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In the last two decades, a number of algorithms for the linear single-commodity min-cost flow (MCF) problem
have been proposed, and several efficient codes are available that implement different variants of the algo-

rithms. The practical significance of the algorithms has been tested by comparing the time required by their
implementations for solving “from-scratch” instances of MCF, of different classes, as the size of the problem
(number of nodes and arcs) increases. However, in many applications several closely related instances of MCF
have to be sequentially solved, so that reoptimization techniques can be used to speed up computations, and
the most attractive algorithm is the one that minimizes the total time required to solve all the instances in the
sequence. In this paper we compare the performances of four different efficient implementations of algorithms
for MCF under cost reoptimization in the context of decomposition algorithms for the multicommodity min-cost
flow (MMCF) problem, showing that for some classes of instances the relative performances of the codes doing
“from-scratch” optimization do not accurately predict the relative performances when reoptimization is used.
Because the best solver depends both on the class and on the size of the instance, this work also shows the
usefulness of a standard interface for MCF problem solvers that we have proposed and implemented.
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1. Introduction
The linear single-commodity min-cost flow (MCF)
problem is a very interesting problem sitting “on the
edge” between linear and combinatorial optimization.
Given a directed graph G = �N�A�, with n = �N �
nodes and m= �A� arcs, an m-vector c of arc costs, an
m-vector u of arc upper capacities, and an n-vector b
of node surpluses, the problem is defined as

min
∑

�i� j�∈A
cijxij

∑

j� �i� j�∈A
xij −

∑

j� �j� i�∈A
xji = bi ∀ i ∈N

0≤ xij ≤ uij ∀ �i� j� ∈A�

(1)

In other words, a flow x of minimal cost has to be
found that satisfies both node-balancing constraints
(for each node, the flow leaving the node minus the
flow entering must be equal to the flow produced
by the node) and arc-capacity constraints. This prob-
lem has a huge set of applications, either in itself
(Ahuja et al. 1993) or—more often—as a submodel
of more complex and demanding problems, as in
Bertsekas (1998), Frangioni and Gallo (1999), Löbel

(1999), Gendron et al. (2001) and, again, Ahuja et al.
(1993). This is testified by the enormous amount of
research that has been invested in developing effi-
cient solution algorithms for MCF problems (Ahuja
et al. 1993, Bertsekas 1991) either by specializing LP
algorithms—such as the simplex method (Ahuja et al.
1993, Helgason and Kennington 1995, Löbel 1996)
or the interior point method (Resende and Pardalos
1996)—to the network case, or by developing ad-hoc
approaches such as those of Bertsekas and Eckstein
(1988), Bertsekas and Tseng (1988a), and Goldberg
and Tarjan (1990).
It is therefore extremely interesting, both for prac-

titioners and for algorithm developers, to evaluate
which algorithm is the most efficient in practice to
solve MCF. This is usually done as follows. A large set
of, usually randomly generated, instances of different
classes is collected, and the running time required by
some implementation of different algorithms for solv-
ing these instances is computed. The algorithm whose
implementation is, on average, faster for most classes
of instances as the size of the problem (number of
nodes and arcs) increases is usually regarded as the
most efficient, or at least the most promising.
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However, in many applications several closely
related instances of MCF have to be sequentially
solved, each instance differing from the previous one
only for a possibly small fraction of the data, so that
reoptimization techniques can be used to speed up
computations; we will not discuss all these applica-
tions here, the interested reader is referred to Ahuja
et al. (1993) and the discussion in Amini and Barr
(1993). In this setting, the most attractive algorithm is
the one that minimizes the total time required to solve
all the instances, as opposed to the one that just solves
the first instance “from scratch” more efficiently. Also,
in most of these applications, the size of the instances
to be solved is not extremely large, either because each
MCF problem captures only a part of a very large-
scale problem (Frangioni and Gallo 1999), or because
the MCF computation is used within approaches for
difficult combinatorial problems (Gendron et al. 2001),
which typically are not of very large scale.
Thus, a guideline for choosing the correct MCF

algorithm in this setting would be valuable for practi-
tioners and researchers. Some effort for analyzing this
issue has been done by several researchers, typically
after having implemented some specific MCF solver,
but the results were limited and hardly conclusive, as
clearly discussed in Amini and Barr (1993). A much
more focused effort, using sophisticated statistical
analysis, was performed in Amini and Barr (1993) for
three FORTRAN implementations of MCF algorithms:
a primal simplex algorithm, a dual simplex algorithm,
and an out-of-kilter approach. Although the results
of that paper were quite general and showed some
trends that presumably still hold true, we believe that
part of the analysis has to be updated for the follow-
ing reasons.
• The field of practical implementations of MCF

algorithms has significantly progressed since the pub-
lication of Amini and Barr (1993). For instance, effi-
cient implementations of primal-dual algorithms have
been shown to outperform simplex-based approaches
on several classes of instances.
• The size of the instances tested in Amini and Barr

