
A Parallel Implementation of an Interior-Point

Algorithm for Multicommodity Network Flows �

Jordi Castro y

Statistics and Operations Research Department
Universitat Polit�ecnica de Catalunya

Pau Gargallo 5, 08028 Barcelona (Spain)
jcastro@eio.upc.es

Antonio Frangioni
Dipartimento di Informatica

Universit�a di Pisa
Corso Italia 40, 56125 Pisa (Italy)

frangio@di.unipi.it

April 2000
DR2000-06

Abstract

A parallel implementation of the specialized interior-point algo-
rithm for multicommodity network ows introduced in [5] is presented.
In this algorithm, the positive de�nite systems of each iteration are
solved through a scheme that combines direct factorization and a pre-
conditioned conjugate gradient (PCG) method. Since the solution of
at least k independent linear systems is required at each iteration of
the PCG, k being the number of commodities, a coarse-grained par-
allellization of the algorithm naturally arises, where these systems are
solved on di�erent processors. Also, several other minor steps of the
algorithm are easily parallelized by commodity. An extensive set of
computational results on a shared memory machine is presented, us-
ing problems of up to 2.5 million variables and 260,000 constraints.
The results show that the approach is especially competitive on large,
diÆcult multicommodity ow problems.

�This work has been supported by the European Center for Parallelism of Barcelona
(CEPBA).

yAuthor supported by CICYT Project TAP99-1075-C02-02.

1

1 Introduction

Multicommodity ows are among the most challenging linear problems, due
to the large size of these models in real world applications (e.g., routing in
telecommunications networks). Indeed, these problems have been used to
test the eÆciency of early interior-point solvers for linear programming [1].
The need to solve very large instances has led to the development of both
specialized algorithms and parallel implementations.

In this paper, we present a parallel implementation of a specialized
interior-point algorithm for multicommodity ows [5]. In this approach, the
block-angular structure of the coeÆcient matrix is exploited for perform-
ing in parallel the solution of small linear systems related to the di�erent
commodities, unlike general-purpose parallel interior-point codes [2, 8, 17]
where the parallelization e�ort is focused on the Cholesky factorization of
one large system. This has already been proposed [16, 9, 13]; however, all
the previous approaches require to compute and factorize the Schur comple-
ment. This can become a signi�cant serial bottleneck, since this matrix is
usually prohibitively dense. Although this bottleneck can be partly eluded
by using parallel linear algebra routines, our approach takes a more radical
route by avoiding to form the Schur complement, and using an iterative
method instead. There have been other proposals along these lines [22, 14],
but limited to the sequential case; also, so far no results have been shown for
these algorithms. The implementation presented in this paper signi�cantly
improves on the preliminary one described in [6]. There, only some of the
major routines were parallelized, and less attention was paid to communi-
cation and data distribution. Working on these details allowed us to obtain
new and better computational results.

From the multicommodity point of view, this approach di�erentiates it-
self from most other parallel solvers [7, 15, 19, 25, 21, 12] in that is not
based on a decomposition approach. The structure of the multicommod-
ity ow problem has led to a number of specialized algorithms, most of
which share the idea of decomposing in some way the problem into a set
of smaller independent problems. These are all iterative methods, where at
each step the subproblems are solved, and their results are used in some way
to modify the subproblems to be solved at the next iteration. Hence, these
approaches are naturally suited for coarse-grained parallelization. Parallel
price-directive decomposition approaches have been proposed based on bun-
dle methods [7, 19], analytic center methods [12] or linear-quadratic penalty
functions [21]. Parallel resource-directive approaches are described in [15].
Finally, experiences with a parallel interior-point decomposition method are

2

presented in [25]. A discussion of these and other parallel decomposition
approaches can be found in [7]. A general description of the parallelization
of mathematical programming algorithms can be found in [3, 23].

The paper is organized as follows. Section 2 presents the formulation
of the problem to be solved. Section 3 outlines the specialized interior-
point algorithm for multicommodity ows proposed in [5], including a brief
description of the general path-following method. Section 4 deals with the
parallelization issues of the algorithm. Finally, Section 5 presents and discuss
the computational results.

2 Problem Formulation

The multicommodity ow problem requires to �nd the least-cost routing of
a set of k commodities through a network of m nodes and n arcs, where the
arcs have an individual capacity for each commodity, and a mutual capacity
for all the commodities. The node-arc formulation of the problem is

min
Pk

i=1 c
ixi

s.t.

2
6666664

E 0 : : : 0 0
0 E : : : 0 0
...

...
. . .

...
...

0 0 : : : E 0

I I : : : I I

3
7777775

2
6666664

x1

x2

...
xk

x0

3
7777775
=

2
6666664

b1

b2

...
bk

u

3
7777775

0 � xi � ui i = 1 : : :k
0 � x0 � u:

(1)

Vectors xi 2 IRn are the ow arrays for each commodity, while x0 2 IRn are
the slacks of the mutual capacity constraints. E 2 IRm�n is the node-arc
incidence matrix of the underlying directed graph, while I denotes the n�n
identity matrix. We shall assume that E is a full row-rank matrix: this
can always be guaranteed by removing any of the redundant node balance
constraints. ci 2 IRn and ui 2 IRn are respectively the ow cost vector and
the individual capacity vector for commodity i, while u 2 IRn is the vector
of the mutual capacities. Finally, bi 2 IRm is the vector of supplies/demands
for commodity i at the nodes of the network.

