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Abstract

We propose an improvement of the Approximated Projected Perspective Reformulation (AP2R) for dealing
with constraints linking the binary variables. The new approach solves the Perspective Reformulation (PR)
once, and then use the corresponding dual information to reformulate the problem prior to applying AP2R,
thereby combining the root bound quality of the PR with the reduced relaxation computing time of AP2R.
Computational results for the cardinality-constrained Mean-Variance portfolio optimization problem show
that the new approach is competitive with state-of-the-art ones.

Keywords: Mixed-Integer Non-Linear Problems, Semi-continuous Variables, Perspective Reformulation,
Projection, Lagrangian Relaxation, Portfolio Optimization

1. Introduction

We study solution techniques for convex separable Mixed-Integer Non-Linear Programs (MINLP) with
n semi-continuous variables xi ∈ R for i ∈ N = {1, . . . , n} which either assume the value 0 or lie in the
interval Xi = [xi, x̄i] (−∞ < xi < x̄i < ∞). This can be expressed, introducing yi ∈ {0, 1} for i ∈ N , as

(P) min h(z) +
∑

i∈N
fi(xi) + ciyi (1)

Ax+By + Cz = b (2)

(x, z) ∈ O (3)

xiyi ≤ xi ≤ x̄iyi , yi ∈ [0, 1]n , xi ∈ R
n i ∈ N (4)

yi ∈ Z i ∈ N. (5)

We assume the functions fi to be closed convex, one time continuously differentiable and finite in the
interval (xi, x̄i); w.l.o.g. we also assume fi(0) = 0. In (P) we single out the linking constraints (2) that
contain all the relationships linking the yi variables among them and with the other variables of the
problem, except those (4) that “define” the semi-continuous nature of the xi. The reformulation technique
developed in [7] require (2) to be empty; the extension developed in [1] allows to overcome this limitation,
but potentially at the cost of a worse bound quality. The aim of this paper is to deal with constraint
(2) in a cost-effective way. For our approach to work, (2) must have a compatible structure with that of
(1); we initially assume equality constraints, with extensions discussed in §3. Because our approach hinges
on availability of dual information for the continuous relaxation, we assume that the function h(·) in the
“other variables z” and the “other constraints (3)” are convex, i.e., (P) is a convex MINLP. Actually,
in many applications everything but (1) is linear. It will be sometimes expedient to refer to (3)–(4) as
“(x, y, z) ∈ P”, and to P as the set obtained by P relaxing integrality constraints on z and x, if any.
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Often, the most pressing issue in solving (P) is to derive tight lower bounds on its optimal value ν(P),
which is typically done by solving its (convex) continuous relaxation (P) (we denote by ν(X) and (X),
respectively, the optimal value and the continuous relaxation of any problem (X)). However, often ν(P)
≪ ν(P), making the solution approaches inefficient. The presence of semi-continuous variables has been
exploited to propose reformulations (P′) of (P) such that ν(P) = ν(P′) ≥ ν(P′) ≫ ν(P). This starts
from considering (1) as h(z) +

∑

i∈N
fi(xi, yi), where fi(xi, yi) = fi(xi) + ci if yi = 1 and xi ≤ xi ≤ x̄i,

fi(0, 0) = 0, and fi(xi, yi) = ∞ otherwise. The convex envelope of fi(xi, yi) is known [4] to be f̃i(xi, yi) =
yifi(xi/yi)+ ciyi—using the perspective function of fi—which yields the Perspective Reformulation of (P)

(PR) min
{

h(z) +
∑

i∈N
f̃i(xi, yi) : (2) , (x, y, z) ∈ P , (5)

}

.