(1993), with no more than 1,500 nodes and 8,000 arcs,
can no longer be considered relevant; furthermore, the
instances were all generated by the Netgen genera-
tor, which is known to produce “easy” MCF instances
with a “very random” graph structure, and experi-
ence has shown that the relative performance of codes
on these kind of instances may be very different from
that on instances produced by other generators.
• In Amini and Barr (1993), random changes of the

data were performed for the sake of the statistical
analysis, but the data changes in “real” applications
are not necessarily random.
Therefore, we decided to perform a new exper-

imental analysis of the efficiency of reoptimization

procedures for “modern” MCF solvers. Due to the
need to test much larger instances while keeping the
computational times low, we decided to focus on
cost reoptimization, i.e., the case where only (a sub-
set of) the flow costs cij are allowed to change from
one instance to the following one. Cost reoptimiza-
tion is required in many applications; see e.g., Amini
and Barr (1993), Ahuja et al. (1993), Frangioni and
Gallo (1999), and Gendron et al. (2001), and the ref-
erences therein. In other classes of applications, dif-
ferent kinds of changes on the data of the problem
are required, and we plan to investigate some of these
applications in the future.
In this paper, we compare the performance of four

different efficient implementations of algorithms for
MCF under cost reoptimization in the context of a
“real” application, i.e., the solution of multicommod-
ity min-cost flow (MMCF) problems through a decom-
position approach. The results clearly show that, for
some classes of instances, the relative performances
of the codes doing “from-scratch” optimization do
not accurately predict the relative performances when
reoptimization is used, and therefore confirm the
need for a more accurate evaluation of the MCF algo-
rithm to be used if performance is an issue. Inciden-
tally, the experiments also show that the good results
obtained in Frangioni and Gallo (1999) for solving
MMCF by means of a bundle-based decomposition
approach could probably be substantially improved
because the specific solver used there seems to be the
worst suited to cost reoptimization among the four
tested.
The structure of the paper is as follows. In Sec-

tion 2 we briefly describe the relevant details four
MCF solvers tested and of our testing environment.
In Section 3 we present and discuss the computational
results. In Section 4 we draw some conclusions and
outline some possible future research issues.

2. The MCF Solvers
In the following, we give a brief description of the
four MCF algorithms, focusing on the details of the
cost-reoptimization phase; for a deeper description of
the algorithms see Ahuja et al. (1993) and the original
references for each one. We need to introduce some
notation.
For a given m-vector x, the surplus gi�x� of node

i ∈N w.r.t. x is

gi�x�= bi−
∑

j� �i� j�∈A
xij +

∑

j� �j� i�∈A
xji�

i.e., the violation of the flow-conservation constraints
in (1). The surplus of a subset S of nodes w.r.t. x is
the sum of the surpluses of the nodes in S, and the
total surplus of G (w.r.t. x) is the sum of the positive
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surpluses of the nodes in G; x satisfies the flow-
conservation constraints if and only if the correspond-
ing total surplus of G is zero. Any vector x such
that 0 ≤ xij ≤ uij for each �i� j� ∈ A is a pseudoflow;
a pseudoflow with zero total surplus is a flow. The
dual solution of the MCF problem is denoted by �,
the vector of node potentials. Given a scalar � ≥ 0, a
primal-dual pair �x��� satisfies the �-complementary
slackness conditions (�-CS for short) if x is a pseudo-
flow and the following hold.

xij < uij ⇒ −� ≤ cij −�i+�j ∀ �i� j� ∈A�
0< xij ⇒ cij −�i+�j ≤ � ∀ �i� j� ∈A�

The number c�ij = cij −�i+�j is the reduced cost of the
arc �i� j�. It is well-known that 0-CS are necessary and
sufficient conditions for optimality of a primal-dual
pair �x��� where x is feasible; analogously, a primal-
dual pair satisfying �-CS is said �-optimal.

2.1. The RelaxIV Solver
The RelaxIV solver is based on the Relax version
4 FORTRAN code (Bertsekas and Tseng 1988b, 1994).
RelaxIV implements a primal-dual algorithm, which
can be succinctly described as follows. At each itera-
tion, a primal-dual pair �x���, where x is a pseudo-
flow, which satisfies 0-CS is available; if x is a flow
then an optimal solution has been found and the algo-
rithm stops. Otherwise, the algorithm tries to convert
x in a feasible flow that still satisfies 0-CS with � by
attempting to construct augmenting paths—all made
of arcs with zero reduced cost—from one node with
positive surplus to one node with negative surplus.
This corresponds to running a max-flow algorithm
(of the augmenting path type) on the subgraph of G
comprising only the arcs with zero reduced costs. If
the path is found, the total surplus of the solution
is decreased. Otherwise a set of nodes with positive
or negative surplus is found such that all arcs in the
corresponding cutset are either saturated or empty.
Hence, the potentials of all the nodes in the set can
be increased or decreased without violating 0-CS with
the current pseudoflow x, creating new arcs with zero
reduced costs (or finding that the problem has no fea-
sible solution). RelaxIV implements checks for early
termination of the primal phase (the max-flow com-
putation) to avoid performing flow operations when
it is clear that no feasible flow exists that satisfies 0-CS
with the current vector of potentials �.
Cost reoptimization in this code is very easy: Given

the new cost vector c̄ and the optimal primal-dual
pair �x���, x can be turned into a pseudoflow x′ satis-
fying 0-CS with � by just saturating (xij = uij ) all arcs
with negative reduced costs and emptying (xij = 0) all
arcs with positive reduced costs. Then, the algorithm
can be restarted with �x′���.

