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Abstract

This paper presents a comprehensive survey of models and algorithms for multicommod-
ity capacitated network design problems, which are mostly encountered in telecommu-
nications and transportation network planning. These problems are important not only
due to the major relevance of their applications, but also because they pose considerable
modeling and algorithmic challenges. We present a general arc-based model, describe
useful alternative formulations and survey the literature on simplex-based cutting plane
and Lagrangean relaxation approaches. We then focus on our own contributions that
develop and compare several relaxation methods for a particular case of this model,
the �xed-charge problem. These methods are based on Lagrangean relaxation and non-
di�erentiable optimization techniques, namely, the subgradient and bundle approaches.
Our experimental results, while very encouraging, indicate that solving e�ciently these
di�cult problems requires a judicious combination of cutting planes, Lagrangean relax-
ation methods and sophisticated heuristics. In addition, due to their inherent decompo-
sition properties, these techniques can be adapted to parallel computing environments,
which is highly desirable in order to solve realistically sized instances.

Key words : Multicommodity capacitated network design, cutting planes, Lagrangean
relaxation, non-di�erentiable optimization, parallel computing.

R�esum�e

Cet article pr�esente une revue de la litt�erature sur les mod�eles et les m�ethodes de
r�esolution de probl�emes de conception de r�eseaux avec capacit�es. Ces probl�emes sont
importants non seulement en raison de leurs applications en plani�cation de r�eseaux
de transport et de t�el�ecommunications, mais �egalement parce qu'ils posent des d�e�s
consid�erables. Nous pr�esentons un mod�ele g�en�eral, ainsi que d'autres formulations alter-
natives int�eressantes, et nous passons en revue les travaux portant sur les m�ethodes de
coupes et de relaxation lagrangienne. Nous d�ecrivons �egalement nos propres contribu-
tions, dans lesquelles nous d�eveloppons et comparons plusieurs m�ethodes de relaxation
pour un cas particulier, le probl�eme avec coûts �xes. Ces m�ethodes sont bas�ees sur la
relaxation lagrangienne et l'optimisation non-di��erentiable, en particulier les algorithmes
de sous-gradients et de faisceaux. Nos r�esultats exp�erimentaux, bien qu'encourageants,
sugg�erent que les m�ethodes les plus prometteuses consistent �a combiner les m�ethodes de
coupes et de relaxation lagrangienne avec des heuristiques sophistiqu�ees, et d'adapter ces
m�ethodes �a des environnements parall�eles, a�n de r�esoudre e�cacement des exemplaires
de grande taille.

Mots-cl�es : Conception de r�eseaux avec capacit�es, m�ethodes de coupes, relaxation
lagrangienne, optimisation non-di��erentiable, calcul parall�ele.
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1 Introduction

Network design models have wide applications in telecommunications and transportation

planning; See, for exemple, the survey articles by Magnanti and Wong [55], Minoux [56],

chapter 16 of the book by Ahuja, Magnanti and Orlin [1], section 13 of Ahuja, Magnanti,

Orlin and Reddy [2]. In particular, Gavish [30] and Balakrishnan, Magnanti, Shulman

and Wong [8] present reviews of important applications in telecommunications. In many

of these applications, it is required to send ows (which may be fractional) to satisfy

demands given arcs with existing capacities, or to install, in discrete amounts, additional

facilities with �xed capacities. In doing so, one pays a price not only for routing ows, but

also for using an arc or installing additional facilities. The objective is then to determine

the optimal amounts of ows to be routed and the facilities to be installed.

These capacitated network design problems are notoriously di�cult, unlike their unca-

pacitated counterparts for which very e�cient specialized algorithms have been devised

(see in particular the dual-ascent method of Balakrishnan, Magnanti and Wong [9]).

Many reasons explain this phenomenon, among which is the fact that LP relaxations

of multicommodity ow formulations generally do not provide tight lower bounds. In

addition, the LPs of these formulations are often highly degenerate, which makes their

resolution by simplex methods unattractive. Finally, even �nding feasible solutions for

some of these problems might be a di�cult task. To illustrate these points, consider

a particular case of the network design problem, the minimum spanning tree problem.

As is well-known, the uncapacitated version of the problem is easily solved by greedy

algorithms, while the capacitated one is NP -hard and very di�cult to solve in practice

(see Hall [40] and the references therein).

Our objective is twofold: First, to present a survey of models and methods for ca-

pacitated network design and second, to describe our contributions on a particular case,

the �xed-charge problem. The survey is the object of Section 2, which presents a general

arc-based model, discusses interesting alternative formulations, and outline the solu-

tion approaches proposed in the literature. Section 3 reviews our work on the �xed-
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charge problem, which compares several relaxations and discusses computational results

of bounding procedures (some of the material presented is based on Gendron [32], Gen-

dron and Crainic [33, 36]). In the Conclusion, we summarize this work and discuss future

research directions.