As fi is convex, f̃i is convex for yi ≥ 0; since xi = 0 if yi = 0, f̃i can be extended by continuity assuming
0fi(0/0) = 0. Hence, (PR) is a convex MINLP if (P) is. Its continuous relaxation (PR)—the Perspective

Relaxation of (P)—usually has ν(PR) ≫ ν(P), making (PR) a more convenient formulation [8, 9]. If fi
is SOCP-representable then so is f̃i, hence the PR of a Mixed-Integer Second-Order Cone Program (MI-
SOCP) is still a MI-SOCP. Thus, (PR) is not necessarily more complex to solve—and, sometimes, even
less so [2]—than (P). Alternatively, one can consider a Semi-Infinite MINLP reformulation of (PR) where
Perspective Cuts [4]—linear outer approximations of the epigraph of f̃i—are dynamically added. This is
often the best approach [6], in particular for “general” (P) where no other structure is available. It is
appropriate to remark that the (PR) approach also applies if the xi are vectors such that yi = 0 =⇒ xi = 0
and yi = 1 =⇒ xi ∈ Xi, with Xi a polytope; yet, here, as in [1, 7], each xi must be a single variable.

While (PR) provides a better bound, it is also usually more time consuming to solve than (P) because
f̃i is “more complex” than fi. This trade-off is nontrivial, in particular if fi is “simple”. For instance, if fi is
quadratic and everything else is linear, (P) is a Mixed-Integer Quadratic Program (MIQP) whereas (PR) is
a MI-SOCP; hence, (P)—a QP—can be significantly cheaper to solve than (PR)—a SOCP. The Projected

PR (P2R) idea underpinning the approach studied here was indeed proposed in [7] for the quadratic case,
and xi ≥ 0. It was then extended in [1] to a more general class of functions, and allowing xi < 0. However,
xi < 0 < x̄i renders some of the arguments significantly more complex, hence for the sake of simplicity
we will only present here the case where xi ≥ 0; it will be plain to see that the arguments immediately
extend to the more general one. The P2R idea is to analyze f̃i as a function of xi only, i.e., projecting
away yi: under appropriate assumptions, and if there are no linking constraints (2), this turns out to be a
piecewise-convex functions with a “small” number of pieces, that can be characterized by just looking at the
data of (P) (cf. (7)). Hence, (PR) can be reformulated in terms of piecewise-convex objective functions,
which makes it easier to solve, especially when O has some valuable structure (e.g., flow or knapsack)
[7]. However, in several applications (2) are indeed present [4, 8, 1, 3, 10]. Furthermore, since the binary
variables yi are removed from the formulation, branching has to be done “indirectly”, which rules out using
off-the-shelf solvers. To overcome these two limitations, in [1] the Approximated P2R (AP2R) reformulation
has been proposed whereby the yi, after having been eliminated, are re-introduced in the formulation in
order to encode the piecewise nature of f̃i. This is possible even if (2) are present, and it has the advantage
that (AP2R) is still a MIQP if (P) is. However, ν(AP2R) < ν(PR) may, and does, happen when linking
constraints (2) are present, whence the “Approximate” moniker. This is still advantageous in some cases,
but it may happen that the weaker bounds outweigh the faster solution time, making the approach not
competitive with more straightforward implementations of the PR [1].

The aim of this paper is to improve the AP2R by presenting a simple and effective way to ensure that
ν(AP2R) = ν(PR) even if (2) are present, while keeping the shape of the formulation—and therefore,
hopefully, the cost of (AP2R)—exactly the same. Since bound equivalence only holds at the root node of
the B&C it is not obvious that the approach, despite the quicker solution times of (AP2R), is competitive.
However, this is shown to be true in at least one relevant application, the Mean-Variance problem (with
min buy-in and cardinality constraints) in portfolio optimization.
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2. A quick overview of AP2R

We now quickly summarize the analysis in [1], albeit limited to the case xi ≥ 0, in order to prepare the
ground for the new extension. We focus on the basic problem corresponding to one pair (xi, yi)

(Pi) min
{

fi(xi) + ciyi : xiyi ≤ xi ≤ x̄iyi , yi ∈ {0, 1}
}

.