The multicommodity ow problem is a linear program with �m = km+n

constraints and �n = (k+1)n variables. In some real-world models, k can be
very large: for instance, in many telecommunication problems a commodity
represents the ow of data/voice between two given nodes of the network,
and therefore k is O(m2). Thus, the resulting linear program can be huge

3

even for graphs of moderate size. However, the coeÆcient matrix of the
problem is highly structured: it has a block-staircase form, each block being
a node-arc incidence matrix. Several methods have been proposed which
exploit this structure; one is the specialized interior-point algorithm to be
described in the next paragraph.

3 A Specialized Interior-Point Algorithm

In [5], a specialized interior-point algorithm for multicommodity ows has
been presented and tested. This algorithm, and the code that implements
it, will be referred to as IPM.

IPM is a specialization of the path-following algorithm for linear pro-
gramming [26]. Let us consider the following linear programming problem
in primal form

min f cx : Ax = b; x+ s = u; x; s � 0 g ; (2)

where x 2 IR�n and s 2 IR�n are respectively the primal variables and the
slacks of the box constraints, u 2 IR�n, c 2 IR�n and b 2 IR �m are respectively
the upper bounds, the cost vector and the right hand side vector, and A 2

IR �m��n is a full row-rank matrix. The dual of (2) is

min f yb� wu : yA+ z � w = c; z; w � 0 g ; (3)

where y 2 IR �m, z 2 IR�n and w 2 IR�n are respectively the dual variables of
the structural constraints Ax = b, the dual slacks and the dual variables of
the box constraints x � u.

Replacing the inequalities in (2) by a logarithmic barrier in the objective
function, with parameter �, the KKT optimality conditions of the resulting
problem are

rxz � �e�XZe = 0
rsw � �e� SWe = 0
rb � b� Ax = 0
rc � c� (yA+ z � w) = 0
ru � u� x� s = 0

(x; s; z; w)� 0 ;

(4)

where e is the vector of 1's of proper dimension, and each uppercase letter
corresponds to the diagonal matrix having as diagonal elements the entries
of the corresponding lowercase vector. In the algorithm we impose ru = 0,
i.e. s = u� x, thus eliminating �n variables.

4

The (unique) solutions of (4) for each possible � > 0 describe a continu-
ous trajectory, known as the central path, which, as � tends to 0, converges
to the optimal solutions of (2) and (3). A path-following algorithm attempts
to reach close to these optimal solutions by following the central path. This
is done by performing a damped version of Newton's iteration applied to the
nonlinear system (4), as shown in (5). A more detailed description of the
algorithm can be found in many linear programming textbooks, e.g. [26].

Procedure PathFollowing(A; b; c; u):
Initialize x > 0; s > 0; y; z > 0; w > 0;
while (x; s; y; z; w) is not optimum do

� = (X�1Z + S�1W)�1;
r = S�1rsw + rc �X

�1rxz;
(A�AT)�y = rb +A�r;
�x = �(AT�y � r);
�w = S�1(rsw +W�x);
�z = rc +�w � AT�y;
Compute �P >; �D > 0;
x x+ �P�x;
(y; z; w) (y; z; w)+ �D(�y;�z;�w);

(5)

The main computational burden of the algorithm is the solution of the
system

(A�AT)�y = rb +A�r � �b : (6)

Note that A�AT is symmetric and positive de�nite, as � is clearly a positive
de�nite diagonal matrix. Usually, interior-point codes solve (6) through a
Cholesky factorization, preceeded by a permutation of the columns of A
aimed at minimizing the �ll-in e�ect. Several e�ective heuristics have been
developed for computing such a permutation. Unfortunately, when A is the
constraints matrix of (1), the Cholesky factors of A�AT turn out to be
rather dense anyway [5].

However, the structure of A can be used to solve (6) without computing
the factorization of A�AT . Note that � is partitioned into the k blocks �i,
i = 1 : : :k, one for each commodity, plus the block �0 corresponding to the

5

slack variables x0 of the mutual capacity constraints. Hence,

A�AT =

"
B C

CT D

#
=

2
66664
E�1ET : : : 0 E�1

...
. . .

...
...

0 : : : E�kET E�k

�1E : : : �kE �0 +
Pk

i=1�
i

3
77775 (7)

i.e., B is the block diagonal matrix having them�m matrices Bi = E�iET ,
i = 1 : : :k, as diagonal elements, and

CT =
h
CT
1
: : :CT

k

i
=
h
�1E : : :�kE

i
:

Exploiting (7), and partitioning the vectors �y and �b accordingly, the solu-
tion of (6) is reduced to

D �

kX
i=1

CT
i B

�1
i Ci

!
�y0 = �b0 �

kX
i=1

CT
i B

�1
i
�bi � �0 (8)

Bi�y
i = (�bi � Ci�y

0) � �i; i = 1 : : :k : (9)

The matrix

H = D � CTB�1C = D �
kX
i=1

CT
i B

�1
i Ci (10)

is known as the Schur complement.
Thus, (6) can be solved by means of (8), involving the Schur complement

H , followed by the k subsystems (9) involving the matrices Bi. The latter
step can be easily parallelized. However, solving (8) with a direct method,
as advocated in [16, 9], requires forming and factorizing H . As shown in [5],
this matrix typically becomes rather dense, hence such a direct approach
may become computationally too expensive. Furthermore, it represents a
formidable serial bottleneck for a parallel implementation of the code. As
suggested in [16], this bottleneck can be reduced by using parallel linear
algebra routines [2, 8, 17]. However, it is also possible to avoid forming H
at all, solving (9) by means of an iterative algorithm.

