
A Library for Continuous Convex Separable Quadratic

Knapsack Problems

Antonio Frangioni
Dipartimento di Informatica, Università di Pisa

Largo B. Pontecorvo 1, 56127 Pisa – Italy
frangio@di.unipi.it)

Enrico Gorgone Dipartimento di Elettronica Informatica e Sistemistica

Università della Calabria, 87036 Rende (CS) – Italy
egorgone@deis.unical.it

Abstract

The Continuous Convex Separable Quadratic Knapsack problem (CQKnP) is an
easy but useful model that has very many different applications. Although the problem
can be solved quickly, it must typically be solved very many times within approaches
to (much) more difficult models; hence an efficient solution approach is required. We
present and discuss a small open-source library for its solution that we have recently
developed and distributed.

Keywords: Quadratic Programming, Continuous Nonlinear Resource Allocation Prob-

lem, Lagrangian Relaxation, Optimization Software

1 Introduction

We consider the Continuous Quadratic Knapsack problem where a convex separable quadratic
objective function has to be minimized over a set defined by a single linear constraint plus
box constraints. Upon appropriate scaling, a formulation is

(CQKnP) min
{

∑n

j=1
cjxj + djx

2
j :

∑n

j=1
xj = v , aj ≤ xj ≤ bj j = 1, . . . , n

}

where dj ≥ 0, aj ∈ R ∪ {−∞}, bj ∈ R ∪ {+∞}, and aj ≤ bj ; alternatively, the constraint
can be a ≤ one. This is a particular (but representative) case of the Continuous Nonlinear
Resource Allocation Problem that has very many and diverse applications [6], among which
Lagrangian heuristics for ramp-constrained Unit Commitment problems in electrical power

1

production [3], 1-D sensor placement problems [2], and deflected subgradient approaches [1]
for Multicommodity Flow Problems [4].

One of the two main classes of approaches to (CQKnP) [6] is Lagrangian relaxation: the
dual function

φ(µ) = vµ+
∑n

j=1
min

{

(cj − µ)xj + djx
2
j : aj ≤ xj ≤ bj

}

is piecewise-convex with at most 2n pieces, and its maximization (subject to a sign constraint
if the knapsack constraint is a ≤ one) is well-known to solve (CQKnP). Assuming for sim-
plicity that dj > 0 and −∞ < aj < bj < +∞ hold for each j = 1, . . . , n (but the argument
can be generalized), the maximization can be performed in O(n) once the 2n breakpoints
γ−

j = 2ajdj + cj and γ+

j = 2bjdj + cj of φ (the values of µ where the unconstrained minimizer
of each single-variable subproblem, x∗

j (µ) = (µ− cj)/2dj, “hits the boundary” of the feasible
region) are sorted; thus a solution of (CQKnP) can be obtained in O(n logn). This could
be brought down to O(n) by finding the critical interval [α, β] (its extremes being some of
the above breakpoints) such that φ′(α) < 0 and φ′(β) > 0 by a search procedure based on
selecting the median index, which can be found without sorting [6]; however, the large con-
stants hidden in the “O” notation are likely to make this competitive only for really huge-size
instances, which are usually not particularly relevant since (CQKnP) is (repeatedly) solved
as a (sub-)subproblem of much harder problems that are then, necessarily, not huge-sized.

While the implementation of this approach is not particularly difficult, it is not entirely
straightforward either. We found ourselves in the need of using this in different applications
[3, 2], and there was no useable code available anywhere. Because the implementation effort
required for such a solver, while not huge, is not negligible, especially if one wants to have
a “complete” and efficient solution, we developed an open-source C++ library that is now
available at

http://www.di.unipi.it/optimize/Software/CQKnP.html

This short note describes the library, its structure and its results.

