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Abstract

The short-term Unit Commitment (UC) problem in hydro-thermal power generation is a large-
scale, Mixed-Integer NonLinear Program (MINLP), which is difficult to solve efficiently, espe-
cially for large-scale instances. It is possible to approximate the nonlinear objective function
of the problem by means of piecewise-linear functions, so that UC can be approximated by a
Mixed-Integer Linear Program (MILP); applying the available efficient general-purpose MILP
solvers to the resulting formulations, good quality solutions can be obtained in a relatively
short amount of time. We build on this approach, presenting a novel way to approximating
the nonlinear objective function based on a recently developed class of valid inequalities for the
problem, called “Perspective Cuts”. At least for many realistic instances of a general basic for-
mulation of UC, a MILP-based heuristic obtains comparable or slightly better solutions in less
time when employing the new approach rather than the standard piecewise linearizations, while
being not more difficult to implement and use. Furthermore, “dynamic” formulations, whereby
the approximation is iteratively improved, provide even better results if the approximation is
appropriately controlled.

Key words: Hydro-Thermal Unit Commitment, Mixed-Integer Linear Program Formulations,
Valid Inequalities.





3.

Nomenclature

The notation used throughout the paper is stated below. For unit consistency, note that hourly
intervals are considered.
Constants:
n number of time intervals (hours)
T set of all time periods
P set of thermal units
H set of hydro cascades, each comprising one or more basin units
H(h) set of individual hydro units cascade h ∈ H is composed of
B(j) set of the immediate predecessors of hydro unit j
tkj water time delay from plant k ∈ B(j) to the basin feeding hydro unit j

v̄j
min minimum volume for the reservoir of hydro unit j [m3]

v̄j
max maximum volume for the reservoir of hydro unit j [m3]

q̄j
max technical maximum of discharged water of hydro unit j [m3] (the technical minimum

is assumed to be zero)
w̄j

t natural inflows of the reservoir of hydro unit j at time period t [m3]

τ i
+ minimum up-time of thermal unit i [hours]
τ i
− minimum down-time of thermal unit i [hours]

∆i
+ maximum ramp-up rate of thermal unit i [MW/hours]

∆i
− maximum ramp-down rate of thermal unit i [MW/hours]

p̄i
min minimum power output of thermal unit i when operating in steady state [MW]

p̄i
max maximum power output of thermal unit i when operating in steady state [MW]

l̄i maximum power output of thermal unit i at the first hour of a commitment period,
i.e., if the unit was off the previous hour [MW] (also referred as startup ramp limit)

ūi maximum power output of thermal unit i at the last hour of a commitment period, i.e.,
if the unit is going to be off the next hour [MW] (also referred as shutdown ramp limit)

ai
t quadratic term of power cost function of thermal unit i at period t [e / MW2]

bi
t linear term of power cost function of thermal unit i at period t [e / MW]

ci
t constant term of power cost function of thermal unit i at period t [e]

d̄t forecasted load to be satisfied at period t [MWh]
αj power-to-discharged-water efficiency of hydro unit j [MWh / m3]

Variables:
ui

t status of thermal unit i at period t [0 / 1]
pi

t power output of thermal unit i at end of period t [MW]
qj
t discharged water of hydro unit j at time period t [m3]

vj
t volume of the reservoir of hydro unit j at time period t [m3]

wj
t spilled water of hydro unit j at time period t [m3]

zi
t auxiliary function for expressing the objective function cost of thermal unit i at time

period t [e]

Functions:
si(ui) start-up costs of unit i, possibly time-dependent
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1. Introduction

The short-term Unit Commitment (UC) problem in hydro-thermal power generation systems
requires to optimally operate a set of hydro—possibly cascade connected—and thermal gener-
ating units, over a given time horizon (typically one day or one week), in order to satisfy a
forecasted energy demand at minimum total cost. The generating units are subject to some
technical restrictions, depending on their type and characteristics; for hydro units typical con-
straints concern the discharge rate, spillage limits, reservoir storage and effect on downstream
units. As for the thermal units, they must usually satisfy minimum up- and down-time con-
straints and upper and lower bounds over the produced power when the unit is operational,
besides having complex power production and start-up costs. Closely representing the actual
operating behavior of generating units within mathematical optimization models is crucial for
being able to effectively coordinate the production of the generating system taking into account
each unit’s characteristics [16], which is of increasing importance in the ongoing liberalization
of the electricity market in many countries [13]. Indeed, while UC, in the form treated in this
paper originated from the era of monopolistic producers, it has numerous applications even in
the liberalized regime; furthermore, algorithmic approaches developed for the “classical” UC can
usually be easily extended to forms of the problem arising in a market environment [1, 13, 6].

