
MANAGEMENT SCIENCE
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000
issn 0025-1909 |eissn 1526-5501 |00 |0000 |0001

INFORMS
doi 10.1287/xxxx.0000.0000

c© 0000 INFORMS

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Stabilized Benders methods for large-scale
combinatorial optimization, with application to data

privacy
Daniel Baena

Department of Statistics and Operations Research, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona,
danibaena@gmail.com

Jordi Castro
Department of Statistics and Operations Research, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona,

jordi.castro@upc.edu

Antonio Frangioni
Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 1, 56127 Pisa, Italy, frangio@di.unipi.it

The Cell Suppression Problem (CSP) is a very large Mixed-Integer Linear Problem arising in statistical

disclosure control. However, CSP has the typical structure that allows application of the Benders decompo-

sition, which is known to suffer from oscillation and slow convergence, compounded with the fact that the

master problem is combinatorial. To overcome this drawback we present a stabilized Benders decomposition

whose master is restricted to a neighborhood of successful candidates by local branching constraints, which

are dynamically adjusted, and even dropped, during the iterations. Our experiments with synthetic and

real-world instances with up to 24000 binary variables, 181M continuous variables and 367M constraints

show that our approach is competitive with both the current state-of-the-art code for CSP, and the Benders

implementation in CPLEX 12.7. In some instances, stabilized Benders provided a very good solution in less

than one minute, while the other approaches found no feasible solution in one hour.

Key words : Benders Decomposition, Mixed-Integer Linear Problems, Stabilization, Local branching,

Large-scale Optimization, Statistical Tabular Data Protection, Cell Suppression Problem

1. Introduction

Nowadays, Mixed-Integer Linear Problems (MILP) are routinely used in real-world applications.

However, for very large-scale and complex problems, current state-of-the-art solvers may not yield

good solutions in a reasonable amount of time, and therefore specialized methods are required. One

of these cases is that of the Cell Suppression Problem (CSP) from the statistical disclosure control

1

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
2 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

field. CSP has relatively few (but still in the thousands) binary variables, but very many (millions)

continuous ones. Furthermore, once the binary variables are fixed, the problem in the continuous

ones decomposes into many independent subproblems. As such, CSP is the ideal candidate for

Benders decomposition, a general procedure originally developed in Benders (1962) for problems

whose variables can be partitioned into “complicating” and “easy” ones (being, respectively, the

binary and continuous in the MILP setting). In short, Benders decomposition projects the problem

onto the complicating variables, resulting in a master problem with convex nondifferentiable—

actually, polyhedral—objective function and discrete variables. Local information about the function

is obtained through (both optimality and feasibility) cuts which are generated by the solution of

the subproblem in the easy variables. Most often, as in the CSP case, the subproblem actually

decomposes in many smaller independent ones, which is clearly beneficial. For MILP, the master is

often a binary optimization problem, and the subproblems are linear. This approach was extended

in Geoffrion (1972) to convex nonlinear optimization problems by the use of convex duality theory.

The interest in Benders decomposition is clear from the vast literature that has been developed

around it (for instance, Google Scholar reports more than 19000 documents for “Benders algorithm”).

This method has performed very well in many applications; to mention just a few: network design

(Ben-Ameur and Neto 2007, Costa 2005), supply chain design (Santoso et al. 2005), data privacy

(Castro and Via 2016, Fischetti and Salazar 1999, 2001), very large facility location (with either

linear (Castro et al. 2017) or quadratic costs (Fischetti et al. 2017)), stochastic optimization (where

it is usually denoted as L-shaped method, see Birge and Louveaux (1997) and references therein),

and unit commitment (Nasri et al. 2016, Tahanan et al. 2015). However, it is well known that in

some problems Benders method may exhibit poor performances due a large number of iterations.

The main factors explaining such a bad behaviour are: (i) the cuts generated by the subproblem are

not good (i.e., “deep”) enough, and, as a result, the points computed by the master provide poor

lower bounds; (ii) the master is a difficult binary problem, and it becomes tougher at each iteration

due the new cuts added; (iii) the solutions of the master tend to wildly oscillate, from a good point

(which can be close to optimality) to a much worse one. Some remedies have been suggested in

the literature for the above drawbacks (a recent review on them can be found in Rahmaniani et al.

(2017)). For (i), methods producing deeper cuts were introduced as early as Magnanti and Wong

(1981), and more recently in Fischetti et al. (2010). For (ii), as shown in Zakeri et al. (2000) and

Ackooij et al. (2016) for, respectively, the continuous and integer case, master problems do not

need to be solved at optimality to guarantee the convergence of Benders decomposition, thus saving

some computational time at each iteration (even more: infeasible points for the master can also

be used in the subproblem). Finally, for (iii) stabilization was achieved in Fischetti et al. (2016)

by the use of an in-out approach (Ben-Ameur and Neto 2007, Fischetti and Salvagnin 2010); and

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 3

in Santoso et al. (2005) by the addition of trust-region constraints to the master. However, such

trust-region was only used for the first iterations of the Benders algorithms, because, as stated in

Rahmaniani et al. (2017), otherwise convergence could not be ensured. In this work we consider a

generalization of this approach, where the stabilization constraints are dynamically adjusted and

dropped during all the Benders iterations, by the use of both local branching and reverse local

branching constraints, which results in a convergent algorithm. This approach, developed for this

work on CSP, was later inserted in the more general framework of Ackooij et al. (2016) for Benders

decomposition algorithms with possibly inexact solutions of the subproblems. However, that paper

applied it to an entirely different problem (chance constrained stochastic optimization), and was

mainly devoted to the theoretical analysis of the approaches. Hence, the results there were focused

on providing very general conditions guaranteeing global convergence, with comparatively little

effort in devising ones that are effective in practice. Instead, here we focus on the effectiveness

of the approach, comparing it with state-of-the-art ones for the problem at hand. We mention in

passing that alternative stabilization procedures have been developed for related (but different)

column-generation approaches (Ben Amor et al. 2009, Briant et al. 2008, Frangioni and Gendron

2013).

Local branching constraints have previously been used in other Benders decomposition

approaches, such as the one of Rei et al. (2009), but in a different way. In Rei et al. (2009), the point

provided by the master problem is used to start a local branching phase in the original formulation

of the problem (not in the master); and a small radius is used for the local branching. The purpose

of this local branching phase is to efficiently find alternative solutions around the point provided by

the master problem. Benders subproblems are solved for all these points, thus obtaining a pool of

new cuts for the Benders master problem. This strategy is expected to improve the lower and upper

bounds provided by respectively the master problem and the subproblems, reducing the number of

Benders iterations. In our approach local branching constraints are instead added to the Benders

master problem (not to the original problem). And the motivation is not to increase the lower bound

provided by the master, but to stabilize it around a region of “good points”. Indeed, this way the

lower bound computed by the master is no longer a global bound (unlike in Rei et al. (2009)),

but a local lower bound. This means that the overall Benders algorithm has to be substantially

modified, whereas Rei et al. (2009) uses a standard Benders approach with the only change that

several subproblems are solved for a pool of points. In addition in our approach the radius of the

local branching constraints added to the Benders master problem has to quickly increase for reasons

of efficiency, unlike in Rei et al. (2009), where a small radius has always to be used. Despite of the

above major differences, it is worth to mention that both approaches have one common step: when

the original problem with local branching constraints solved by Rei et al. (2009) is infeasible, this

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
4 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

information can be added to the Benders master to exclude part of the feasible region. We also

apply a similar trick when the Benders master is infeasible due to the local branching constraints

(we name the new added constraints reverse local branching constraints). As stated above, however,

the radius used in our approach will in theory be greater than the one used in Rei et al. (2009), so

the reverse local branching constraint is expected to cut a larger portion of the feasible region, thus

being more effective.

Local branching and Benders decomposition were also combined in Boland et al. (2016), but, as

stated by the authors, that approach is very different from the one of Rei et al. (2009), and also

ours. In the heuristic of Boland et al. (2016) the objective function of the Benders master problem

is replaced by the Hamming distance expression of the local branching constraint, and a certain

improvement in the true objective function is imposed as a constraint. In addition, in that approach

the radius of the local branching constraint plays no role, whereas is instrumental in our proposal.

Our main motivation for developing this stabilized Benders decomposition was the solution of the

Cell Suppression Problem, which arises in the discipline of Statistical Disclosure Control (SDC).

In short, SDC aims at avoiding that confidential information could be derived from data released

by some entity while, at the same time, maintaining as much as possible the data utility (that is,

modifying as less as possible the original data). More details about SDC can be found in the recent

survey Castro (2012) and monographs Hundepool et al. (2012), Willenborg and de Waal (2000).