2.2. The CS2 Solver
The CS2 solver is based on the cs2 version 3.7 C
code, developed by Andrew Goldberg and Boris
Cherkassky. CS2 is based on a cost-scaling push-relabel
method (Goldberg and Tarjan 1990, Goldberg 1997),
which is a primal-dual approach similar to that of
RelaxIV, except that a cost-scaling phase allows us to
operate on arcs of nonzero reduced cost, and a push-
relabel algorithm is used for the max-flow computa-
tion instead of an augmenting path one.
The algorithm starts with a “scaling” variable � > 0,

a vector of potentials (e.g., � = 0) and any pseudo-
flow. The main loop of the algorithm begins by
converting x into a �-optimal pseudoflow x′; this is
simply done by saturating or emptying every arc that
does not satisfy �-CS. Then, x′ is converted into a
�-optimal flow by applying a push-relabel algorithm
for maximum flow, i.e., a sequence of push and rela-
bel operations, each of which preserves �-optimality
that moves the flow from nodes with positive surplus
to nodes with negative surplus until the total surplus
is zero. A push operation is applied to a residual arc
�i� j� (such that xij < uij ) with negative reduced cost
whose tail node i has positive surplus. It consists of
pushing � = min�gi�x��uij − xij � units of flow from
i to j , thereby decreasing gi�x� by � and increasing
gj�x� and xij by � (“reverse-push” operations are also
performed on nonempty arcs with positive reduced
cost to decrease their flow; in the code, a “sister-arc”
implementation of the graph is used that makes the
two operations indistinguishable). A relabel operation
is applied to a node i with a positive surplus that has
no exiting residual arc with negative reduced cost.
It consists of changing its potential �i to the largest
possible degree allowed by the � − optimality con-
straints, thereby making some other arc admissible for
the push operation (or detecting that the problem has
no feasible solution).
When a �-optimal primal-dual pair has been

obtained, the algorithm is stopped if � is small
enough; otherwise � is decreased (a new scaling phase
is started) and the process is repeated.
Cost reoptimization in this code is also very easy.

Given the new cost vector c̄, the algorithm can simply
be restarted with the previous primal-dual optimal
pair, provided that � is chosen large enough:

� �=−min{c̄�ij � xij < uij� c̄�ij < 0� �i� j� ∈A
}
�

Due to the “sister-arc” implementation of CS2, this
also takes into account nonempty arcs with positive
reduced cost.

2.3. The MCFZIB Solver
The MCFZIB solver is based on the mcf version 1.1
C code, developed by Löbel (1996). MCFZIB is a net-
work simplex algorithm, i.e., a specialized version of
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the simplex algorithm that performs the fundamental
simplex operations (computation of the primal and
dual basic solutions) directly on the network itself.
Although MCFZIB implements both the primal and
dual network simplex algorithm, we found the primal
network simplex to be consistently more efficient than
the dual; also, it is generally accepted (Amini and Barr
1993) that the primal simplex is more suited to cost
reoptimization than is the dual simplex because it can
more easily exploit the previous optimal base.
At each iteration of the primal simplex algorithm,

a primal feasible base �B�L�U� is available; that is,
the arc set A is partitioned into the set B, correspond-
ing to the basic variables, that describe a spanning
tree for the graph, and the sets L and U , correspond-
ing to the nonbasic variables whose values are set to
the lower and upper bound, respectively. The corre-
sponding basic primal (feasible) solution x and dual
solution � are computed; if the 0-CS are not satisfied,
then an arc belonging to either L or U is chosen that
violates 0-CS and it is put into B (pivoting phase).
This amounts at sending flow along an augmenting
cycle with negative reduced cost. The strategy used to
select the entering arc has a dramatic influence on the
solver efficiency, especially on large networks. In our
experiment, the multiple partial pricing strategy, where
pricing is preferably restricted to a set of candidate
arcs that is revised only if necessary, has always been
the most efficient one.
Cost reoptimization for a network simplex code

depends on whether the primal or dual simplex is to
be used. For the primal case, given the previous opti-
mal base �B�L�U� and the new cost vector c̄, the dual
optimal solution � has to be recomputed with a top-
down visit of the tree B; then, all arcs �i� j� � B have
to be scanned to recompute the reduced costs (mean-
while, the nontrivial data structures for the pricing
procedure are updated). Reoptimization for the dual
simplex case is more complex because the previous
optimal base may no longer be dual-feasible with the
new cost vector c̄. This can be faced by inserting at
most n− 1 artificial arcs with very large cost in the
network, exactly as it is done in from-scratch opti-
mization when a (primal or dual) feasible initial base
is not available.

2.4. The MCFCplex Solver
CPLEX (CPLEX Inc. 2002) is a commercial pack-
age specifically designed to facilitate the develop-
ment of applications to solve, modify, and inter-
pret the results of linear, mixed integer, and convex
quadratic programming programs. Among the other
algorithms, the CPLEX callable libraries offer a pri-
mal and dual network simplex implementation for
MCF, called NETOPT; the MCFCplex solver is nothing
but a “wrapper class” that implements the MCFClass

interface using calls to the CPLEX callable libraries
API. The CPLEX NETOPT code appears to be very
efficient, and seems to offer full reoptimization capa-
bilities; as with MCFZIB, the primal network sim-
plex with the default “multiple-partial-pricing-with-
sorting” rule appears to be the most efficient option
available.