Despite having attracted the interest of researchers for over 30 years, UC still cannot be
considered a well-solved problem for all practical sizes and operating environments; this should
not be surprising, since it is a large-scale Mixed-Integer NonLinear Program (MINLP). In spite
of the ever-increasing availability of cheap computing power and the advances in off-the-shelf
software for MINLP, solving UC by general-purpose software, even using the most advanced
approaches available, is not feasible when the number of units [10] and/or the length of the time
horizon [11] grows large.

Recently, approximated Mixed-Integer Linear Program (MILP) formulations of UC have been
proposed [7, 8, 14, 17] which exploit the efficient general-purpose available MILP solvers to
compute good quality solutions in relatively small time, especially for low- to mid-size instances,
although specialized approaches, e.g. based on Lagrangian Relaxation, are still competitive for
very-large-scale instances and/or when very fast running times are required by the operational
environment [12].

In [10], it has been shown that the efficiency and effectiveness of approaches using a MIQP
solver can be consistently improved by adding to the MIQP formulation a properly chosen set of
valid inequalities for the UC problem, called “Perspective Cuts”, which “tighten” the formulation
by cutting away parts of the feasible region of the continuous relaxation which do not belong
to the convex hull of the integer feasible solutions. This amounts in practice to a piecewise
linearization of the nonlinear part of the objective function of the problem, where the number
of pieces need not to be chosen a-priori. While the resulting formulations are thus reminiscent
of the previously-mentioned ones [7, 8, 14, 17], they differ in some relevant details, as discussed
later on.

We show that, at least for one “classical” formulation of ramp-constrained hydro-thermal UC
and on a set of realistic instances, MILP-based heuristics based on the new linearization obtain
comparable or slightly better solutions in less time than analogous approaches using the classical
linearization. This is particularly interesting in view of the fact that the new linearization is
not more difficult to implement and use than the previously proposed ones, given the same
underlying MILP solver. Furthermore, the new approach allows to more easily exploit the
tools made available by all current MILP solvers in order to construct dynamic formulations
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where the approximation is improved as needed during the solution process, leading to further
improvements in the effectiveness and efficiency of the approach.

The structure of the paper is the following. In Section 2 we present the MINLP formulation of
the specific form of UC problem we consider; while we focus, for our results, on a quite “classical”
formulation, the idea could easily be applied to a number of other UC problems, e.g. taking
into account market constraints [1, 9]. In Section 3 we present the MILP approximation akin
to those used, e.g., in [7, 17] and our alternative linearization based on “Perspective Cuts” [10].
Finally, in Section 4 we compare the linearizations within heuristic MILP-based approaches to
UC, and we draw some conclusions.

2. The UC model

Given the constants and variables defined in the Nomenclature section, the objective function
of UC, representing the total power production cost to be minimized, has the form

∑

i∈P

ci(pi,ui)=
∑

i∈P

(
si(ui) +

∑

t∈T

(
ai

t(p
i
t)

2 + bi
tp

i
t + ci

tu
i
t

))
. (1)

That is, the power production cost at each hour is customarily represented by a convex (ai
t > 0)

quadratic separable form in the power variables pi
t, neglecting for instance the so called valve

points [16]; fixed production costs are represented by the term ci
tu

i
t. We do not dwell further

upon the specific form of the (possibly time-dependent) start-up costs function si(ui), only
assuming that it can be properly represented within an MILP problem; the interested reader is
referred to [15, 7] for details.

The constraints of UC can be partitioned into three sets: local constraints for thermal units,
local constraints for hydro units, and global (system wide) constraints.

• Local constraints for thermal units:

p̄i
minui

t ≤ pi
t ≤ p̄i

maxui
t t ∈ T (2)

pi
t ≤ pi

t−1 + ui
t−1∆i

+ + (1 − ui
t−1)l̄

i t ∈ T (3)

pi
t−1 ≤ pi

t + ui
t∆

i
− + (1 − ui

t)ū
i t ∈ T (4)

ui
t ≥ ui

r − ui
r−1 t ∈ T , r ∈ [t − τ i

+, t − 1] (5)

ui
t ≤ 1 − ui

r−1 + ui
r t ∈ T , r ∈ [t − τ i

−, t − 1] (6)

ui
t ∈ {0, 1} t ∈ T (7)

Constant τ i
+ indicates how many further periods after a startup period unit i must remain

online, in order to avoid excessive mechanical stress due to too frequent startup/shutdown
procedures that would in the long term deteriorate the unit’s conditions; analogously, τ i

−
indicates how many further periods after a shutdown period unit i must remain offline.
The time period “0” is used for indicating the initial conditions of the power system; note
that we assume knowledge of the complete state of each unit prior to the beginning of
the current operation, that is, its commitment ui