SDC is one of the main concerns of National Statistical Agencies, which must guarantee that no

confidential individual information can be obtained from the released statistical outputs. The most

widely applied SDC method for tabular data is probably cell suppression, to be described in detail

in §4. This method, introduced in Kelly et al. (1992), can be formulated as a huge MILP problem,

that easily reaches sizes of thousands of binary variables and millions of constraints and continuous

variables. Although some fast heuristics have been developed (Castro 2007), they are only valid for

some classes of instances. The current state-of-the-art exact method is a cutting-plane algorithm

which relies on Benders cuts (that is, a Benders decomposition algorithm), initially applied only to

a particular type of tables (Fischetti and Salazar 1999), and later to general ones (Fischetti and

Salazar 2001).

The outline of the paper is as follows. In §2 we recall the classical Benders algorithm. In §3 we

present the stabilized Benders decomposition for general MILP problems. In §4 we apply and par-

ticularize stabilized Benders to the CSP. Then, in §5 the stabilized Benders approach is compared

with the state-of-the-art code of Fischetti and Salazar (2001), and also with the Benders implemen-

tation of CPLEX 12.7, showing that our stabilization technique provides better solutions with the

same computational effort. Finally, some conclusions and some perspectives for further research are

drawn in §6.

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 5

2. Benders decomposition

We consider Benders decomposition (Benders 1962) applied to a MILP of the form

min
{
d>y+ c>x : Fy+Dx= b , y ∈ Y , x≥ 0

}
(P)

where y ∈Rnc and x∈Rne are, respectively, the complicating (binary/integer) and easy (continuous)

variables, d∈Rnc, c∈Rne, F ∈Rm×nc and D ∈Rm×ne. The set Y entails the constraints that make

the problem “hard”; in many cases, such as in ours, Y = {0,1}nc. Benders approach is based on

reformulating (P) as

miny
{
d>y+Q(y) : y ∈ Y

}
(P ′)

where

Q(y) = minx
{
c>x : Dx= b−Fy , x≥ 0

}
(Q)

is the value function of the problem when the complicating y variables are considered as parameters

in the right-hand side of the constraint. The function Q is convex and nondifferentiable—actually,

polyhedral—and it is conveniently characterized via linear duality as

Q(y) = maxu
{
u>(b−Fy) : D>u≤ c , u∈Rm

}
. (QD)

For a fixed y there are three possible outcomes:

1. (Q) is unbounded above, which immediately proves that (P) is; in the following we ignore this,

implicitly assuming that (QD) is nonempty;

2. (Q) is infeasible, and therefore any LP solver determines an unbounded direction v of the dual

polyhedron—such that D>v≤ 0, typically, an extreme ray—for which v>(b−Fy)> 0;

3. neither of the above, hence any LP solver would determine an optimal solution u—typically,

an extreme point of the dual polyhedron—such that Q(y) = u>(b−Fy).

Hence, we can (in principle) define the set U of extreme points u and the set V of extreme rays v of

the dual polyhedron: introducing a single auxiliary variable θ, we can then reformulate (P) as

min d>y+ θ (1)

ū>(b−Fy)≤ θ ū∈ U (2)

v̄>(b−Fy)≤ 0 v̄ ∈ V (3)

y ∈ Y. (4)

Problem (1)–(4) is impractical since U and V can be very large, but it is perfectly suitable for row

generation. Indeed, one only has to define two suitably small subsets I ⊂ U and J ⊂V and define the

relaxation of (1)–(4) where constraints (2) and (3) are only defined for ū∈ I and v̄ ∈J , respectively.

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
6 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

1: Initialize I and J . Set the best upper bound ρ= +∞.

2: Solve master problem obtaining θ̂ and ŷ.

3: Solve subproblem (QD) using y= ŷ.

4: if (QD) has finite optimal solution in vertex ū then

5: Update upper bound: ρ←min{ρ , d>ŷ+ ū>(b−F ŷ)}.

6: if θ̂= ū>(b−Fy) then

7: STOP. Optimal solution is y∗ = ŷ with Q(y∗) = θ̂ and total cost ρ.

8: else

9: constraint ū>(b−Fy)≤ θ is violated by (θ̂, ŷ): I ←I ∪{ū}

10: end if

11: else

12: (QD) is unbounded along segment ū+λv̄, i.e.,

constraint v̄>(b−Fy)≤ 0 is violated by (θ̂, ŷ): J ←J ∪{v̄}.

13: Vertex may also be added: I ←I ∪{ū}.

14: end if

15: Go to step 2.

Figure 1 Benders decomposition algorithm

This is called the Master Problem (MP). The steps of Benders algorithm are summarized in Figure

1.

A simple initialization is to put I = J = ∅, in which case at the first iteration one can take

θ̂=−∞ and ŷ any feasible point in Y . Convergence of Benders decomposition is always guaranteed

in a finite number of iterations (at most |U|+ |V|), but of course getting even close to such a bound

would be disastrous. Unfortunately, in practice the number of required iterations may actually be

excessive due to, among other causes, instability issues. To overcome this drawback, we describe in

next Section a stabilized Benders decomposition approach.

3. Stabilizing Benders decomposition through local branching constraints

One of the main causes for the slow convergence of Benders decomposition is the generation of weak

cuts as a result of obtaining “bad” points ŷ out of the MP, an effect that is well-known in cutting-

plane methods when Y is a convex set (Hiriart-Urruty and Lemaréchal 1996). The idea behind

the stabilized Benders decomposition is to search new solutions ŷ in a neighbourhood of a good

stability center point, such as the point where the best (estimated) function value so far has been

obtained. The typical benefit is an expected reduction of the number of iterations, and therefore of

the total computational time, because the iterates accrue information around the stability center,

constructing an “accurate” model of the objective function, which then effectively drives the search

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 7

towards even better iterates (Ben Amor et al. 2009, Briant et al. 2008, Frangioni and Gendron 2013).

When Y is a combinatorial set, the cost of the MP can be significant, in that it is a combinatorial

problem. Stabilizing by restricting the feasible region is then attractive, as a MP with a smaller

feasible region may be easier to solve.

In particular when y are binary variables, the stabilization can be achieved by simply adding

linear constraints to the MP which impose that the Hamming distance of the new iterate to the

stability center ȳ—which is not necessarily feasible—to be at most κ≥ 1. That is, in order to define

a classical trust region of radius κ (which can be either a constant or dynamically updated at certain

iterations) around the stability center, one can use a classical local branching constraint (Fischetti

and Lodi 2003) which limits the “switching” of binary variables to at most κ components:

∆(y, ȳ) :=
∑

j : ȳj=1(1− yj) +
∑

j : ȳj=0 yj ≤ κ . (5)

This sort of stabilization was applied in Santoso et al. (2005), but using a constant radius, and only

for the very first iterations of Benders decomposition. The nice aspect of (5) is that its complement,

defining the set of points that have distance larger than κ from ȳ, is also a linear constraint:

∆(y, ȳ) ≥ κ+ 1 (called a reverse local branching constraint). Indeed, local branching and reverse

or local branching constraints can be used as a branching criterion within an enumerative scheme.

That is, in this setting excluding regions around ȳ from the feasible region of the MP is as easy

as setting the trust region, unlike in the convex case where the trust region is typically a convex

constraint, so its complement would be a reverse convex constraint, making the MP much harder to

solve. In fact, (5) is a special case of no-good cuts (d’Ambrosio et al. 2010), which become much more

complex when the original problem is not a binary one. In our case, excluding regions comes with

comparatively little cost; therefore, we introduce a set R of pairs (ȳ′, κ′) denoting regions excluded

by reverse local branching constraints, so as to define the Stabilized Master Problem (SMP) as

min d>y+ θ (1)

(2) , (3) , (4)

∆(y, ȳ)≤ κ (6)

∆(y, ȳ′)≥ κ′+ 1 (ȳ′, κ′)∈R (7)

With that, it is easy to define the stabilized Benders decomposition framework shown in Figure 2.

Note that, if the feasible region of the master problem is significantly reduced, the local branch-

ing constraints should reasonably make it easier to solve. This is in particular true because local

branching constraints seem to significantly increase the “relaxation grip” of the formulation, i.e., the

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
8 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

1. Initialize I and J , the best upper bound ρ, the stability center ȳ, κ≥ 1, and set R←∅.

2. Solve the Stabilized Master Problem.

3. if the SMP is infeasible then

4. if κ≥ nc then

5. STOP. ρ is the optimal value of (P).

6. end if

7. Add reverse local branching constraint (ȳ, κ) to R

8. Choose a new κ∈ {κ+ 1, . . . , nc} for the trust region constraint.

9. else

10. Let (θ̂, ŷ) be the solution of the SMP.

11. Solve subproblem (QD) with y= ŷ.

12. if (QD) is feasible with optimal solution ū then

13. Update upper bound: ρ←min{ρ , d>ŷ+ ū>(b−F ŷ)}

14. if θ̂= ū>(b−F ŷ) then

15. Solve the SMP without the trust region constraint (i.e., κ← nc), let ρ be its optimal

value (a valid global lower bound).