2.5. The MCFClass Interface
All the above four solvers have been implemented
as derived classes of the MCFClass class. MCFClass is
an abstract (pure virtual) C++ base class that defines
the interface between a generic MCF problem solver
and the application programs. The interface tackles
basically all needs that an application might have,
and provides an abstract layer that makes applica-
tions independent from the details of the particular
solver that is used. The public methods of MCFClass,
properly redefined in the derived classes, are used
for loading the instance, reading the parameters,
solving the problems, collecting the results, chang-
ing cost/deficits/upper-bound values, and modifying
the network structure by adding or deleting arcs or
nodes. A set of virtualized data types is used for
the largest flexibility in choosing the type (integer
or floating-point) and the precision of the numbers
(costs, flows, indexes, etc.), making it possible to tailor
the code to the specific machine and application. A set
of compile-time switches is also provided to allow
control on some important features without having to
bother with their actual implementation.
We ported the four solvers under the MCFClass

interface to facilitate our own research projects, to
provide practitioners with a standard and complete
interface for developing applications that require
the solution of MCF problems without having to
bother with the details of the different solvers. Many
researchers from all over the world have obtained
copies of at least one of the solvers, freely available
for research purposes. While the porting of RelaxIV
required an almost full rewriting of the original
FORTRAN code, CS2 and MCFZIB required significantly
less effort. However, because the MCFClass interface
is general with respect to data types, stopping con-
ditions, and types of reoptimizations allowed, a non-
trivial porting and validating effort was needed. For
instance, for all codes, full reoptimization capabilities
were implemented for changes in all the data of the
problem (costs, capacities, deficits, and graph topol-
ogy), which were not present in the original codes.
In all our tests, the C and C++ versions have behaved

almost identically, with only a few percent maximum
performance difference; the C++ implementations
were even slightly faster than the C implementations
in many cases, despite sometimes requiring some
extra effort to conform to the MCFClass interface. For
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CS2, for instance, a data structure is kept updated
that allows us to recover the optimal flow solution in
the same order as the original arc set, which is not
done in the original cs2 C code. Also, for all codes,
both integer and floating-point data are indepen-
dently supported for both flows (capacities, deficits)
and potentials (costs), which was not the case for all
the original solvers.
The codes are currently available at http://www.

di.unipi.it/di/groups/optimize/Software/MCF.html.
together with a fifth solver, SPTree, that imple-
ments the MCFClass interface for the special case of
MCF problems that can be solved using only one
shortest-path tree computation.

3. Computational Experiments
To compare the performances of the four solvers
under cost reoptimization in a realistic application we
used the bundle-based cost-decomposition algorithm
of Frangioni and Gallo (1999) to solve four different
families of large-scale MMCF problems. The (linear)
multicommodity min-cost flow problem is the follow-
ing linear program

min
∑

h∈K

∑

�i� j�∈A
chijx

h
ij

∑

j� �i� j�∈A
xhij −

∑

j� �j� i�∈A
xhji = bhi ∀ i ∈N�∀h ∈K

0≤ xhij ≤ uhij ∀ �i� j� ∈A�∀h ∈K
∑

h∈K
xhij ≤ uij ∀ �i� j� ∈A�

(2)

That is, on the same directed network G= �N�A�,
a set K of different “kinds” of flow (commodities) co-
exist. The commodities don’t “mix,” but they compete
for the shared resource of arc mutual capacities uij . It is
beyond the scope of this paper to provide a descrip-
tion of the algorithm, for which we direct the inter-
ested reader to the original paper. Suffice it here to say
that, like many other cost-decomposition approaches,
the algorithm in Frangioni and Gallo (1999) relaxes
the mutual capacity constraints and solves, at each itera-
tion, k= �K� independent MCF problems, one for each
commodity of the original MMCF problem. The opti-
mal solutions of the MCF problems are then used to
modify the cost vectors of the subsequent iteration.
The optimization process can require several hun-
dreds of iterations, depending on the problem size
and difficulty, and, qualitatively speaking, the costs
in the final iterations “change less” than in the ini-
tial iterations, so that reoptimization has a different
impact in different stages of the algorithm. It may be
worth remarking that, in our implementation, k sep-
arate MCF solver objects are built, one for each com-
modity of the MMCF instance. Because each solver

has its own independent internal status variables, it is
possible (and, indeed, very easy) to exploit the opti-
mal solution of the previous call for any commodity
h when solving the MCF again corresponding to that
commodity, even though other k − 1 flow problems
have been solved in between. This would have not
been possible if the original C or FORTRAN codes had
been used because they all used global variables. Note
that it could even be possible to use different MCF
solvers for different commodities in the same MMCF
instance; this is in fact allowed in our code, although
up to now only in a limited way (see Frangioni and
Gallo 1999 for more details).
In the rest of this section we will describe the

instances used, discuss some important details of the
test setup, and finally report and discuss the results
of our experiments.