2 Survey

2.1 Arc-Based Formulation

Given a directed graph G = (N;A), a set of commodities K to be routed according to

known demands and a set of facilities L to be installed on each arc, the problem consists

in routing ows and installing facilities at minimum cost. The objective is therefore to

minimize the sum of ow costs and design costs, the latter being charged whenever an

arc is used or additional facilities are installed on it. The ow cost per unit of commodity

k on arc (i; j) is denoted ckij, while the design cost for each facility l installed on arc (i; j)

is denoted f lij. Both costs are assumed to be nonnegative. To each commodity k, we

associate origins O(k), destinations D(k) and transshipment nodes T (k). Each origin

i 2 O(k) supplies oki > 0 to the network, while each destination i 2 D(k) has a demand

dki > 0 for commodity k. An upper bound bkij on the amount of ow of commodity k that

may pass through arc (i; j) may be imposed. Similarly, there can be an upper bound on

the number of facilities l installed on arc (i; j), which we denote hlij. In addition, the

total ow on each arc (i; j), which can be weighted for each commodity k by a constant

ekij, cannot exceed the capacity on that arc, which consists of an existing capacity vij and

the capacities of the installed facilities, each facility l having a �xed capacity ulij.

To formulate the problem, we introduce continuous ow variables xkij, which reect

routing decisions for each arc (i; j) and each commodity k, and integer design variables

ylij, which represent the number of facilities l installed on arc (i; j). The arc-based model

is then given by:

min
X
k2K

X
(i;j)2A

ckijx
k
ij +

X
l2L

X
(i;j)2A

f lijy
l
ij (1)
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X

j2N+(i)

xkij �
X

j2N�(i)

xkji =

8><
>:

oki i 2 O(k)
�dki i 2 D(k)
0 i 2 T (k)

i 2 N; k 2 K (2)

0 � xkij � bkij (i; j) 2 A; k 2 K (3)

X
k2K

ekijx
k
ij � vij +

X
l2L

ulijy
l
ij (i; j) 2 A (4)

Ay � g (5)

0 � ylij � hlij (i; j) 2 A; l 2 L (6)

ylij integer (i; j) 2 A; l 2 L: (7)

Each set of constraints is self-explanatory, except for the side constraints (5) associ-

ated to the design variables. They can be used to ensure that the design does not exceed

a limited budget, or to enforce topological restrictions, such as, for exemple, that the

chosen design must be a spanning tree.

Some questions arise from our rather vague description of the problem. First, what

constitutes a facility? In telecommunications, facilities may provide, for exemple, high

bandwidth point-to-point connections, each transmitting information at di�erent rates

(see for example, Magnanti, Mirchandani and Vachani [52], Bienstock and G�unl�uk [18]).

In transportation, facilities can represent di�erent types of vehicles used to transport

freight (see for example, Kim and Barnhart [47]). Note that we can model the problem

without explicitly introducing facilities, by allowing parallel arcs, each of which represents

a di�erent facility [2].

A second important issue concerns the nature of the commodities. Either they repre-

sent distinct physical goods or, more frequently, they are used to model origin-destination

(O-D) pairs. Since the number of O-D pairs can be rather high (in a network with de-

mands between each pair of nodes, there are O(jN j2) such commodities), some authors

prefer, for computational reasons, to represent a commodity as an origin (or a destina-

tion). The LP relaxation of this last formulation is usually much easier to solve, but it

is also more di�cult to identify inequalities that tighten the lower bound (Rardin and

Wolsey [60] shed some light on this topic). In general, however, the choice of how to de-

�ne a commodity should depend on the ability to generate tight valid inequalities, which
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is, in turn, related to the method used to solve the problem. For example, simplex-based

approaches might be very sensitive to the size of the LP, and the second modeling op-

tion is then perfectly justi�ed [17, 18]. On the contrary, dual-based methods, such as

Lagrangean relaxation and dual-ascent strategies, usually bene�t from higher disaggre-

gation.

To qualify the complexity of the problem, it is useful to consider particular cases.

As mentioned in the Introduction, e�cient procedures exist for uncapacitated problems

[9]. For the �xed-charge uncapacitated problem, it is noteworthy that the LP relaxation

polytope of the so-called strong formulation is quasi-integral [44], in the sense that every

edge of the convex hull of integral points is also an edge of the polytope itself. Such

a property is unlikely to hold for the capacitated case. Also, it is much easier for un-

capacitated problems to obtain feasible solutions with classical heuristics [55]. Another

interesting special case arises when there is only one commodity. In general, the presence

of capacities makes the problem di�cult. In particular, Magnanti and Mirchandani [50]

study the following problem, de�ned on an undirected graph: There are no ow costs,

a single commodity de�ned as an O-D pair, and two types of facilities, one adding a

capacity of 1 per unit, and the other contributing to a capacity of C > 1 per unit. In

addition, there are no side constraints of type (5). They show that if there are existing

capacities, or the upper bounds on either the ow variables or the design variables are

not redundant (we note that this last case includes the �xed-charge problem), the result-

ing problem is strongly NP -hard, in the sense that the existence of a pseudo-polynomial

algorithm for it would imply P = NP .