16. if ρ= ρ then

17. STOP. ρ is the optimal value of (P).

18. end if

19. Add reverse local branching constraint (ȳ, κ) to R.

20. Change the stability center in the trust region constraint:ȳ← ŷ.

21. Optionally, reset κ≥ 1.

22. else

23. Constraint ū>(b−Fy)≤ θ is violated by (θ̂, ŷ): I ←I ∪{ū}

24. end if

25. else

26. (QD) is unbounded along segment ū+λv̄, i.e.,

constraint v̄>(b−Fy)≤ 0 is violated by (θ̂, ŷ): J ←J ∪{v̄}.

27. Vertex may also be added: I ←I ∪{ū}.

28. end if

29. end if

30. GOTO line 2.

Figure 2 The stabilized Benders method through local branching constraints

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 9

number of variables that are integer in the solution of the continuous relaxation, as discussed, e.g.,

in Boland et al. (2016).

In the initialization phase, it is convenient in our application to find an initial solution (x̃, ỹ) of the

original problem (P) via a primal heuristic. This can be used to initialize ρ← c>x̃+d>ỹ (assuming

(x̃, ỹ) is feasible, otherwise ρ= +∞), and the stability center ȳ← ỹ. Note that ỹ need not necessarily

be feasible, hence this can always be done even if the heuristic fails. At each iteration we solve the

SMP to obtain a new solution ŷ and a lower bound θ̂≤Q(ŷ); note, however, that this lower bound

is only local to the trust region. If (QD) has finite optimal solution ū and θ̂ = ū>(b− F ŷ) =Q(ŷ)

we know that there is no better solution in this trust region and we update the stability center to

the current ŷ. A reverse local branching constraint for the previous stability center ȳ is also added

to avoid the algorithm could select it again, possibly getting stuck. Note that in stabilized methods

it is possible to move the stability center as soon as we find a better function value, i.e., whenever

ρ decreases (“enough”), but we use a more conservative rule and we move it only when we find

the optimum within the current trust region, as this allows us to add the reverse local branching

constraint at step 19.

Also, we found it computationally convenient to introduce a specific modification: each time local

optimality is reached, we immediately drop all the stabilization constraints, i.e, we solve the ordinary

un-stabilized MP rather than the SMP, save for the reverse local branching constraints. This gives

us a valid global lower bound (step 15) outside of the regions excluded by R, in which we know

that no better solution lies: if this lower bound equals the upper bound, we have reached an optimal

solution and we can stop (step 17). If, instead θ̂ <Q(ŷ) then an optimality cut is added to the SMP.

If (QD) is unbounded, i.e., Q(ŷ) =∞, then a feasibility cut is added to master. An occurrence that

is specific of our treatment, as it cannot happen in the non-stabilized approach (save if (P) itself is

unfeasible) is that the SMP can be empty: feasibility cuts have proven all the solutions in the current

trust region to be unfeasible. In this case, we have to expand the trust region (increase κ). By adding

the corresponding reverse local branching constraint we ensure that the master problem will no

longer consider the previous trust region; hopefully, this makes the SMP easier to solve by reducing

its feasible region. If the trust region can no longer be expanded, then ρ is a global optimum: there

is no feasible solution outside the regions excluded by the reverse local branching constraints, and

these have been completely explored. Note that these regions may actually be empty themselves

(ρ=∞), which proves that (P) is.

It is important to remark that one of the most important steps of the algorithm is the updating

of κ (line 8). Different rules can be devised depending on the particular problem at hand. In Section

5 we will detail the particular rule used for the cell suppression problem.

It is easy to prove that the algorithm of Figure 2 solves the problem in a finite number of iterations:

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
10 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

Theorem 1. The stabilized Benders decomposition algorithm of Figure 2 solves (P) in a finite

number of iterations.

Proof. The algorithm only stops when it has determined an optimal solution, and it has proven

it to be such. At each iteration of the algorithm of Figure 2 one of the following four actions

is performed: (i) an optimality cut is added to the SMP; (ii) a feasibility cut is added to the

SMP; (iii) the stability center is changed; (iv) the radius of the trust region is increased. The

number of optimality and feasibility cuts is finite, and they are not repeated as in standard Benders

decomposition. The number of stability centers is finite (since Y is a combinatorial bounded set),

and they are not repeated because of the new optimality and feasibility cuts, and reverse local

branching constraints added to the master. The different values taken by the radius of the trust

region are also finite, and never repeated for a given stability center, since it is a monotonically

increasing sequence bounded by nc (line 8 of the algorithm). (Even more: the values of κ are never

repeated for all the stability centers if the optional reset of line 21 is not applied). Therefore, the

algorithm will eventually stop with an optimal solution. �

Of course, the algorithm can be easily extended to produce ε-optimal solutions for every fixed

ε > 0, and a number of other practical improvements is also possible such as judicious removal of

cuts from I and J . The interested reader can refer to Ackooij et al. (2016) for a comprehensive

theoretical analysis of stabilized Benders decompositions algorithms.

4. Application to data privacy: the cell suppression problem

National statistical agencies (NSAs) work with two types of data: microdata and tabular data.

Microdata files contain records of individuals or respondents (persons or enterprises) with attributes.

For instance, a national census might collect attributes such as age, address, salary, etc. Tabular data

is obtained by crossing two or more categorical variables of a microdata file. For each cell, the table

may report either the number of individuals that fall into that cell (frequency tables) or information

about another variable (magnitude tables). Tables contain summarized data from microdata files

and are the most common form for disseminating information of NSAs. Although tabular data

may be thought to be automatically anonymized since it reports aggregated information for several

respondents, there is a disclosure risk of individual information. Figure 3 (from Castro (2007))

illustrates this situation with a simple case. The left table (a) reports the salary of individuals by

age (row variable) and town (column variable), while table (b) provides the number of individuals.

If there was only one individual of age 51–55 in town t2, then any external attacker would know the

confidential salary of this person. For two or more individuals, any of them (or may be a coalition

of several respondents) could either disclose the other’s salary or compute a good estimation of the

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 11

t1 t2
...

51–55 ... 38000d 40000d ...
56–60 ... 39000d 42000d ...

...

(a)

t1 t2
...

51–55 ... 20 1 or 2 ...
56–60 ... 30 35 ...

...

(b)
Figure 3 Example of disclosure in tabular data. (a) Salary per age and town. (b) Number of individuals per age and

town. If there is only one individual in town t2 and age interval 51–55, then any external attacker knows the salary of

this single person is 40000d. For two individuals, any of them can deduce the salary of the other, becoming an internal

attacker.

Figure 4 Example of 1H2D table made of different subtables: “region”×“profession”,

“municipality”×“profession” and “zip code”×“profession”.

rest of respondents. Cells that require protection (such as that of the example) are named sensitive,

unsafe, primary or confidential cells.

Tables can be classified according to different criteria (Castro 2012). For our purposes, the most

important one is the table structure, since some protection methods can only be applied to particular

table structures. According to their structure, tables may be classified as single k-dimensional,

hierarchical or linked tables. A single k-dimensional table is obtained by crossing k categorical

variables. For instance, the tables of Figure 3 are two-dimensional (2D) tables. A hierarchical table is

a set of tables obtained by crossing some categorical variables, and some of them have a hierarchical

structure; that is, some tables are subtables of other tables. Hierarchical tables are relevant for

NSAs, since a significant percentage of the tables they release belong to this category. The simplest

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
12 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

hierarchical table is known as two-dimensional tables with one hierarchical variable, or, shortly,

1H2D tables. These tables are obtained by crossing a particular categorical variable with a set of,

say, h categorical variables that have a hierarchical relation; this results in a set of h two-dimensional

tables with some common cells. For instance, Figure 4 (from Castro (2012)) illustrates a particular

1H2D table. The left subtable shows number of respondents for “region”×“profession”; the middle

subtables is a “zoom in” of regions, providing the number of respondents in municipalities of each

region; finally the right subtables details the ZIP codes of municipalities. A linked table is any set

of tables obtained from the same microdata file. Note that, hierarchical and k-dimensional tables

are particular cases of linked tables. Marginal cells of any table contain the total sum of a row or

column.

The Cell Suppression Problem (CSP) (Kelly et al. 1992, Fischetti and Salazar 1999, 2001, Castro

2007) is a statistical disclosure method based on removing the minimum amount of information

(measured as a function of the number of cells or cell values) that makes the resulting table safe.

