∗ in the stepsize formula (3.1), yielding

(3.19) 0 ≤ νk = βk
fk − fk

lev

‖dk‖2
, 0 ≤ βk ≤ αk ≤ 1.

While (3.19) looks to be an uncorrected target level stepsize, δk plays the role of γk

here. In fact, we can exploit the general results of section 3.1 in this setting by simply
noting that the “crucial” part of (3.19) is

λk = fk − fk
lev = fk − f∗ − (

fk
ref − f∗ − δk

)
;

that is, the (uncorrected) level stepsize is a special case of the general corrected
stepsize where the actual correction

(3.20) γk = fk
ref − f∗ − δk

is unknown. This also implies that target-level approaches do not require knowledge
of σk.

A small technical hurdle need be addressed now. Let fk
rec = minh≤k f(xh) be

the current record value, and f∞
rec = limk→∞ fk

rec; if f∞
rec = −∞, then f∗ = −∞ and

the algorithm has clearly constructed an optimizing sequence. Whenever f∞
rec > −∞,

instead, we will need to invoke Theorem 3.5 in order to prove our accuracy estimates;
however, just because f∞

rec > −∞ we cannot assume that f∗ > −∞, and therefore,
we have no guarantee that (3.20) is well defined. This is not really an issue, because
it is possible to replace f∗ in the analysis of the previous paragraph with a feasible
target f̄ , i.e.,

(3.21) f̄ > −∞ , f̄ ≥ f∗ , f̄ ≤ f∞
rec

(⇒ fk − f̄ ≥ 0
)
.

DEFLECTED CONDITIONAL APPROXIMATE SUBGRADIENT 373

It is easy to verify that one can replace f∗ with f̄ in (3.1), so that it is well defined
even if f∗ = −∞ and obtain that Lemma 3.1, Corollary 3.2, and Theorem 3.5 (but
obviously the last part of Point iii) hold with f̄ replacing f∗ and without a need for
assumption (3.2). This allows us to define

(3.22) γk = fk
ref − f̄ − δk,

which is finite even if f∗ = −∞. The subsequent analysis then centers on this γk, i.e.,
on how well fk

ref approximates f̄ (f∗). This obviously depends on how fk
ref and δk

are updated; we will analyze both the strategies proposed in the literature.

3.2.1. Nonvanishing threshold. In this approach, fref is updated in the very
straightforward way fk

ref = fk
rec so that f∞

ref = limk→∞ fk
ref = f∞

rec. An immediate
consequence of this choice is that, since λk = fk − fk

rec ≥ 0, one has λk ≥ δk. The
threshold can also be updated in a very simple way: whenever “sufficient decrease”
is detected, it can be reset to any “large number,” otherwise, it has to be decreased,
provided only that it does not vanish. The abstract property is

(3.23) either f∞
ref = −∞ or lim inf

k→∞
δk = δ∗ > 0,

and one quite general (and simple) way of implementing it is

δk+1 ∈
{

[δ∗ , ∞) if fk+1 ≤ fk
lev,

[δ∗ , max{ δ∗ , μδk }] if fk+1 > fk
lev,

where μ ∈ [0, 1). Indeed, if fk+1 ≤ fk
lev happens finitely many times, then f∞

ref >
−∞, and after the last time δk is nonincreasing and has limit δ∗. Otherwise, taking
subsequences if necessary, at length fk+1

ref = fk+1
rec ≤ fk+1 ≤ fk

ref − δk, and δk is
bounded away from zero; therefore, f∞

ref = −∞ (which incidentally proves that f is
unbounded below). For this approach, the following convergence result can be proven.

Theorem 3.6. Under conditions (2.13) and (3.5), the algorithm employing the
level stepzise (3.19) with threshold condition (3.23) attains either f∞

ref = −∞ = f∗ or
f∞

ref ≤ f∗ + ξσ∗ + δ∗, where 0 ≤ ξ = max { 1 − δ∗Γ/2σ∗ , 0 } < 1.
Proof. If f∞

ref = −∞, then clearly f∗ = −∞. Hence, assume f∞
ref > −∞; from

(3.23) we have δ∗ > 0, and furthermore,

(3.24) γ∗ = lim inf
k→∞

γk = f∞
ref − f̄ − δ∗

for any feasible target f̄ (cf. (3.21)). Also, because λk ≥ δk, at length λk ≥ δ∗/2 > 0.
We will now prove that f∞

ref ≤ f̄ + ξσ∗ + δ∗, which gives the desired result if f∗ is
finite by simply taking f̄ = f∗. However, such a result also proves that if f∗ = −∞,
then f∞

ref = −∞ (argue by contradiction and take f̄ small enough), thus completing
the proof. We need to distinguish two cases:

Case I: δ∗ ≤ 2σ∗/Γ. This implies that ξ ≥ 0, and therefore, δ∗ = 2(1 − ξ)σ∗/Γ.
Assume by contradiction that f∞

ref − f̄ > ξσ∗ + δ∗; from (3.24) this gives (3.12).
Furthermore, since f∞ ≥ f∞

ref , we also obtain f∞ − f̄ > ξσ∗ + δ∗. Now, mirroring
the proof of Theorem 3.5(ii) we can obtain

f∞ − f̄ ≤ σ∗(ξ + 2(1 − ξ)/Γ) = ξσ∗ + δ∗

and therefore, a contradiction. The only difference in the proof, apart from f̄ replacing
f∗, is that γ∗ can be strictly larger than ξσ∗, and even larger than σ∗. This is not an

374 GIACOMO D’ANTONIO AND ANTONIO FRANGIONI

issue for Lemma 3.4 and therefore, for most of the proof; in particular, it is still true
that ηk is negative and nonvanishing. The only reason why in Theorem 3.5(ii) one
cannot directly assume γ∗ ≥ ξσ∗ is that arbitrarily large γk may easily make λk < 0;
thus, one needs a condition which, at length, ensures that λk is larger than a fixed
positive threshold. However, here this is guaranteed by the fact that δ∗ > 0, so the
proof readily extends.