2.2 Other Formulations

In addition to the multicommodity directed model, many other formulations have been

used, depending on the problem context. We have just seen an example de�ned on an

undirected graph, a situation that happens often in telecommunications. Note however

that even if the graph is undirected, ows are generally directed. Also, for some problems

de�ned on undirected graphs, it is possible to derive a directed formulation (for examples,
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see Magnanti and Wolsey [54] for network design problems on trees, and Magnanti and

Raghavan [53] for a network design problem with low connectivity constraints).

A number of applications might be modeled by using path-based formulations, in

particular those that prescribe the ow between any O-D pair to follow a single path

(this is called the nonbifurcated network design problem, as in Gavish and Altinkemer

[31], and Barahona [13]). Although path-based formulations have received some attention

for multicommodity ow [14, 24] and integer multicommodity ow [15], they have been

seldom used for network design. Very early, Rardin and Choe [59] compared the arc-based

and path-based formulations of the multicommodity capacitated �xed-charge problem.

They show that, with respect to their strong LP relaxations, no formulation is better

than the other. For the uncapacitated case, however, they show that the arc-based LP

relaxation provides a tighter bound than the path-based one. The polyhedral structure of

the path-based uncapacitated �xed-charge problem has also been studied by Balakrishnan

[4]. More recently, Crainic, Gendreau and Farvolden [21] used the path-based formulation

of the capacitated �xed-charge problem in a combined column generation-tabu search

heuristic approach, where neighbors are de�ned by simplex pivots. Their results have

provided some of the best known upper bounds for many di�cult instances (in Section

3, we use them to qualify lower bounds obtained through relaxations).

Problems without ow costs can also be modeled using cut-based formulations (these

problems arise frequently in telecommunications). An important special case is the de-

sign of survivable networks, where between each pair of nodes the design should include

a prespeci�ed number of edge-disjoint paths (these are the edge survivability require-

ments; similarly, node survivability constraints can be de�ned). For these problems,

most authors have used cut-based models in conjunction with cutting plane algorithms

(see Gr�otschel, Monma and Stoer [39] and the references therein). An exception is

the arc-based formulation proposed by Magnanti and Raghavan [53] for low connectivity

problems (the number of edge-disjoint paths between any pair of nodes never exceed two).

All these survivable problems are uncapacitated, except the model studied by Stoer and

Dahl [61], which also uses a cut-based approach. More recently, researchers have studied
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cut-based models for more general capacitated network design problems [13, 16, 57]. Net-

work design problems on trees are also amenable to so-called packing-based formulations

[54].

All these modeling approaches can handle additional requirements that are often

encountered in practice. We give a brief list of some of these requirements, with pointers

to the literature indicating that they appear in some form or another in the listed papers

(note however that some of these problems are not capacitated): nonconvex piecewise

linear costs [5, 10]; queueing costs [31]; node location [10]; capacities on the nodes [25];

dynamic multiperiod problems [20]; generalized ows [8]; hierarchical networks [6, 7].

2.3 Solution Approaches

To solve capacitated network design problems, researchers have focused on three di�erent

approaches: simplex-based cutting plane methods, Lagrangean relaxation and heuristics.

Each approach has advantages and drawbacks, which we briey outline. Simplex-based

cutting plane approaches bene�t from sophisticated and widely available codes for solv-

ing LPs, and they o�er an opprtunity for continuous improvement in the lower bounds

through the identi�cation of new strong valid inequalities. Moreover, the process of gen-

erating these inequalities is now being automated (see for example, Balas, Ceria and

Cornu�ejols [11, 12]). However, these methods generally do not exploit any particular

structure and the LPs can become very large. In addition, for multicommodity capac-

itated network design, the separation problems for some of the inequalities we outline

below are very di�cult and the LPs are often highly degenerate [18]. Lagrangean re-

laxation, on the contrary, exploits the structure of the problem and also facilitates the

design of heuristics, by observing the integrality requirements. However, optimizing the

Lagrangean dual can be a hard task. For example, traditional subgradient methods [48]

sometimes display a zigzagging behavior or even worse, they can stop far from the opti-

mal solution. This phenomenon, due to numerically instable behavior, is called jamming.

Another disadvantage of Lagrangean relaxation is that the addition of valid inequalities

often destroys the structure of the Lagrangean subproblem. In order to preserve this
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structure, inequalities can be appended to the model by dualizing them (as examples,

see Gavish [29], Gavish and Altinkemer [31], Fisher [26], Lucena [49], Gouveia [38]). This

approach is very promising but dualization of a large number of constraints can make the

Lagrangean dual even more di�cult to solve. Finally, heuristics are certainly required

to solve hard problems and, when tailored to particular classes of problems, they have

shown exceptional practical successes. However, they often lack theoretical justi�cation

and, in the absence of tight lower bounding procedures, it is very di�cult to assess their

performance.