0 and its generated power pi
0. For the

sake of minimum up- and down-time constraints (5), (6), as well as for the computation of
time-dependent startup costs (if any), it is also necessary to know for how long each unit
has been on or off prior to time period 0.
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• Local constraints for hydro cascade units:

0 ≤ qj
t ≤ q̄j

max t ∈ T (8)

v̄j
min ≤ vj

t ≤ v̄j
max t ∈ T (9)

vj
t − vj

t−1 = w̄j
t − wj

t − qj
t

+
∑

k∈B(j)

(
qk
t−tkj

+ wk
t−tkj

)
t ∈ T (10)

In order for the balance equations (10) to be well-defined, we assume knowledge of the
volume of each reservoir at time period t = 0, as well as water discharged and spilled at all
time periods prior to t = 1 for which the water is still arriving to one of the downstream
basins (i.e., those k ∈ B(j) such that t < tkj).

• Global constraints: the system-wide constraints—linking the different units among themselves—
are:

∑

i∈P

pi
t +

∑

h∈H

∑

j∈H(h)

αjqj
t = d̄t t ∈ T (11)

Note that the power-to-discharged-water efficiency is assumed constant, to avoid nonlin-
earities.

We refer to UC as the problem of minimizing (1) subject to constraints (2)—(11); this is a large-
scale Mixed-Integer Nonlinear Program whose nonlinearities are all contained in the objective
function. This formulation is a “basic” one, and it is less accurate than several previously
proposed ones in some aspects, e.g. related to hydro units modeling [8, 14, 17] or to the so-
called start-up and shut-down power trajectories [2]; however, the proposed technique can be
easily adapted to many UC formulations. The only notable, although minor, characteristic of our
formulation is the possibility to limiting the thermal units output to any prescribed value during
the first and last hour of operations (cf. the constants l̄i and ūi in (3) and (4), respectively),
as first suggested in [11]. Our choice of simplifying assumptions appears to strike a balance
between capturing the main aspects of practical UC problems and simplicity of the model, and
is commonly accepted in the literature. For instance, spinning reserve constraints, either in
the “standard” formulation (e.g. [5]) or in the more sophisticated one recently proposed in [7],
could be easily included in the formulation, but they have not been used in the instances used in
Section 4 since they are not likely to have any significant impact on the relative efficiency of the
different approximate formulations tested in this paper. Several other of the (widely accepted)
simplifying assumptions in the above model can be relaxed without hindering the applicability of
the proposed approach; in particular, more sophisticated models of hydro cascades, e.g., taking
into account nonlinear effects of the water head on the power-to-discharged-water efficiency
and/or nonzero technical minima for discharged water [8, 14, 17], could be used at the cost of
more integer variables in the formulation. Analogously, valve points of thermal units [16] or
cavitation points of hydro units can be easily modeled. Again, the introduction of these further
elements should not impact on the relative efficiency of the different approximate formulations
tested in this paper.

The UC model here considered, while having been historically motivated by the centralized
decision environments prevalent in the past, is well-suited also for being employed in today’s
free market regime, both at the stage where GenCos need to optimize their production schedule
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once that their own load profile has been established by the market procedures, and within
approaches for computing optimal bidding strategies [1, 13, 9, 6].

3. The piecewise-linear approximations

In order to make UC tractable by the efficient MILP solvers available, the nonlinear part of the
objective function need be linearized. Since the nonlinear structure is identical for each time
period and thermal unit, for notational simplicity in this section we consider both indices i and t
fixed and we drop them. The issue is then how to best represent the quadratic objective function

f(p, u) = ap2 + bp + cu (12)

by means of a piecewise-linear one. It is well-known that there are several different ways for
doing this; one is represented in Figure 1, where k + 1 points p̄0, p̄1, . . . , p̄k in the interval
[p̄min, p̄max] are chosen (such that p̄0 = p̄min and p̄k = p̄max), and a convex, piecewise-linear
upper approximation of f , which coincides with the latter in the chosen points, is used to replace
the original nonlinear objective function. This results in an MILP which differs from UC (for
each i and t) only in the following details (let f(p) = f(p, 1) = ap2 + bp + c):

• k new variables δl are introduced together with constraints

p =
∑k

l=1 δl + p̄minu

0 ≤ δl ≤ p̄l − p̄l−1 l = 1, . . . , k
(13)

• the cost coefficient of u in the objective function is changed to f(p̄min);

• each variable δl is given a linear cost Fl representing the linear function with value 0 when
δl = 0 and value f(p̄l) − f(p̄l−1) when δl = p̄l − p̄l−1, i.e.,

Fl =
f(p̄l) − f(p̄l−1)

p̄l − p̄l−1
= a(p̄l + p̄l−1) + b .