Case II: δ∗ > 2σ∗/Γ. This implies ξ = 0. It is immediate to prove that γ∗ = f∞
ref−

f̄ − δ∗ < 0, which provides the expected estimate. In fact, assume by contradiction
that γ∗ ≥ 0; this gives γ̄ = −min{γ∗, 0} = 0, and therefore, by Theorem 3.5(i),
f∞ − f̄ ≤ 2σ∗/Γ < δ∗. On the other hand, f∞ ≥ f∞

ref and γ∗ = f∞
ref − f̄ − δ∗ ≥ 0

give f∞ − f̄ ≥ δ∗, a contradiction.
For the finite case (f∗ > −∞), the above estimate compares favorably, when

σ∗ > 0, with that of [20, Theorem 7.19] (with “abstract” conditions on εk), which is
σ∗ + δ∗. Actually, the term “ξσ∗” in the estimate may look somewhat surprising; as
ξ < 1, it may appear that choosing a “large” δ∗ could help in reducing the final error.
This clearly isn’t so: ξσ∗ + δ∗ = σ∗(ξ + 2(1 − ξ)/Γ) ≥ σ∗ as Γ ≤ 1.

3.2.2. Vanishing threshold. A vanishing {δk} sequence cannot be used in the
proof of Theorem 3.6 because δmin > 0 is used to ensure that λk does not vanish;
this, however, introduces a source of error that worsens the convergence. If δk is to
be allowed to vanish, then the same may happen to λk; however, for the argument to
work it is actually only necessary that

(3.25)
∞∑

k=1

λk/‖dk‖2 = ∞.

In fact, in (3.17) one has

‖xk+1 − x̄‖2 − ‖xk − x̄‖2 ≤ βkλkηk/‖dk‖2,

where ηk can be bounded above by a negative quantity and βk is bounded away from
zero. This leaves the possibility open to vanishing δk, provided only that λk does not
vanish “too quickly.” Thus, the abstract property required instead of (3.23) is

(3.26) either f∞
ref = f∗ = −∞ or lim inf

k→∞
δk = 0 and (3.25) .

Theorem 3.7. Under conditions (2.13) and (3.5), the algorithm employing the
level stepzise (3.19) with threshold condition (3.26) attains either f∞

ref = −∞ = f∗ or
f∞

ref ≤ f∗ + σ∗.
Proof. If f∞

ref = −∞, there is nothing to prove; hence, assume f∞
ref > −∞; from

(3.22) and (3.26)

(3.27) γ∗ = lim inf
k→∞

γk = f∞
ref − f̄ − δ∗ = f∞

ref − f̄

for any feasible target f̄ (cf. (3.21)). Now, assume by contradiction that γ∗ = f∞
ref −

f̄ > σ∗. Proceeding as in the proof of Theorem 3.5(ii) (with ξ = 1 and f̄ replacing
f∗), one obtains that ηk is negative and nonvanishing; using (3.25) and (3.5), one
finally obtains f∞ ≤ f̄ + σ∗. On the other hand, f∞ ≥ f∞

ref gives f∞ − f̄ > δ∗,
a contradiction. As in the nonvanishing case, the above result finally implies that
f∗ = −∞ ⇒ f∞

ref = −∞.

DEFLECTED CONDITIONAL APPROXIMATE SUBGRADIENT 375

Of course, we still have to clarify how the abstract condition (3.26) can be ob-
tained. Fortunately, in the proof of Theorem 3.7 (Theorem 3.5), ‖dk‖ is bounded
above by some D < +∞ ({xk} is compact), so one can obtain the same result by
asking that the series of

(3.28) sk = ‖x̂k+1 − xk‖ = νk‖dk‖ = βkλk/‖dk‖
(cf. (1.2) and (3.19)) diverges. This is much easier to attain, since sk can be readily
computed and managed.

Lemma 3.8. Under condition (3.5), the update strategy
• f1

ref = f(x1), δ1 ∈ (0,∞), r1 = 0;
• if fk ≤ fk

ref − δk/2 (sufficient descent condition), then fk
ref = fk

rec, rk = 0;
• else, if rk > R (target infeasibility condition), then δk = μδk−1, rk = 0;
• otherwise, fk

ref = fk−1
ref , δk = δk−1, rk = rk−1 + ‖x̂k+1 − xk‖,

where R > 0 and μ ∈ (0, 1) are fixed, attains either f∞
ref = −∞ or δk → 0 and∑∞

k=1 sk = ∞.
Proof. If f∞

ref = −∞, there is nothing to prove, so assume f∞
ref > −∞. We first

prove that the number of resets, i.e., the number of times in which rk is set to zero
(by either condition), is infinite. In fact, assume the contrary holds; for some k and
all h ≥ k, one would have

fh
ref = fk

ref , δh = δk, rh+1 = rh + ‖x̂h+1 − xh‖ ≤ R,

which implies ‖x̂h+1 − xh‖ → 0 and {xk} bounded. Therefore, as in the proof of
Theorem 3.5 we have that ‖dk‖ is bounded above by some D < +∞. But

‖x̂h+1 − xh‖ = νh‖dh‖ = βh
f(xh) − fh

lev

‖dh‖ ≥ β∗

D

(
f(xh) − fh

lev

)
and therefore, at length f(xh) − fh

lev = f(xh) − fh
ref + δh → 0. Thus, at length

f(xh) < fh
ref − δh/2, a contradiction.

We can now prove that, out of the infinitely many resets, those due to the target
infeasibility condition are infinitely many. In fact, if not then for some k and all h ≥ k,
one would have δh = δk, and since infinitely many resets due to the sufficient descent
condition with nonvanishing δk are performed, then f∞

ref = −∞, a contradiction.
Thus, δk → 0 and

∑∞
k=1 sk = ∞.

It would clearly be possible to allow for increases of δk in the above scheme,
provided that this only happens finitely many times. Thus, the target management
in Lemma 3.8 attains the convergence result of Theorem 3.7. The above treatment
extends those of [33, 34, 26] for deflected target value approaches, which require
analogous conditions to those of the present algorithm (in particular, αk ≥ βk), to
considering inexact computation of the function and projection of directions.

4. Deflection-restricted approaches. We now proceed with the other main
class of stepsize rules, i.e., diminishing/square summable:

(4.1)
∞∑

k=1

νk = ∞,

∞∑
k=1

ν2
k < ∞.

As previously mentioned, in our context these rules lose a part of their original appeal,
w.r.t. Polyak-type rules, because in order to ensure convergence in the deflected case,

376 GIACOMO D’ANTONIO AND ANTONIO FRANGIONI

some conditions on the αk multipliers have to be enforced which depend on the optimal
value f∗ (cf. Figure 2.1). However, as in the stepsize-restricted case, approximations
to f∗ can be used; hence, also in this case we will first analyze abstract rules, in order
to later move to implementable ones.

