CALCOLO NUMERICO

Corso di Laurea in Ingegneria Biomedica A.A. 2014/2015 – Appello 12/06/2015

NOME COGNOME MATRICOLA

Esercizio 1 Sia $A \in \mathbb{R}^{n \times n}$, n > 1, la matrice

$$A = \left[\begin{array}{cc} I_{n-1} & \mathbf{v} \\ \mathbf{v}^T & 1 \end{array} \right],$$

con I_{n-1} matrice identità di ordine n-1 e $\boldsymbol{v} \in \mathbb{R}^{n-1}$.

1. Posto A = M - N come nel metodo iterativo di Gauss-Seidel si mostri che

$$M^{-1} = \left[\begin{array}{cc} I_{n-1} & \mathbf{0} \\ -\mathbf{v}^T & 1 \end{array} \right].$$

- 2. Si determini la matrice G di iterazione del metodo di Gauss-Seidel e si mostri che il metodo applicato ad A converge se e solo se risulta soddisfatta la condizione $\parallel \boldsymbol{v} \parallel_2 < 1$.
- 3. Si dica se tale condizione implica la predominanza diagonale di A.
- 4. Scrivere una funzione Matlab[®] che dato in input $tol \in \mathbb{R}$, $\boldsymbol{x}_0 \in \mathbb{R}^n$, $\boldsymbol{v} \in \mathbb{R}^{n-1}$ e $\boldsymbol{b} \in \mathbb{R}^n$ implementa il metodo di Gauss-Seidel per la risoluzione di $A\boldsymbol{x} = \boldsymbol{b}$ arrestandosi quando $\|\boldsymbol{x}_k \boldsymbol{x}_{k-1}\|_2 \leq tol$.
- 5. Per tol = 1.0e 12, $\mathbf{v} = (1/n) \operatorname{ones}(n-1,1)$, $\mathbf{x}_0 = \operatorname{zeros}(n,1)$, $\mathbf{b} = \operatorname{ones}(n,1)$ e n = 128, 256, riportare il numero di iterazioni eseguite dall'algoritmo.