Let us consider a table with a set N of n cells, of values a= (ai)i∈N , that satisfy m linear relations

Aa= b, A∈Rm×n, and lower and upper bounds l≤ a≤ u. Given a set S ⊆N of sensitive cells (that

will be suppressed), CSP attempts to find a set K⊆N of additional cells to be suppressed (named

complementary cells) which guarantee that the minimum as and maximum as values that can be

recomputed for each cell s∈ S are out of a certain protection interval, that is,

as ≤ as− lpls and as ≥ as +upls s∈ S, (8)

where lpl ∈ R|S| and upl ∈ R|S| are the lower and upper protection levels of sensitive cells. After

suppression, the minimum and maximum values of each sensitive cell s∈ S can be obtained by the

solution of the two following linear optimization problems:

as = min
x

xs

s. to Ax= b
li ≤ xi ≤ ui i∈ S ∪K
xi = ai i 6∈ S ∪K

as = max
x

xs

s. to Ax= b
li ≤ xi ≤ ui i∈ S ∪K
xi = ai i 6∈ S ∪K .

(9)

The monolithic model for CSP, originally formulated in Kelly et al. (1992), considers two sets of

variables: (i) y ∈ {0,1}n, such that yi, i∈N , is 1 if cell i has to be suppressed, 0 otherwise; (ii) for

each primary cell s∈ S, two auxiliary vectors xl,s ∈Rn and xu,s ∈Rn, which represent cell deviations

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 13

(positive or negative) from the original a values. The resulting model is:

min
y,xl,xu

∑
i∈N wiyi

s. to Axl,s = 0

(li− ai)yi ≤ xl,si ≤ (ui− ai)yi i∈N
xl,ss ≤−lpls
Axu,s = 0

(li− ai)yi ≤ xu,si ≤ (ui− ai)yi i∈N
xu,ss ≥ upls


s∈ S

yi ∈ {0,1} i∈N .

(10)

The inequality constraints of (10) with both right- and left-hand sides impose bounds on xl,si and

xu,si when yi = 1, and prevent deviations in non-suppressed cells (i.e., yi = 0). Clearly, the constraints

of (10) guarantee that the solutions of the linear programs (9) will satisfy (8).

The formulation (10) of CSP is a very large MILP problem with n binary variables, 2n|S| continu-

ous variables and 2(m+2n)|S| constraints. For instance, for a table of 4000 cells, 1000 sensitive cells,

and 2500 linear relations, the formulation has 8000000 continuous variables, 4000 binary variables,

and 21000000 constraints. Solving it with general-purpose MILP solvers, even if state-of-the-art, is

impractical even for tables of moderate size. However, the structure of (10) is ideal for applying

the (stabilized) Benders decomposition algorithms of the previous sections. It is worth noting that,

unlike ours, which is based in the algorithm of Figure 2, the approach of Fischetti and Salazar (1999,

2001) embedded Benders cuts within a branch-and-cut algorithm.

The Stabilized Master Problem for CSP can be written as

miny
∑

i∈N wiyi

s. to ys = 1 s∈ S
yi ∈ {0,1} i∈N
v̄>y≥ β̄ (v̄, β̄)∈J
(6) , (7)

(11)

where v̄ and β̄ are the left and right hand sides of the feasibility cuts. In our case, for obvious reasons

we call them protection or infeasibility cuts. Note that our problem only involves infeasibility cuts,

since variables xl,s and xu,s of (10) do not appear in the objective function. We also remark that

sensitive cells are always suppressed even for J = ∅.

In order to guarantee that deviations xl,s and xu,s satisfy the first group of constraints of (10)

and that, therefore, the suppression pattern yi, i ∈ N is safe, we solve a Benders subproblem for

each primary cell s ∈ S. Since variables xl,s and xu,s have no cost in (10), the subproblems can be

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
14 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

reduced to a feasibility problem. Dropping the index s∈ S to simplify the notation, the subproblems

for lower and upper protection of a sensitive cell are, respectively,

minx 0
s. to Ax= 0

xi ≥ (li− ai)yi i∈N
xi ≤ (ui− ai)yi i∈N
xs ≤−lpls

(12)

maxx 0
s. to Ax= 0

xi ≥ (li− ai)yi i∈N
xi ≤ (ui− ai)yi i∈N
xs ≥ upls .

(13)

Alternatively, (12) and (13) can be formulated as

−lpls ≥minx xs
s. to Ax= 0 [λ]

xi ≥ (li− ai)yi i∈N [µl]
xi ≤ (ui− ai)yi i∈N [µu]

(14)

upls ≤maxx xs
s. to Ax= 0 [λ]

xi ≥ (li− ai)yi i∈N [µl]
xi ≤ (ui− ai)yi i∈N [µu] ,

(15)

where for future reference we indicate the Lagrange multipliers (dual variables) λ ∈ Rm, µl ∈ Rn

and µu ∈ Rn of each group of constraints. Problems (14) and (15) clearly have always an optimal

solution, as x= 0 (no deviation) is feasible, and they are not unbounded since −∞< ls−as ≤ xs ≤

us− as <∞. The linear dual of (14) is

maxλ,µ
∑

i∈N [(li− ai)µli− (ui− ai)µui]yi

s. to A>λ+µl−µu = es
µl ≥ 0 , µu ≥ 0 ,

(16)

where es is the s-th column of the identity matrix. The lower/upper protection level of primary cell

s is satisfied if

−lpls ≥
∑

i∈N [(li− ai)µli− (ui− ai)µui]yi (17)

upls ≤
∑

i∈N [−(li− ai)µli + (ui− ai)µui]yi . (18)

If (17) and (18) hold for all s ∈ S, then the suppression pattern y guarantees lower and upper

protection levels. If, for some s∈ S, one among (17) and (18) is not satisfied, then the corresponding

cut is added to J .

(Stabilized) Benders decomposition applied to CSP iteratively solves the SMP (11) in variables

y and provides a suppression pattern. The protection is checked by solving 2|S| subproblems, one

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 15

lower and one upper per primary cell. If all ones are protected, then the suppression pattern is

optimal; otherwise, one or more feasibility cuts are added to the SMP, which is solved again.

As shown by the next proposition, it is equivalent to either use (12)–(13) (the standard Benders

subproblems) or (14)–(15) to compute the feasibility cuts:

Proposition 1. The Benders feasibility cuts provided by subproblems (12)–(13) are equivalent

to those obtained with (14)–(15).

Proof. We only prove the result for the lower protection case, as the upper protection one is

analogous. The linear dual of (12) has variables λ̃ ∈ Rm, µ̃l ∈ Rn, µ̃u ∈ Rn, and µ̃s ∈ R, and boils

down to
maxλ̃,µ̃ lplsµ̃s +

∑
i∈N [(li− ai)µ̃li− (ui− ai)µ̃ui]yi

s. to A>λ̃+ µ̃l− µ̃u− esµ̃s = 0
µ̃l ≥ 0 , µ̃u ≥ 0 , µ̃s ≥ 0

(19)

Because the right-hand-side of the equality constraints is 0, the all-0 solution is feasible. Hence, an

unbounded dual ray is associated to any feasible solution with positive objective function value.

The corresponding feasibility cut is

lplsµ̃s +
∑

i∈N [(li− ai)µ̃li− (ui− ai)µ̃ui]yi ≤ 0 . (20)

In the extreme ray, µ̃s = 0 cannot happen, otherwise it would be an extreme ray also for the dual of

(12) with the constraint xs ≤−lpls removed, which would therefore be empty, which is not possible

because x = 0 is feasible. Hence, µ̃s > 0: dividing (20) by µ̃s, and defining λ = λ̃/µ̃s, µl = µ̃l/µ̃s,

µu = µ̃u/µ̃s we get (17). Applying in reverse this change of multipliers, i.e., multiplying λ, µl, µu by

an arbitrary µ̃s > 0, we get (20) from (17). �

The previous discussion has highlighted the well-known fact that there can be multiple ways

to generate Benders cuts. As mentioned in §1, the standard Benders cuts generated may not be

(indeed, often they are not) the most effective, and some research has been devoted to develop

alternatives. For instance, Fischetti et al. (2010) proposes a selection criteria for Benders cuts based

on the correspondence between minimal infeasible subsystems of an infeasible linear optimization

problem (Gleeson and Ryan 1990) and the vertices of the so-called alternative polyhedron. This

boils down to adding a normalization constraint to the Benders subproblems. In our case (limiting

as usual the discussion to the lower protection case, as the upper protection one is analogous) this

leads to
maxλ,µ lplsµs +

∑
i∈N [(li− ai)µli− (ui− ai)µui]yi

s. to A>λ+µl−µu− esµs = 0
µl ≥ 0 , µu ≥ 0 , µs ≥ 0∑

i∈N (wliµ
l
i +wui µ

u
i) +w0µs = 1 ,

(21)

i.e., adding to (19) a normalization constraint in arbitrary weights wl, wu, and w0. This makes the

dual subproblem always bounded, and therefore easier to solve with any LP algorithm, in particular

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
16 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

interior-point methods that often have numerical issues with unbounded instances. Also, a wise

choice of the weights may provide deeper Benders cuts. The primal subproblem (the dual of (21))

is
minα,x α
s. to Ax= 0

xi +wliα≥ (li− ai)yi i∈N
xi−wui α≤ (ui− ai)yi i∈N
xs−w0α≤−lpls ,

(22)

which, thanks to the new variable α (the dual variable of the normalization constraint), is never

infeasible. Therefore, if α∗ ≤ 0, then (12) is feasible, i.e., cell s is protected, while if α∗ > 0 then (12)

is infeasible and the optimal solution of (21) provides a ray, thus a Benders feasibility cut.