4.1. Abstract deflection condition. Our analysis centers on the deflection
condition

(4.2) 0 ≤ ζk =
νk−1‖dk−1‖2

(fk − f∗ − γk) + νk−1‖dk−1‖2
≤ αk ≤ 1,

where, as usual, we assume α1 = 1 ⇒ d1 = g1; clearly, (3.2) is required for the
condition to have meaning. We call (4.2) a corrected deflection condition due to the
presence of the parameter γk in λk = fk −f∗−γk at the denominator. As we will see,
γk plays a very similar role as in (3.1): its “optimal” value is σk, and the farthest it is
from this optimal choice, the worst are the convergence properties of the algorithm.
In particular, the simplest choice γk = 0 gives the uncorrected deflection condition;
an interesting property of this choice is that, unless an optimal solution is finitely
attained (that is, fk = f∗ for some k), it implies ζk < 1 for all k; therefore, some
amount of deflection is possible at every iteration.

This is a fortiori true if γk < 0, which, as in the stepsize-restricted case, turns out
to be a bad choice; unfortunately, the better choice γk > 0 gives rise to the possibility
that ζk is undefined. To avoid this, we first rewrite (4.2) as

(4.3) νk−1‖dk−1‖2 ≤ αk

(
λk + νk−1‖dk−1‖2

)
and then introduce the following condition, analogous to (3.5):

(4.4)
λk ≥ 0 ⇒ αk ≥ α∗ > 0,
λk < 0 ⇒ αk = 0 (⇒ νk = 0).

If λk < 0, the only way in which (4.3) can be satisfied is by forcing αk = 0, which,
as in the stepsize-restricted case, also ensures that all information computed during
such a “bad step” is disregarded. This in turn forces νk = 0, unless in the special
case where dk = 0; both conditions, however, result in ζk = 0. This mechanism
automatically takes care, when γk = σk, of the possibility that fk < f∗ + σk, which
has already been extensively commented upon; note that, unlike the stepsize-resticted
case, dk = 0 pose no specific challenge here. Of course, forcing νk = 0 looks pretty
much at odds with (4.1); in particular, (4.1) cannot possibly be satisfied if λh < 0 for
all h larger than one given k, as it can be the case, e.g., if xk is a σ∗-optimal solution
(cf. Observation 2.7). Thus, the convergence analysis will have to take care of the
above case (“optimal” solution found in a finite number of steps) separately.

We now start analyzing the properties of the iterates of a deflection-restricted
approach employing the deflection condition (4.2) under assumption (4.4); the first
three results closely mirror Lemma 3.1, Corollary 3.2, and Lemma 3.3, respectively.

Lemma 4.1. Under (3.2), (4.2), and (4.4), it holds

(4.5)
εk ≤ fk − f∗ + σ̄k, where

σ̄k =
{

σ1 − γ1 if k = 1,
αk(σk − γk) + (1 − αk)σ̄k−1 otherwise.

Proof. As in the stepsize-restricted case, we can assume λk ≥ 0; in fact, if this
does not hold, then αk = 0 and “no trace” of the information generated at the kth

DEFLECTED CONDITIONAL APPROXIMATE SUBGRADIENT 377

iteration remains, so we can restrict our attention only on the iterates k for which the
property holds. Hence, we can proceed by induction: for k = 1, ε1 = σ1 ≤ λ1 + σ1 =
f(x1) − f∗ + σ1 − γ1. Then,

εk = (1 − αk) (fk − fk−1 − 〈vk, xk − xk−1〉 + εk−1) + αkσk

≤ ((2.16)) (1 − αk)
(

fk − fk−1 + νk−1‖dk−1‖2 + εk−1

)
+ αkσk

≤ (by (2.15)) (1 − αk)
(

fk − fk−1 + νk−1‖dk−1‖2 + fk−1 − f∗ + σ̄k−1

)
+ αkσk

= (induction) (1 − αk)
(

fk − f∗ − γk + νk−1‖dk−1‖2
)

+ (1 − αk)σ̄k−1 + (1 − αk)γk + αkσk

≤ fk − f∗ − γk + (1 − αk)σ̄k−1 + (1 − αk)γk + αkσk

= (by (4.2)) fk − f∗ + σ̄k.

The lemma confirms that γk = σk is the best possible correction, as it minimizes
the estimate of εk in (4.5); indeed, in that case one has σ̄k = 0 for all k. Of course,
γk > σk would be even better, except that it would not be possible to ensure that
λk ≥ 0 “often enough.” Indeed, γk ≤ σk would imply σ̄k ≥ 0, which is not true (and
not required) in general.

Corollary 4.2. Under (3.2), (4.2), and (4.4), for each x̄ ∈ X it holds

(4.6) 〈vk+1, x̄ − xk〉 ≤ f(x̄) − f∗ + σ̄k.

Proof. Using (4.5), one has 〈vk+1, x̄ − xk〉 ≤ f(x̄) − fk + εk ≤ f(x̄) − f∗

+ σ̄k.
As in the stepsize-restricted case, σ̄k “behaves as σk” for k → ∞, unless γk < 0

in which case some “noise” appears.
Lemma 4.3. Under (4.2) and (4.4), if λk ≥ 0 for infinitely many k, then

(4.7) σ̄∗ = lim sup
k→∞

σ̄k ≤ σ∗ + γ̄,

where γ̄ is defined as in (3.10).
Proof. First, since λk ≥ 0 for infinitely many k, we can disregard all iterations

where it does not happen; due to (4.4), nothing actually happens in these. From the
definition of σ∗ and γ̄, there exist some h such that, for all k ≥ h,

σk ≤ σ∗ + ε and − γk ≤ γ̄ + ε.

One can then prove by induction that for all k ≥ h it holds

σ̄k ≤ (1 − α∗)k−hσ̄h + σ∗ + γ̄ + 2ε.

In fact, the statement is obviously true for k = h; for the general case we have

σ̄k = αk(σk − γk) + (1 − αk)σ̄k−1

≤ αk(σ∗ + γ̄ + 2ε) + (1 − αk)
(

(1 − α∗)k−h−1σ̄h + σ∗ + γ̄ + 2ε
)

= (induction) (1 − αk)(1 − α∗)k−h−1σ̄h + σ∗ + γ̄ + 2ε ≤ (1 − α∗)k−hσ̄h

+ σ∗ + γ̄ + 2ε.

