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Abstract

When designing or upgrading a communication network, operators are faced with a major issue,
as uncertainty on communication demands makes it difficult to correctly provision the network ca-
pacity. When a probability on traffic matrices is given, finding the cheapest capacity allocation that
guarantees, within a prescribed level of confidence, that each arc can support the traffic demands
peaks turns out to be, in general, a difficult non convex optimization problem belonging to the class of
chance constrained problems. Drawing from some very recent results in the literature we highlight the
relationships between chance constrained network design problems and robust network optimization.
We then compare several different ways to build uncertainty sets upon deviation measures, comprised
the recently proposed backward and forward deviation measures that capture possible asymmetries
of the traffic demands distribution. We report results of a computational study aimed at comparing
the performance of different models when built upon the same set of historical traffic matrices.
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1 Introduction

When designing or upgrading a communication network, operators are faced with a major issue, as
uncertainty on communication demands makes it difficult to correctly provision the network capacity.
In fact, providing large capacity, while making the network resilient to unexpected peaks of demand,
may be very costly, and therefore render the network operations uneconomical. It is therefore necessary
to carefully balance the network failure probability due to high demand, on one side, and the capacity
provision cost on the other. When a probability on traffic matrices is given, finding the cheapest capacity
allocation that guarantees, within a prescribed level of confidence, that each arc can support the traffic
demand peaks turns out to be, in general, a difficult non convex optimization problem, belonging to the
class of chance constrained problems. An alternative approach is to properly formulate an uncertainty
set to which all demand matrices supposedly belong, and to find a minimum cost capacity allocation
that supports all the demands in such a set; this is the so-called Robust Network Design problem, which,
depending on the structure of the uncertainty set, may be polynomially solvable [4, 5, 14]. Drawing from
some very recent results in the literature, we highlight the relationships between the two approaches,
describing several different ways in which uncertainty sets can be constructed that “well approximate”
the chance constraints while preserving the computational tractability of the model [9]. Since each
uncertainty set approximates in a different way the actual non convex set inherent to the “true” chance
constraints, we report results of a computational study aimed at finding what approximation provides
better results, in the sense of producing the capacity allocation that sits within an allotted monetary
budget and that minimizes the actual ex-post network failure probability. We are not aware of previous
results along these lines except those in [3]; however, there the capacities of the arcs are given, and the
focus is on minimizing a network congestion measure, i.e., the oblivious performance ratio.
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2 The chance constrained network design problem

Consider a communication network represented by a directed graph G = (V,A), where V is the set
of nodes, with n = |V|, and A is the set of arcs, with m = |A|. We are given a set K ⊆ V × V of
ordered pairs which represents users that wish to communicate, with k = |K|. We are also given a
nonnegative cost cij , ∀ (i, j) ∈ A, which is the cost to reserve (or allocate) a unit of capacity on the
arc (i, j) of the network. Our task is to provide the network with a capacity allocation and to decide
how to accommodate the commodities. Many applications require that the commodities are routed along
the same paths independently of the traffic demands. To model this assumption, we denote by ystij the
fraction of commodity (s, t) ∈ K routed along the arc (i, j) ∈ A. Moreover, let δ−(i) (δ+(i)) be the set
of incoming (outgoing) arcs of node i, ∀ i ∈ V. Formally, we define an oblivious routing as follows:

Definition 1 Given a directed network G = (V,A) and a set of ordered pairs K ⊆ V × V, we define an
oblivious routing as a function y : A×K → [0, 1], such that:

∑
(i,j)∈δ−(i)

ystij −
∑

(j,i)∈δ+(i)

ystji = φsti =

 −1 if i = s,
1 if i = t,
0 otherwise.

i ∈ V, (s, t) ∈ K; (1)

We denote by Y the set of all oblivious routings so that y ∈ Y means, in a compact way, that y is an
oblivious routing.

If the amount of future connection request dst from node s to node t is given, ∀(s, t) ∈ K, then we
face the following deterministic problem:

min cx (2)
yijd− xij ≤ 0 (i, j) ∈ A; (3)
(y, x) ∈ Y ×Rm+

where yij is the vector with components {ystij }. In order to address uncertainty, let us model the traffic
demand vector d as a multivariate random variable d̃ with a probabilistic density function P : Rk+ → [0, 1],
(d 7→ P(d)). Let ε ∈ [0, 1] be the confidence level required for the each arc of the network. Then, we
consider the following individual chance constraint problem [6]:

min cx (4)

P(yij d̃− xij ≤ 0) ≥ ε (i, j) ∈ A, (5)
(y, x) ∈ Y ×Rm+ .