3.1. The Test Instances
We generated four classes of test instances. The first
three classes were generated using the dimacs2pprn
“meta” generator, first introduced in Castro and
Nabona (1996) and afterwards used in other papers
such as Frangioni and Gallo (1999). dimacs2pprn is
dubbed a “meta” generator because the basic char-
acteristics of the MMCF instances it produces (topol-
ogy of the network, distribution of costs/capacities/
deficits) are not hard-wired in the generator code, but
rather are taken as input. More specifically, the gen-
erator inputs the description of a single-commodity
MCF in DIMACS standard format and three param-
eters k, r , and f . The generator produces an MMCF
instance with k commodities on the same topological
graph. The deficits and capacities of each individual
commodity are obtained by scaling those of the orig-
inal MCF by a pseudo-random number drawn uni-
formly in the interval &1� r', while each arc costs chij for
commodity h is independently and uniformly drawn
at random in &0� cij '. Finally, the mutual capacity for
each arc is initially fixed to fuij , and subsequently
adjusted to ensure that a feasible multicommodity
flow exists. Note that, due to the scaling, all data of
the MMCF instance are in general not integer even
if the data of the original MCF instance are. The
dimacs2pprn generator allows us to produce instances
with integral capacities/surpluses or costs; however,
the costs would rapidly become fractional anyway
as the cost-decomposition approach proceeds. It may
be worth remarking again that the original cs2 and
Relax solvers work only with integral data, while
our versions have worked perfectly with nonintegral
data. Of course, working with nonintegral data types
requires setting some tolerances on both optimality
and feasibility conditions; we have set them both to
very high values (at least 1e-8 relative) to match the
level of accuracy natively provided by the MCFCplex
solver.
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We used three different, well-known random gen-
erators for producing the initial MCF instances: GOTO,
NETGEN and GRIDGEN. For each generator “GEN,” we
produced one instance “GEN_q_p” for some values
of q ∈ )8�9�10�12�14* and p ∈ )8�16�32�64*, such that
the instance has 2q nodes and density p, i.e., (roughly)
p2q arcs. For each generator we selected only a subset
of the possible p and q values, both because of the
structure of the generator and to keep the overall run-
ning time at an acceptable level. Note that the largest
MMCF instances that we tested correspond to linear
programs with over 2 million variables and 200,000
constraints.
For each of the original MCF instances we gen-

erated one MMCF instance with k = 10, r = 1, and
f = 4. Because each MMCF instance contains 10 dif-
ferent MCF instances that are independently solved,
dividing the total running time required by all the
MCF computations for one MMCF instance by 10, we
obtain the average computational cost among 10 dif-
ferent MCF instances. Finally, we also used a set of
well-known MMCF instances, the PDS (patient dis-
tribution system) problems; these instances originate
by a transportation problem of patients from a place
of military conflict. The PDS instances all have k= 11
(and therefore each one provides average results for
11 different MCFs), and differ for one parameter t
indicating the number of days covered by the model:
each instance PDSt has roughly 126t nodes and a
density between three and four (growing slowly as t
grows). All the above generators, both MCF and
MMCF, and instances are available at http://www.di.
unipi.it/di/groups/optimize/Data/MMCF.html.

3.2. Test Setup
We tested our instances on a PC with an Intel Pen-
tium 4 CPU at 1.70 GHz, running RedHat Linux ver-
sion 7.2. The code was compiled using the GNU g++
compiler version 2.96, using aggressive optimization
option “−O3.” We used CPLEX version 7.5. As dis-
cussed in Section 2.3 and 2.4, all the results for both
simplex-based codes were obtained using the primal
simplex algorithm with a multiple partial pricing rule.
While setting up the tests we were confronted with

two problems: how to test all the solvers on exactly
the same instances, and how to measure the running
time exactly.
The first problem arises because, in the dual-ascent

approach of Frangioni and Gallo (1999), the flow solu-
tions of each MCF at a given iteration are part of
the data of an optimization problem whose solution
gives the flow costs at the subsequent iteration. Dif-
ferent MCF solvers may provide different (�-)optimal
solutions of the same instance, and this is very likely
to happen during the course of the dual-ascent algo-
rithm. Hence, the sequences of the flow costs gener-
ated during two runs of the algorithm on the same

MMCF instance, but with two different MCF solvers
are very likely to be different. Furthermore, dual-
ascent methods are known to be very “unstable” in
that the trajectory followed by the methods can vary
significantly with only tiny variations in the results;
hence, the sequences of arc costs corresponding to two
different MCF solvers cannot be expected to be even
“close.” Thus, ensuring that each solver was required
to solve exactly the same sequence of the MCF prob-
lems was not straightforward.
The second problem arises because the MCF solvers

are used within a complex application, which uses
several different methods of the MCFClass interface to
load and modify the MCF problems, solve them, and
collect the results. Some of these methods are likely
to terminate too quickly to be reliably timed with
the standard timing procedures, especially on small
MCF instances, while possibly having a nonnegligible
impact on the overall running time. Thus, it was not
straightforward to ensure that the total running time
spent by each MCF solver was correctly measured.
Fortunately, the object-oriented design of MCFClass

provided us with an easy and effective way to solve
both problems at once, in the form of a tester class.
That is, we could easily implement an MCFTest class,
derived from MCFClass that just holds two pointers to
two different MCF solvers: the master solver and the
slave solver. For each call to any method of MCFClass,
the MCFTest class calls the corresponding method of
both solvers, but for methods that output results, the
output of the slave solver is discarded (usually, a tester
class would perform cross checks to ensure that the
output of the two solvers is correct, but this was not
our aim here).
Our experiments were therefore performed as fol-