The thesis now easily follows by taking h large enough.

378 GIACOMO D’ANTONIO AND ANTONIO FRANGIONI

As in the stepsize-restricted case, between the “optimal” correction (3.8) and the
“bad one,” γk < 0 one has a whole range of intermediate options, where γk is positive
and “not too small” w.r.t. σk; this may take the form

(4.8) for all k large enough, γk ≥ ξσk ξ ∈ [0, 1].

To study this case, we consider the following handy sequence:

sk = αkσk + (1 − αk)sk−1.

Lemma 4.4. Under (4.8), σ̄∗ ≤ (1 − ξ) lim supk→∞ sk.
Proof. Let k be the index such that γh ≥ ξσh for all h > k; we can prove by

induction that

σ̄h ≤ (1 − ξ)sh + (1 − α∗)h−k(σ̄k − (1 − ξ)sk)

for all h ≥ k. The case h = k is trivial; for the general inductive step,

σ̄h = αh(σh − γh) + (1 − αh)σ̄h−1

≤ αh(1 − ξ)σh + (1 − αh)
(
(1 − ξ)sh−1 + (1 − α∗)h−1−k(σ̄k − (1 − ξ)sk)

)
≤ (1 − ξ)(αhσh + (1 − αh)sh−1) + (1 − α∗)h−k(σ̄k − (1 − ξ)sk)
≤ (1 − ξ)sh + (1 − α∗)h−k(σ̄k − (1 − ξ)sk).

The result then follows taking the lim sup on both sides for h → ∞.
The {sk} sequence actually coincides with σ̄k for the special choice γk = 0; thus,

from Lemma 4.3 one immediately gets lim supk→∞ sk ≤ σ∗, which therefore, leads,
under (4.8), to a strengthened form of (4.7):

(4.9) σ̄∗ ≤ (1 − ξ) lim sup
k→∞

sk ≤ (1 − ξ)σ∗.

Thus, as in the stespize-restricted case, we have three different settings concerning
the “asymptotic accuracy”

lim sup
k→∞

εk ≤ lim sup
k→∞

fk − f∗ + σ̄k

(cf. (4.5)) of the direction: other than from the error fk − f∗, it depends on a term
that is decreasing “the more γk is similar to σk.” In particular, the term is σ∗ + γ̄ if
nothing can be said on γk, it is (1− ξ)σ∗ if (4.8) holds, and it is 0 if γk = σk (ξ = 1).

We can now prove convergence of the approach; differently from the stepsize-
restricted case, here we will need a weak form of boundedness of the iterates

(4.10) D = supk ‖dk‖ < ∞.

This is true at the very least if X is compact and f finite everywhere, or if f is
polyhedral and εk bounded by above. A number of bounding strategies are available to
enforce this kind of (or even stronger) boundedness properties; see, e.g., [20, section 6]
for a thorough discussion.

DEFLECTED CONDITIONAL APPROXIMATE SUBGRADIENT 379

Theorem 4.5. If conditions (3.2), (4.1), (4.2), (4.4), and (4.10) hold, then
(i) let γsup = lim supk→∞ γk; then f∞ ≤ f∗ + γsup + (σ∗ + γ̄)/α∗;
(ii) under (4.8), f∞ ≤ f∗ + σ∗(1 + (1 − ξ)(1 − α∗)/α∗);
(iii) under choice (3.8), f∞ ≤ f∗ + σ∗; furthermore, if X∗ �= ∅ and (2.13) holds,

then the sequence {xk} is convergent to some x∞ such that f(x∞) = f∞.
Proof. As previously anticipated, we must first do away with the finite termination

case, i.e., that where the prescribed accuracy bounds are finitely attained at some
iteration k. However, in this case there is nothing left to prove, so we must now argue
by contradiction against the case where the bounds are not attained, even in the limit;
for case (i), for instance, this means

fk ≥ f∗ + γsup + (σ∗ + γ̄)/α∗ + ε

for all k. It is then immediate to show that at length λk > 0. Thus, (4.4) and (4.1)
are no longer at odds, and the above results (e.g., Lemma 4.3) can be safely invoked;
actually, as in the previous cases we can restrict ourselves to the (infinite) subsequence
where λk > 0 and disregard all other iterations. The argument for cases (ii) and (iii)
is analogous.

For any x̄ ∈ X , from (2.9) one has

‖xk+1 − x̄‖2 − ‖xk − x̄‖2 ≤ −2νk〈xk − x̄, dk〉 + ν2
k‖dk‖2.

Fixing any k and h > k, by summation we then have

(4.11) ‖xh − x̄‖2 − ‖xk − x̄‖2 ≤ −2
h−1∑
j=k

νj〈xj − x̄, dj〉 +
h−1∑
j=k

ν2
j ‖dj‖2.

Hence, l = lim infk→∞〈dk, xk − x̄〉 ≤ 0. In fact, assume by contradiction 〈dk, xk − x̄〉 ≥
ε > 0 for all k; then, from (4.11) we get ‖xh − x̄‖2 → −∞ as h → ∞. Now, let
ε1, ε2, ε3 > 0 be such that (ε1 + ε2 + ε3) = α∗ε/2. Because l ≤ 0, there exists a
subsequence {xki} such that

(4.12) 〈dki , xki − x̄〉 ≤ ε1

(this is obvious if l = −∞, otherwise, take a subsequence converging to l). Further-
more, from (2.15) and (4.10),

〈vk+1, xk − xk+1〉 ≤ νk‖dk‖2 ≤ D2νk → 0;

therefore, for large enough k,

(4.13) 〈vk+1, xk − xk+1〉 ≤ ε2.