2 The Library

As in several other cases [5, 7], the library is structured around one abstract interface class.
In our case this is CQKnPClass, which provides all means for handling problem instances
and solving them. The approach is the straightforward “the object is the instance” one:
each object of the class (that has a void constructor in order to allow arrays) contains one
instance. The data can be loaded at once either from memory (method LoadSet) or from
file (method ReadInstance), but later on any element can be independently changed: linear
and quadratic cost coefficients (methods ChgLCosts and ChgQCosts, respectively), lower
and upper bounds (methods ChgLBnds and ChgUBnds, respectively), and the “volume” v
of the knapsack (method ChgVlm). The methods can address any subset, not necessarily
contiguous, of the data and specialized methods exist for changing single values. The data
can be queried back from the object, either in memory or onto a file, so that the caller need
not to keep a copy. The solution method SolveKNP reports status codes according to the
outcome; the optimal value and primal/dual optimal solutions can then be obtained.

2

The distribution of the library currently comes with three “concrete” classes, deriving
from CQKnPClass and therefore implementing the abstract interface. One is CQKnPCplex

which, as the name suggests, solves the problem by calling the C API of the general-purpose
MIQP solver Cplex (which is a commercial product, but currently free for academic pur-
poses). This is basically only useful as a tool to verify the correctness of alternative im-
plementations, as §3 shows. The other two classes are DualCQKnP and ExDualCQKnP, re-
spectively, and they implement the Lagrangian approach sketched above, in particular the
version using sorting, refereed to as “ranking” in [6, §3.1.1]. The difference between the
two is that DualCQKnP only solves “pure QP” instances of (CQKnP) where dj > 0 and
−∞ < aj < bj < +∞ hold for each j = 1, . . . , n; thereby it does not exactly implement the
interface, which allows to set dj = 0 and/or infinite bounds for some (or all) of the items.
However, by doing so it considerably simplifies the main logic of the dual optimization phase,
usually resulting in a somewhat faster algorithm as shown in §3. The ExDualCQKnP derives
from DualCQKnP, and therefore re-uses a large part of its implementation (in particular the
sorting procedures, described below), while extending it to complete handling of “mixed QP”
instances of (CQKnP) as the interface dictates, possibly at the cost of a slight performance
hit. There is also a fourth “testing” class CQKnPClone included in the library, whose meaning
and usefulness is described in §3.

As anticipated, the sorting routine is the crucial part of the approach, and therefore
it deserves specific attention. Different solutions have been tested, in particular whether
the values γ−

j and γ+

j that need be sorted are computed a-priori and stored in a vector
(thereby trading memory for speed) or re-computed each time a comparison is done from
the original data (thereby trading speed for memory); despite the possible impact on the
memory hierarchy, the former solution has shown to be consistently superior and it has
been adopted. The code automatically takes care of avoiding useless re-computations when
one instance is re-solved after some modification, such as sorting when only the volume
v changes. Furthermore, the code has two different sorting routines: a QuickSort and a
BubbleSort, which can be changed at any time with the method SetSort. The former is the
default and it is usually much faster, unless when “only a few things change” in which case
the vector of breakpoints is “almost sorted” already and the latter can be faster, as §3 shows.
As for the QuickSort routine, a macro (DualCQKnP_WHCH_QSORT in DualCQKnP.C) allows to
choose at compile time between the sort() routine of the C++ Standard Template Library
and a “hand-made” QuickSort that we developed which avoids recursive calls by using a
vector to hold a stack of indices. Somewhat surprisingly, the hand-made version was found
to be often slightly but noticeably faster. As all the code concerning sorting is implemented
in DualCQKnP and (almost) not touched in the derived ExDualCQKnP, the latter automatically
inherits all these options.

The distribution is completed by extensive documentation and two examples of main
files. One (Main.C) just reads one (CQKnP) instance (in the format of [2]) and solves the
corresponding problem. The second (MainRnd.C) instead randomly generates and solves on
the fly a set of (CQKnP) instances (whose characteristics can be controlled with a small set
of appropriate parameters) with two different solvers in order to cross-check the correctness
of both solvers and compare their performances. This has been used for the results in the
next section and may be useful to test alternative solution methods. In particular, one
could reasonably want to test “pegging” algorithms [6, §3.2], that have been reported to be

3

competitive. We only focussed on Lagrangian ones for three reasons: it is easier to derive
efficient reoptimization procedures for all possible changes of data in the problem, they allow
for both dj = 0 and some bounds to be infinite for the same j, which may be useful in some
applications, and they have a better complexity of O(n logn) (in our implementation, O(n)
in general) as opposed to O(n2) of pegging. Yet, “pegging” implementations could be easily
added to the library.