Since H is symmetric and positive de�nite, a preconditioned conjugate
gradient (PCG) method can be used. In [5], a family of preconditioners is
proposed, based on the following characterization of the inverse of H :

H�1 =

1X
i=0

(D�1Q)i
!
D�1 where Q =

kX
i=1

CT
i B

�1
i Ci (11)

6

A preconditioner for (9) can be obtained by truncating the above power
series at the h-th term. Clearly, the higher h, the better the preconditioning
will be, and the fewer PCG iterations will be required. However, precondi-
tioning one vector requires solving k�h linear systems involving the matrices
Bi, thereby increasing the cost of each PCG iteration. The best trade-o�
between the reduction of the iterations count and the cost of each iteration
is h = 0, corresponding to the diagonal preconditioner D�1 [5].

The IPM code, implementing this algorithm, has shown to be competi-
tive with a number of other sequential approaches [5]. It is written mainly
in C, with only the Cholesky factorization routines (devised by E. Ng and
B. Peyton [20]) coded in Fortran. Both the sequential and parallel versions
can be freely obtained for academic purposes from

http://www-eio.upc.es/~jcastro/software.html.

4 Parallelization of the Algorithm

The solution of (6) is by far the most expensive procedure in the interior-
point algorithm, consuming up to 97% of the total execution time for large
problems. With the above approach, this can be accomplished by means of
the following steps:

� Factorization of the k matrices Bi; note that the current implemen-
tation uses sequential Cholesky solvers, but parallel Cholesky solvers
could be used for increasing the degree of parallelism of the approach.

� Computation of �0 = �b0�
Pk

i=1C
T
i B

�1
i
�bi, which requires k backsolves

on the factorizations of Bi and matrix-vector products of the form
CT
i v

i.

� For each iteration of the PCG, computation of (D�
Pk

i=1 C
T
i B

�1
i Ci)v,

which requires backsolves on the factorizations ofBi and matrix-vector
products of the form Civ

i and CT
i v

i.

� Computation of �i = �bi � Ci�y0, which requires matrix-vector prod-
ucts of the form Civ

i.

� Solution of the systems Bi�y
i = �i.

Hence, most of the parallelization e�ort boils down to performing in parallel
the factorization of the Bis, backward and forward substitution with these
factorizations and matrix-vector products involving Ci or CT

i . Thus, there is

7

no need for sophisticated implementations of parallel linear algebra routines.
Note that higher-order preconditioners (h > 0) would complicate somehow
the above scheme, but the basic blocks would remain the same.

Although the above procedures are by far the most important, a number
of other minor steps can be easily parallelized, such as the computation of
the other primal and dual directions (�xi, �zi, �wi), the computation of
the primal and dual steplenghts �P and �D , the updating of the current
primal and dual solution, the computation of the primal and dual objective
function values and so on. It is easy to see that all the data concerning one
given commodity i (xi, ci, ui, yi, wi : : :) can be stored in the local memory
of the one processor that is in charge of that commodity, and it is never
required by other processors. This ensures a good \locality" of data, and
a low need for inter-processor communication. It should also be noted that
the number of operations required for each commodity is the same, which
guarantees the load balancing between processors, at least as long as the
number of commodities assigned to each processor is the same.

4.1 Parallel Programming Environment

The parallel version of the IPM code, pIPM, has been developed on the Sili-
con Graphics Origin2000 (SGI O2000) server located at the European Center
for Parallelism of Barcelona (CEPBA), running an IRIX64 6.5 Unix operat-
ing system. Like most of the current parallel architectures, the SGI O2000
o�ers both message-passing and shared-memory programming paradigms,
although the main memory is physically distributed among the processors.
The main characteristics of the server, as reported by the hinv (hardware
inventory) command, are shown below:

64 250 MHZ IP27 Processors

CPU: MIPS R10000 Processor Chip Revision: 3.4

FPU: MIPS R10010 Floating Point Chip Revision: 0.0

Main memory size: 8192 Mbytes

Instruction cache size: 32 Kbytes

Data cache size: 32 Kbytes

Secondary unified instruction/data cache size: 4 Mbytes

Each processor is credited of 14.7 SPECint95 and 24.5 SPECfp95. This
computer appeared at position 275 of the TOP500 November 1998 super-
computer sites list [10].

The default programming style supported by the SGI O2000 is a cus-
tom shared-memory version of C [24], with parallel constructs speci�ed by

8

means of compiler directives (#pragmas). Placement of the memory on the
processors and communication is hidden to the programmer and automat-
ically performed by the system. The main advantage of this choice is ease
of portability: existing codes can be parallelized with a limited e�ort. It is
even possible to avoiding maintaining two di�erent versions (sequential and
parallel) of the same code, which is important to optimize the development
e�orts.