lows. For each class of instances we chose a solver
among the four available ones and then solved each
instance in the class five times. The first time we just
used that particular solver as the MCF solver. For the
other four runs we used as the MCF solver the four
possible MCFTest objects obtained by chosing as “mas-
ter solver” the selected one, and as “slave solver” one
of the four MCF solvers, comprising the one that was
being used as “master.” Finally, for each instance we
subtracted the recorded running time for the run with
just one solver from all the recorded running times for
all the other runs corresponding to the same instance;
note that we never counted the time for creating the
object and loading the instance. In this way, we could
be sure that the sequence of MCF problems solved by
each different MCF solver was exactly the same, and
we obtained a very precise estimate of the time that
was spent in the “slave solver” alone (the overhead
caused by the MCFTest layer being negligible in this
case).
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Table 1 Results for PDS Instances

MCFCplex MCFZIB RelaxIV CS2

Network T1 Ttot RI T1 Ttot RI T1 Ttot RI T1 Ttot RI

pds10 0.12 24.93 0.41 0.34 23.67 0.14 0.07 60.01 1.70 0.66 116.16 0.35
pds11 0.16 27.09 0.34 0.27 33.85 0.25 0.14 104.93 1.50 0.79 190.01 0.48
pds12 0.19 28.86 0.30 0.54 50.63 0.20 0.11 60.28 1.10 0.81 220.89 0.54
pds13 0.24 45.03 0.37 0.43 53.54 0.25 0.14 167.65 2.40 1.09 273.58 0.50
pds14 0.24 38.59 0.27 0.79 69.57 0.17 0.18 180.86 2.00 1.18 297.24 0.50
pds15 0.37 49.98 0.27 0.61 56.65 0.18 0.21 251.37 2.40 1.43 342.24 0.47
pds18 0.57 81.64 0.28 1.41 114.70 0.16 0.32 491.95 3.07 1.84 786.63 0.85
pds30 1.93 214.18 0.22 3.40 323.61 0.18 1.92 2,082.43 2.10 4.28 2,060.86 0.96
pds40 5.82 1,973.25 0.67 7.18 2,449.66 0.68 5.75 4,063.55 1.40 9.34 6,690.75 1.43

3.3. Computational Results
Preliminary results clearly showed that reoptimiza-
tion usually gave, for the same solver, better results
than “from-scratch” optimization. Thus, we avoided
testing the solvers without reoptimization. Also, we
found that the time required to solve the first MCF
was often close to the average time required to solve
any other MCF—of the same commodity—in the
sequence if cost reoptimization was not used, i.e.,
that the costs generated at all steps of the dual-ascent
approach did not substantially change the “difficulty”
of solving the MCF with respect to the initial ones.
Therefore, for each class of instances, we decided to
report the following three data:
• T1, the (average) time required to solve the first

MCF;
• Ttot, the (average) time required to solve all the

MCFs;
• The reoptimization index

RI = Ttot− T1
T1(number of iterations− 1)

�

i.e., the ratio between the average running time for
all iterations after the first one (where reoptimization
is used), and the running time for the first iteration
(where “from-scratch” optimization is used).
The reoptimization index can be taken as an indica-

tion of how efficiently each MCF solver reoptimizes,
i.e., of the relative importance of using reoptimization
(as opposed to not using it) for that code. Of course,
the most interesting datum from a practitioner’s view-
point is Ttot, in that it directly measures the impact of
using each solver in the application.
Table 1 reports results obtained for PDS instances.

For these instances, RelaxIV is the fastest code “from-
scratch,” closely followed by MCFCplex. However, the
latter reoptimizes much more efficiently, as testi-
fied by its much smaller Ttot times. MCFZIB obtains
even better RI values than does MCFCplex, but it is
considerably slower “from scratch,” so that it ends
up being outperformed, albeit not too substantially,
by MCFCplex. The same happens for CS2 and RelaxIV.

While the former obtains better RI values than the
latter, it is slower in “from-scratch” optimization and
it ends up being outperformed. Remarkably, the RI
values obtained for pds40 are much worse than those
obtained on all the other instances for MCFCplex,
MCFZIB and CS2, but not for RelaxIV. Also, note that
RelaxIV often obtains RI values (significantly) larger
than one. This probably depends on the special struc-
ture of the underlying network in PDS problems. This
is a time-space network (with 10–40 time periods) that
contains very “long” paths that are known to affect
the performances of RelaxIV adversely. These paths
contain “return” arcs that are initially “inactive” (do
not carry flow), but may become “active” later in the
optimization process. Thus, the MCF problems solved
at the first iteration of the cost-decomposition method
are much easier for RelaxIV than some of those solved
at later stages, and the difference is large enough to
offset any advantage due to reoptimization.
Table 2 reports results obtained for GOTO instances.