The analysis hinges on considering the (PR) of (Pi) rewritten as

(PRi) min
{

pi(xi) = min
{

f̃i(xi, yi) : xiyi ≤ xi ≤ x̄iyi , yi ∈ [0, 1]
}

: xi ∈ [0, x̄i]
}

,

i.e., first minimizing f̃i(xi, yi) with respect to yi, and then minimizing the resulting function pi(xi) with
respect to xi. The function pi(xi) is convex, and can be characterized by studying the optimal solution
y∗
i
(xi) of the inner problem in (PRi). Differentiability of fi implies that y∗

i
(xi) is strictly related to the

solutions (if any) of the first-order optimality conditions

ci + fi(xi/yi)− f ′

i(xi/yi)xi/yi = 0 . (6)

The approach of [1] requires (6) to only have (at most) one solution, whose dependency on yi is “easy”:

Assumption 1. (6) has at most one solution for xi ≥ 0, which has the form ỹi(xi) = gixi where gi ≥ 0 is

a constant that can be determined by the data of the problem

For instance, for the quadratic case fi(xi) = aix
2
i
+ bixi the first-order optimality condition (6) is

ci − aix
2
i
/y2

i
= 0, whence ỹi(xi) = |xi|

√

ai/ci if ci > 0, and there is no solution otherwise. Assumption
1 is satisfied by a surprisingly large set of functions, and a more general version can be stated for the
case xi < 0 [1]. If (6) has a solution then y∗

i
(xi) can be found by projecting ỹi(xi) over the interval

[xi/x̄i , min{ 1 , xi/xi } ]; if no solution exists then y∗
i
(xi) is in one of the two extremes. In all cases one

can then write pi(xi) = f̃i(xi, y
∗

i
(xi)). All this gives that there exists some xi ≤ x̌i ≤ x̄i such that

pi(xi) =
{

( fi(x̌i)/x̌i + ci/x̌i )xi if 0 ≤ xi ≤ x̌i , fi(xi) + ci if x̌i ≤ xi ≤ x̄i
}

. (7)

Thus, pi(xi) is piecewise-convex with at most two pieces (although these become four if xi < 0), one of
which is linear and the other is the original objective function. The crucial breakpoint x̌i can be determined
a-priori: in particular, x̌i = 1/gi if (6) has a solution and 1/gi ∈ Xi, and x̌i ∈ {xi , x̄i } otherwise [1]. For
a numerical illustration, the quadratic case

(P1) min
{

2x21 + 8y1 : y1 ≤ x1 ≤ 10y1 , y1 ∈ {0, 1}
}

has ỹ1(x1) = x1
√

a1/c1 = x1/2, thus g1 = 1/2, and therefore 1/g1 = 2 ∈ X1 = [1, 10]: hence,

p1(x1) =
{

8x1 if 0 ≤ x1 ≤ 2 , 2x21 + 8 if 2 ≤ x1 ≤ 10
}

. (8)

Writing (7) as the objective function is typically done with the “variable splitting” approach [7], whereby
two new variables 0 ≤ x′

i
≤ x̌i and 0 ≤ x′′

i
≤ x̄i − x̌i are introduced such that xi = x′

i
+ x′′

i
(although a

different form is sometimes preferable [3]): x′
i
gets the linear cost, while x′′

i
has cost fi(x

′′

i
). This yields the

Projected Perspective Reformulation (P2R), having the same form as (P)—a MIQP if (P) was one—with
at most (and, often, less than) twice as many variables. The corresponding (P2R) might be more efficient
to solve, especially if (P) has some structure that allows application of specialized approaches [7]. However,
removing the yi variables from the formulation prevents from using off-the-shelf software to solve (P2R).
This is why in [1] it was proposed to “lift back” (7) in the original (xi, yi) space by defining the problem

(LPi(xi)) min
{

yipi(x̌i)+fi(x
′′

i+x̌i)+ci−pi(x̌i) : (xi−x̌i)yi ≤ x′′i ≤ (x̄i−x̌i)yi , xi = x̌iyi+x′′i , yi ∈ [0, 1]
}

.