However, this programming style also has a number of drawbacks, mainly
a limited control over memory ownership and limited support for vector-
broadcast and vector-reduce operations. Placement of the data structures
in the local memory of the processors can be only partly (and indirectly)
inuenced by the programmer. Also, the granularity of memory placement
is that of the virtual memory pages (16K) rather than that of the individual
data structures. All this can result in cache misses and page faults from the
local memory of each processor, decreasing the performance of the paral-
lel codes. Although advanced directives allow a more detailed control over
these features, the use of those directives requires a more extensive rewrit-
ing of the code, thus loosing part of the bene�ts in terms of portability and
ease of maintenance. Because of that, the computational results presented
in Section 5 were obtained with the default data distribution provided by
the system (the same used in [2]). However, the assignment of commodities
to processors was optimized for this distribution, hopefully limiting the pos-
sible negative e�ects. The limited support for broadcast/reduce operations
is understandable in a shared-memory oriented language; however, it may
result in poorer performances for codes, like pIPM, where these operations
amount at almost the totality of the communication time.

5 Computational Results

5.1 The Instances

Three sets of multicommodity instances were used for the computational
experiments. The �rst is made up of 18 problems obtained with an improved
version of Ali and Kennington's Mnetgen generator [11]. Table 1 shows the
dimensions and optimal solutions of the Mnetgen problems. Columns \m",
\n", and \k" show the number of nodes, arcs, and commodities. Columns
\�n" and \ �m" give the number of variables and constraints of the linear
problem. Finally, column \cx�" gives the exact optimal objective function
value (with 12 signi�cant digits or more), obtained with Cplex 6.5. For
the last two problems no exact objective value has been computed. These

9

Table 1: Dimensions and optimal solutions of the Mnetgen problems.

Problem m n k �n �m cx�

128-8 128 1089 8 9801 2113 1924133.9
128-16 128 1114 16 18938 3162 4145079.4
128-32 128 1141 32 37653 5237 9785961.1
128-64 128 1171 64 76115 9363 19269824.2
128-128 128 1204 128 155316 17588 40143200.8
256-8 256 2165 8 19485 4213 9919483.2
256-16 256 2308 16 39236 6404 20692883.7
256-32 256 2314 32 76362 10506 45671076.1
256-64 256 2320 64 150800 18704 92249381.1
256-128 256 2358 128 304182 35126 190137259.9
256-256 256 2204 256 566428 67740 397882591.3
512-8 512 4373 8 39357 8469 46339269.9
512-16 512 4620 16 78540 12812 96992237.2
512-32 512 4646 32 153318 21030 192941834.8
512-64 512 4768 64 309920 37536 412943158.7
512-128 512 4786 128 617394 70322 828013599.8
512-256 512 4810 256 1236170 135882 *
512-512 512 4786 512 2455218 266930 *

instances are very large (up to about 2.4 millions of variables and 260,000
constraints), with the number of commodities which varies from very few
(8) to quite many (512). This is useful for characterizing the trends in the
performances of the code as the number of commodities varies [7, 11].

The second set consists of ten of the PDS (Patient Distribution System)
problems. These problems arise from a logistic model for evacuating patients
from a place of military conict. The di�erent instances arise from the
same basic scenario by varying the time horizon, i.e., the number of days
covered by the model. The dimensions and optimal objective functions of
these instances can be found in Table 2; the meaning of the columns is the
same as in Table 1. The PDS problems has been considered, until recently,
essentially impossible to solve with a high degree of accuracy. Although this
has changed, they are still quite challenging multicommodity instances.

The third set of problems is made of the four Tripart problems and of
the Gridgen1 problem. These instances were obtained with the Tripartite
generator and with a variation for multicommodity ows of the Gridgen

10

Table 2: Dimensions and optimal solutions of the PDS problems.

Problem m n k �n �m cx�

PDS1 126 372 11 4464 1758 29083930523.0
PDS10 1399 4792 11 57504 20181 26727094976.0
PDS20 2857 10858 11 130296 42285 23821658640.0
PDS30 4223 16148 11 193776 62601 21385445736.0
PDS40 5652 22059 11 264708 84231 18855198824.0
PDS50 7031 27668 11 332016 105009 16603525724.0
PDS60 8423 33388 11 400656 126041 14265904407.0
PDS70 9750 38396 11 460752 145646 12241162812.0
PDS80 10989 42472 11 509664 163351 11469077462.0
PDS90 12186 46161 11 553932 180207 11087561635.0

Table 3: Dimensions and optimal solutions of the Tripart/Gridgen problems.

Problem m n k �n �m cx�

Tripart1 192 2096 16 35632 5168 63478798.6
Tripart2 768 8432 16 143344 20720 387162296.6
Tripart3 1200 16380 20 343980 40380 269568993.0
Tripart4 1050 24815 35 893340 61565 17774676.0
Gridgen1 1025 3072 320 986112 331072 *

generator [4]. The dimensions and optimal objective functions of these in-
stances can be found in Table 3. These are very diÆcult multicommodity
ow instances, as shown in Section 5.3.

All the above instances can be downloaded from

http://www.di.unipi.it/di/groups/optimize/Data.

5.2 Performance Measures

The following well-known performance measures [3] will be considered for
assessing the performances of pIPM. Denoting by Tp the execution time
obtained with p processors, the speedup Sp with p processors can be de�ned
as Sp = T1=Tp. The fraction of the sequential execution time consumed in
the parallel region of the code will be denoted by f ; values of f close to 1 are

11

necessary in order to obtain good speedups, as demonstrated by Amdahl's

law

Sp � Sp =
1

f=p+ (1� f)
�

1

(1� f)
:

The eÆciency with p processors is

Ep =
Sp
p
� Ep =

Sp
p
:

Ep represents the fraction of the time that a particular processor (of the p
available) is usefully employed during the execution of the algorithm. Sp
and Ep are respectively the ideal speedup and eÆciency, the maximum ones
that can be obtained due to the inherent serial bottlenecks in the algorithm.