5. Computational results

To empirically validate the efficiency of the proposed stabilized Benders decomposition for CSP, we

performed an extensive set of numerical experiments on a set of real-world general and synthetic

1H2D tables. Real-world general tables are standard instances used in the literature (Castro 2012,

Fischetti and Salazar 2001). Some of these real-world instances were discarded since they were

too large and difficult for all tested methods, i.e, no feasible solution was obtained within the

(one hour) time limit. Synthetic instances were obtained with a generator of random 1H2D tables

introduced in Castro (2007). This generator is governed by several parameters: the number of rows

in a subtable; the number of columns per subtable; the depth of the hierarchical tree; the minimum

and maximum number of rows with hierarchies for each subtable; and the probability for a cell

to be marked as sensitive. The 1H2D table generator is available from http://www-eio.upc.edu/

~jcastro/generators_csp.html. We considered asymmetric 1H2D instances, i.e., instances where

ui = a · li for all i ∈ N , the asymmetry parameter being a = 5. A total of 48 randomly 1H2D

instances and 15 real-world tables were considered. The 48 1H2D tables were obtained by running

the generator with all the parameters fixed, except three: the number of rows per subtable (r

∈ {40,50,60,70}), the number of columns per subtable (c ∈ {50,60,70,80}) and the percentage of

sensitive cells (s ∈ {5,10,15}). Tables 1 and 2 report the characteristics of 1H2D synthetic and real

instances respectively: the number of cells (“n”), the number of sensitive cells (“s”), the number of

table relations (“m”) and the number of non zero coefficients in linear constraints (“nz”). Hierarchical

synthetic tables are identified by the particular combination of parameters, i.e., r-c-s.

The stabilized Benders approach for CSP was implemented in C++ (GNU g++ version 4.5.1)

using the state-of-the-art solver CPLEX 12.5 for the solution of the SMP and the subproblems.

The trust region radius κ, one of the most influential parameters of the algorithm of Figure 2,

took the initial value of 0.01|S| and it was sequentially increased at line 8 of the algorithm, taking

values κ ∈ {0.02|S|,0.5|S|, |S|}, as this particular sequence was empirically found to be the most

http://www-eio.upc.edu/~jcastro/generators_csp.html
http://www-eio.upc.edu/~jcastro/generators_csp.html

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 17

Instance n s m nz
40-50-10 7242 705 346 14637
40-50-5 7242 352 346 14637
40-60-10 10248 1002 412 20679
40-60-5 10248 501 412 20679
40-70-10 13916 1365 480 28045
40-70-5 13916 682 480 28045
40-80-10 11583 1136 467 23409
40-80-5 11583 568 467 23409
50-50-10 9639 940 393 19431
50-50-5 9639 470 393 19431
50-60-10 13725 1344 469 27633
50-60-5 13725 672 469 27633
50-70-10 9514 931 418 19241
50-70-5 9514 465 418 19241
50-80-10 17658 1736 542 35559
50-80-5 17658 868 542 35559
60-50-5 13923 680 477 27999
60-60-5 15494 759 498 31171
60-70-5 16685 819 519 33583
60-80-5 19926 980 570 40095
70-50-5 13515 660 469 27183
70-60-5 14945 732 489 30073
70-70-5 18247 896 541 36707
70-80-5 24786 1220 630 49815
40-50-15 7242 1057 346 14637
40-60-15 10248 1503 412 20679
40-70-15 13916 2047 480 28045
40-80-15 11583 1704 467 23409
50-50-15 9639 1410 393 19431
50-60-15 13725 2016 469 27633
50-70-15 9514 1396 418 19241
50-80-15 17658 2604 542 35559
60-50-10 13923 1360 477 27999
60-50-15 13923 2040 477 27999
60-60-10 15494 1518 498 31171
60-60-15 15494 2277 498 31171
60-70-10 16685 1638 519 33583
60-70-15 16685 2457 519 33583
60-80-10 19926 1960 570 40095
60-80-15 19926 2940 570 40095
70-50-10 13515 1320 469 27183
70-50-15 13515 1980 469 27183
70-60-10 14945 1464 489 30073
70-60-15 14945 2196 489 30073
70-70-10 18247 1792 541 36707
70-70-15 18247 2688 541 36707
70-80-10 24786 2440 630 49815
70-80-15 24786 3660 630 49815

Table 1 Characteristics of synthetic 1H2D instances.

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
18 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

Instance n s m nz
hier13x13x13a 2197 108 3549 11661
hier13x13x13b 2197 108 3549 11661
hier13x13x13c 2197 108 3549 11661
hier13x13x13d 2197 108 3549 11661
hier13x13x13e 2197 112 3549 11661
hier13x13x7d 1183 75 1443 5369
hier13x7x7d 637 50 525 2401
hier16 3564 224 5484 19996
hier16x16x16a 4096 224 5376 21504
hier16x16x16b 4096 224 5376 21504
hier16x16x16c 4096 224 5376 21504
hier16x16x16d 4096 224 5376 21504
hier16x16x16e 4096 224 5376 21504
table4 4992 517 2464 19968
table5 4992 517 2464 19968

Table 2 Characteristics of real tables.

satisfactory one for this application. The optional reset of κ at step 21 of the algorithm after a

change of the stability center was not applied, as this led to faster convergence. We also tested

the following different methods for the Benders subproblems (for both upper and lower protection

subproblems):

• meth1: solve the (always feasible) primal subproblem (14);

• meth2: solve the (possibly unbounded) dual subproblem (19);

• meth3: solve the dual subproblem (19) but setting the finite target f(µ̃s, µ̃l, µ̃u) ≤

||∇f(µ̃s, µ̃l, µ̃u)||, where

f(µ̃s, µ̃l, µ̃u) = lplsµ̃s +
∑

i∈N [(li− ai)µ̃li− (ui− ai)µ̃ui]yi ,

which is an alternative way to the normalization constraint to make it bounded;

• meth4: solve the normalized subproblem (21), using as particular weights wli = wui = w0 = 1,

i∈N ;

• meth5: as in meth4 but replacing the normalization constraint with
∑

i∈N (wliµ
l
i + wui µ

u
i) +

w0µs ≤ 1.

All the above five different methods for subproblems, excluding meth2, were tested using the primal

simplex, dual simplex and barrier method of CPLEX. Meth2 was only solved with the primal and

dual simplex, since the barrier method had difficulties in providing an extreme ray on unbounded

instances.

All in all we obtained k ∈ K possible combinations depending on whether we used: 1) meth1,

meth2, meth3, meth4 or meth5 for the subproblems; 2) primal simplex, dual simplex, or barrier for

the subproblems; and 3) the classical Benders decomposition algorithm or the stabilized Benders

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 19

1.00 1.05 1.10 1.15 1.20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

q values

P
k
(q

)

meth1−classic

meth1−stabilized

meth2−classic

meth2−stabilized

meth3−classic

meth3−stabilized

meth4−classic

meth4−stabilized

meth5−classic

meth5−stabilized

(a) Primal simplex

1.00 1.05 1.10 1.15 1.20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

q values

P
k
(q

)

meth1−classic

meth1−stabilized

meth2−classic

meth2−stabilized

meth3−classic

meth3−stabilized

meth4−classic

meth4−stabilized

meth5−classic

meth5−stabilized

(b) Dual simplex

1.00 1.05 1.10 1.15 1.20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

q values

P
k
(q

)

meth1−classic

meth1−stabilized

meth3−classic

meth3−stabilized

meth4−classic

meth4−stabilized

meth5−classic

meth5−stabilized

(c) Barrier

Figure 5 Performance profiles for the different combinations based on upper bound

decomposition algorithm for the master problem—thus, |K| = 28. To select the best combination

we first evaluated the 48 synthetic instances; this amounted to 48 · 28 = 1344 executions. All these

runs were carried out on a Fujitsu Primergy RX300 server with two 3.33 GHz Intel Xeon X5680

CPUs (each CPU with 12 cores) and 144 GB of RAM, under a GNU/Linux operating system (Suse

11.4), without exploitation of multithreading capabilities. Default values were used for the CPLEX

parameters (including optimality gap), unless explicitly stated.