We now briey review the e�orts of the research community in trying to solve capac-

itated network design problems by cutting planes and Lagrangean relaxation (heuristic

methods are described in Crainic, Gendreau and Farvolden [21]). Rardin and Choe [59]

and Rardin [58] use Lagrangean relaxation with respect to the constraints linking ow

and design variables (which, in the remainder, we call linking constraints). Dual-ascent

and subgradient schemes are proposed to optimize the resulting Lagrangean dual, but

computational results are shown only for uncapacitated problems. A similar Lagrangean

relaxation is proposed by Balakrishnan [3] who also devise a dual-ascent scheme. Again,

computational results are shown only for uncapacitated instances. Helgason [43] reports

disappointing results obtained by a Lagrangean relaxation/subgradient approach, where

ow conservation constraints are dualized. Very recently, this approach has been used by

Holmberg and Yuan [45] to solve the multicommodity capacitated �xed-charge problem.

Interesting results were obtained by a heuristic that combines subgradient optimization

and branch-and-bound.

Whereas all the models described in the previous paragraph are for �xed-charge prob-

lems, Magnanti, Mirchandani and Vachani [50, 52] are among the �rst to study a version

of the capacitated network design problem with facilities to be installed on the arcs. The

problem is de�ned on an undirected network, but the ow is directed. There are no

ow costs, no existing capacities and two types of facilities, one contributing one unit

of capacity, the other C > 1 units of capacity. The capacity constraints limit the total

ow of all commodities in both directions. (This problem is the multicommodity version
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of the single-commodity one we have described earlier; see Magnanti and Mirchandani

[50].) The authors compare a Lagrangean relaxation with respect to ow conservation

constraints with a cutting plane approach. Three types of valid inequalities are used.

First, cutset inequalities, which involve only design variables, are based on the following

rationale: Across any cut, there should be enough capacity installed to satisfy demands.

These basic inequalities are lifted by using modulo arithmetic arguments, and the re-

sulting inequalities are shown to de�ne facets of the convex hull under mild conditions.

The second class of inequalities, multicutset (also called partition), are based on the

same rationale, except that partitions of the set of nodes into more than two subsets are

being considered. The authors also derive a third class of valid inequalities, called arc

residual capacity inequalities, that involve both design and ow variables. They combine

the linking constraints with the trivial inequalities stating that the sum of ows of any

commodity-subset on any arc cannot exceed the total demand for this commodity-subset.

By lifting these inequalities using again modulo arithmetic arguments, it can be shown

that the resulting inequalities are facet-de�ning. The authors also prove an important

result: Appending these arc residual capacity inequalities to the LP relaxation provides

the same lower bound as the Lagrangean relaxation with respect to ow conservation

constraints. In their computational results, the authors show that small-size cutset in-

equalities (with cardinality of one of the subset of nodes not exceeding two) are more

e�ective than arc residual capacity inequalities in reducing the integrality gaps. As a

consequence, the lower bound generated by the cutting plane approach is much tighter

than the one obtained by Lagrangean relaxation.

Bienstock and G�unl�uk [18] study a similar problem, except that ow costs and existing

capacities may be included and, in addition, the total ow in each direction is limited by

the capacity. Another di�erence with the previous model is that a commodity is de�ned

as an origin and not an O-D pair. The authors devised a cutting plane method based

on three types of valid inequalities, using the same ideas as above: cutset, multicutset

and ow-cutset (this last class involves both ow and design variables). As pointed out

by the authors, although the ideas behind the derivation of these inequalities are similar
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to those presented by Magnanti, Mirchandani and Vachani, lifting and facet-proofs can

di�er signi�cantly. The authors report experiments on two sets of real-life data, both

having demands between each pair of nodes. The �rst set has 15 nodes, 22 edges, large

demands, ow costs and existing capacities. The second set has 16 nodes, 49 edges, small

demands, no ow costs nor existing capacities. The instances in the �rst set were easily

solved, and because the networks were small and sparse, there was no need to solve the

separation problems: Interesting cutsets were simply enumerated. It was a quite di�erent

story with the second data set. For one instance in this set, the best lower bound was

20% away from the optimal value, and before branch-and-bound exhausted all available

memory, the gap was still about 10%. The authors advance one explanation for this

behavior: Since demands are small, the capacity installed is also very small, resulting

in many fractional values. However, the authors could exploit an important problem

characteristic: Since there are no existing capacities, facilities must be installed on at

least jN j�1 edges in order to have a connected network. When appending these spanning

tree inequalities, the new lower bound was only 3.4% from the optimal value and branch-

and-bound could solve the problem in about 15 minutes. Note however that an instance

derived from this one by adding ow costs could be solved only by a parallel branch-

and-bound code [23] (using as starting LP the formulation with all the cuts appended)

in approximately 10 hours (2.4 million nodes were generated).