Another interesting performance measure is the absolute speedup, ob-
tained by replacing T1 with the execution time of the best serial algorithm
known. This is usually diÆcult to obtain, and it will be discussed separately.

5.3 The Results

Tables 4, 5 and 6 show the results obtained for the three sets of problems.
Column \Gap" gives the relative gap of the solution computed by pIPM
w.r.t. the optimal solution (when available). Column \f" gives the frac-
tion of the total time consumed in the parallel region of the code. Columns
\IP" and \PCG" report the total number of interior-point and PCG itera-
tions, respectively. Column \p" gives the number of processors used in the
execution. \Tp" denotes the execution (wall-clock) time, excluding initial-
izations. Columns \Sp" and \Ep" give respectively the observed speedups
and eÆciencies, while columns \Sp" and \Ep" report their ideal values.

Analyzing the results, the following trends emerge:

� f is always fairly large, and increases with the problem size; the largest
problems attain very high ideal eÆciencies. This indicates that the
approach has a good potential for scalablility, at least in theory, for
very large scale problems.

� For �xed p and k, Ep almost always increases with the size of the
underlying network, in all three groups of instances. This is reasonable:
the computational burden of the PCG iteration grows quadratically
with the number of nodes, while the communication cost grows only
linearly. This seems to indicate that the approach is especially suited
for problems where the size of the network is large w.r.t. the number

12

Table 4: Results for the Mnetgen problems.

Problem Gap f IP PCG p Tp Sp Sp Ep Ep

128-8 -6.1e-6 92.2 42 831 1 3.2 1.0 1.0 1.0 1.0
8 2.1 1.5 5.2 0.2 0.6

128-16 2.2e-6 95.1 48 2530 1 14.3 1.0 1.0 1.0 1.0
8 7.7 1.9 6.0 0.2 0.7
16 8.0 1.8 9.2 0.1 0.6

128-32 1.4e-5 95.4 56 2355 1 32.1 1.0 1.0 1.0 1.0
8 12.9 2.5 6.1 0.3 0.8
16 13.8 2.3 9.5 0.1 0.6
32 19.6 1.6 13.2 0.1 0.4

128-64 8.0e-6 97.1 72 5480 1 139.2 1.0 1.0 1.0 1.0
8 39.7 3.5 6.7 0.4 0.8
16 34.7 4.0 11.1 0.3 0.7
32 28.6 4.9 16.9 0.2 0.5
64 40.3 3.5 22.6 0.1 0.4

128-128 2.3e-6 96.6 85 5033 1 409.2 1.0 1.0 1.0 1.0
8 74.4 5.5 6.5 0.7 0.8
16 122.8 3.3 10.6 0.2 0.7
32 122.7 3.3 15.6 0.1 0.5
64 73.3 5.6 20.4 0.1 0.3

256-8 -2.7e-6 95.6 57 2713 1 20.7 1.0 1.0 1.0 1.0
8 8.3 2.5 6.1 0.3 0.8

256-16 1.6e-5 96.5 59 3465 1 58.0 1.0 1.0 1.0 1.0
8 21.0 2.8 6.4 0.3 0.8
16 21.3 2.7 10.5 0.2 0.7

256-32 3.4e-6 97.3 67 5438 1 252.2 1.0 1.0 1.0 1.0
8 52.6 4.8 6.7 0.6 0.8
16 44.2 5.7 11.4 0.4 0.7
32 54.6 4.6 17.4 0.1 0.5

256-64 5.1e-6 98.0 80 7644 1 757.3 1.0 1.0 1.0 1.0
8 128.5 5.9 7.0 0.7 0.9
16 93.7 8.1 12.3 0.5 0.8
32 99.1 7.6 19.8 0.2 0.6
64 169.3 4.5 28.3 0.1 0.4

256-128 -4.7e-6 98.8 98 12535 1 2672.1 1.0 1.0 1.0 1.0
8 351.3 7.6 7.4 1.0 0.9
16 298.7 8.9 13.6 0.6 0.8
32 257.0 10.4 23.3 0.3 0.7
64 263.5 10.1 36.4 0.2 0.6

256-256 -1.4e-6 98.9 107 16901 1 6725.1 1.0 1.0 1.0 1.0
8 1219.7 5.5 7.4 0.7 0.9
16 763.4 8.8 13.7 0.6 0.9
32 502.0 13.4 23.9 0.4 0.7
64 477.9 14.1 37.8 0.2 0.6

13

Table 4 (cont.) Results for the Mnetgen problems.