Finally, we can choose x̄ so that f(x̄) ≤ f∗ + ε3. Then, taking i large enough for

380 GIACOMO D’ANTONIO AND ANTONIO FRANGIONI

(4.12) and such that ki is large enough for (4.13), we have

0 ≤ 〈dki , x̄ − xki〉 + ε1

≤ (for (4.12)) 〈d̃ki , x̄ − xki〉 + ε1

= (for (2.10)) αki〈ḡki , x̄ − xki 〉 + (1 − αki)〈vki , x̄ − xki〉 + ε1

≤ (for (1.6)) αki(f(x̄) − f(xki) + σki) + (1 − αki)〈vki , x̄ − xki〉 + ε1

= [ḡki ∈ ∂σki
fX(xki)]αki (f(x̄) − f(xki) + σki) + (1 − αki)〈vki , x̄ − xki−1〉

+ (1 − αki)〈vki , xki−1 − xki 〉 + ε1

≤ αki(f(x̄) − f(xki) + σki) + (1 − αki)(f(x̄) − f∗ + σ̄ki−1)
+ (for (4.6)) (1 − αki)ε2 + ε1

≤ (for (4.13)) f(x̄) − αkif(xki) + αki(γki + σki − γki)
+ [±γki](1 − αki)σ̄ki−1 − (1 − αki)f

∗ + ε2 + ε1

≤ [αki ≥ 0]f∗ − αkif(xki) + αkiγki + σ̄ki − (1 − αki)f
∗ + ε3 + ε2 + ε1

≤ (for (4.5)) αki(f
∗ − f(xki) + γki) + σ̄ki + α∗ε/2.

Therefore, for large enough i,

(4.14) f(xki) ≤ f∗ + γki + (σ̄ki + α∗ε/2)/αki ≤ f∗ + γki + σ̄ki/α∗ + ε/2.

Point i. The desired contradiction comes immediately from (4.14) by choosing i
large enough so that γki +σ̄ki/α∗ ≤ γsup+σ̄∗/α∗+ε/2; thus, the theorem is proved. As
a side note, the term “γsup” in the convergence estimate may seem somewhat puzzling
at first, since it can be negative. So, one may wonder if, contrary to intuition, large
negative corrections may, in fact, help to achieve better convergence. This clearly
isn’t so: since γsup ≥ γ∗, if γsup < 0, then γ̄ = −γ∗ > 0. Furthermore, γ̄ + γsup ≥ 0
(and a fortiori γ̄/α∗ + γsup ≥ 0); thus, the more negative γk becomes, the worse the
final accuracy bound is.

Point ii. Using (4.5) in the first part of (4.14) and (4.9), one has for large enough i,

f(xki) ≤ f∗ + σki +
(

1 − αki

αki

)
σ̄ki−1 +

ε

2
≤ f∗ + σ∗

(
1 + (1 − ξ)

1 − α∗

α∗

)
+ ε,

which provides the desired contradiction.
Point iii. Finally, under (3.8) (⇒ γk = σk, σ̄k = 0) (4.14) is f(xki) ≤ f∗+σki+ε/2,

contradicting f∞ ≥ f∗+σ∗+ε for i large enough; this is just the special case of Point
ii for ξ = 1. Let us now assume that X∗ �= ∅ and select any x∗ ∈ X∗. From (4.11),
(2.12) (which holds due to Lemma 2.4 and (2.13)), and (4.6) we have

‖xh − x̄‖2 − ‖xk − x̄‖2 ≤ 2
h−1∑
j=k

νj(f(x̄) − f∗ + σ̄j) +
h−1∑
j=k

ν2
j ‖dj‖2.

Using x̄ = x∗(⇒ f(x̄) = f∗), σ̄k = 0, (4.10), and (4.2), the right-hand side is bounded
above by a constant; therefore, {xk} is bounded. From the previous results, a subse-
quence {xki} exists such that fki → f∞; taking subsubsequences if necessary, we have
a convergent sequence to some x∞ such that f(x∞) = f∞. Now, using [8, Propo-
sition 1.3] we obtain that the whole {xk} converges to x∞, and, by continuity, {fk}
converges to f∞. This is true, in particular, if σ∗ = 0 ⇒ f∞ = f∗.

Thus, the results for deflection-restricted approaches (with diminishing/square
summable stepsizes) closely mirror those for stepsize-restricted approaches. As far as

DEFLECTED CONDITIONAL APPROXIMATE SUBGRADIENT 381

comparison with the literature goes, the closest result is [20, Theorem 3.6], which—
without deflection—ensures f∞ = f∗ (and convergence of the iterates) but requires
the condition

∑∞
k=1 νkεk < ∞. This is not a straightforward condition to impose and

clearly requires εk → 0 ⇒ σk → 0 “at least as fast” as νk → 0. By contrast, our
Theorem 4.5 allows more relaxed conditions on both the asymptotic error and the
correction. Of course, our condition (4.2) requires knowledge of f∗ and is therefore,
in general, not readily implementable. However, as in the stepsize-restricted case, the
“basic” Theorem 4.5 provides a convenient starting point for the analysis of the im-
plementable, target-based approaches described next, which do not require knowledge
of f∗ (and not even f∗ > −∞) or σk.

4.2. Target value deflection. As in the stepsize-restricted case, the nonimple-
mentable (4.2) can be substituted with the target value deflection rule

(4.15) 0 ≤ ζk =
νk−1‖dk−1‖2

(fk − fk
lev) + νk−1‖dk−1‖2

≤ αk ≤ 1,

whereby, f∗ is approximated by the target level fk
lev = fk

ref − δk. As in the stepsize-
restricted case, doing away with (3.2) requires defining a feasible target f̄ (cf. (3.21))
to replace f∗ in (4.2); then, (4.15) can be seen as a corrected deflection rule with

λk = fk − fk
lev = fk − f̄ − (

fk
ref − f̄ − δk

)
,

where the actual correction γk = fk
ref − f̄ − δk (cf. (3.22)) is unknown. It is easy

to verify that Lemma 4.1, Corollary 4.2, and Theorem 4.5 hold with f̄ replacing f∗

and without a need for assumption (3.2). Indeed, knowing γk is not required for our
convergence analysis, only its relationships with σk, in particular, in the form of (4.8),
need be worked out. These clearly depend on how fref and δk are updated. In this
case, however, there are less technical difficulties with nonvanishing quantities, and
we can use very simple update rules together with a vanishing threshold.

In fact, let us assume the “obvious” reference value update fk
ref = fk

rec and the
following simplified form of (3.26):

(4.16) either f∞
ref = f∗ = −∞ or lim inf

k→∞
δk = 0.