3 Relaxations for the Fixed-Charge Problem

3.1 Arc-Based Formulation

Using the same notation as in the previous section, we can derive the arc-based formu-

lation of the multicommodity capacitated �xed-charge problem:

min
X
k2K

X
(i;j)2A

ckijx
k
ij +

X
(i;j)2E

fijyij (8)

X

j2N+(i)

xkij �
X

j2N�(i)

xkji =

8><
>:

oki i 2 O(k)
�dki i 2 D(k)
0 i 2 T (k)

i 2 N; k 2 K (�ki ) (9)
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0 � xkij � bkij (i; j) 2 A; k 2 K (10)

X
k2K

xkij � uij (i; j) 2 A (ij) (11)

X
k2K

xkij � uijyij (i; j) 2 E (�ij) (12)

xkij � bkijyij (i; j) 2 E; k 2 K (�kij) (13)

0 � yij � 1 (i; j) 2 E (14)

yij integer (i; j) 2 E: (15)

In this model, E � A represents the set of design arcs. If some ow is routed through

a design arc (i; j), a �xed charge fij > 0 is incurred in addition to routing costs. We

assume there is an existing capacity uij on each arc. Note that constraints (12) not only

ensure capacity requirements for the design arcs are respected, they also force the ow

of any commodity to be 0 if the arc is not chosen in the design. Constraints (13) achieve

the same objective; Therefore, they are completely redundant. However, as we will see

shortly, these constraints can signi�cantly improve the lower bounds obtained through

relaxations. In the remainder, constraints (12) and (13) will be called weak and strong

linking constraints, respectively.

3.2 Relaxations

We de�ne two continuous relaxations, obtained by dropping integrality requirements, and

�ve Lagrangean relaxations, de�ned by dualization of sets of constraints. The Lagrangean

relaxations are motivated by two objectives: First, to derive a Lagrangean subproblem

that is easy to solve (ideally, solvable in polynomial time); second, to minimize the

number of dualized constraints. There are two obvious reasons for aiming towards this

last objective: We want a Lagrangean subproblem that is as close as possible to the

original formulation, and also desire to minimize the number of Lagrangean multipliers.

Weak Relaxation (W)

This continuous relaxation is derived by dropping the strong linking constraints and the

integrality requirements. Since the �xed costs are positive, the weak linking constraints

10



then hold at equality in any optimal solution. Therefore, the weak relaxation can be

rewritten as:

Z(W ) = min
X
k2K

X
(i;j)2A=E

ckijx
k
ij +

X
k2K

X
(i;j)2E

(ckij + fij=uij)x
k
ij (16)

subject to constraints (9) to (11). This is a multicommodity minimum cost network ow

problem (MFP).

Strong Relaxation (S)

This continuous relaxation is obtained by dropping the integrality constraints. The

resulting subproblem is a potentially large-scale LP that can be viewed as an MFP with

side variables and side constraints.

Flow Relaxation (F)

This Lagrangean relaxation is obtained by dualizing constraints (11) to (13). The result-

ing Lagrangean dual is:

Z(F ) = max
;�;��0

8<
:�

X
(i;j)2A

ijuij + Z(FX) + Z(FY )

9=
; (17)

where Z(FX) is de�ned as

Z(FX) = min
X
k2K

X

(i;j)2A=E

(ckij + ij)x
k
ij +

X
k2K

X

(i;j)2E

(ckij + ij + �ij + �kij)x
k
ij (18)

subject to constraints (9) to (10), and Z(FY ) is de�ned as

Z(FY ) = min
y2f0;1gjEj

X

(i;j)2E

(fij � �ijuij �
X
k2K

�kijb
k
ij)yij (19)

The Lagrangean subproblem, therefore, decomposes into jKj minimum cost network ow

problems and one problem solvable by inspection.

Multicommodity Flow Relaxation (MF)

This relaxation is derived by dualizing the weak and strong linking constraints but not

the capacity constraints as in the previous relaxation. The resulting Lagrangean dual is:

Z(MF ) = max
�;��0

fZ(MFX) + Z(FY )g (20)
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where Z(MFX) is de�ned as

Z(MFX) = min
X
k2K

X
(i;j)2A=E

ckijx
k
ij +

X
k2K

X
(i;j)2E

(ckij + �ij + �kij)x
k
ij (21)

subject to constraints (9) to (11), and Z(FY ) is de�ned as in (19). The Lagrangean

subproblem separates into an MFP and a problem solvable by inspection.