It can be proven [1] that ν(LPi(xi)) = pi(xi) for each feasible xi; therefore,

(AP2Ri) min
{

yipi(x̌i)+fi(x
′′

i+x̌i)+ci−pi(x̌i) : (xi−x̌i)yi ≤ x′′i ≤ (x̄i−x̌i)yi , xi = x̌iyi+x′′i , yi ∈ {0, 1}
}

is a reformulation of (Pi) and ν(AP2Ri) = ν(PRi), which implies that, typically, ν(AP2Ri) ≫ ν(Pi). For
illustration, consider (P1): plugging (8) into (AP2Ri) yields
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(AP2R1) min
{

2(x′′1)
2 + 8x′′1 + 16y1 : −y1 ≤ x′′1 ≤ 8y1 , x1 = 2y1 + x′′1 , y1 ∈ {0, 1}

}

.

It can be verified that ν(AP2R1) ≥ ν(P1) for any fixed x1. For instance, for x1 = 2 the optimal solution
to (P1) is y1 = 1/5, yielding ν(P1) = 9 + 3/5, while the optimal solution to (AP2R1) is (y1, x

′′

1) = (1, 0),
yielding ν(AP2R1) = 16, i.e., the same estimate as (PR1) (for x1 = 2). In fact,

ν(PR1) = min
{

2x21/y1 + 8y1 : y1 ≤ x1 ≤ 10y1 , y1 ∈ [0, 1]
}

= 16

since min{ 8y1 + 8/y1 : y1 ∈ [1/5, 1] } has optimal solution y1 = 1.
We will denote by (AP2R) the reformulation of (P) where (AP2Ri) is separately applied to each xi

for i ∈ N . If there are no linking constraints (2), then obviously ν(AP2R) = ν(PR). Otherwise the
reformulation is still possible, but (PRi) is a relaxation of the true projection problem, which, besides on
xi, also depends on all the other variables that yi is linked with. Hence, ν(AP2R) < ν(PR) can happen,
and it does in practice. For illustration consider the problem

(P12) min 2x21 + 2x22 + 8y1 + 8y2 (9)

y1 ≤ x1 ≤ 10y1 , y2 ≤ x2 ≤ 10y2 (10)

y1 ∈ {0, 1} , y1 + y2 = 1 , y2 ∈ {0, 1} , x1 + x2 = 8 (11)

obtained by “duplicating” (P1) and adding the linking constraint y1 + y2 = 1. The optimal solution of
(P12) is x1 = x2 = 4, y1 = y2 = 1/2, yielding ν(P12) = 72 ≪ ν(P12) = 136, the latter obtained by setting
x1 = 8, y1 = 1, x2 = y2 = 0 (or the symmetric solution). The (PR), obtained by replacing (9) with

min 2x21/y1 + 2x22/y2 + 8y1 + 8y2

has the same optimal solution as (P12): however, that same solution yields the much stronger (in fact,
exact) bound of 136. Instead, for the (AP2R)

(AP2R12) min 2(x′′1)
2 + 2(x′′2)

2 + 8x′′1 + 8x′′2 + 16y1 + 16y2

(11) , −y1 ≤ x′′1 ≤ 8y1 , −y2 ≤ x′′2 ≤ 8y2 , x1 = 2y1 + x′′1 , x2 = 2y2 + x′′2

(cf. (AP2R1)) the optimal solution of (AP2R12) is x1 = x2 = 4, y1 = y2 = 1/2, x′′1 = x′′2 = 3, yielding
ν(P12) = 72 ≪ ν(AP2R12) = 100 ≪ ν(PR12) = 136. In the next section we modify the (AP2R) to increase
its lower bound, avoiding the bound disadvantage with the (PR)—at least at the root node—while retaining
the simpler (hence, cheaper) model shape.