The MILP approximation of the quadratic function is therefore obtained by replacing (12) with

f(p̄min)u +
k∑

l=1

Flδl

subject to the original constraints of the problem plus the extra constraints (13). We will
refer to this approximated MILP formulation of UC as the Standard Piece-Wise Formulation
(SPWF). There are different choices for the linearization; for instance, it is easy to construct a
lower approximation which is tight to f in both function and derivative values in k points “in the
middle” of the intervals. Most often, the articles where linearization is touted (e.g. [7, 8, 14, 17])
do not explicitly state how exactly the linearization is constructed, although sometimes this may
be deduced; for instance, [7, Figure 1] most likely indicates the same upper approximation as in
SPWF. For the purpose of the present paper, there is no substantial difference between an upper
or a lower approximation, as discussed below. Indeed, both upper and lower approximations
constructed in this way only work in the p-space; thus, when represented in the (p, u) space,
as in Figure 1, one notices that the objective function of the new problem is linear along all
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Figure 1: Piecewise-linear approximation of f(p) in the (p, u) space

segments of extremes (p̄, 0) and (p̄, 1) for any feasible production level p̄, always with the same
slope c (in the Figure, k = 2, p̄0 = p̄min, p̄1 = p̄, p̄2 = p̄max).

Although the previous linearization is quite natural, it arguably is not the best possible ap-
proximation of the objective function of UC; indeed, a different possibility is suggested in [10].
Arbitrarily choosing k points p̄1, . . . , p̄k in the interval [p̄min, p̄max], a different way for producing
an MILP which approximates UC is (for each i and t) as follows:

• each term of the form (12) is removed from the objective function and replaced with a
corresponding new variable z; other terms in the objective function not containing p and
u, e.g., those related to variable startup costs [15], are kept untouched;

• k constraints of the form
z ≥ (2ap̄ + b)p + (c − ap̄2)u (14)

with p̄ = p̄h, h = 1, . . . , k respectively, are added to the formulation.

We will refer to the above as the Perspective-Cut (approximate) Formulation (PCF) of UC. This
choice is justified by a sophisticated theoretical analysis which for the sake of clarity cannot be
repeated here; the interested reader is referred to [10] for full details. Here we will just briefly
illustrate the basic ideas underlying the construction, in order to clarify in what sense the above
choice is, at least in theory, preferable to others, and what are its main differences w.r.t. the
previous approach.

The function f(p, u) in (12) is in principle only relevant at points (p, u) of its (disconnected)
domain D = [0, 0] ∪ [p̄min, p̄max] × {1}; however, standard Branch&Bound approaches typically
solve the continuous relaxation of the provided formulation, where u is allowed to take values
in [0, 1] rather than {0, 1}, in order to derive lower bounds on the optimal value of the problem.
It thus makes sense to study which formulation provides the best possible (workable) convex
relaxation of UC.

While such a question does not admit any easy answer for the UC problem in its entirety, it
can be answered if one restricts himself to the “basic blocks” of the problem; in fact, the convex
envelope of f(p, u) over D, that is, the convex function with the smallest (in set–inclusion sense)
epigraph containing that of f , can be shown [10] to be

h(p, u)=ap2/u + bp + cu (15)

for all up̄min ≤ p ≤ up̄max, u ∈ (0, 1] (h(0, 0) = 0, and h(p, u) = +∞ anywhere else). This
function is strongly related with a well-known object in convex analysis, the perspective function
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g(p, u) = u f(p/u) of f(p). The epigraph of g(p, u) defines a cone pointed in the origin and
having as “lower shape” that of f(p), as depicted in Figure 2; epi h is the section of the cone
corresponding to u ≤ 1.

Figure 2: The perspective function of f(p)

Since 0 < u ≤ 1, it is immediate to verify that h(p, u) ≥ f(p, u) for all (p, u) ∈ D, that
is, h is a better objective function, for a continuous relaxation, than f(p, u); indeed, elementary
calculus shows that the maximum of h(p, u)−f(p, u) over D is ap2

max/4, attained at [p̄max/2, 1/2].
However, using h(p, u) as the objective function has a serious drawback: it is even a “more
nonlinear” function than f(p, u), which we already aim at at making “less nonlinear”.