Knapsack Relaxation (K)

This relaxation is obtained by dualizing the ow conservation constraints. The resulting

Lagrangean dual is:

Z(K) = max
�

8<
:
X
k2K

(
X

i2O(k)

�ki o
k
i �

X

i2D(k)

�ki d
k
i )+ (22)

min
(x;y)2(X;Y )

X
k2K

X
(i;j)2A

(ckij + �kj � �ki )x
k
ij +

X
(i;j)2E

fijyij

9=
;

where the set (X; Y ) is de�ned by constraints (10) to (15). After solving jAj continuous

knapsack problems:

gij = min
X
k2K

(ckij + �kj � �ki )x
k
ij (23)

X
k2K

xkij � uij (24)

0 � xkij � bkij k 2 K; (25)

the Lagrangean subproblem can be solved by inspection as:

X
(i;j)2A=E

gij + min
y2f0;1gjEj

X
(i;j)2E

(fij + gij)yij (26)

Flow-Knapsack Relaxation (FK)

To de�ne this relaxation, we �rst introduce new variables wk
ij, which represent copies of

the ow variables, and then decouple ow conservation constraints and linking constraints

by reformulating the problem as:

min
X
k2K

X
(i;j)2A

ckijx
k
ij +

X
(i;j)2E

fijyij (27)

X

j2N+(i)

xkij �
X

j2N�(i)

xkji =

8><
>:

oki i 2 O(k)
�dki i 2 D(k)
0 i 2 T (k)

i 2 N; k 2 K (28)
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0 � xkij � bkij (i; j) 2 A; k 2 K (29)

X
k2K

xkij � uij (i; j) 2 A (30)

xkij = wk
ij 8 (i; j) 2 A; k 2 K (�kij) (31)

0 � wk
ij � bkij (i; j) 2 A; k 2 K (32)

X
k2K

wk
ij � uij (i; j) 2 A (33)

X
k2K

wk
ij � uijyij (i; j) 2 E (34)

wk
ij � bkijyij (i; j) 2 E; k 2 K (35)

0 � yij � 1 (i; j) 2 E (36)

yij integer (i; j) 2 A: (37)

The Flow-Knapsack Relaxation is then obtained by dropping the capacity constraints

(30) and by dualizing constraints (31). The Lagrangean dual can be written as:

Z(FK) = max
�

fZ(FKX) + Z(FKWY )g (38)

where Z(FKX) is de�ned as

Z(FKX) = min
X
k2K

X
(i;j)2A

(ckij + �kij)x
k
ij (39)

subject to constraints (28) and (29), while Z(FKY ) is de�ned as

Z(FKWY ) = min�
X
k2K

X
(i;j)2A

�kijw
k
ij +

X
(i;j)2E

fijyij (40)

subject to constraints (32) to (37).

Multicommodity Flow-Knapsack Relaxation (MFK)

We use the same reformulation as above, but here we do not drop constraints (30) and

only dualize (31). The resulting Lagrangean dual is:

Z(MFK) = max
�

fZ(MFKX) + Z(FKWY )g (41)

13



where Z(FKWY ) is de�ned as in (40), while Z(MFKX) is obtained by solving the

following MFP:

Z(MFKX) = min
X
k2K

X
(i;j)2A

(ckij + �kij)x
k
ij (42)

subject to constraints (28) to (30).

The lower bounds obtained by these relaxations are compared by the following

Property:

Z(W ) � Z(S) = Z(F ) = Z(MF ) = Z(K) = Z(FK) = Z(MFK)

All relations are easy to prove by noting that the Lagrangean subproblems in the ow,

multicommodity ow and knapsack relaxations all have the Integrality property [37]

(detailed proofs can also be found in Gendron [32], and Gendron and Crainic [33]).

3.3 Computational Results

Computational experiments should �rst qualify the di�erence between the weak and the

strong lower bounds. If this di�erence is signi�cant, we then have six di�erent relaxations

to compute the most promising bound. Which one is most e�cient computationally?

Clearly, for Lagrangean relaxations, the answer depends on the method used to optimize

the Lagrangean dual. Since their successful application to the traveling salesman problem

[41, 42], subgradient algorithms have been widely used in mixed-integer programming.

Although they proved to be often useful, sometimes they exhibit zigzagging or, even

worse, jamming problems. To handle these di�culties, researchers in the �eld of non-

di�erentiable optimization have devised so-called bundle methods [48].

In contrast to subgradient algorithms, bundle methods keep �rst-order informations

in a disaggregated form. These informations, which represent the history of the com-

putations performed so far, are used to update multipliers by computing a tentative

direction of ascent. This is performed by solving a semide�nite quadratic programming

problem (a very e�cient code for solving it is described by Frangioni [27]). Hence, bundle

approaches are more di�cult to implement than subgradient methods, but they avoid

zigzagging by guaranteeing ascent directions. Moreover, for many problems, they have

14



shown signi�cant improvements over traditional subgradient methods (some examples

are given in Carraresi, Frangioni and Nonato [19]).

Other criteria to consider when assessing the overall e�ciency of a given relaxation in-

clude, �rst, its ability to generate feasible solutions by deriving Lagrangean-based heuris-

tic procedures and, second, its decomposition properties which makes it adaptable to a

parallel implementation. This last feature is important, since continuous technological

improvements in parallel and distributed environments make their exploitation very at-

tractive in the context of solving large-scale and di�cult combinatorial problems, such

as multicommodity capacitated network design.