3 Computational Results and Conclusions

The computational results have been obtained on a PC sporting an Intel Core i7-2600 CPU
(3.40 GHz) with 8 Gb of RAM, running Ubuntu 11.04. All codes have been compiled with
GNU g++ 4.5.2 (with -O3 optimization option), and we have used version 12.2 of Cplex.

We have performed three set of tests. The first has been on randomly-generated (CQKnP)
instances, using MainRnd.C; a script file is included in the distribution to replicate the exact
set of instances used in our tests. If one of the two solvers to be checked is DualCQKnP

these are “pure QP” instances with dj > 0 and −∞ < aj < bj < +∞ for all j = 1, . . . , n;
otherwise, roughly 10% of the quadratic cost coefficients are zero and half of the bounds
are (±) infinite. All the data is uniformly drawn from intervals of length 100, except the
“volume” v that is uniformly drawn from (0, 1000]. Most instances are feasible, but unfeasible
ones do happen; also, it may happen that aj = bj for some j. Once one instance is generated,
it is solved 16 times: one as it is, the remaining ones changing a selectable percentage of the
data. All possible combinations of changes in costs, bounds and volume are tested twice.
We remark that we did not aim at making these instances and the testing methodology
particularly “realistic”; the aim of these experiments was primarily to check the correctness
of the library, and to get a sense of the computational impact of the available algorithmic
options.

The results of our experiments are reported in Table 1. Since the running times for a
single instance are short, which could create problems with the accuracy of timing routines,
we always solved and measured batches of instances; each entry of the table reports the
time for solving 1000 instances. We remark that this actually means 1000 solutions “from
scratch” and 15000 reoptimizations after changes in the data, as described above (which
basically means 16000 runs when %c = 100). Also, each test has been repeated thrice, and
the average results of the three runs are reported. We tested problems with the number of
variables n varying from 100 to 100000, and with four choices for the percentage of data
that is changed at each of the 15 reoptimizations (column “c%”) after that the instance has
been first solved. The leftmost half of the table is devoted to “pure QP” instances, while the
rightmost part is devoted to “mixed QPs”. For the former we compare all classes DualCQKnP
(columns “Dual”), ExDualCQKnP (columns “Ex”) and CQKnPCplex (columns “Cplex”). For
the Lagrangian approaches, using the “specialized” DualCQKnP turned out to be most often—
but, somewhat puzzlingly, not always—slightly better than using the “general” ExDualCQKnP,
as expected. We also experiments with both variants of the sorting procedure; almost always
the hand-made QS proved to be slightly but noticeably faster than the STL routine. Then,
we also explored the combination of the QS, used during the first solution, and of the Bubble
Sort (column “+BS”), used during reoptimization; this was avoided for %c = 100 because

4

“pure QPs” “mixed QPs”
QS STL Cplex ExDualCQKnP Cplex

n %c +BS Dual Ex Dual Ex Dual Auto STL QS +BS Dual Auto

1e5 100 113.43 117.60 121.20 124.53 13599.17 961.67 6.02 6.67 6807.33 208.07
10 29.40 28.82 30.13 30.27 32.10 3917.27 275.37 4.73 5.00 4.62 81.70 90.60
5 27.80 27.67 29.07 30.17 30.50 3154.27 252.67 4.73 4.57 4.52 82.70 89.50
1 27.57 28.45 29.93 30.93 31.30 3211.47 257.33 4.75 5.47 4.80 82.63 87.93