Yet, it is well-known that every convex function is the point-wise supremum of affine functions;
for our case these can be easily characterized. Indeed, [10, Theorem 1] shows that the epigraph
of h is composed of all and only triples (z, p, u) satisfying up̄min ≤ p ≤ up̄max, 0 ≤ u ≤ 1
and the infinite system of linear inequalities (14), for all p̄ ∈ [p̄min, p̄max]. We refer to each
inequality in (14) as a perspective cut (P/C); as illustrated in Figure 3, it defines the unique
supporting hyper-plane to the function passing from (0, 0) and (p̄, 1). Note that the epigraph
of h is a cone, i.e., differently from the previous case (cf. Figure 1) the function is linear
along all segments of extremes (0, 0) and (p̄, 1) for any feasible production level p̄ (with varying
slope), as it is easy to verify algebraically. Thus, the PCF formulation corresponds to choosing

Figure 3: Piecewise-linear approximation of h(p, u)

supporting hyper-planes tangent to the graph of h(p, u) both in (0, 0) and in the points (p̄h, 1),
and using as objective function the polyhedral function which is the point-wise maximum of the
corresponding linear functions; this better describes the true behavior of the actual non-convex
objective function, up to the extent possible to a convex approximation.
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Given the standard MINLP formulation of UC, PCF is even slightly simpler to implement
than SPWF. The differences between SPWF and PCF can be summarized as follows:

• Assuming k pieces are constructed for each i and t, SPWF has k|P ||T | more continuous
variables and (2k + 1)|P ||T | more constraints (counting box constraints) than UC, while
PCF has only |P ||T | more continuous variables and k|P ||T | more constraints than UC;
thus, PCF has significantly fewer variables and constraints than SPWF, especially as k
grows, although the constraints (14) are slightly denser than box constraints.

• Since the objective function of PCF underestimates h, solving the continuous relaxation
of PCF provides a valid lower bound to the optimal value of UC, and therefore the global
lower bound provided by a Branch&Bound approach using PCF is valid for UC, unlike
that provided by SPWF whose objective function is an upper estimate of f . This would
make a difference, in theory, if the stopping criterion of the Branch&Bound would be
computed by evaluating feasible solutions with the value of the “true” objective function
(1); in this case, in fact, the solution found would be guaranteed to be optimal to the
prescribed accuracy for PCF, but not for SPWF. This could be easily solved by using a
lower approximation in SPWF, but anyway it is immaterial for the current approach, that
in both cases is a heuristic one, as discussed below.

• PCF allows to easily work with a dynamic k, the number of constraints controlling how
accurately the objective function is represented. In fact, one can choose a small set of
initial constraints, solve the continuous relaxation of PCF and, if u∗ > 0, check whether
the solution [v∗, p∗, u∗] satisfies the P/C (14) for p̄ = p∗/u∗; if not, the thus obtained cut
can be added to the formulation, using the standard mechanisms that MILP solvers make
available for implementing the so-called “Branch&Cut” approaches with user-defined cuts.
Thus, any required degree of approximation of the original objective function to UC can be
obtained without starting with a formulation with a very large k. While this is in theory
possible for SPWF too, adding constraints to a formulation during a Branch&Bound is
now a standard feature to MILP solvers and is very effectively supported, which is not
true for adding variables.

Apart from these differences, the two formulations share the largest part of their variables and
constraints, and therefore once one of the two has been programmed, the other can be quite
easily obtained with a few modifications, especially if using a high-level algebraic modeling
system. Also, because the approach applies to a “very basic” portion of the UC problem, it
can be easily applied to the numerous variants of the problem developed in the vast literature
on the subject. Finally, the new formulation can be easily applied to the case where the cost
function is piecewise-quadratic but non-convex, like for instance the case when valve points need
to be taken into account; simply, the approach is applied separately to each segment where the
function is convex.

4. Computational Experiences

In this section we present some numerical results aimed at testing the effectiveness of the P/C-
based formulations within MILP-based heuristic approaches to UC. For this, we implemented
three different approaches:

• SPWF: the MILP formulation, with k = 4 (as suggested in [7], while [17] uses k = 3)
equidistant points, is constructed and passed to an MILP solver;
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• PCF: same as before, but the P/C formulation is used;

• PCFDk: initially, the P/C formulation with only two pieces, the ones corresponding with
p̄min and p̄max, is constructed; additional cuts, up to a maximum of k (a user-configurable
parameter) per variable are then dynamically generated when needed as described in the
previous paragraph.

The tests have been performed on an Opteron 246 (2 GHz) computer with 2 GigaBytes of RAM,
running Linux Fedora Core 3, and using the highly regarded commercial solver Cplex 9.1. As
all current commercial solvers, Cplex offers mechanisms (the cut callback functions) allowing
easy implementation of the PCFDk approach.