Problem Gap f IP PCG p Tp Sp Sp Ep Ep

512-8 1.4e-5 96.4 66 3870 1 90.5 1.0 1.0 1.0 1.0
8 22.9 4.0 6.4 0.5 0.8

512-16 3.5e-6 97.6 73 5364 1 322.3 1.0 1.0 1.0 1.0
8 72.0 4.5 6.8 0.6 0.9
16 63.1 5.1 11.8 0.3 0.7

512-32 -1.7e-6 98.8 103 22460 1 2721.4 1.0 1.0 1.0 1.0
8 454.7 6.0 7.4 0.7 0.9
16 299.3 9.1 13.6 0.6 0.8
32 289.3 9.4 23.3 0.3 0.7

512-64 6.5e-7 99.2 95 27004 1 9244.5 1.0 1.0 1.0 1.0
8 1271.5 7.3 7.6 0.9 0.9
16 702.8 13.2 14.3 0.8 0.9
32 507.9 18.2 25.6 0.6 0.8
64 563.8 16.4 42.6 0.3 0.7

512-128 -2.3e-7 99.3 112 28631 1 19385.9 1.0 1.0 1.0 1.0
8 3237.0 6.0 7.6 0.7 1.0
16 1780.6 10.9 14.5 0.7 0.9
32 1271.5 15.2 26.3 0.5 0.8
64 848.5 22.8 44.4 0.4 0.7

512-256 * 99.5 130 32676 1 43251.2 1.0 1.0 1.0 1.0
8 7401.6 5.8 7.7 0.7 1.0
16 5306.7 8.2 14.9 0.5 0.9
32 2783.7 15.5 27.7 0.5 0.9
64 2205.9 19.6 48.7 0.3 0.8

512-512 * 99.6 194 48229 1 135753.7 1.0 1.0 1.0 1.0
8 25257.7 5.4 7.8 0.7 1.0
16 14198.4 9.6 15.1 0.6 0.9
32 8325.3 16.3 28.5 0.5 0.9
64 5226.0 26.0 51.1 0.4 0.8

14

Table 5: Results for the PDS problems.

Problem Gap f IP PCG p Tp Sp Sp Ep Ep

PDS1 2.8e-6 83.3 30 169 1 0.7 1.0 1.0 1.0 1.0
6 0.5 1.3 3.3 0.2 0.5
11 0.7 0.9 4.1 0.1 0.4

PDS10 8.4e-6 94.7 66 1107 1 44.8 1.0 1.0 1.0 1.0
6 25.3 1.8 4.7 0.3 0.8
11 24.6 1.8 7.2 0.2 0.7

PDS20 7.4e-5 96.6 69 1911 1 254.1 1.0 1.0 1.0 1.0
6 70.9 3.6 5.1 0.6 0.9
11 62.6 4.1 8.2 0.4 0.7

PDS30 1.7e-6 97.9 92 3835 1 777.1 1.0 1.0 1.0 1.0
6 206.4 3.8 5.4 0.6 0.9
11 189.2 4.1 9.1 0.4 0.8

PDS40 1.5e-4 97.9 73 1872 1 1288.1 1.0 1.0 1.0 1.0
6 258.4 5.0 5.4 0.8 0.9
11 194.1 6.6 9.1 0.6 0.8

PDS50 3.5e-5 98.8 100 4711 1 3486.4 1.0 1.0 1.0 1.0
6 727.3 4.8 5.7 0.8 0.9
11 530.1 6.6 9.8 0.6 0.9

PDS60 2.4e-6 99.0 106 5215 1 6262.0 1.0 1.0 1.0 1.0
6 1252.4 5.0 5.7 0.8 1.0
11 745.4 8.4 10.0 0.8 0.9

PDS70 6.4e-6 99.2 116 7015 1 10873.8 1.0 1.0 1.0 1.0
6 2112.2 5.1 5.8 0.9 1.0
11 1268.5 8.6 10.2 0.8 0.9

PDS80 1.3e-4 99.2 107 3768 1 8855.0 1.0 1.0 1.0 1.0
6 1726.3 5.1 5.8 0.9 1.0
11 1093.8 8.1 10.2 0.7 0.9

PDS90 1.3e-5 99.4 135 9357 1 20784.3 1.0 1.0 1.0 1.0
6 3950.5 5.3 5.8 0.9 1.0
11 2447.8 8.5 10.4 0.8 0.9

15

Table 6: Results for the Tripart and Gridgen problems.

Problem Gap f IP PCG p Tp Sp Sp Ep Ep

Tripart1 5.9e-5 93.6 65 3733 1 34.9 1.0 1.0 1.0 1.0
4 21.3 1.6 3.4 0.4 0.8
8 17.9 1.9 5.5 0.2 0.7
16 19.6 1.8 8.2 0.1 0.5

Tripart2 4.5e-5 91.8 63 2652 1 156.6 1.0 1.0 1.0 1.0
4 71.6 2.2 3.2 0.5 0.8
8 55.4 2.8 5.1 0.4 0.6
16 60.3 2.6 7.2 0.2 0.4

Tripart3 1.3e-4 94.9 84 9343 1 1140.7 1.0 1.0 1.0 1.0
4 408.4 2.8 3.5 0.7 0.9
10 300.5 3.8 6.9 0.4 0.7
20 304.8 3.7 10.2 0.2 0.5

Tripart4 9.4e-5 95.6 96 8498 1 3273.2 1.0 1.0 1.0 1.0
5 893.7 3.7 4.3 0.7 0.9
7 721.5 4.5 5.5 0.6 0.8
35 601.1 5.4 14.0 0.2 0.4

Gridgen1 * 99.5 173 49981 1 37234.9 1.0 1.0 1.0 1.0
* 8 10533.2 3.5 7.7 0.4 1.0
* 16 7678.7 4.8 14.9 0.3 0.9
* 32 4426.5 8.4 27.7 0.3 0.9
* 64 3248.6 11.5 48.7 0.2 0.8

16

of commodities. Remarkably, IPM has been shown to be particularly
eÆcient, at least w.r.t. decomposition approaches, exactly for this
kind of instances [11].