We compare the different combinations by means of performance profiles (Dolan and Moré 2002).

Quality measures were the value of the objective function and CPU time (thus, in both cases, the

lower, the better). Let Qik be the quality of the solution of instance i solved by combination k,

i.e., the best upper bound provided by the method or the CPU time obtained; in both cases, Qik is

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
20 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

q values

P
k
(q

)

meth1−classic

meth1−stabilized

meth2−classic

meth2−stabilized

meth3−classic

meth3−stabilized

meth4−classic

meth4−stabilized

meth5−classic

meth5−stabilized

(a) Primal simplex

0.0 0.5 1.0 1.5 2.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

q values

P
k
(q

)

meth1−classic

meth1−stabilized

meth2−classic

meth2−stabilized

meth3−classic

meth3−stabilized

meth4−classic

meth4−stabilized

meth5−classic

meth5−stabilized

(b) Dual simplex

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

q values

P
k
(q

)

meth1−classic

meth1−stabilized

meth3−classic

meth3−stabilized

meth4−classic

meth4−stabilized

meth5−classic

meth5−stabilized

(c) Barrier

Figure 6 Performance profiles for the different combinations based on CPU time

always strictly positive for CSP. The performance ratio is thus defined as

v(i, k) =Qi,k/min{Qi,k : k ∈K} ,

and the (cumulative) distribution function Pk(q) : [1,∞)→ [0,1] is defined as

Pk(q) = | {i∈ I : v(i, k)≤ q} |/| I | , q≥ 1 ,

where I is the set of instances.

Figures 5 and 6 show different performance profiles based on solution quality and total CPU time,

respectively. Each figure contains three subfigures, depending on the solver used for the subproblems

(primal, dual or barrier). Each subfigure shows performance profiles for the combinations “method”-

”master”, where master is either “classic” and “stabilized”; for the reasons alluded to above, this

amounts to 10 combinations for simplex approaches and 8 for the barrier one.

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 21

1.00 1.05 1.10 1.15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

q values

P
k
(q

)

meth1−stabilized−barrier

meth1−stabilized−dual

meth5−stabilized−primal

(a) Upper bound

0 20 40 60 80 100 120

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

q values

P
k
(q

)

1−stabilized−barrier

1−stabilized−primal

4−classic−dual

(b) CPU time

Figure 7 Performance profiles for the most effective combinations based on upper bound and CPU time

In terms of upper bounds, we conclude from Figure 5 that the best choices are: meth5-stabilized

and meth1-stabilized for primal simplex; meth1-stabilized and meth4-stabilized for dual simplex; and

clearly meth1-stabilized for barrier. All the best options use the stabilized Benders decomposition.

In terms of total CPU time we can see in Figure 6 that the fastest variants were: meth1-stabilized,

meth5-classic and meth5-stabilized for primal simplex; meth4-classic for simplex dual; and, by far,

meth1-stabilized for barrier.

Figure 7 shows a last performance profile using only the best combinations according to the

previous performance profiles in Figures 5 and 6. Clearly, stabilized Benders decomposition with

meth1 using the barrier for the subproblems is the fastest combination and provides the best upper

bound for more than 90% of the instances. This particular combination was thus selected to make

a comparison with current state-of-the-art solvers.

To shed more light on the global effect of stabilization, Table 3 reports average numbers of gap,

Benders iterations, and CPU time for all the instances of previous profiles, differentiating by method

and Benders variant (either classical or stabilized). According to the table, the stabilized version

always outperformed the corresponding classical one. And the less efficient is classical Benders

(meth4 and meth5), the most useful is stabilization. Meth1 is in general superior to the other ones,

whether stabilized or not; this is consistent with the profiles of Figure 7, and supports our choice of

meth1-stabilized as the best combination.

Being average numbers, the results of Table 3 can be affected by outliers (which explain why the

average CPU times are large); and in addition they don’t allow to clearly understand the interaction

between stabilization and normalization in variants meth3, meth4 and meth5. To have a clearer

picture, detailed results for four of the larger instances, that we have chosen as representatives of

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
22 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

gap iter. CPU

meth1 classic 5.60% 94 3007
stabilized 1.50% 137 2778

meth2 classic 6.19 % 30 3419
stabilized 2.45 % 43 3409

meth3 classic 6.19 % 26 3489
stabilized 2.94 % 32 3542

meth4 classic 16.58 % 102 3492
stabilized 6.05 % 190 3569

meth5 classic 27.01 % 81 3319
stabilized 3.96 % 137 3290

Table 3 Average gap, average Benders iterations and average CPU time for all the synthetic instances, for the five

methods and two Benders variants (either classical or stabilized).

the trends we have identified, are reported in Table 4, for meth1, and for the normalized meth3,

meth4 and meth5. The information given is: number of Benders iterations (“it”), final upper bound

computed (“UB”), total CPU time (“Total time”)—with a time limit of one hour, average time of

solution of master, lower protection subproblem, and upper protection subproblem per Benders

iteration (respectively, “Master/it time”, “LowS/it time” and “UpS/it time”), and optimality gap of

reported solution (“gap”). From Table 4 we conclude:

• In some cases meth1 (i.e., only stabilization) significantly reduced the number of Benders iter-

ations compared to the other methods that include stabilization and normalization (e.g., instance

70-80-10 required 11, 128 and 133 Benders iterations for meth3, meth4 and meth5, but only seven

for meth1). It is also worth noting that in the first two instances meth5 was the best approach in

terms of Benders iterations, that is, normalization was very useful for the quality of generated cuts.

• Even when meth1 performed more iterations (such as in instance 50-70-10: 62 iterations of

meth1 vs nine iterations of meth5), the time of subproblems was much lower. This seems to indicate

that the normalization constraint makes subproblems (in all cases) much more difficult, at least for

CSP. In addition, the upper subproblems are consistently harder than the lower ones for all the

methods.

• In general the total CPU time is dominated by the solution of subproblems, the master time

is not significant. This readily explains why normalization was not helpful for CSP, since it made

subproblems much harder. While there are clear differences in the CPU time of masters of the

different methods, they end up having a negligible effect when compared to subproblem time.

It is worth noting that the normalization had much less effect than what reported in other studies

(Fischetti et al. 2010). A possible factor explaining this is that normalization has mostly be proven

useful when using Benders cuts in the context of a branch-and-bound framework, i.e., to also cut

fractional solutions. Since we adopt a more traditional Benders approach where cuts are only applied

to the integer variables, normalization may play a lesser role, as indeed it turned out to.

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 23

Instance meth it UB Total Master/it LowS/it UpS/it gap
time time time time

50-70-10

1 62 175330 161.75 0.8381 0.129 1.642 0.00%
3 74 175329 2650.08 0.3872 1.639 33.786 0.00%
4 363 181794 — 0.0561 0.822 8.333 3.56%
5 9 177168 — 0.0667 0.584 399.548 1.04%

40-50-15

1 20 245325 33.87 0.0475 0.060 1.586 0.00%
3 18 245325 249.84 0.0833 0.732 13.064 0.00%
4 341 246750 — 0.0188 1.077 8.951 0.58%
5 13 245326 132.79 0.0608 0.500 9.654 0.00%

70-80-10

1 7 614907 71.03 0.0514 0.813 9.283 0.00%
3 11 614894 2722.73 0.1036 22.885 224.532 0.00%
4 128 664024 — 0.0641 3.746 23.061 7.39%
5 133 617008 — 0.0623 3.241 22.505 0.34%

70-80-15

1 4 752873 57.12 0.1475 2.003 12.130 0.01%
3 11 752888 — 0.1391 22.622 340.705 0.01%
4 67 753984 — 0.0791 7.187 45.073 0.15%
5 66 797019 — 0.0809 6.269 46.929 5.54%

— Time limit reached.
Table 4 Detailed information of stabilized Benders for four representative instances and methods 1, 3, 4 and 5.