In order to partially assess the relaxations, we generated some 234 problems, of various

characteristics, using two generators (which are fully described by Gendron and Crainic

[33, 36]). One was used to generate multicommodity bipartite networks, the other general

networks with no particular topology. Among this last class, we distinguish single O-D

networks, where a commodity is de�ned as an O-D pair, and multiple O-D networks,

for which a commodity may have several origins and destinations. The generators allow

to adjust the ratio of �xed costs to routing costs and also the relative importance of

capacities.

Our �rst results [33] support the following conclusions:

� For bipartite and single O-D networks, the improvement in the lower bound due to

using the strong relaxation instead of the weak one is very signi�cant (sometimes

as high as 40%).

� The same behavior does not hold for multiple O-D networks, due to the fact that

the bound bkij on the amount of ow of each commodity k that can be routed

through every arc (i; j) is very loose. Typically, the only bound known a priori is

the sum of all demands for the given commodity. This is in contrast with bipartite

and single O-D problems, where tight bounds are known a priori.

� The ow relaxation used in conjunction with a subgradient method provides a very

tight approximation to the lower bound of the strong relaxation (on average, less
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than 1% di�erence). Moreover, this bound is usually computed in a fraction of the

time it took CPLEX 2.1, using the \netopt" option, to compute Z(S).

� For both the knapsack and the ow-knapsack relaxations, the subgradient method

exhibited zigzagging and jamming problems. Consequently, the lower bounds given

by these two approaches were generally poor.

Using these preliminary results, we then developed bounding procedures based on

the ow relaxation [36]. Inspired by the resource-decomposition principle, the upper

bounding procedure makes use of the optimal solution (x; y) of the last Lagrangean

subproblem and proceeds as follows. First, allocated partial capacities are obtained

by solving a projection problem which attempts to satisfy capacity constraints while

minimizing the Euclidean distance to x. The projection decomposes into jAj singly-

constrained quadratic programming problems, for which e�cient procedures have been

devised [46]. Using the allocated capacities, we then solve a resource-decomposition

subproblem, which decomposes into jKj minimum cost network ow problems. The

objective of this problem takes into account not only routing costs, but also �xed costs

and capacities, in a way similar to the objective of the weak relaxation (16). Given an

optimal solution to this problem, an upper bound on the optimal value of the network

design problem is obtained. If there is no feasible solution, given the current allocated

capacities, the procedure stops. Otherwise, it attempts to improve the current solution by

using a generalized add-drop heuristic. First, arcs are sorted according to a criterion that

takes into account both the ows and the reduced �xed costs given by the Lagrangean

solution. Then, arcs are dropped or added following a dichotomic scheme which, based

on the sorting criterion, attempts to identify the most interesting arcs.

Using a set of ten representative instances, Table 1 illustrates the di�culty of standard

methods and state-of-the-art software packages to address these problems. All instances

belong to the class of single O-D networks, since we are going to show results of the

tabu search heuristic of Crainic, Gendreau and Farvolden [21], which is tailored for these

problems. The problems are identi�ed by a triplet which indicates the number of nodes,
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arcs and commodities. All these instances are very di�cult, since they both have high

�xed costs and tight capacity constraints. For each problem, the table displays: Z(W ),

the lower bound given by the weak relaxation computed by CPLEX 2.1 \netopt"; Z(S),

the lower bound given by the strong relaxation computed by CPLEX 2.1 \netopt"; Z(F ),

the lower bound computed by the ow relaxation using a subgradient method; Z(RD),

the upper bound computed by the Lagrangean-based resource-decomposition heuristic;

Z(TS), the best upper bound found by the tabu search heuristic; Z(BB), the best

upper bound computed by branch-and-bound, based on the strong formulation and using

CPLEX 2.1 \optimize" (this is meant to be the optimal value, but for some problems

we did not manage to reach the optimum due to memory (64 Megabytes) limitations; an

\m" signals these cases). Below each �gure, we show, in parentheses, the CPU time, in

seconds, on a SPARC Ultra workstation, except for the tabu search heuristic for which

CPU time is on a SPARC1000 (which is roughly two times slower than the Ultra). The

last column also provides the gap between the best lower and upper bounds. Note that

we have not been able to compute Z(S) and Z(BB) for two problems, due to memory

limitations (these two �gures are replaced by \M"). Moreover, in one case, indicated by

an \X", the resource-decomposition heuristic could not identify any feasible solution.

These results further substantiate the fact that the strong relaxation signi�cantly

improves over the weak one. They also show that state-of-the-art LP solvers are not

capable of handling problems with a large number of commodities (this is corroborated

by the observations of Bienstock and G�unl�uk [17, 18]). In particular, we have observed

that the LPs are highly degenerate. In contrast, the ow relaxation is well-adapted to

these large-scale problems. However, Lagrangean-based procedures, used alone, are not

su�cient to solve these di�cult problems. On the one hand, the resource-decomposition

heuristic really struggles, especially as the number of commodities increases. On the

other hand, while most of the gaps are acceptable, some others are very large.