One quite general (and simple) way of implementing it is to choose a positive vanishing
nonsummable sequence {Δk}, i.e.,

(4.17) Δk > 0, lim inf
k→∞

Δk = 0,

∞∑
k=1

Δk = ∞

and to use the threshold update rule

δk+1 ∈
{

[Δr(k+1) , ∞) if fk+1 ≤ fk
lev,

{Δk+1} if fk+1 > fk
lev,

where r(k) is the number of “resets,” i.e., iterations where f(xk+1) ≤ fk
lev occur, prior

to iteration k. It is immediate to prove that the above implementation satisfies (4.16).
In fact, let R be the set of resets: we have

f∞
ref ≤ f(x1) −

∑
k∈R

δk ≤ f(x1) −
∑
k∈R

Δr(k).

382 GIACOMO D’ANTONIO AND ANTONIO FRANGIONI

Now, if R is infinite, then due to (4.17) we have f∞
ref = −∞; otherwise, after the

last iteration in R we have δk = Δk, and therefore, lim infk→∞ δk = 0. Then, the
following convergence result can be proven.

Theorem 4.6. Under conditions (4.10) and (4.1), the algorithm employing the
deflection rule (4.15) with threshold condition (4.16) attains either f∞

ref = −∞ = f∗

or f∞
ref ≤ f∗ + σ∗.
Proof. If f∞ = −∞, there is nothing to prove, otherwise, from (3.20) and (4.16)

we have γ∗ = f∞
ref − f̄ (cf. (3.27)). Assume by contradiction that γ∗ = f∞

ref − f̄ > σ∗

⇒ f∞ − f̄ > σ∗ as f∞ ≥ f∞
ref . From the definitions, for all ε > 0 and large enough k,

γk ≥ γ∗ − ε and σk ≤ σ∗ + ε.

Hence, for ε = (γ∗ − σ∗)/2 we have

γ∗ − ε = γ∗ − (γ∗ − σ∗)/2 = (γ∗ + σ∗)/2 = σ∗ + (γ∗ − σ∗)/2 = σ∗ + ε.

That is, for large enough k,

γk ≥ γ∗ − ε = σ∗ + ε ≥ σk,

i.e., (4.8) holds with ξ = 1. Whence Theorem 4.5(ii) (with ξ = 1, and f̄ replacing
f∗) gives f∞ ≤ f̄ + σ∗, a contradiction. This immediately shows that f∗ = −∞ ⇒
f∞

ref = −∞ (argue by contradiction and take f̄ small enough).
The target value deflection rules proposed in this paragraph are an implementable

version of the “abstract” (4.2), which seems to be entirely new; indeed, to the best
of our knowledge, there are very few comparable results in the literature. The only
related result is that of the recent and independent [32], which, however, uses a
different form of subgradient iteration by projecting xk − dk onto X before applying
the stepsize, rather than projecting dk on the normal cone. This algorithm can attain
convergence under (4.1) without using any information about the target level, but at
the cost of constantly setting αk = aνk for a fixed constant a > 0, which, in particular,
yields αk → 0.

5. Conclusions and directions for future work.

5.1. Impact on Lagrangian optimization. We now discuss the relevance of
the above analysis in a specific application, Lagrangian relaxation (e.g., [25, 16, 15]).
There, one has a “difficult” problem

(5.1) sup
u

{ c(u) : h(u) = 0 , u ∈ U }

which “exhibits structure,” in the sense that replacing the “complicating constraints”
h(u) = 0 with a Lagrangian term in the objective function, weighted by a vector of
Lagrangian multipliers x, yields a Lagrangian subproblem

(5.2) f(x) = sup
u

{ c(u) + 〈x, h(u)〉 : u ∈ U },

which is “substantially easier” to solve than (5.1). Solving the corresponding La-
grangian dual (1.1) with this f provides an upper bound on the optimal value of (5.1).
It is well known that the upper bound is not, in general, exact; augmented Lagrangians
are required for obtaining a zero-gap dual. While modified subgradient methods have
been proposed for these (e.g., [6]), they require the solution of a different problem

DEFLECTED CONDITIONAL APPROXIMATE SUBGRADIENT 383

than (5.2), with a further nonlinear term in the objective function; it is often the
case that these problems are considerably more difficult in practice than standard
Lagrangians, especially when h(u) = 0 are “coupling” constraints, linking otherwise
separate subsets of the variables. Assuming that only the standard Lagrangian (5.2)
is solvable in practice, the (repeated, efficient) solution of (1.1) need be integrated in
enumerative approaches [15], as follows. A feasible solution ū to (5.1) is known, pro-
viding a lower bound c(ū) on the optimal value of the problem; for a given optimality
tolerance ε, one is interested in determining whether or not f∗ ≤ t∗ = (1 + ε)c(ū). If
so, ū is deemed “accurate enough” a solution, and (5.1) is considered solved; other-
wise, branching occurs where U is subdivided into a number of smallest sets, and the
process is recursively repeated until the upper bound computed on each subproblem
is within the prescribed tolerance from the current lower bound, which may also be
improved. To avoid any unnecessary complication of the notation, we will describe
the case for (5.1) and (5.2), with the only provision that, in general, one may not even
have f∗ ≥ c(ū), as it is the case at the “root node.”

Often, the optimization problem in (5.2) is considered “easily solvable”; this
means that one assumes, given x, to be able to find an optimal solution u∗

x ∈ U to
(5.2), which gives both the function value f(x) = c(u∗

x) and the subgradient g = h(u∗
x).

However, in order for the upper bound f∗ to be “tight,” it is often advisable to choose
as (5.2) a problem that is not easy; when (5.1) is an integer linear program, for in-
stance, choosing a U with the integrality property (which leads to an easy Lagrangian
relaxation) provides the same bound as the ordinary continuous relaxation, which
may be too weak [25, 16, 15]. Thus, it is often necessary, for the whole approach to
be effective, to resort to “difficult” Lagrangian subproblems which, although easier
than (5.1) in practice, fall on the same theoretical complexity class; a nice example
of this can be found, e.g., in [4]. In particular, (5.2) itself may require an enumera-
tive approach to be solved; that is, given x one may only be able to derive an upper
bound f+(x) ≥ f(x) (through a further relaxation of (5.2)) and some feasible but not
necessarily optimal solution u−

x ∈ U to the problem, which produces a lower bound
c(u−

x) = f−(x) ≤ f(x), together with the approximate subgradient g = h(u−
x). By

enumeration, f+(x) and f−(x) can be drawn arbitrarily close together; however, this
may be rather costly, especially if the required gap σ = f+(x) − f−(x) needs to be
very small (note that σ is actually the sum of two components, an upper bound error
f+(x) − f(x) and a lower bound error f(x) − f−(x), but the two contributions are,
in general, difficult to distinguish).