Table 5 reports a comparison between stabilized Benders meth1 using the barrier solver

(meth1-stabilized-barrier, selected as the best variant from the previous analysis) and a recent

version—dated from 2014—of the state-of-the-art approach initially developed in Fischetti and

Salazar (1999, 2001), which embeds Benders cuts within a branch-and-cut tree. This method for

CSP, also implemented in C/C++, is included in the τ -Argus software, which is widely used by

most European NSAs (de Wolf et al. 2014). We note that this approach also uses CPLEX 12.5, but

only for the solution of the different LP subproblems. If it also exploited the branch-and-cut tree of

CPLEX, instead of generating its own tree, its performance would likely increase, at the expense of

using callbacks. Therefore, a side benefit of our approach is that it can fully exploit CPLEX as a

black-box. Table 5 shows the gap and CPU time for stabilized Benders (“A”) and the approach of

Fischetti and Salazar (1999, 2001) (“B”). The last two columns report the difference in gap and CPU

time between both methods. A time limit of one hour was considered for all the runs. It is worth

remarking that both variants use the same primal heuristic (a standard procedure first described in

Kelly et al. (1992)), and therefore the differences are not due to the starting points. Both variants

behaved much worse without the heuristic.

Table 5 clearly shows that, for 1H2D tables, stabilized Benders was considerably more efficient.

The average gap for “A” was 0.87% whereas it was 2.51% for “B” within the same CPU time limit.

In average, stabilized Benders was 1.8 times faster than “B”; however, this result is heavily skewed

by the several instances reaching time limit. In several cases where “A” terminated before the time

limit (which “B” never did), the speedup reached and exceeded two orders of magnitude. In nine

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
24 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

meth1-stabilized- State-of-the-art Difference
barrier (A) CSP method (B) A-B

Instance gap A CPU A gap B CPU B ∆gap
40-50-10 0.00% 190.96 4.4% — -4.44%
40-50-5 1.42% — 1.7% — -0.25%
40-60-10 0.01% — 0.4% — -0.39%
40-60-5 0.83% — 6.3% — -5.48%
40-70-10 0.00% 2962.3 0.8% — -0.75%
40-70-5 2.08% — 1.7% — 0.36%
40-80-10 0.01% 3232.28 4.5% — -4.53%
40-80-5 1.17% — 4.4% — -3.26%
50-50-10 0.00% 3517.52 1.2% — -1.21%
50-50-5 3.90% — 2.7% — 1.22%
50-60-10 0.89% — 2.6% — -1.66%
50-60-5 0.95% — 5.9% — -4.94%
50-70-10 0.00% 184.29 1.2% — -1.18%
50-70-5 5.98% — † † †
50-80-10 0.01% 143.58 † † †
50-80-5 1.39% — 1.2% — 0.23%
60-50-5 2.64% — 10.9% — -8.27%
60-60-5 0.23% — 1.4% — -1.18%
60-70-5 3.01% — 7.0% — -4.04%
60-80-5 0.17% — 1.0% — -0.84%
70-50-5 6.74% — 15.6% — -8.87%
70-60-5 2.83% — 5.2% — -2.35%
70-70-5 0.18% — 0.7% — -0.57%
70-80-5 2.36% — † † †
40-50-15 0.00% 36.06 0.1% — -0.14%
40-60-15 0.00% 129.86 0.4% — -0.40%
40-70-15 0.00% 85.43 0.1% — -0.12%
40-80-15 0.00% 60.37 0.1% — -0.10%
50-50-15 0.01% 298.78 0.8% — -0.76%
50-60-15 0.00% 68.75 1.8% — -1.78%
50-70-15 0.01% 651.86 0.6% — -0.60%
50-80-15 0.01% 49.15 0.1% — -0.10%
60-50-10 0.00% 2282.89 3.1% — -3.05%
60-50-15 0.01% 185.2 0.3% — -0.28%
60-60-10 1.45% — 3.9% — -2.47%
60-60-15 0.00% 203.57 0.1% — -0.08%
60-70-10 0.24% — 1.2% — -0.92%
60-70-15 0.00% 30.14 0.0% — -0.05%
60-80-10 0.01% 230.2 † † †
60-80-15 0.01% 265.29 † † †
70-50-10 0.59% — 1.6% — -1.03%
70-50-15 0.00% 35.14 0.2% — -0.22%
70-60-10 2.46% — 0.8% — 1.67%
70-60-15 0.00% 129.71 1.9% — -1.86%
70-70-10 0.12% — † † †
70-70-15 0.01% 67.27 † † †
70-80-10 0.00% 73.42 † † †
70-80-15 0.01% 58.93 † † †
— Time limit reached
† Time limit reached without a feasible solution

Table 5 Comparison between stabilized Benders method 1 using the barrier solver (meth1-stabilized-barrier)

and the state-of-the-art method of Fischetti and Salazar (2001) for synthetic 1H2D instances.

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 25

meth1 state-of-the-art
stabilized) CSP method Difference A-B
barrier (A) (B)

Instance gap A gap B ∆gap
hier13x13x13a 98.86% 98.95% -0.09%
hier13x13x13b 28.92% 39.25% -10.33%
hier13x13x13c 40.41% 42.33% -1.92%
hier13x13x13d 63.16% † †
hier13x13x13e 42.10% 45.00% -2.90%
hier13x13x7d 54.08% † †
hier13x7x7d 17.25% 0.01% 17.24%
hier16 99.17% 99.13% 0.04%
hier16x16x16a 99.10% 99.09% 0.01%
hier16x16x16b 88.80% 88.65% 0.15%
hier16x16x16c 92.33% 92.67% -0.34%
hier16x16x16d 99.02% 99.12% -0.10%
hier16x16x16e 100.00% 100.00% 0.00%
table4 15.94% 11.84% 4.10%
table5 16.92% 11.06% 5.86%
† Time limit reached without a feasible solution

Table 6 Comparison between stabilized Benders method 1 using the barrier solver (meth1-stabilized-barrier)

and the state-of-the-art method of Fischetti and Salazar (2001) for the real tables.

of 48 instances (marked with †) the approach of Fischetti and Salazar (1999, 2001) did not find

a feasible solution within the time limit, whereas stabilized Benders always found a solution, and

most often of excellent quality. Only in four instances “B” outperformed “A”; in the remaining 44

instances, “A” was better.

Table 6 reports the same information for the real-world instances. CPU times are not reported,

since the time limit was reached in all the runs. In this case the behaviour of both approaches was

slightly different. In six instances (marked in bold) stabilized Benders improved the upper bound

with an average gap of 2.61%. On the other hand, in other six tables “B” outperformed “A” with

an average gap of 4.57%. However stabilized Benders computed a feasible solution within the limit

for all the instances, whereas “B” was not able to do it in two cases. In general, we can safely state

that stabilized Benders was competitive even for real-world instances.

Finally, we tried the Benders algorithm built-in in CPLEX 12.7 (CPLEX-Benders) using a set

of small 1H2D instances. It is worth noting that, although CPLEX-Benders is a state-of-the-art

implementation of Benders decomposition, it is tuned to be efficient for a wide class of general

problems, where optimality cuts can be relevant, while for CSP only feasibility cuts are generated.

In addition, we are not aware of which Benders acceleration strategies (Rahmaniani et al. 2017)

are implemented in CPLEX-Benders; this should be taken into account when comparing the results

with both codes. For this tests CPLEX was interfaced through AMPL, and we only considered

the CPLEX solution time, discarding the model generation time. Table 7 reports the comparison

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
26 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

meth1-stabilized- CPLEX-Benders CPLEX-Benders
barrier strategy 1 strategy 0

CPU gap CPU gap CPU time gap
20-25-15 51.44 0.01% — 0.09% — 0.48%
20-30-15 2297.58 0.01% — 1.05% — 1.32%
20-35-15 163.14 0.01% — 1.39% — 0.77%
25-25-15 — 0.03% — 6.22% — 0.35%
25-30-15 54.87 0.01% — 93.51% — 5.68%
25-35-15 43.61 0.00% — † — 94.98%
30-25-15 1128.73 0.01% — 0.34% — 0.33%
30-30-15 99.76 0.01% ‡ ‡ — 94.91%
30-35-15 568.42 0.01% ‡ ‡ ‡ ‡
† Time limit reached.
† No feasible solution was found within the time limit of 3600 seconds.
‡ Internal memory error provided by AMPL.

Table 7 Comparison between stabilized Benders method 1 using the barrier solver (meth1-stabilized-barrier)

and CPLEX-Benders for a set of small 1H2D instances.

between stabilized Benders meth1 using the barrier solver and CPLEX-Benders. The decision on

the distribution of the continuous variables in the different Benders subproblems was determined

automatically by CPLEX (strategy 0, where all continuous variables are in a single Benders sub-

problem) and by the user (strategy 1, in this case the continuous variables for each sensitive cell

went to different Benders subproblems). As the results show, stabilized Benders is, by far, superior

to CPLEX-Benders. CPLEX-Benders always exhausted the time limit (3600 seconds). It is worth

noting that one instance was solved by stabilized Benders with a 0.00% in less than one minute,

whereas CPLEX-Benders only provided a 94.98% gap solution.