A crucial parameter to be tuned for this kind of approaches is the prescribed relative accuracy
obtained which the solver is allowed to stop: we tested all methods with two settings, a relatively
“relaxed” one of 0.5% (the value used in [7, 12]), and the “tighter” 0.01% (the default value for
Cplex, considered a very high accuracy). We should mention that for none of the approaches
there is an a-priori guarantee that the obtained integer solution will in fact be accurate with
that precision; this is because the MILP solver stops when its perceived gap is less than the given
threshold, but that gap does not accurately measure the true one. In fact, for SPWF the lower
bound is not a-priori valid, being the objective function of the MILP an upper approximation
of (1); by the same token, however, the upper bound is a valid one. The converse obviously
happens for PCF, since in that case the objective function of the MILP is a lower approximation
of (1). All this is immaterial in practice, since the difference between the actual function value
and its (both upper and lower) approximations was always very small, to the tune of 0.01%.
However, to make the comparison absolutely fair the gaps reported in the following Tables have
been computed by re-evaluating the objective function value of the integer solution provided by
the solver using the “true” quadratic objective function (1), and comparing it with the best valid
lower bound we know for each instance; since the same lower bound is used for both formulations
(note that SPWF does not provide any valid lower bound for (1)), any difference in gaps is only
due to the quality of the corresponding feasible solutions.

For our tests, we have used two sets of randomly generated realistic pure thermal and hydro-
thermal instances, with a number of thermal units ranging from 10 to 200 and a number of hydro
units ranging from 10 to 100, on a daily problem (n = 24). These have been generated with a
modified version of the procedure described in [4], which produces a generating set with “small”,
“medium” and “large” thermal units in realistic proportions; the characteristics of each unit are
then randomly generated within a set of realistic parameters, depending on the type of the unit.
The procedure has only been modified to also randomly generate realistic ramping restrictions,
resulting in large units to require between two and three hours to ramp from the technical
minimum to the technical maximum. For simplicity, all the instances have time-invariant start-
up costs; introducing time-dependent startup costs in the MILP formulations is done in the
same way for both, and results in the same increase of the number of constraints, thereby it
should not materially impact on the comparison between SPWF and PCF. The UC instances
are freely available at the OR-Library [3], and have already been used in [11, 12] for testing
Lagrangian Relaxation approaches and MIQP- and MILP-based ones. The size of the different
MILP formulations tested is reported in Table 1; column “p” reports the total number of thermal
generating units, while column “h” reports the total number of hydro units. The first half of the
table, with h = 0, is therefore composed by “pure thermal” instances; each row reports averaged
results of 5 instances of the same size. Column “bvar” reports the number of binary variables
(equal for all formulations), while columns “cvar” report the number of continuous variables
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for, respectively, SPWF and all the PC-based formulations. Then, columns “const” report the
number of (non-box) constraints for, respectively, SPWF, PCF, and the PCFDk formulations.
Finally, columns “P/Cs” report the number of P/Cs dynamically generated by PDFD4 and
PCFD∞, respectively, when the optimality tolerance is set to the “tight” value of 0.01% (the
number is clearly lower with the “relaxed” tolerance of 0.5%).

Table 1: Dimensions of the different MILP formulations

bvar cvar const P/Cs
p h SPWF PCF* SPWF PCF PCFD k = 4 k = ∞

10 0 240 1440 480 4326 4086 3126 683 805
20 0 480 2880 960 8607 8127 6207 1422 1821
50 0 1200 7200 2400 21412 20212 15412 3416 4247
75 0 1800 10800 3600 32709 30909 23709 5057 5876

100 0 2400 14400 4800 44829 42429 32829 6458 7461
150 0 3600 21600 7200 66651 63051 48651 9652 10642
200 0 4800 28800 9600 89442 84642 65442 12263 14011
20 10 480 3600 1680 8172 7692 5772 1190 1354
50 20 1200 8640 3840 20073 18873 14073 2802 3488
75 35 1800 12060 4800 30238 28438 21238 4443 4642

100 50 2400 18000 8400 40031 37631 28031 5941 6122
150 75 3600 27000 12600 61055 57455 43055 8161 8508
200 100 4800 36000 16800 81098 76298 57098 10488 10977

4.1. Comparing static formulations at lower accuracy

We first analyze the results obtained by comparing SPWF and PCF with stopping criterion
at 0.5%. The results are displayed in Table 2; columns “SPWF” report results for the SPWF
formulation, while columns “PCF” report results for the PCF formulation. In both cases, column
“time” reports the required running time (in seconds), column “nd” reports the number of visited
nodes in the enumeration tree, and column “LPs” reports the total number of LP solved; this is
much larger than the number of nodes because Cplex 9.1 employs a sophisticated “Branch &
Cut” approach where valid inequalities are automatically derived and added to the formulation to
improve the lower bound. Furthermore, column “gap” reports the obtained gap (in percentage)
between the (true) objective function value of the integer feasible solution reported by the
formulation and the best valid lower bound we know for each instance. Finally, column “rgap”
reports the obtained gap (in percentage) between the lower bound obtained at the root node of
the enumeration tree (solving the continuous relaxation of the MIP formulation), compared to
the best valid upper bound we know for each instance; since the same upper bound is used for
both formulations, the gaps can be compared.