It therefore makes computational sense to consider schemes where f is only ap-
proximately computed, especially at the early stages of the algorithm for solving (1.1);
this was one of the main drivers toward the development of solution approaches to
(1.1) capable of dealing with approximated oracles for f [20, 21, 19]. However, not
much is known about how the approximation should be chosen and possibly how the
choice should evolve along with the iterates of the algorithm. The analysis in this
paper, since it reveals in details the relationships between the error in the function
computation, the correction in the stepsize/deflection formulae, and the resulting final
accuracy of the approach, may help in deriving some first results about this issue, at
least for the subgradient approaches covered by this convergence theory. Note that,
for the application of interest here, the function value produced by the approximate
oracle can only be taken as to be the upper bound f+(x) on the true value f(x),
which is, in general, unknown; this is because f(x) is computed for upper bounding
purposes, so only an upper bound on the true value (if small enough) can be used to
certify the (approximate) optimality of a solution. The following results easily follow

384 GIACOMO D’ANTONIO AND ANTONIO FRANGIONI

from the previous analysis:
• For a subgradient scheme employing either (3.1) or (4.2), the target-level

schemes (in particular, vanishing ones) predict that in order to guarantee
convergence at t∗ (provided that f∗ ≤ t∗ in the first place), one must have
σ∗ ≤ t∗ − f∗.

• The same holds for the (somewhat simpler) fixed target approach where λk =
fk − (t∗ + δk) ⇒ γk = t∗ + δk − f∗ for lim infk→∞ δk = 0; in fact, f∗ ≤ t∗

and σ∗ = t∗ − f∗ imply f∞ ≤ t∗. This comes directly from Theorem 3.5(ii)
for (3.1) and Theorem 4.5(ii) for (4.2) (with ξ = 1), since γ∗ ≥ t∗ − f∗ ≥ σ∗.

• No fixed target approach can attain convergence to t∗ with lower asymptotic
oracle precision. In fact, let tk = fk −λk be the target used (in either (3.1) or
(4.2)) at the kth iteration, and let t∞ = lim infk→∞ tk. If t∞ > t∗, then it is
possible that for all k large enough, fk < t∞ ⇒ λk < 0; thus, the algorithm
may “get stuck” at some iteration k, with fk > t∗. If, instead, t∞ < t∗,
then if t∞ < f∗ as well, one has γk = tk − f∗ < 0 for all k large enough,
and therefore, γ∗ = t∞ − f∗ < 0; Theorem 3.5(i) or Theorem 4.5(i) with
σ∗ = t∗ − f∗ do not guarantee convergence to t∗ in this case.

The above results are largely theoretical; in order to bound the “optimal” error, one
would need to know the value of f∗, which is unknown. However, they indicate
that the required accuracy is related to the gap between t∗ and f∗, and therefore,
that the worst case is when f∗ is very near to the target. Thus, schemes that try
to estimate f∗ and revise the estimate dynamically seem to be needed for properly
choosing the oracle error. More in general, the results clearly imply that setting an
asymptotic accuracy in the oracle greater than the desired final accuracy in the bound
computation is, in principle, wasted : if ε is the required final accuracy, then all the
algorithms proposed herein will attain it provided that σ∗ = ε. While this makes a
lot of sense intuitively, we are not aware of any previous statement of this kind.

5.2. Conclusions. The contributions of the present paper are the following:
• the first convergence proofs for approximate subgradient algorithms combin-

ing deflection and projection, with up to seven different options;
• the new definition of deflection-restricted approaches;
• the new definition of corrected stepsize and deflection rules, and a thorough

analysis of how correction impacts the asymptotic precision attained by the
algorithms;

• implementable target-like versions for all algorithms.
In our opinion, one of the most interesting—although somewhat obvious, in hindsight—
findings is that when dealing with inexact oracles, an estimate of the oracle error σk

can be useful. Indeed, the “exact corrections” γk = σk is only applicable given a
“more advanced” oracle, which not only provides fk and gk but also σk; however,
as discussed in the previous paragraph, such an oracle is, indeed, available in ap-
plications, e.g., related to Lagrangian relaxation. In plain words, the results in this
paper suggest that if errors are made, then it is f∗ + σ∗—the lowest attainable upper
bound on f∗— that is the, and therefore, should be used as, “true target” of the ap-
proach. Using f∗ instead, i.e., pretending that each gk is a “true” subgradient rather
than a σk-subgradient, means “aiming lower than the true target,” and this hurts the
convergence properties of the approach.

Clearly, there is ample scope for improvements to the obtained results. The weak
boundedness condition (4.10) is satisfied by several classes of functions relevant for
applications, such as Lagrangian functions of integer programs [16, 15] with compact

DEFLECTED CONDITIONAL APPROXIMATE SUBGRADIENT 385

domains. In general, bounding strategies akin to those of [20, section 6] could be used
to replace it; these, however, require finite upper bounds on the maximum error εk

which, in light of our (3.6) and (4.5), do not look trivial to attain. Also, extending
the present approach to incremental methods [20, section 9], [35, 27] would be very
interesting but looks far from trivial. Deriving complexity estimates a la [20, sec-
tion 8] on the different algorithms and relating them to the properties of the error
sequence {σk}, the deflection sequence {αk}, and the stepsize sequences {βk}/{νk}
would clearly be interesting, as it is studying the impact of the choice of {αk} on
dual convergence properties of the approach [1, 32], e.g., borrowing from the scheme
recently proposed in [29]. Finally, computational experiences are needed to assess the
practical significance of the newly developed approaches. Preliminary computational
results presented in [10] show that projecting the direction within a conditional sub-
gradient scheme can be beneficial to performances; however, this is not always the
case. The results obtained so far offer little guidance on the conditions under which
the deflected-conditional approaches could be reliably expected to outperform the pre-
viously developed ones, as well as on other practically relevant issues, such as which
of the seven projection schemes (1.5)/(1.6) is more promising in practice. An espe-
cially interesting question, from the computational viewpoint, is whether or not these
methods, indeed, have similar numerical behavior as “heavy ball” ones (cf. Remark 4
after Lemma 2.6), that are quite popular in the context of training neural networks.
All this calls for further study of the matter, both theoretical and computational,
which we intend to pursue in the future.