This is, in general, a difficult non convex optimization problem, due to the chance constraints (5).
However, we can build alternative tractable models based on a set S of historical traffic matrices. Let us
denote the generic approximation model as follows:

c(ε) = min cx (6)
Hij(xij , yij , ε,S) ≤ 0 (i, j) ∈ A; (7)
(y, x) ∈ Y ×Rm+ .

where Hij(xij , yij , ε,S) denotes a multivalued function: Hij : (R ×Rk × R × R|S|) → Rq (where q is
a integer number depending on the model). To preserve the computational tractability, we shall assume
that H is a convex function.

The most simple approach is to specify a single representative matrix [8], which somehow “synthesizes”
the future possible traffic demands; in this case model (6)-(7) reduces to the classical linear programming
model (2)-(3). Different choices of d into constraints (3) result in different models. When no statistical
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information is known (apart from a set of previous realizations), one may set d = εdr where dr is a traffic
matrix randomly chosen in S; we refer to this strategy as the single random model (BSO). By using
instead the first moment statistical information we may set d = εd, where dst =

∑
h∈S d

h
st/|S| is the

mean vector of the sample set S; we denote this as the single average model (BSA). Alternatively, we
can use the vector of demand peaks by setting d = εdmax, where dmaxst = maxh∈S dhst; we denote this as
the single peaks model (BSP).

A different approach, still preserving the linearity of the model, is based on the assumption that all the
traffic demands in S will realize non-simultaneously, as in [7]. In this case q = |S|, and for all (i, j) ∈ A
Hij(xij , yij , ε,S) is a vector with q components Hh

ij(xij , yij , ε,S), where:

Hh
ij(xij , yij , ε,S) =− xij +

∑
(s,t)∈K

εdhsty
st
ij ∀h ∈ S. (8)

We denote this as the multiple model (BMU ). It is important to stress the conceptual difference between
the parameter ε in constraints (5), which is a pure probability value, and the parameter ε in the above
models, which tunes the expected value of future demands in order to fit with a certain available budget.

Finally, we discuss how to get a convex tractable approximation of the chance constraints (5) following
the results of [9]. Let z(d̃) = (yij d̃− xij). In [9] it is proven, in a more general setting, that

min
τ

{
τ +

1
ε
E[z(d̃)− τ ]+

}
≤ 0⇒ P(z(d̃) ≤ 0) ≥ ε. (9)

The left hand side inequality of (9) corresponds to constrain the ε-Conditional Value at Risk of the
random variable z(d̃) to be non positive [2, 10, 11]. In order to avoid expensive numerical calculation
related to the expected value function, in [14] it is proposed to bound E[·]+ with a suitable function which
preserves the computational tractability. The choice of the bounding function depends on the assumption
we can make about the probability distribution of the random parameters. In order to capture possible
asymmetries of the random variable distribution, some deviation measures are introduced in [12], which
are called Forward and Backward deviation measures. The authors define the set of the values associated
with forward deviations of d̃ as follows:

P
(
d̃
)

=
{
α : α ≥ 0, E

[
e
θ(d̃−E[d̃])

α

]
≤ e θ

2
2 ∀θ ≥ 0

}
.

Likewise, for backward deviations, they define the set

Q
(
d̃
)

=
{
α : α ≥ 0, E

[
e−

θ(d̃−E[d̃])
α

]
≤ e θ

2
2 ∀θ ≥ 0

}
.

These deviation measures can be used in order to bound the ε-Conditional Value at Risk of the random
variable z(d̃) [13]. Specializing the result in [13] to our application, and after some algebraic calculation,
we can derive our last model (BDE), where:

Hij(xij , yij , ε,S) =− xij + yijd+
√
−2 ln(ε)

∑
(s,t)∈K

(ystij pst)2. (10)

Notice that (6) when equipped with (10) becomes a second order cone program;note also that these
problems are nowadays routinely solvable by standard approaches. The computation of forward and
backward deviation measures of d̃ out of a sample set S is discussed in [14].

Aim of this paper is to compare the ex-post performance of all the previous models in a budget
perspective. That is, for l ∈ {BSO, BSA, BSP, BMU, BDE} we consider the problem

max
ε

{
ε : Cl(ε) ≤ B

}
, (11)
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where Cl(ε) denotes the minimum cost provided by model l for a fixed value of ε, while B denotes a
given budget. In general we are not able to solve (11) in one shot; however, since we can compute Cl(ε)
in polynomial time, we solve (11) through a binary search on ε. Our testing methodology consists in
extracting a sample set from a given set of realizations of the demand matrices, solving (11) on these
sets, and then comparing the ex-post resilience properties of the (y, x) solutions obtained by each model
on appropriately defined testing sets.