6. Conclusions

We presented computational results for a new variant of Benders decomposition for 0-1 prob-

lems based on a stabilization of the master problem through local branching—or trust region—

constraints. Although the method is just one of those theoretically analyzed in Ackooij et al. (2016),

this particular variant was actually developed before that the deeper analysis of Ackooij et al. (2016)

was developed, and actually inspired a significant part of the results in that paper. Besides, while

Ackooij et al. (2016) was focused on a general theoretical convergence framework, with compara-

tively little attention devoted to the computational part, in this paper the method has been very

thoroughly tested against state-of-the-art ones for a specific, challenging and very large real-world

application, the Cell Suppression Problem in the field of data privacy. Our results clearly showed

that stabilization significantly improves the performances of Benders decomposition. In particular,

stabilization made subproblems much easier compared to “normalization” in Benders subproblems,

which has been reported in the past to be useful for performances of the non-stabilized Benders

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 27

method. Also, stabilized Benders was way superior to the Benders decomposition built-in in the

latest version of CPLEX.

For structured 1H2D tables, stabilized Benders was always superior to the state-of-the-art method

for CSP (which embeds Benders cuts within a branch-and-cut tree). For real-world instances, the two

approaches traded blows, each one outperforming the other in roughly half of the instances; however

stabilized Benders was the only one able to provide a feasible solution within the one hour time limit

for all the real-world instances, which is surely a desirable feature for practitioners looking forward to

using this approach. It is worth mentioning that these instances are so challenging that both methods

provided poor solutions—with large gaps—after one hour of CPU time for most of the runs. Clearly,

then, more work is needed in order to tackle these hard real-world instances. Several approaches are

possible, such as using the conceptual tools developed in Ackooij et al. (2016) to diminish the cost of

the subproblems, and/or testing other forms of stabilization. Clearly, parallelization of subproblems’

solution is also a promising venue. All in all, we believe that stabilization of Benders decomposition

can be a useful tool for tackling hard structured 0-1 MILP problems, of which CSP is just one of

very many relevant examples.

Acknowledgments

We thank the anonymous reviewers for numerous suggestions and pointing out related references

which allowed us to improve (and to fix some inaccuracies in) the original manuscript.

References
W. van Ackooij, A. Frangioni, and W. de Oliveira. Inexact stabilized Benders’ decomposition approaches

with application to chance-constrained problems with finite support. Computational Optimization and

Applications, 65(3), 637–669, 2016.

N. Boland, M. Fischetti, M. Monaci, and M. Savelsbergh. Proximity Benders: a decomposition heuristic for

stochastic programs, Journal of Heuristics, 22, 181-198, 2016.

H. Ben Amor, J. Desrosiers, and A. Frangioni. On the choice of explicit stabilizing terms in column generation.

Discrete Applied Mathematics, 157, 1167–1184, 2009.

W. Ben-Ameur and J. Neto. Acceleration of cutting-plane and column generation algorithms: Applications

to network design. Networks, 49, 3–17, 2007.

J.F Benders. Partitioning procedures for solving mixed-variables programming problems. Computational

Management Science, 2, 3–19, 2005. English translation of the original paper appeared in Numerische

Mathematik, 4, 238–252, 1962.

J.R. Birge and F. Louveaux. Introduction to Stochastic Programming, 1997, New York, Springer.

O. Briant, C. Lemaréchal, Ph. Meurdesoif, S. Michel, N. Perrot, and F. Vanderbeck. Comparison of bundle

and classical column generation. Mathematical Programming, 113(2), 299–344, 2008.

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
28 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

J. Castro. A shortest paths heuristic for statistical disclosure control in positive tables. INFORMS Journal

on Computing, 19, 520–533, 2007.

J. Castro. Recent advances in optimization techniques for statistical tabular data protection. European

Journal of Operational Research, 21, 257–269, 2012.

J. Castro, S. Nasini, and F. Saldanha-da-Gama. A cutting-plane approach for large-scale capacitated multi-

period facility location using a specialized interior-point method. Mathematical Programming, 163,

411–444, 2017.

J. Castro and A. Via. Revisiting interval protection, a.k.a. partial cell suppression, for tabular data. In J.

Domingo-Ferrer and M. Péjic-Bach editors, Privacy in Statistical Databases. Lecture Notes in Computer

Science 9867, 3–14, 2016, Switzerland, Springer.

A.M. Costa. A survey on Benders decomposition applied to fixed-charge network design problems. Computers

& Operations Research, 32, 1429–1450, 2005.

C. d’Ambrosio, A. Frangioni, L. Liberti, and A. Lodi. On Interval-Subgradient Cuts and No-Good Cuts.

Operations Research Letters, 38, 341–345, 2010.

P.-P. de Wolf, A. Hundepool, S. Giessing, J.J. Salazar, and J. Castro, τ -Argus User’s Manual, Statistics

Netherlands, 2014. Available online at http://neon.vb.cbs.nl/casc/Software/TauManualV4.1.pdf.

E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance profiles. Mathematical

Programming, 91, 201–13, 2002.

M. Fischetti, I. Ljubić, and M. Sinnl. Benders decomposition without separability: a computational study for

capacitated facility location problems, European Journal of Operational Research, 253, 557–569, 2016.

M. Fischetti, I. Ljubić, and M. Sinnl. Redesigning Benders decomposition for large-scale facility location.

Management Science, 63, 2146–2162, 2017.

M. Fischetti and A. Lodi. Local Branching. Mathematical Programming, 98, 23–47, 2003.

M. Fischetti and J.J. Salazar. Models and algorithms for the 2-dimensional cell suppression problem in

statistical disclosure control. Mathematical Programming, 84, 283–312, 1999.

M. Fischetti and J.J. Salazar. Solving the cell suppression problem on tabular data with linear constraints.

Management Science, 47, 1008–1026, 2001.

M. Fischetti and D. Salvagnin. An in-out approach to disjunctive optimization. Lecture Notes in Computer

Science, 6140, 136–140, 2010.

M. Fischetti, D. Salvagnin, and A. Zanette. A note on the selection of Benders cuts. Mathematical Program-

ming, 124, 175–182, 2010.

A. Frangioni and B.Gendron. A stabilized structured Dantzig-Wolfe decomposition method. Mathematical

Programming, 140, 45–76, 2013.

http://neon.vb.cbs.nl/casc/Software/TauManualV4.1.pdf

Author: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 29

A.M. Geoffrion. Generalized Benders decomposition. Journal of Optimization Theory and Applications, 10,

238–260, 1972.

J. Gleeson and J. Ryan. Identifying minimally infeasible subsystems of inequalities. ORSA Journal on Com-

puting, 2, 61–63, 1990.

J.B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms vol. II, 1996, Berlin,

Springer.

A. Hundepool, J. Domingo-Ferrer, L. Franconi, S. Giessing, E. Schulte Nordholt, K. Spicer, and P.-P. de

Wolf. Statistical Disclosure Control, 2012, Chichester, Wiley.

J.P. Kelly, B.L. Golden, and A.A. Assad. Cell suppression: disclosure protection for sensitive tabular data.

Networks, 22, 28–55, 1992.

T.L. Magnanti and R. Wong. Accelerating Benders decomposition: algorithmic enhancement and model

selection criteria. Operations Research, 29, 464–484, 1981.

A. Nasri, S.J. Kazempour, A.J. Conejo, and M. Ghandhari. Network-constrained AC unit commitment under

uncertainty: a Benders’ decomposition approach. IEEE Transactions on Power Systems, 31, 412–422,

2016.

R. Rahmaniani, T.G. Crainic, M. Gendreau, and W. Rei. The Benders decomposition algorithm: A literature

review. European Journal of Operational Research, 259, 801–817, 2017.

W. Rei, J.F. Cordeau, M. Gendreau, and P. Soriano. Accelerating Benders decomposition by local branching.

INFORMS Journal on Computing, 21, 333–345, 2009.

T. Santoso, S. Ahmed, M. Goetschalckx, and A. Shapiro. A stochastic programming approach for supply

chain network design under uncertainty. European Journal of Operational Research, 167, 96–115, 2005.

M. Tahanan, W. van Ackooij, A. Frangioni, and F. Lacalandra. Large-scale Unit Commitment under uncer-

tainty. 4OR, 13(2), 115–171, 2015.

L. Willenborg and T. de Waal. Elements of Statistical Disclosure Control. Lecture Notes in Statistics 155,

2000, New York, Springer.

G. Zakeri, A.B. Philpott, and D.M. Ryan. Inexact cuts in Benders decomposition. SIAM Journal on Opti-

mization, 10, 643–657, 2000.

	Introduction
	Benders decomposition
	Stabilizing Benders decomposition through local branching constraints
	Application to data privacy: the cell suppression problem
	Computational results
	Conclusions