In view of these results, several questions are of particular interest, most of these we

are attempting to address in our actual research:

� Can we �nd more e�ective Lagrangean lower bounds by appending valid inequalities
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problem Z(W ) Z(S) Z(F ) Z(RD) Z(TS) Z(BB) gap %
25,100,10 32262 43455 43452 57688 51654 49899 14.83

(1) (2) (1) (2) (152) (111)
25,100,30 64037 82419 82372 98618 86594 85530 3.8

(1) (10) (5) (4) (471) (2541)
100,400,10 33451 48375 48333 115231 70063 67274 39.07

(1) (63) (6) (8) (499) (6189)
20,230,40 584306 633466 633432 683642 644172 643036 1.51

(1) (5) (10) (7) (1121) (7181)
20,300,40 546666 596839 596819 704528 605398 604198 1.23

(1) (8) (12) (15) (853) (312)
20,300,200 84733 103633 103440 332193 130715 111565 m 7.65

(5) (3925) (67) (40) (8110) (100220)
30,520,100 76710 94011 93691 209087 107894 98500 m 4.77

(4) (2553) (57) (59) (17599) (56998)
30,520,400 126357 M 149438 X 173344 M 16.00

(111) (232) (122) (61615)
30,700,100 44811 53661 53537 100850 58704 56565 m 5.41

(4) (1157) (72) (95) (11537) (26575)
30,700,400 109364 M 127314 344615 150948 M 18.56

(120) (301) (190) (88310)

Table 1: Lower Bounds, Heuristics and Optimal Values
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to the strong formulation? We have examined this approach in an earlier contri-

bution [33] by adding a limited set of cutset inequalities in such a way that the

Lagrangean subproblem decomposes into 0-1 knapsack problems, therefore keeping

the subproblems tractable. The improvement, however, was very limited, if not

inexistent. As mentioned above, a more promising approach dualizes valid lifted

inequalities. The corresponding bound is then at least as good as the strengthened

LP and the Lagrangean subproblem's structure is preserved.

� Can we devise more e�cient Lagrangean procedures by using bundle methods? We

have preliminary computational results showing that bundle approaches are slower

than subgradient methods for the ow relaxation. This behavior might be explained

by the large number of multipliers generated by this relaxation, which imposes a

heavy computational burden on the quadratic problem. We have other preliminary

results, soon to be reported, showing that the knapsack relaxation/bundle approach

can outperform subgradient methods. Also of great interest is the contribution that

bundle methods could bring to the design of more e�ective Lagrangean heuristics.

Along this line, we note that multicommodity ow problems, especially those with a

large number of commodities, are now routinely solved at optimality by a specialized

bundle algorithm (see Frangioni and Gallo [28], which reports remarkable results

for the same test problems). This observation motivates the use of multicommodity

ow relaxations to solve our problem. These relaxations have the notable advantage

of generating feasible solutions every time a Lagrangean subproblem is solved.

� Can we combine Lagrangean and heuristic approaches to improve the performance

of both? Lagrangean heuristics can be used to provide starting solutions to more

sophisticated heuristics such as tabu search. Also, lower bounds and dual infor-

mation can guide the search for promising solutions in a way reminiscent of the

branching rules used in branch-and-bound algorithms.

� Can we make e�ective use of parallel computing to help solve these di�cult prob-

lems? There are mainly three ways of exploiting parallel computing. The �rst
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approach accelerates bound computations, notably by exploiting decomposition

by commodities (preliminary results in this direction were given by Gendron and

Crainic [35]). A second approach would attempt to improve the search for promising

solutions by exploring multiple paths in parallel. These approaches can be adapted

to either branch-and-bound algorithms [34] or tabu search procedures [22]. Finally,

parallel computing might facilitate the task of combining Lagrangean and heuristic

methods since, in a distributed environment, one can easily merge two or more

programs without forcing them to share common data structures.

4 Conclusion

This survey has shown that capacitated network design problems pose considerable mod-

eling and algorithmic challenges. In particular, several formulations (arc-based, path-

based, cut-based) are possible for the same problem and it is not entirely clear which is

most attractive. An appropriate answer to this question should take into account the

quality of the lower bounds that can be generated through relaxations, as well as the

methods used to solve the models. These methods can be divided into three categories:

simplex-based cutting plane algorithms, Lagrangean relaxation and heuristics. We have

seen, through examples from the literature and from our own research on the �xed-charge

problem, that each of these approaches, used alone, is probably insu�cient to solve dif-

�cult and large-scale instances. Following the presentation of our computational results

on the �xed-charge problem, we have described several ways to combine them. In addi-

tion, we have identi�ed some interesting research questions and discussed how parallel

computing can help to solve these di�cult problems.
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