The two simplex-based codes reoptimize very effi-
ciently for these instances, obtaining RI values always
smaller than 0�08 and as small as 0�01 in one case.
Once again, MCFCplex is faster in “from-scratch” opti-
mization, and, as the RI values are comparable, is
also faster when the total running time is considered.
CS2 is often faster than MCFCplex in “from-scratch”
optimization, up to almost an order of magnitude
in the largest instances, but it reoptimizes far less
efficiently and the total running time is consistently
larger than that of MCFCplex. Finally, the results
obtained by RelaxIV appear to be very erratic—the
largest instances could not even be solved in reason-
able time—and no clear conclusion can be reached.
Table 3 reports results obtained for NETGEN

instances. The results are similar to those of the GOTO
instances, with the simplex-based codes being faster
when the total running time is considered due to
more efficient reoptimization, although being clearly
outperformed by the primal-dual codes in “from-
scratch” optimization when the sizes of the MCF
instances grow. For these instances MCFCplex is most
often faster than MCFZIB on small instances, while the
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Table 2 Results Using GOTO Instances

MCFCplex MCFZIB RelaxIV CS2

Network T1 Ttot RI T1 Ttot RI T1 Ttot RI T1 Ttot RI

GOTO8_8 0.33 5.69 0.03 0.52 12.04 0.04 42.42 54.93 0.02 0.45 122.86 0.54
GOTO8_16 0.63 13.22 0.04 0.85 28.26 0.06 28.21 211.60 0.01 0.75 122.86 0.33
GOTO8_32 1.40 22.11 0.03 1.35 42.85 0.04 62.87 1,576.20 0.05 0.45 122.86 0.55
GOTO9_16 2.45 61.97 0.04 3.73 113.69 0.05 263.50 2,007.53 0.01 2.41 713.94 0.59
GOTO9_32 5.44 117.61 0.04 9.59 217.24 0.04 2,002.56 2,546.20 0.0005 9.50 686.61 0.14
GOTO9_64 10.10 241.11 0.04 14.22 438.90 0.05 2,078.13 3,883.01 0.001 6.08 863.70 0.28
GOTO10_8 5.13 67.33 0.02 8.22 122.00 0.02 58.75 788.37 0.02 3.60 734.35 0.40
GOTO10_16 15.48 124.01 0.01 18.64 1,193.31 0.13 656.40 2,249.69 0.004 11.35 209.66 0.04
GOTO10_32 17.81 696.38 0.07 22.50 900.31 0.08 1,700.00 4,923.19 0.002 19.29 1,994.66 0.21
GOTO12_8 99.54 3,462.90 0.06 142.33 4,544.30 0.06 — — — 28.81 8,814.16 0.60
GOTO12_16 321.50 3,305.70 0.02 842.50 4,995.90 0.01 — — — 45.79 14,276.00 0.60

opposite is true for large instances due to much better
“from-scratch” optimization times. RelaxIV is usually
slightly faster than CS2, but not than the simplex-
based codes, when the total running time is con-
sidered, although CS2 is the fastest code among the
four in “from-scratch” optimization for the largest
instances.
Finally, Table 4 reports results obtained for GRIDGEN

instances. For these instances MCFZIB is always faster
than MCFCplex in “from-scratch” optimization, but the
latter reoptimizes more efficiently, and it is always
faster when the total running time is considered.
RelaxIV is most often worse, sometimes considerably,
than the simplex-based codes, and so is CS2, both
“from scratch” and in reoptimization, for the smaller
instances. However, for the largest instances CS2 is
much faster “from-scratch” than all the other codes,
and despite having somewhat large RI values, it man-
ages to keep the lead even when the total running
time is considered, solving the largest instances about
a factor of two faster than the fastest among the
other codes. It is particularly interesting to contrast
MCFCplex and CS2 on the GRID12_64 instances. While
the former reoptimizes much more efficiently (but still
not nearly as efficiently as, for instance, inthe GOTO

Table 3 Results Using NETGEN Instances

MCFCplex MCFZIB RelaxIV CS2

Network T1 Ttot RI T1 Ttot RI T1 Ttot RI T1 Ttot RI

NET8_8 0.06 4.14 0�13 0.05 4.78 0.19 0.08 13.46 0.33 0.12 33.29 0.55
NET8_16 0.11 7.58 0�13 0.13 12.11 0.18 0.17 28.76 0.33 0.26 43.41 0.33
NET8_32 0.28 22.66 0�16 0.38 34.05 0.17 0.37 98.36 0.53 0.47 275.88 1.17
NET8_64 0.24 20.57 0�16 0.35 49.71 0.28 0.50 126.42 0.50 0.79 251.09 0.63
NET10_8 0.49 4.12 0�01 0.46 4.79 0.02 0.64 13.47 0.04 0.93 68.87 0.14
NET10_16 2.09 210.95 0�2 1.86 308.4 0.33 2.05 656.96 0.64 2.03 945.84 0.93
NET10_32 1.70 80.10 0�09 1.76 155.37 0.17 4.46 421.43 0.19 2.88 656.69 0.45
NET10_64 7.33 418.53 0�11 10.15 484.22 0.16 11.64 3,133.25 0.53 6.36 3,297.25 1.03
NET12_8 14.30 308.71 0�04 7.78 402.76 0.10 11.30 1,158.64 0.20 6.89 2,260.97 0.65
NET12_16 22.16 560.29 0�24 18.59 622.61 0.32 21.15 1,308.41 0.60 16.80 1,514.81 0.89
NET14_8 627.23 6,217.36 0�09 231.08 5,737.99 0.24 232.90 8,472.30 0.35 167.28 8,435.76 0.49
NET14_16 897.22 10,128.60 0�10 359.77 9,547.49 0.26 307.85 14,223.40 0.45 243.15 15,080.50 0.61

instances), the latter is more than five times faster
in “from scratch” optimization, thus overbalancing
the factor of roughly three between the respective
RI values.