The table shows that both SPWF and PCF obtain good quality solutions; most often, PCF
attains solution of slightly better quality than SPWF. Furthermore, PCF most often terminates
significantly faster. This is partly due to the fact that solving the continuous relaxation of PCF
is slightly but noticeably faster than solving that of SPWF (this fact is not reported in the table
due to space reasons), and to a larger extent due to the better root node gap (cf. column “rgap”).
Although the difference may look minor, the reduction in root node gap is significant enough
to diminish the total number of LPs solved, and often the number of Branch&Bound nodes,
too, finally yielding a consistently reduced running time. This confirms the better quality of the
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Table 2: Comparing SPWF and PCF for low accuracy

SPWF PCF
p h gap nd LPs time rgap gap nd LPs time rgap

10 0 0.31 0 23 0.95 1.61 0.28 0 16 0.76 1.50
20 0 0.34 0 23 3.72 1.34 0.36 8 25 3.56 1.25
50 0 0.21 0 25 21.93 1.38 0.21 0 12 12.09 1.26
75 0 0.20 10 59 56.31 1.43 0.18 14 51 45.88 1.30

100 0 0.17 16 76 94.09 1.39 0.15 0 19 43.55 1.27
150 0 0.12 16 115 218.69 1.32 0.11 2 42 146.80 1.20
200 0 0.09 6 87 267.78 1.37 0.08 0 52 234.97 1.25
20 10 0.21 140 258 93.53 0.82 0.20 0 70 3.71 0.69
50 20 0.06 0 60 17.98 0.70 0.10 0 65 18.93 0.63
75 35 0.11 170 300 96.86 0.57 0.07 70 224 64.52 0.52

100 50 0.06 180 266 130.86 0.58 0.07 35 155 81.41 0.53
150 75 0.06 300 554 467.62 0.58 0.05 90 316 293.50 0.52
200 100 0.05 205 321 427.71 0.56 0.03 35 168 314.00 0.51

lower bound produced by the PCF forulation w.r.t. that produced by the SPWF formulation,
despite the fact that the latter is not even a guaranteed lower bound since the original objective
function is upper approximated. The Table also shows that hydro-thermal instances typically
have smaller gaps than pure thermal ones; this has always been the case in our experience (e.g.
[12]). Intuitively, the reason is likely to be that hydro units give the model more flexibility to
adapt to the discontinuities caused by the combinatorial nature of thermal units’ operations.

4.2. Static vs. dynamic formulations at lower accuracy

Having proven that PCF is a worthy competitor for SPWF, we now proceed at testing the impact
of dynamic vs. static generation of the P/C. For this, we compare PCF with two variants of
PCFDk, for k = 4 and k = ∞ respectively. PCFD4 has the same maximum size as PCF, but cuts
are generated only when needed, and therefore can “concentrate” on some “critical” variables,
while leaving others (e.g., those that always attain zero value in the continuous relaxation) with
a less accurate, but still sufficient, approximation of the objective function; furthermore, the
points where the cuts are evaluated are chosen dynamically by the approach instead of a-priori.
PCFD∞ allows for arbitrarily accurate approximations of the objective function, possibly paying
a high price in terms of the size of the linear programs that need be solved at each node of the
enumeration tree. The results are displayed in Table 3, where the meaning of the columns is the
same as in the previous one.

The table shows interesting results. Both dynamic approaches are competitive with the static
one. In particular, it appears that PCFD∞ is remarkably effective for small- to mid-scale
instances, while PCFD4 is more effective on the large-scale ones; for the largest hydro-thermal
instances it provides slightly better solutions in half of the time required by PCF. This is
probably due to the fact that for moderate size instances the more accurate approximation
leads to finding a better solution quicker, but as the size of the instances grow large the increase
in the computational cost of the solution of the linear programs corresponding to the many
more P/C added overbalances the improvements in accuracy of the objective function. All in
all, however, the results clearly show that an appropriate choice of the parameter k leads to
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Table 3: Comparing PCF, PCFD4 and PCFD∞ for low accuracy

PCF PCFD4 PCFD∞
p h gap nd LPs time gap nd LPs time gap nd LPs time

10 0 0.28 0 16 0.76 0.30 0 27 0.86 0.28 0 24 0.80
20 0 0.36 8 25 3.56 0.36 0 22 2.51 0.33 0 29 3.00
50 0 0.21 0 12 12.09 0.19 0 33 14.17 0.18 0 27 13.08
75 0 0.18 14 51 45.88 0.19 2 39 36.62 0.22 0 21 22.58

100 0 0.15 0 19 43.55 0.17 0 22 34.31 0.20 0 23 36.51
150 0 0.11 2 42 146.80 0.11 4 76 104.68 0.12 10 87 169.68
200 0 0.08 0 52 234.97 0.10 0 63 183.01 0.14 12 99 235.60
20 10 0.20 0 70 3.71 0.30 5 75 4.18 0.15 0 45 2.51
50 20 0.10 0 65 18.93 0.10 10 112 19.06 0.13 0 56 10.93
75 35 0.07 70 224 64.52 0.05 115 357 70.55 0.03 95 368 64.80

100 50 0.07 35 155 81.41 0.05 15 110 47.62 0.04 40 181 60.78
150 75 0.05 90 316 293.50 0.05 115 374 194.10 0.05 115 428 216.33
200 100 0.03 35 168 314.00 0.02 0 85 155.36 0.03 135 466 342.69

substantially better results w.r.t. the static formulation.