3. Improving AP2R using dual information

The idea is to reformulate (P) to include information about the linking constraints (2) in the objective
function (1), so that it can be “processed” by the AP2R. This hinges on the availability of dual information,
and hence mainly concerns the continuous relaxations. The Lagrangian relaxation of (P) w.r.t. (2)

(Pλ) min
{

h(z) +
∑

i∈N
fi(xi) + ciyi + λ

(

Ax+By +Cz − b
)

: (x, y, z) ∈ P
}

has an objective function that is still separable in the xi

h(z) + λCz +
∑

i∈N

(

fi(xi) + λAixi + (ci + λBi)yi
)

− λb . (12)

Hence one can apply the PR to (Pλ), which—since the PR does not change linear functions—yields

(PRλ) φ(λ) = min
{

h(z) + λCz +
∑

i∈N

(

yifi(xi/yi) + λAixi + (ci + λBi)yi
)

: (x, y, z) ∈ P
}

− λb .

We will assume that the corresponding Lagrangian dual satisfies maxλ{φ(λ) } = ν(PR), and in particular
that an optimal dual solution λ∗ is available that satisfies φ(λ∗) = ν(PR). This requires some conditions
that are typically satisfied in most applications (e.g., all the constraints are linear or some appropriate
Slater-type condition holds), so that we can expect that λ∗ is generated by any approach used to solve (PR).
Note that any inexact solution of the Lagrangian dual could be used as well, as long as it (significantly)
improves the bound. Also, (12) clearly satisfies Assumption 1 if fi does: (6) for fi(xi) + λAixi only differs
from (6) for fi for the constant λAi. Hence, one can form (AP2Rλ), the AP2R of (PRλ), for any value of
λ. Taking λ = λ∗ yields our main result:
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Theorem 2. Assume that fi satisfies Assumption 1 and that λ∗ is available; for the reformulation of (P)

(P+) min
{

h(z) + λ∗Cz +
∑

i∈N

(

fi(xi) + λ∗Aixi + (ci + λ∗Bi)yi
)

: (2) , (x, y, z) ∈ P , (5)
}

− λ∗b

denote by (PR+) its PR and by (AP2R+) its AP2R. Then, ν(AP2R+) = ν(PR) = ν(PR+).

Proof. First of all, (P+) is a valid reformulation of (P): since it contains (2), the Lagrangian term
λ∗

(

Ax+By +Cz − b
)

is always null at feasible points, hence both the feasible regions and the objective
functions coincide. Also, as discussed for (AP2Rλ) the objective function of (P+) satisfies Assumption 1
since the fi do, and therefore (AP2R+) can be formed and ν(P) = ν(P+) = ν(AP2R+) holds. However,
note that (1) and (12) are in general different: in fact, the equivalence between the two optimal values only
holds when taking into account the constant −λ∗b. Now, clearly ν(PR) = ν(PRλ

∗

) = ν(PR+) due to the
choice of λ∗. Note that (PRλ∗

) is a relaxation of (PR+), which in itself would give only ν(PRλ∗

) ≤ ν(PR+);
however the relaxed constraints are precisely (2), those of which λ∗ are the optimal multipliers, and therefore
equality must hold. Now, since (PRλ) has no linking constraints (2), ν(AP2Rλ) = ν(PRλ) for each λ, and
therefore in particular for λ = λ∗. Hence, ν(PR) = ν(PRλ∗

) = ν(AP2Rλ∗

) ≤ ν(AP2R+), because, again,
(AP2Rλ∗

) is the relaxation of (AP2R+) w.r.t. (2). But on the other hand ν(PR+) ≥ ν(AP2R+), as the
bound of AP2R is always at most as good as that the PR, and therefore the thesis is proven.

To illustrate Theorem 2, consider again (P12). The optimal dual multiplier of the linking constraint
y1 + y2 = 1 in (PR12) can be seen to be λ∗ = 120. Hence,

(P12+) min
{

2x21 + 2x22 + 128y1 + 128y2 : (10) , (11)
}

− 120 .