1e4 100 8.16 8.61 9.11 9.10 201.06 127.91 0.87 0.86 164.08 135.10
10 2.09 2.08 2.30 2.38 2.47 42.13 35.70 0.48 0.56 0.49 9.55 23.73
5 2.10 2.15 2.15 2.35 2.41 39.82 34.58 0.52 0.56 0.45 9.54 23.76
1 2.14 2.16 2.15 2.44 2.32 38.33 33.69 0.52 0.64 0.47 9.57 29.25

1e3 100 0.59 0.63 0.55 0.71 5.29 14.79 0.40 0.41 11.31 39.52
10 0.14 0.16 0.15 0.17 0.16 1.35 7.21 0.08 0.09 0.08 1.56 12.98
5 0.15 0.16 0.16 0.17 0.17 1.34 7.74 0.10 0.09 0.10 1.60 13.06
1 0.17 0.20 0.19 0.16 0.22 1.35 7.54 0.15 0.16 0.11 1.82 18.66

1e2 100 0.04 0.03 0.04 0.04 0.53 8.70 0.04 0.06 0.99 42.47
10 0.01 0.01 0.01 0.01 0.01 0.22 5.91 0.02 0.02 0.01 0.39 22.23
5 0.02 0.02 0.01 0.02 0.01 0.22 6.21 0.02 0.03 0.02 0.42 27.00
1 0.02 0.02 0.02 0.02 0.02 0.24 6.45 0.03 0.04 0.02 0.47 31.62

Table 1: Computational results on randomly-generated instances.

it resulted in unbearably long running times, as it could be expected. Using the BS in
reoptimization is often, but not always, preferable; it could however be noted that real
approaches may perform many more than 16 reoptimizations and more “consistent” ones
(e.g. changing only one set of data), which may further improve the benefits of the BS. For
Cplex we have experimented with all available solution algorithms; it turned out that two
of them were “non dominated”. In particular, forcing Cplex to always use the dual simplex
turned out to be preferable if the size of the instances is small and “not too many things
change”, but it can be downright catastrophic otherwise. On the other hand, allowing it
to automatically choose the algorithm can result in running times one orders of magnitude
larger in several scenarios. Not that this matters much: the Lagrangian approaches are
almost always at least one order of magnitude faster than the best that Cplex can do. The
results for “mixed QPs” are by and large analogous, with a few differences. One is that
these instances are significantly easier to solve for all approaches. Another is that the STL
sort() in this case is often better than our QS; however, using the BS in reoptimization
in this case has a more marked positive effect, so that option is most often the best. For
Cplex, the dual algorithm is better than the automatic choice in all cases but for n = 100000
and %c = 100, where it is worse by a somewhat surprising factor of 30. Yet, Lagrangian
approaches consistently beat Cplex by over one order of magnitude.

The second set of tests has been on the continuous relaxation of the Sensor Placement
Problem (cf. [2] and the references therein), that has the form (CQKnP) with aj = 0, bj = ∞,
and v = 1. In this case we have only solved each instance once, corresponding to the root
node relaxation in a B&B approach, to focus on the “one shot” performances of the solvers.
The instances, with n = 10000 and n = 100000, can be generated with the generator freely
available at

5

http://www.di.unipi.it/optimize/Data/RDR.html ;

a script file for reproducing the tests, together with the corresponding Main.C file, is provided
in the distribution of the library. The results are reported in Table 2, using the best settings
we found, i.e., DualCQKnP (since the instances have the right structure for it to be used) with
the “hand-made” QS and the primal algorithm for Cplex. The Table shows that even in
a rigorously one-shot situation the specialized Lagrangian algorithm is substantially faster
than the general-purpose one, as expected; we remark that running times exclude set-up
procedures, that in the general-purpose solver can be costly.

n DualCQKnP Cplex

10000 0.009 0.043
100000 0.131 1.077

Table 2: Computational results on Sensor-Placement Problems.