3 Computational results

For our tests we used data of the Abilene network, which has 30 arcs, 12 nodes, and 132 commodities;
six months of traffic matrices at the hourly discretization are provided at [1]. We set the arc cost
proportionally to the physical distance of the endpoints. From this pool of H historical traffic matrices
we extracted the sample sets S and a testing set T . We built the sample sets S and T in 2 possible ways,
by selecting

(A) one hour at random for each of the 7 days of a week;

(C) all 24 hours of one random day.

Each sample set S, which collects the traffic matrices of 7 weeks, is equipped with a benchmark budget
Br which corresponds to the optimal value of model (6)-(7) equipped with (8) with ε = 1. Then, for
each sample set we built and solved the five models for three different levels of budget: low, nominal and
high level, corresponding to B = p ∗ Br with p ∈ {0.5, 1, 1.2}, respectively. Each pair (model, level of
budget) produced a different solution, i.e., a capacity allocation x and a routing scheme y. We evaluated
the empirical probability of each solution (y, x) according to

EP (x, y) =

∑
h∈T

∑
(i,j)∈A I[xij −

∑
(s,t)∈K d

h
styij ]

|T ||A|
(12)

on the testing set T which collects the traffic matrices of the remaining 14 weeks. In (12), the operator
I[·] is the indicator function: for each traffic matrix d ∈ T , it counts how many times the capacity xij of
the arc (i, j) is able to support the flow

∑
(s,t)∈K d

h
styij routed along it. We ran all the models over 240

different sample sets of type A and 210 sample sets of type C, and for each model we report the mean
empirical probability with respect to the produced solutions. We do not report computational time, since
such a comparison is out of the scope of this paper; we just mention that the commercial solver Cplex
11 required on average less then one second to solve models (BSA), (BSP), (BSO), around 4 seconds for
(BMU), and around 90 seconds for (BDE).

Since we do not have any a priori information about the characteristics of the historical traffic demands,
we arbitrarily selected the two different types of sample sets. As a first step, we compared the results
produced by the two types of sampling. The mean values are reported in Figure 3: it is evident that the
sample set of type A always leads to solutions with a better performance, particularly for the nominal
level of the budget. This implies that the considered traffic matrices are better described by a hourly
fluctuation, rather than daily fluctuation.

Figure 2 reports the results of the sample sets of type A by varying the level of budget. The model
which provided a network with a higher mean empirical success probability is (BSA), while the model
which performed worst is (BDE). Models (BMU) and (BSP) have essentially the some behavior, with
(BSP) performing just a little bit better (about 0.01 %) than (BMU). The behavior of model (BSO) is
interesting since its performance falls as the available budget increases.

Looking at Figure 3, which reports the results on the sample sets of type C, we observe that the model
(BSA) still performs better, while the performance of model (BDE) considerably increases as the level of
the budget does. This seems to indicate that when we have some information about the traffic demands,
a model using just first moment statistical information may be able to attain good performances, while

4



0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

0.5A 0,769912368 0,772053571 0,858731812 0,803354828 0,780253347

0.5c 0,859060847 0,669417989 0,866061508 0,861180556 0,719231151

1A 0,926390542 0,950650751 0,963388889 0,932141204 0,955352183

1C 0,879545304 0,739323743 0,884196429 0,880472884 0,771635251

1.2A 0,954834656 0,973862906 0,98005291 0,951063195 0,977375992

1.2C 0,941641865 0,936337632 0,95667328 0,944611442 0,947941468

bde bmu bsa bso bsp

Figure 1: Empirical Probability, compare sample sets of type A and C, independently of the models
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Figure 2: Empirical Probability, sample sets of type A

when the knowledge on traffic demands reduces, then the use of higher order statistical information
becomes more important.

Finally, in Figure 4 we study the behavior of a fixed sample set (of type A) on a wide range of possible
budgets; we also show the relation between the empirical values of probability and the theoretical one
that we can infer from the solution of model (10). As we expected, as the budget increases both the
empirical and the theoretical probability increase. The gap between the empirical and theoretical values
tends to reduce for higher budgets, i.e., for higher level of probability. However, for smaller values the
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Figure 3: Empirical Probability, sample sets of type C

differences among the models become more significant, in particular for the sophisticated model (BDE).

4 Conclusion

Our preliminary results show that the different models attain significantly different ex-post results when
the sampling set and the budget level change. Therefore, it is of relevant interest to devise guidelines
which allow modelers and decision makers to properly choose, among the available ones, the uncertainty
model which is best suited to the specific situation they face.
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