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Abstract

Simple exponential smoothing is widely used in forecasting economic time series.
This is because it is quick to compute and it generally delivers accurate forecasts.
On the other hand, its multivariate version has received little attention due to the
complications arising with the estimation. Indeed, standard multivariate maximum
likelihood methods are affected by numerical convergence issues and bad complexity,
growing with the dimensionality of the model. In this paper, we introduce a new
estimation strategy for multivariate exponential smoothing, based on aggregating its
observations into scalar models and estimating them. The original high-dimensional
maximum likelihood problem is broken down into several univariate ones, which are
easier to solve. Contrary to the multivariate maximum likelihood approach, the sug-
gested algorithm does not suffer heavily from the dimensionality of the model. The
method can be used for time series forecasting. In addition, simulation results show
that our approach performs at least as well as a maximum likelihood estimator on the
underlying VMA(1) representation, at least in our test problems.

Keywords: Multivariate Exponential Smoothing, EWMA, Forecasting demand,

1 Introduction

Simple exponential smoothing represents an important benchmark model when forecasting

the demand for goods and services. The most attractive feature of this model is its ease

of computation. Unfortunately, the same feature does not hold for its multivariate version

due to the complications arising with the estimation. Indeed, this represents an obstacle

for practitioners, discouraging the employment of this model in empirical analysis. This

paper addresses this relevant issue by providing a feasible and accurate estimation method

for a multivariate exponential smoothing model.
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We focus on the following state-space representation of an unrestricted multivariate

simple exponential smoothing model (See [Harvey, 1991, Chapter 8])

yt = µt + εt,
µt = µt−1 + ηt,

(1)

with yt, µt, εt, ηt ∈ RN . The noises ηt and εt characterizing the system are independent

and identically distributed with expected value equal to zero and

cov

[
εt
ηt

]
=

[
Σε 0
0 Ση

]
(2)

where Σε > 0, Ση > 0 and 0 are N×N matrices. The nonstationary system (1) is known as

the structural process, and the covariances as in (2) are called structural parameters. The

system can be reparametrized as a first order integrated vector moving average process (i.e.

integrated VMA(1)), the so-called reduced form, using the Wold representation theorem

zt := yt − yt−1 = ηt + εt − εt−1 = ut −Θut−1, E
[
utu

T
t

]
= Σu, (3)

for a suitable Θ,Σ > 0 ∈ RN×N , and an innovation process ut which is uncorrelated, but

not in general independent. The parameters can be chosen so that (3) is invertible, i.e.,

all the eigenvalues of Θ have modulus smaller than 1. This version can be recast in the

more familiar exponentially weighted moving average form (EWMA)

ŷt = (I −Θ)yt−1 + Θŷt−1, for t = 1, 2, . . . , T , (4)

where ŷt denotes the forecast of yt.

Our method is based on the relation between the original model and several scalar

aggregates of the form xt = wTt zt, for suitable w ∈ RN . It is a consequence of Wold’s

decomposition theorem [Lütkepohl, 2005, Section 2.1.3] that each of these models is a

MA(1), i.e.,

xt = vt − ψvt−1, E
[
v2
t

]
= σ.

(Notice that we use here σ to denote a variance, rather than a standard deviation, for

notational consistency with Σ for multivariate processes.)

Visually, we can represent the estimation procedure using Figure 1:

Observed data
zt = yt − yt−1

parameters
Θ,Σu of the MA

autocovariances
Γ0,Γ1 of

the model

aggregates wT zt

parameters
ψ, σ of aggre-
gate models

autocovariances
γ0, γ1 of aggre-

gate models

aggregate

estimate (ML) compute

compute

compute

2



Namely, we aggregate the model using several vectors w, estimate each of the univariate

(scalar) models xt = wtzt as a MA(1), and then make some algebraic computations to

derive the parameters Θ and Σu from them.

In order to make these closed-form computations possible, we need to derive explicit,

closed-form relations that allow us to

• express the parameters Θ,Σu as a function of the autocovariances Γ0 := E
[
ztz

T
t

]
and Γ1 := E

[
ztz

T
t−1

]
. This step is described in Section 3.

• express Γ0 and Γ1 as a function of the autocovariances of the aggregate models.

This step, together with a description of the whole estimation procedure, is shown

in Section 4.

Asymptotic consistency and normality of the resulting estimator are proved in Section 5.

In contrast, a maximum likelihood (ML) estimator of the VMA model (3) would fol-

low directly the “missing arrow” on our diagram between the observed data zt and the

parameters Θ,Σu. What we do instead essentially trades off one N -dimensional maxi-

mum likelihood procedure for several univariate ones. Since the ML estimator is affected

by numerical convergence issues and bad complexity, growing with the dimensionality of

the model [Kascha, 2012], estimating many small models rather than a large one is com-

putationally favorable. In Section 6 we compare the performance of ML with those of

our suggested estimator, called META (Moment Estimation Through Aggregation). Sim-

ulation results show that the suggested approach is not only very simple and fast but

is also remarkably efficient having performance that is as good as that of the standard

multivariate maximum likelihood approach.

2 Literature review

As noted by De Gooijer and Hyndman [2006], “There has been remarkably little work

in developing multivariate versions of the exponential smoothing methods for forecast-

ing.” We argue that this is probably due to the difficulties of estimating parameters in

large-dimensional system. Our framework, also known as exponentially weighted moving

average (EWMA), has a long tradition in forecasting time series (Muth [1960]). Moreover,

the EWMA belongs to the more general exponential smoothing family (see Gardner Jr.