Acknowledgments. We are grateful to the anonymous referees whose insightful
comments have helped us to improve on the original version of the paper.

REFERENCES

[1] K. Anstreicher and L. Wolsey, Two “well-known” properties of subgradient optimization,
Math. Program., to appear.

[2] L. Bahiense, N. Maculan, and C. Sagastizábal, The volume algorithm revisited: Relation
with bundle methods, Math. Program., 94 (2002), pp. 41–69.

[3] F. Barahona and R. Anbil, The volume algorithm: Producing primal solutions with a sub-
gradient method, Math. Program., 87 (2000), pp. 385–399.

[4] C. Beltran, C. Tadonky, and J.-P. Vial, Solving the p-median problem with a semi-
Lagrangian relaxation, Comput. Optim. Appl., 35 (2006), pp. 239–260.

[5] D. Bertsekas, A. Nedic, and A. Ozdaglar, Convex Analysis and Optimization, Athena
Scientific, Belmont, MA, 2003.

[6] R. Burachik, R. Gasimov, N. Ismayilova, and C. Kaya, On a modified subgradient algorithm
for dual problems via sharp augmented Lagrangian, J. Global Optim., 34 (2006), pp. 55–78.

[7] P. Camerini, L. Fratta, and F. Maffioli, On improving relaxation methods by modified
gradient techniques, Math. Program. Study, 3 (1975), pp. 26–34.

[8] R. Correa and C. Lemaréchal, Convergence of some algorithms for convex minimization,
Math. Program., 62 (1993), pp. 261–275.

[9] T. Crainic, A. Frangioni, and B. Gendron, Bundle-based relaxation methods for multi-
commodity capacitated fixed charge network design, Discrete Appl. Math., 112 (2001),
pp. 73–99.

[10] G. d’Antonio, Porting ed Estensione di Codice C++ per l’Ottimizzazione non Differenzia-
bile, Master’s Thesis, Dipartimento di Informatica, Università di Pisa, Pisa, Italy, 2006,
http://www.di.unipi.it/optimize/Theses.

[11] O. du Merle, J.-L. Goffin, and J.-P. Vial, On improvements to the analytic center cutting
plane method, Comput. Optim. Appl., 11 (1998), pp. 37–52.

[12] A. Frangioni, A. Lodi, and G. Rinaldi, New approaches for optimizing over the semimetric
polytope, Math. Program., 104 (2005), pp. 375–388.

[13] A. Frangioni, Solving semidefinite quadratic problems within nonsmooth optimization algo-
rithms, Comput. Oper. Res., 21 (1996), pp. 1099–1118.

386 GIACOMO D’ANTONIO AND ANTONIO FRANGIONI

[14] A. Frangioni, Generalized bundle methods, SIAM J. Optim., 13 (2002), pp. 117–156.
[15] A. Frangioni, About Lagrangian methods in integer optimization, Ann. Oper. Res., 139 (2005),

pp. 163–193.
[16] M. Guignard, Lagrangean relaxation, Top, 11 (2003), pp. 151–228.
[17] B. Guta, Subgradient Optimization Methods in Integer Programming with an Application to

a Radiation Therapy Problem, Ph.D. thesis, Teknishe Universitat Kaiserlautern, Kaiser-
lautern, 2003.

[18] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms
II—Advanced Theory and Bundle Methods, Grundlehren Math. Wiss. 306, Springer-Verlag,
New York, 1993.

[19] K. Kiwiel and C. Lemaréchal, An inexact bundle variant suited to column generation, Math.
Program., to appear.

[20] K. Kiwiel, Convergence of approximate and incremental subgradient methods for convex op-
timization, SIAM J. Optim., 14 (2004), pp. 807–840.

[21] K. Kiwiel, A Proximal bundle method with approximate subgradient linearizations, SIAM J.
Optim., 16 (2006), pp. 1007–1023.

[22] T. Larsson, M. Patriksson, and A.-B. Strömberg, Conditional subgradient optimization -
Theory and applications, European J. Oper. Res., 88 (1996), pp. 382–403.

[23] T. Larsson, M. Patriksson, and A.-B. Strömberg, Ergodic, primal convergence in dual
subgradient schemes for convex programming, Math. Program., 86 (1999), pp. 283–312.

[24] T. Larsson, M. Patriksson, and A.-B. Strömberg, On the convergence of conditional ε-
subgradient methods for convex programs and convex-concave saddle-point problems, Eu-
ropean J. Oper. Res., 151 (2003), pp. 461–473.

[25] C. Lemaréchal, Lagrangian relaxation, in Computational Combinatorial Optimization,
M. Jünger and D. Naddef, eds., Springer-Verlag, Heidelberg, 2001, pp. 115–160.

[26] C. Lim and H. Sherali, Convergence and computational analyses for some variable target
value and subgradient deflection methods, Comput. Optim. Appl., 34 (2006), pp. 409–428.

[27] A. Nedich and D. Bertsekas, The Effect of Deterministic Noise in Subgradient Methods,
Lab. for Information and Decision Systems Report, MIT, Cambridge, MA, 2007 (revised
2008).

[28] Y. Nesterov, Complexity estimates of some cutting plane methods based on the analytic bar-
rier, Math. Program., 69 (1995), pp. 149–176.

[29] Y. Nesterov, Primal-dual subgradient methods for convex problems, Math. Program., to ap-
pear.

[30] B. Poljak, Introduction to Optimization, Optimization Software, New York, 1985.
[31] B. Polyak, Subgradient methods: A survey of Soviet research, in Nonsmooth Optimization,

Lemaréchal, C. and Mifflin, R., eds., IIASA Proceedings Series, Pergamon Press, Oxford,
1977.

[32] A. Ruszczyński, A merit function approach to the subgradient method with averaging, Optim.
Methods Softw., 23 (2008), pp. 161–172.

[33] H. Sherali, G. Choi, and C. Tuncbilek, A variable target value method for nondifferentiable
optimization, Oper. Res. Lett., 26 (2000), pp. 1–8.

[34] H. Sherali and C. Lim, On embedding the volume algorithm in a variable target value method,
Oper. Res. Lett., 32 (2004), pp. 455–462.

[35] M. Solodov and S. Zavriev, Error stability properties of generalized gradient-type algorithms,
J. Optim. Theory Appl., 98 (1998), pp. 663–680.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