4.3. Results with higher accuracy

Finally, we analyze the impact of the optimality threshold by presenting the results for all four
approaches (SPWF and the three P/C-based ones) with the “tighter” stopping tolerance of
0.01%. Since attaining such a high accuracy may require a very long time, the search is stopped
after 10000 seconds and the best solution obtained so far is returned. The results are displayed
in Table 4; the meaning of the columns in this table is the same as in the previous ones.

Table 4: Comparing SPWF and PCF* for high accuracy

SPWF PCF PCFD4 PCFD∞
p h gap time gap time gap time gap time

10 0 0.01 22 0.01 15 0.01 12 0.01 16
20 0 0.01 3480 0.02 2969 0.02 3614 0.01 3481
50 0 0.09 10000 0.09 10000 0.08 10000 0.09 10000
75 0 0.09 10000 0.09 10000 0.08 10000 0.08 10000

100 0 0.07 10000 0.06 10000 0.06 10000 0.06 10000
150 0 0.07 10000 0.05 10000 0.05 10000 0.05 10000
200 0 0.07 10000 0.06 10000 0.05 10000 0.05 10000
20 10 0.01 288 0.01 383 0.01 238 0.01 317
50 20 0.01 9613 0.00 6855 0.00 7772 0.01 8326
75 35 0.01 10000 0.01 10000 0.01 10000 0.01 10000

100 50 0.01 10000 0.01 10000 0.01 10000 0.01 10000
150 75 0.01 10000 0.01 10000 0.01 10000 0.01 10000
200 100 0.01 10000 0.01 10000 0.01 10000 0.01 10000

As the table shows, allowing the search to continue decreases the final gap by a significant
factor; it does not necessarily bring it down to 0.01%, even in the (few) instances that are
solved up to the prescribed accuracy, due to the fact that the MILP formulations are only
approximations of the “true” MIQP one. However, the improvement in accuracy comes at the
expense of a dramatic increase of running times; all but the smallest instances are stopped
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by the time limit, not a surprising result in view of the experiments reported in [10]. All the
formulations attain similar results; however, for the small-scale instances that are solved up
to the prescribed accuracy within the allotted time limit the P/C-based formulations are most
often (slightly but noticeably) faster, while providing comparable or better solutions. For the
other instances, within the same total running time the P/C-based formulations are able to
attain slightly better final solutions on large-scale pure thermal instances, and are competitive
on all other cases. The P/C-based formulations are also competitive for hydro-thermal instances,
which however are solved with a very high degree of accuracy by both methods; the final gaps
are only fractionally larger than 0.01%, and the algorithms cannot stop only because the lower
bound computed by the MILP formulations is not as accurate as the one used for computing
the Table, which is based on sophisticated Lagrangian techniques [12]. Among the P/C-based
formulations, PCFD∞ appears to be the more “robust”, as it almost always reports—for a given
running time—solutions of equivalent or (slightly) better quality than all the others.

In general, the results show that the PCF formulation provides, with the same implementation
effort, a better description of the feasible region (objective function) of the “true” MIQP problem,
which finally leads, ceteris paribus, to shorter running times and/or better feasible solutions.
Allowing the number of P/Cs used, and the points where they are generated, to be dynamic
further significantly improves the efficiency of the approach, especially if the allowed maximum
number of cuts is properly managed.

5. Conclusions and directions for future work

In this paper, we have proposed a new way for constructing MILP approximated formulations for
hydro-thermal Unit Commitment problems. While being not more difficult to implement than
previously proposed formulations, the new approach significantly improves the performances of
MILP-based heuristics to the problem, either in terms of required running time, or in terms
of quality of the obtained solutions. With a limited additional implementation effort dynamic
versions of the approach can be implemented which may lead to further significant improvements
of the results. While the formulation is tested only on a “standard” form of the UC problem,
the underlying concept can be applied to many other variants of the problem, where analogous
results should be expected. All in all, these results show that appropriate formulations of UC
problems can be used to find good-quality solutions in relatively short time by using off-the-shelf,
general-purpose optimization software.
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