In its AP2R, ci = 128 gives gi =
√

ai/ci =
√

2/128 = 1/8, i.e., x̌i = 8 for i = 1, 2. Hence,

pi(xi) = yip(x̌i) + fi(x
′′

i + x̌i) + ci − pi(x̌i) = 256yi + 2(x′′i )
2 + 32x′′i =⇒

(AP2R12+) min 2(x′′1)
2 + 2(x′′2)

2 + 32x′′1 + 32x′′2 + 256y1 + 256y2

(11) , −7y1 ≤ x′′1 ≤ 2y1 , −7y2 ≤ x′′2 ≤ 2y2 , x1 = 8y1 + x′′1 , x2 = 8y2 + x′′2 .

The optimal solution of (AP2R12+) is x1 = x2 = 4, y1 = y2 = 1/2, x′′1 = x′′2 = 0, yielding an objective
function value of 256: counting the constant −λ∗b = −120, this finally gives ν(AP2R12+) = 136: (much)
better than ν(AP2R12) = 100, and in fact precisely equal to ν(PR12) as predicted.

We end this section by remarking that the assumption that (2) is an equality constraint is not crucial.
Inequality linking constraints Ax + By + Cz ≤ b can be transformed into equalities by the addition of
slack variables: Ax + By + Cz + s = b, s ≥ 0. Note that this has to be done in (P), so that after the
reformulation they will have cost λ∗s in the objective function, i.e., they no longer will be slack variables. In
principle the constraints could also be nonlinear in x and z (linearity in y can always be assumed without
loss of generality), provided that A(x) =

∑

i∈N
Ai(xi) with each Ai(·) convex, Assumption 1 holds for

fi(xi) + λ∗Ai(xi), and C(z) is convex. However, in order for (2) to be convex they necessarily had to be
inequalities. This means that the optimal dual multipliers λ∗ would be non-negative, retaining convexity of
λ∗Ai(xi), but the constraints would have to be turned into nonlinear equalities, that can never be convex.

4. Computational results

In this section we report results of computational tests of the proposed approach for the Mean-Variance
cardinality-constrained portfolio optimization problem on n risky assets

(MV) min
{

xTQx :
∑

i∈N
xi = 1 ,

∑

i∈N
µixi ≥ ρ ,

∑

i∈N
yi ≤ k , (4) , (5)

}

,

where µ is the vector of expected unitary returns, ρ is the prescribed total return, Q is the variance-
covariance matrix, and k ≤ n is the maximum number of purchasable assets. Without the cardinality
constraint (k = n), (MV) is well suited for AP2R: the bound is the same as that of the PR, and the
computation time per node is greatly reduced with respect to the Perspective Cut (P/C) technique. While
AP2R is competitive also for k ≪ n, it becomes less so as the quality of the bound significantly deteriorates
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[1]. Hence, (MV) is a promising application for AP2R+. Since (MV) is a non-separable MIQP, a diagonal
matrix D has to be determined such that Q −D is positive semidefinite: the PR technique is applied to
∑

i∈N
Diix

2
i
, leaving the remaining part xT (Q − D)x untouched. Choosing D is nontrivial: one can use

e.g., a “small” SDP as advocated in [5], or a “large” SDP as proposed in [10]. We denote these two by Ds

and Dl. Although Dl provides a better root node bound, it is not necessarily the best choice throughout
the enumeration tree: sometimes a convex combination between the two, denoted by Dc, works better [10].

For our tests we used the 90 randomly-generated instances, 30 for each value of n ∈ {200, 300, 400},
already employed in [1, 4, 5, 6, 10] to which the interested reader is referred for details. Here we only remark
that “+” instances are strongly diagonally dominant, “0” ones are weakly diagonally dominant, and “−”
ones are not diagonally dominant; the less diagonally dominant, the harder an instance is. We have set k =
10, as in [1, 10]; this is a “tight” value, since the maximum number of assets that the model can choose, due
to the lower limits xi > 0, without the cardinality constraint is ≈ 20 for all n. The (MV) instances and the
diagonals used in the experiments are available at http://www.di.unipi.it/optimize/Data/MV.html.