� Keeping p and the size of the network �xed, Ep initially increases with
k; however for \large" values of k Ep stalls, and may even decrease.
This phenomenon, clearly visible in the Mnetgen results, is diÆcult
to explain. For �xed p, increasing k can, in theory, only increase the
fraction of time that is spent in the parallel part of the algorithm,
while the sequential bottleneck and the communication requirements
should remain the same. Indeed, Ep is monotonically nondecreasing
with k. This decrease in eÆciency is most likely an e�ect of the page-
based memory placement, which may cause data logically pertaining
to one processor to be phisically located on another.

� For any �xed instance, Ep obviously decreases as p increase; unfortu-
nately, the decrease is much faster than that predicted by Ep, so that
the gap between Ep and Ep increases with p. However, for �xed p the
gap decreases when the size of the network increase, and a similar|
although less clear|trend seems to exist w.r.t. k. Thus, whatever
mechanism be responsible for this discrepancy between Ep and Ep, its
e�ects seem to lessen as the instances grow larger.

Since, except for PDS problems with p = 6, each processor is assigned
the same number of commodities, there can be no load imbalance between
the processors. Thus, the gap between Ep and Ep can only be explained as
being due to communication time. Indeed, pIPM requires more communi-
cation than most other parallel codes for multicommodity ows. Most of

communication occurs during the computation of
�
D �

Pk
i=1 C

T
i B

�1
i Ci

�
v,

where v is the current estimate of the solution of (8), at each PCG itera-
tion. This requires �rst the broadcast of v from the \master" processor (the
one executing the serial-only part of the code) to all the other processors,
followed by a vector-reduce operation to accumulate all the partial results
CT
i B

�1
i v back to the \master" processor. The amount of communication

is essentially the same as in the decomposition approaches [7, 12, 21], and
substantially lower than that of the other specialized parallel interior-point
codes [16, 9], which need to share the (dense) matrices CT

i B
�1
i Ci in order to

form the Schur complement H . However, in pIPM communication occurs at
every PCG iteration, i.e., much more often than in decomposition codes. The
other specialized parallel interior-point codes have a much smaller number

17

of communication \rounds", one for each interior-point iteration, although
each round is more expensive.

Thus, pIPM may be inherently more vulnerable to slowdowns induced
by communication costs. Indeed, the eÆciency of pIPM seems to be, on
average, somehow worse than that of the approach in [16], even though di-
rect comparison is diÆcult due to the di�erent sets of test problems. The
instances used in [16] are much smaller, and the cost of forming and factor-
izing H grows rapidly with the size of the problem.

Furthermore, the current implementation of pIPM, using the parallel
constructs available in the SGI O2000 C compiler [24], is not aggressively
optimized particularly in the two critical operations, i.e., broadcasts and
vector-reduces. Both are currently obtained by means of read/write op-
erations to shared vectors, which are presumably less eÆcient than the
typical system-provided implementation which exploits information about
the topology of the interconnection network and the available communica-
tion hardware. Also, a part of the communication overhead could be due
to a non-optimal placement of the data structures in the local memory of
the processors, especially at the boundaries of the virtual memory pages.
Thus, we believe that there is still room for (potentially large) reductions of
the gap between the observed and the theoretical speedup/eÆciency of the
code. However, pIPM already attains quite satisfactory eÆciencies in some
instances, most notably the largest PDS problems.

As far as the absolute speedup is concerned, IPM is known not to be
the fastest sequential code for some of the test instances. In [11], a bundle-
based decomposition approach has been shown to outperform IPM on the
Mnetgen instances, while IPM was competitive on the PDS problems. Fur-
thermore, recent developments in the �eld of simplex methods [18] have lead
to impressive performance improvements for these algorithms on multicom-
modity ow problems. Nowadays, even the largest PDS problems can be
solved in less than an hour of CPU with the state-of-the-art simplex code
Cplex 6.5. However, the simplex method is not easily parallelized. Further-
more, other multicommodity problems, like the Tripart and the Gridgen,
are much more diÆcult to solve; �-approximation algorithms can approxi-
matively solve them in a relatively short time [4], but only if the required
accuracy is not high. On these instances, the interior-point algorithm in
Cplex 6.5 is far more eÆcient than the dual simplex, but it is in turn largely
outperformed by IPM, as shown in Table 7. Columns \IPM" and \Cplex
6.5" represents the running time required for the solution of the problem
by IPM and Cplex 6.5, respectively, on a Sun Ultra2 2200/200 workstation
(credited of 7.8 SPECint95 and 14.7 SPECfp95) with 1Gb of main memory.

18

Table 7: Comparing Cplex 6.5 and IPM on the Tripart and Gridgen prob-
lems.

Problem IPM Cplex 6.5

Tripart1 40 74
Tripart2 249 627
Tripart3 1584 2851
Tripart4 4983 33235
Gridgen1 126008 � 2.8e+6

Thus, for the largest and more diÆcult instances of the set, pIPM provides
a competitive approach.