4. Conclusions
We have experimented to compare the relative effi-
ciency of four MCF codes under cost reoptimization
in the context of a “realistic” application, the solution
of MMCF problems with a cost-decomposition algo-
rithm. We were able to test different classes of MCF
instances of varying size, showing how the running
time for “from scratch” optimization of an instance
may not always be a good guide for selecting the algo-
rithm to be used in a cost-reoptimization setting. As a
general guideline, our findings confirm those of Amini
and Barr (1993), i.e., codes implementing the primal
simplex algorithm tend to be more efficient at reopti-
mizing after a change of costs than those based on a
primal-dual approach, and this often overbalances any
advantage in “from-scratch” optimization that primal-
dual codes may have, especially if the size of the
instance is not very large. However, for some large
instances, primal-dual codes may become competitive
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Table 4 Results Using GRIDGEN Instances

MCFCplex MCFZIB RelaxIV CS2

Network T1 Ttot RI T1 Ttot RI T1 Ttot RI T1 Ttot RI

GRID8_8 0.07 5.37 0.15 0.06 11.45 0.38 0.08 16.31 0.40 0.11 45.38 0.82
GRID8_16 0.11 8.23 0.15 0.11 11.45 0.21 0.15 31.20 0.41 0.26 111.27 0.63
GRID8_32 0.38 25.76 0.13 0.38 36.16 0.19 0.54 11.97 0.43 0.57 224.49 0.78
GRID8_64 1.35 58.19 0.10 1.35 142.16 0.20 1.87 517.72 0.55 1.20 554.46 0.92
GRID10_8 0.55 21.06 0.07 0.38 26.90 0.14 0.65 104.54 0.32 0.97 223.26 0.46
GRID10_16 2.77 196.36 0.14 2.36 266.20 0.22 2.79 790.69 0.56 2.50 1,004.79 0.80
GRID10_32 3.79 134.80 0.07 2.96 303.16 0.20 7.94 1,743.85 0.44 3.87 1,349.83 0.70
GRID10_64 10.57 538.24 0.10 8.45 991.11 0.23 7.50 3,660.42 0.97 18.96 5,292.58 0.55
GRID12_8 16.29 5,236.34 0.05 9.58 346.50 0.35 18.22 4,771.50 0.52 14.50 6,477.5 0.90
GRID12_16 70.91 1,587.48 0.20 32.29 1,672.21 0.50 43.54 2,678.49 0.60 20.48 2,375.70 1.15
GRID12_32 111.22 6,254.10 0.55 55.79 8,211.50 1.40 96.01 6,689.50 0.68 33.90 3,570.50 1.04
GRID12_64 275.90 8,043.00 0.28 119.88 11,683.00 0.96 144.36 13,850.00 0.94 57.42 4,943.00 0.85

even when cost reoptimization is taken into account.
It should also be noted that there may be scope for
improving the rules for reoptimizing in RelaxIV and
CS2, which may result in better reoptimization per-
formance especially if only relatively few arc costs
change, by most arc costs change of only a relatively
small amount. In our opinion, one interesting finding
of the experiments is that, although some general indi-
cations can be drawn, no algorithm is always the most
efficient. The best choice for the MCF solver depends
on both the class and on the size of the instance.
Hence, our experience shows that being able to test
several different MCF solvers easily and efficiently
within a complex optimization code for the solution
of a network-structured problem may be very impor-
tant if an overall efficient approach has to be obtained.
This was precisely the rationale under our proposal of
the MCFClass project for a standard interface for MCF
problem solvers. As previously discussed, having the
four MCF solvers ported under the MCFClass inter-
face was instrumental for being able to perform the
comparisons quickly and fairly. Therefore, we believe
that more effort should be undertaken to provide
standard optimization components that can easily be
exchanged and used for construction of sophisticated
approaches. This is also confirmed by the existence
of the similar (but with a much broader range) OSI
project for a standard interface for mixed-integer lin-
ear and quadratic problems solvers, which is gain-
ing momentum in the community. The OSI project is
available at http://oss.software.ibm.com/ developer-
works/opensource/coin. Although with a much more
limited scope, we hope that the MCFClass project can
provide a valuable tool for researchers and practition-
ers alike.
We plan to run similar comparisons in other kinds

of reoptimization settings, e.g., capacity reoptimiza-
tion or deficit reoptimization. With the better under-
standing of the reoptimization phenomenon thus
acquired, it could become possible to design and

implement MCF algorithms particularly well suited
for one of the possible different types of reoptimiza-
tion. Finally, we plan to bring forward the MCFClass
project, developing or porting other MCF codes, and
to design standard interfaces for other common net-
work problems, like the shortest-path problem. We
believe that a growing set of standard optimization
components that can be easily exchanged and used
for constructing sophisticated approaches for difficult
optimization problems would be useful for researchers
and practitioners.
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