Finally, the third set of tests has been performed on the solution of Multicommodity
Min-Cost Flow (MMCF) problems using a Resource Decomposition approach [4] driven by a
(deflected) projected subgradient method [1]. In this case, for a problem with m arcs and k
commodities, the approach has to solve 2m (CQKnP) problems at each step, each one with
k variables: one is to compute the deflected subgradient, and the other is to project the final
iterate on the feasible region (see [1] for details). In this case the ability to have multiple
objects simultaneously present in memory is crucial, as we keep one solver for each of the
2m instances which we re-use along the iterations. The results reported in Table 3 refer to
the 32 (MMCF) instances p33–p64 produced by the “Mulgen” generator found at

http://www.di.unipi.it/optimize/Data/MMCF.html#Canad .

The instances are organized in eight groups of four, the groups differing for several character-
istics while the instances in the same group only differing for the seed of the random number
generator used, and we thus report averaged results for each group. Exactly the same 2m
problems have been solved for 100 iterations of the subgradient method with two different
solvers, Cplex and DualCQKnP, each one tuned to its best (which turned out to be the same
as in the previous case); the reported running times are only these directly incurred in the
solution of the (CQKnP) problems. For this test we have developed a template CQKnPClone

class that takes two solvers of type CQKnPClass and does exactly the same operations on
both; this allows easy comparison (as well as correctness testing) of the solvers when used
within more complex approaches, as in this case. Distributing the instances for this test is
complicated; these depend on a rather complex code and each (MMCF) instance produces
more than 50000 problems, so if we saved each (CQKnP) instance on a file these would then
total to more than 150 Mb for each (MMCF(instance. In order to allow tests to be repro-
duced if necessary, the corresponding code and algorithmic parameters and/or the instances
will be available on request from the authors.
Again, the Table clearly shows that the specialized solver can be significantly faster than the
general-purpose one, up to more than two orders of magnitude in this case.

To conclude, this small library can be a useful, albeit by no means huge, contribution for
all applications that require the solution of (CQKnP), especially if some care is exercised in

6

k 40 40 100 100 200 200 200 400
m 226 292 520 684 230 292 292 520

DualCQKnP 0.41 0.16 3.71 6.23 2.78 4.58 82.76 44.21
Cplex 89.35 134.97 517.31 828.08 139.38 197.25 551.49 328.06

Table 3: Computational results on Network Design Problems.

properly choosing among the available options. The library could easily be extended e.g. to
include pegging algorithms [6], should the need arise. Also, extending the interface and
the Lagrangian approaches to more general classes of nonlinear functions would not be too
difficult. We believe that as optimization software becomes more and more complex, releas-
ing ready-to-use and well-engineering libraries like this, even if they can only solve rather
specialized problems, will be more and more important and should be actively encouraged.

References

[1] G. d’Antonio and A. Frangioni. Convergence Analysis of Deflected Conditional Approx-
imate Subgradient Methods. SIAM Journal on Optimization, 20(1):357–386, 2009.

[2] A. Frangioni, C. Gentile, E. Grande, and A. Pacifici. Projected Perspective Reformu-
lations with Applications in Design Problems. Operations Research, 59(5):1225–1232,
2010.

[3] A. Frangioni, C. Gentile, and F. Lacalandra. New Lagrangian Heuristics for Ramp-
Constrained Unit Commitment Problems. In Proceedings 19th Mini-EURO Conference

in Operational Research Models and Methods in the Energy Sector –ORMMES 2006.
INESC Coimbra, 2006.

[4] J. Kennington and M. Shalaby. An Effective Subgradient Procedure for Minimal Cost
Multicommodity Flow Problems. Management Science, 23(9):994–1004, 1977.

[5] The MCFClass Project. http://www.di.unipi.it/optimize/Software/MCF.html.

[6] M. Patriksson. A Survey on the Continuous Nonlinear Resource Allocation Problem.
European Journal on Operational Research, 185:1–46, 2008.

[7] M. Saltzman, L. Ladǹyi, and T. Ralphs. The COIN-OR Open Solver Interface, 2004.

7