6 Conclusions and Future Research

The parallel code pIPM presented in this work can be an eÆcient tool for
the solution of certain types of large and diÆcult multicommodity problems.
Quite good speedups are achieved in some instances, such as the large PDS
problems. In other cases, a gap between the ideal eÆciency and the observed
one exists. However, we are con�dent that a more eÆcient implementation
of reduce/broadcast operations and a better placement of data structures|
which could mean using MPI or PVM as parallel environments|can make
pIPM even more competitive on a widest range of multicommodity instances.

References

[1] Adler, I., Resende, M.G.C., Veiga, G.: An implementation of Kar-
markar's algorithm for linear programming. Math. Prog. 44 (1989) 297{
335

[2] Andersen, E.D., Andersen, K.D.: A parallel interior-point algorithm for
linear programming on a shared memory machine. CORE Discussion
Paper 9808 (1998), CORE, Louvain-La-Neuve, Belgium.

[3] Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation.
Prentice-Hall, Englewood Cli�s (1995).

19

[4] Bienstock D.: Approximately solving large-scale linear programs. I:
Strengthening lower bounds and accelerating convergence. CORC Re-
port 1999{1 (1999), Columbia University, NY.

[5] Castro, J.: A specialized interior-point algorithm for multicommodity
network ows. SIAM J. on Opt. (to appear).

[6] Castro, J.: Computational experience with a parallel implementation of
an interior-point algorithm for multicommodity network ows. M. Powell
and S. Scholtes (eds.), Proceedings of the 19th IFIP TC7 Conference,
Kluwer. (to appear)

[7] Cappanera, P., Frangioni, A.: Symmetric and asymmetric parallelization
of a cost-decomposition algorithm for multi-commodity ow problems.
Technical Report TR-96-36 (1996), Dip. di Informatica, Universit�a di
Pisa, Italy.

[8] Coleman, T.F., Czyzyk, J., Sun, C., Wagner, M., Wright, S.J.: pPCx:
parallel software for linear programming. Proceedings of the Eight SIAM
Conference on Parallel Processing in Scienti�c Computing, SIAM, March
1997.

[9] De Silva, A., Abramson, D.A.: A parallel interior-point method and its
application to facility location problems. Computational Optimization
and Applications 9(3) (1998) 249{273.

[10] Dongarra, J.J., Meuer, H.W., Strohmaier, E.: TOP500 supercomputer
sites. Technical ReportUT-CS-98-404 (1998), Computer Science Dept.
University of Tennessee.

[11] Frangioni, A., Gallo, G.: A bundle type dual-ascent approach to linear
multicommodity min cost ow problems. INFORMS J. on Comp. 11(4)
(1999) 370{393.

[12] Gondzio, J., Sarkissian, R., Vial, J.-P.: Parallel implementation of a
central decomposition method for solving large scale planning problems.
HEC Technical Report 98.1 (1998).

[13] Jessup, E.R., Yang, D., Zenio, S.A.: Parallel factorization of structured
matrices arising in stochastic programming. SIAM J. on Opt. 4(4) (1994)
833{846.

20

[14] Kamath, A.P., Karmarkar, N.K., Ramakrishnan, K.G.: Computational
and complexity results for an interior-point algorithm on multicommod-
ity ow problems. Technical Report TR-21-93 (1993), Dip. di Informat-
ica, Universit�a di Pisa, Italy.

[15] Kontogiorgis, S., De Leone, R., Meyer, R.R.: Alternating directions
splitting for block angular parallel optimization. JOTA 90(1) (1996) 1{
29.

[16] Lustig, I.J., Li, G.: An implementation of a parallel primal-dual
interior-point method for block-structured linear programs. Computa-
tional Optimization and Applications 1 (1992) 141{161.

[17] Lustig, I.J., Rothberg, E.: Gigaops in linear programming. O.R. Let-
ters 18(4) (1996) 157{165.

[18] McBride, R.D.: Advances in Solving the Multicommodity Flow Prob-
lem. SIAM J. on Opt. 8(4) (1998) 947{955.

[19] Medhi, D.: Parallel bundle-based decomposition for large-scale struc-
tured mathematical programming problems. Annals of O.R. 22 (1990)
101{127.

[20] Ng, E., Peyton, B.W.: Block sparse Cholesky algorithms on advanced
uniprocessor computers. SIAM J. Sci. Comput. 14 (1993) 1034{1056.

[21] Pinar, M.C, Zenios, S.A.: Parallel decomposition of multicommodity
network ows using a linear-quadratic penalty algorithm. ORSA J. on
Comp. 4 (1992) 235{249.

[22] Portugal, L.. Resende, M.G.C.. Veiga, G.. J�udice, J.: A truncated
interior-point method for the solution of minimum cost ow problems
on an undirected multicommodity ow network. Proceedings of First
Portuguese National Telecommunications Conference, Aveiro, Portugal
(1997) 381{384 (in Portuguese).

[23] Rosen, J.B. (ed.): Supercomputers and large-scale optimization: algo-
rithms, software, applications. Annals of O.R. 22 (1990).

[24] Silicon Graphics Inc.: C Language Reference Manual (1998).

[25] Schultz, G, Meyer, R.: An interior-point method for block-angular op-
timization. SIAM J. on Opt. 1 (1991) 583{682.

21

[26] Wright, S.J.: Primal-Dual Interior-Point Methods. SIAM, Philadelphia,
PA (1997).

22