The experiments have been performed on a computer with a 3.40 Ghz 8-core Intel Core i7-3770 processor
and 16Gb RAM, running a 64 bits Linux operating system. All the codes were compiled with g++ (version
4.8.4) using -O3 as optimization option. We have tested AP2R+ vs. AP2R using Cplex 12.7, single-
threaded, with all default parameters (save for one explicitly described below, and only for the tests with
the Dl diagonal). All the formulations have been given in the natural form, i.e., as a MIQP with linear
constraints and convex quadratic nonseparable objective function. We have obtained the (PR) root node
bound with the P/C technique, implemented through callbacks, which is typically the best choice when
AP2R is not available [5]; hence, for completeness we also report results for the full B&C using P/C. Since
we are not interested in comparing the cost/effectiveness of the different diagonal choices, this having
been done in [10], we don’t report detailed SDP times beyond saying that the “small” SDP requires on
average about 0.2, 0.7, and 1.6 seconds while the “large” SDP requires 9, 21 and 47 seconds, respectively
for n = 200, 300 and 400 (with little variance for the same n). We also don’t report comparisons with
either not using PR techniques at all, or using SOCP formulations, because they are well-known to be from
dramatically [4, 5] to significantly [6] less effective than the ones employed here.

The results are reported in Table 1, 2 and 3 for the three diagonals Ds, Dc, and Dl, respectively. In
the tables we report the (average) total B&C time and root time when using P/C. For AP2R and AP2R+
we report the (average) total number of B&C nodes, total B&C time, root node time and root gap (in
percentage). As predicted by Theorem 2 the root node gap of AP2R+ and P/C was identical, which is
why we do not report it for P/C. The total time of AP2R+ already includes the P/C root time, since it is
needed to compute λ∗ prior to performing the reformulation, and therefore starting the AP2R+ B&C.

P/C AP2R AP2R+

time nodes time root nodes time root

tot root tot root gap tot root gap
200+ 1.17 0.19 205 0.50 0.12 0.77 118 0.55 0.13 0.51
2000 1256.99 0.18 23354 27.91 0.12 3.14 9325 11.09 0.13 2.75
200− 21941.53 0.20 170682 194.31 0.13 4.75 40193 43.02 0.12 4.17
300+ 4.60 0.49 1288 4.20 0.35 1.08 320 1.87 0.37 0.49
3000 2299.75 0.49 75456 188.53 0.34 2.91 20381 44.85 0.36 2.34
300− 68043.87 0.52 424166 1017.28 0.35 3.92 86100 196.04 0.38 3.57
400+ 4.98 1.10 990 6.07 0.79 0.85 184 2.91 0.77 0.41
4000 37836.53 1.10 334730 1439.63 0.71 3.00 49841 200.71 0.72 2.34
400− 175843.65 1.10 1784051 7279.23 0.72 4.53 328800 982.38 0.79 3.80

Table 1: Results with diagonal Ds

Tables 1 and 2 show that AP2R+ is highly competitive with AP2R, and a fortiori with P/C, reducing
total time by up to an order of magnitude. While the exact ratio depends on n, the type of instance and
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P/C AP2R AP2R+

time nodes time root nodes time root

tot root tot root gap tot root gap
200+ 0.93 0.20 129 0.42 0.12 0.59 81 0.52 0.12 0.27
2000 47.54 0.20 6318 8.07 0.12 1.91 1881 2.72 0.12 1.44
200− 622.25 0.22 45267 49.80 0.13 3.01 6210 7.48 0.14 2.33
300+ 2.36 0.51 558 2.49 0.35 1.02 121 1.44 0.33 0.23
3000 71.40 0.52 20698 52.60 0.35 1.86 3216 8.20 0.34 1.14
300− 1649.26 0.54 122138 292.30 0.37 2.49 15475 37.30 0.38 2.00
400+ 3.17 1.12 524 4.30 0.79 0.88 53 2.50 0.77 0.21
4000 613.01 1.13 94154 410.07 0.73 2.01 7134 25.02 0.76 1.19
400− 8095.26 1.15 345940 1432.37 0.73 2.97 37705 117.63 0.85 2.00

Table 2: Results with diagonal Dc

the diagonal, the trend is clear: the improvement is due to the much reduced number of nodes, itself a
consequence of the much improved bound, while the computing time per node remains the same. The
results are somewhat different for Dl, which therefore requires separate discussion. In Table 3, although
the nodes count does decrease, the running time does not nearly as much, and can actually increase.
While the average time per node of AP2R and AP2R+ is almost identical for Ds and Dc, for Dl that of
AP2R+ is roughly an order of magnitude larger. Investigating the issue showed that Dl causes Cplex to
change the (automatic) selection of the relaxation algorithm at the nodes, settling to one that turns out
to be much less efficient. Tests determined that setting CPX PARAM SUBALG = 5, i.e., using the “sifting”
approach, restored an average time per node similar to that of AP2R. This is why Table 3 reports, besides
AP2R+, also “AP2R++” which is just obtained changing that parameter. To save on space, root times
for AP2R∗ are not reported; they are, however, similar, even between AP2R+ and AP2R++, since it was
subproblem time at the inner nodes that made a difference. The table shows that AP2R++ is competitive
w.r.t. AP2R, albeit with a somewhat smallest ratio. This is due to another frankly unfathomable—but not
unheard-of with today’s complex MIP solvers—phenomenon: just by changing the relaxation solver, the
number of nodes significantly increases w.r.t. AP2R+. Yet, on the largest and hardest instances AP2R++
enumerates a third of the nodes of AP2R, with the corresponding time advantage. Remarkably, for the Dl

diagonal alone, P/C can sometimes be competitive with AP2R+.

P/C AP2R AP2R+ AP2R++

time nodes time root nodes time nodes time root
tot root tot gap tot tot gap

200+ 1.41 0.25 131 0.78 0.93 32 1.28 366 1.48 0.09
2000 4.46 0.36 887 2.56 1.52 147 3.76 859 3.17 0.38
200− 14.99 0.40 5893 9.81 2.12 480 5.55 2782 6.50 0.77
300+ 3.18 0.78 784 4.82 1.89 17 2.92 174 2.23 0.03
3000 8.81 0.96 2211 10.12 2.00 178 15.04 1473 8.67 0.18
300− 26.86 0.99 13032 39.86 2.04 1307 55.35 9593 36.68 0.64
400+ 5.33 1.59 906 10.35 1.94 11 4.96 182 4.44 0.06
4000 50.60 1.91 9195 63.93 2.22 366 64.75 3098 26.47 0.26
400− 52.91 2.15 18096 132.09 2.65 1867 272.79 7928 57.85 0.48

Table 3: Results with diagonal Dl, default and with option CPX PARAM SUBALG = 5

5. Conclusions

The main advantage of the proposed AP2R+ technique is its simplicity: just solving (PR)—possibly
even approximately with a dual approach—produces the dual solution λ∗ which can be used to first
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construct (P+) and then its (AP2R). Yet, this improves many-fold the performances over plain AP2R, and
even more so over P/C. Notably, AP2R+ is quite general and applies to a much larger class than MIQP.
It may be worth contrasting 175843 seconds (P/C in Table 1) with 58 seconds (AP2R++ in Table 3) for
400− instances: this is well over over three orders of magnitude difference for solving the same instances
with the same underlying solver, and the gap with the standard MIQP formulation would be even more
humungous. This nicely illustrates the power of reformulation techniques like AP2R+.
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[2] A. Frangioni, L. Galli, and M.G. Scutellà. Delay-Constrained Shortest Paths: Approximation
Algorithms and Second-Order Cone Models. Journal of Optimization Theory and Applications,
164(3):1051–1077, 2015.

[3] A. Frangioni, L. Galli, and G. Stea. Delay-constrained routing problems: Accurate scheduling models
and admission control. Technical report, Dipartimento di Informatica, Università di Pisa, 2015.
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