[2006] and Holt [2004]). Despite its simplicity, this family represents a valid candidate in

forecasting demand (see for example Dekker et al. [2004], Fliedner and Lawrence [1995],

Fliedner [1999], Makridakis and Hibon [2000], Moon et al. [2012], Moon et al. [2013]).

More recently, the multivariate version of the EWMA model has been considered as

production planning framework when forecasting aggregate demand. To overcome the

estimation difficulties in the multivariate case, two strategies have been suggested, the so-

called top-down and bottom-up approaches (see for example Lütkepohl [1987], Widiarta

et al. [2009] and Sbrana and Silvestrini [2013]). In detail, let wT be a fixed weight vector,

and suppose that we are interested in forecasting the aggregated process xt = wT zt. For
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instance, wT =
[
1/N 1/N . . . 1/N

]
means that we are interested in the arithmetic

mean of the observed variables. Then,

• The top-down approach consists in constructing directly xt = wT zt and forecasting

this aggregate series applying a (scalar) estimator to {xt}t=1,2,...,N . Note that this

loses information about the original process, since we do not use the single com-

ponents of zt but only an aggregate function of them; hence less accuracy is to be

expected.

• The bottom-up approach consists in applying a scalar estimator to each of the N

time series {(zt)1}t=1,2,...,T , {(zt)2}t=1,2,...,T , . . . {(zt)N}t=1,2,...,T , and forecasting each

of them individually to obtain a forecast of the aggregated process xt = wT zt. Again,

this method ignores the interdependence among the variables.

There is a vast literature comparing top-down and bottom-up approaches when forecasting

aggregate demand. Without attempting to survey all the contributions on this topic, we

refer to Fliedner and Lawrence [1995], Fliedner [1999], Weatherford et al. [2001], Dekker

et al. [2004], Zotteri et al. [2005], Zotteri and Kalchschmidt [2007], Widiarta et al. [2009],

Chen and Blue [2010]. More recently Moon et al. [2012], Moon et al. [2013] consider

in details alternative forecasting methods, such as the simple exponential smoothing, for

predicting the demand for spare parts in the South Korean Navy.

A necessary condition to compare top-down and bottom-up approaches is the knowl-

edge of the parameters of the multivariate demand planning framework. Indeed, once data

are available, practitioners are faced with the challenge to estimate the parameters of the

system whose dimension might be large. Therefore, a relevant gap left by Sbrana and Sil-

vestrini [2013] is that they do not provide any indication on how to derive the parameters

of the framework using the available data (i.e. yt). Indeed, quoting their conclusions: “this

paper contains useful results assuming full knowledge of the parameters of the multivariate

exponential smoothing. We are aware that this represents an ideal situation since, in em-

pirical analysis, practitioners do not have such information and misspecification issues do

usually arise [...]”. This note fills this important empirical gap by providing an efficient

and fast estimation procedure for the exponentially weighted moving average model, based

on the same aggregation techniques used in their paper.

3 Closed-form results

It is easy to see that the autocovariances of the process zt, expressed with both parametriza-

tions (1)–(2) and (3), are given by

Γ0 := E
[
ztz

T
t

]
= Σu + ΘΣuΘT = Ση + 2Σε,

Γ1 := E
[
ztz

T
t−1

]
= −ΘΣu = −Σε.

(5)

It is important in the following that Γ1 is a symmetric matrix. Hence it is easy to derive

the following relations that express the structural parameters as a function of the reduced

4



ones:

Σε = ΘΣu, Ση = Σu + ΘΣuΘT − 2Σε.

The inverse relationship, i.e., how to construct the reduced parameters Θ,Σu in terms of

the structural ones Ση,Σε, is less obvious; we present it in the following result.

Proposition 1. Consider the model (1)–(2) and its reparametrization (3), and let Q :=

ΣηΣ
−1
ε . Then, the following relation holds

Θ = 1
2

(
Q+ 2I −

(
Q2 + 4Q

) 1
2

)
,

Σu = Θ−1Σε.
(6)

The matrix square root in this expression is well-defined since Q2 + 4Q is diagonalizable

with all positive eigenvalues.

Proof. Note that Γ0 can be expressed as

Γ0 = Σu + Γ1Σ−1
u Γ1, (7)

since Γ1 = −ΘΣu = −ΣuΘT . Post-multiplying (7) by Σ−1
u , we have

−Γ0Γ−1
1 Θ = Γ0Σ−1

u = I + Γ1Σ−1
u Γ1Σ−1

u = I + Θ2.

Therefore Θ satisfies the quadratic matrix equation

Θ2 + Γ0Γ−1
1 Θ + I = 0, (8)

with Γ0Γ−1
1 = (Ση +2Σε)(−Σε)

−1 = −Q−2I. The matrix Q is always diagonalizable with

positive eigenvalues, since it is the product of two positive-definite matrices [Horn and

Johnson, 1990, Theorem 7.6.3]. Hence we can set Q = PDP−1, D = diag(d1, d2, . . . , dN ),

with di > 0 for each i = 1, 2, . . . , N . Pre- and post-multiplying (8) by P−1 and P , we get

Θ̃2 − (D + 2I)Θ̃ + I = 0, Θ̃ := P−1ΘP.

The solutions of this matrix equation are given by diagonal matrices Θ̃ = diag(g1, g2, . . . , gN ),

where

g2
i − (di + 2)gi + 1 = 0, i = 1, 2, . . . , N.

The usual formula for the quadratic solution gives

gi =
di + 2±

√
d2
i + 4di

2
. (9)

Note that gi are the eigenvalues of Θ̃, and hence of Θ. Since di <
√
d2
i + 4di < di + 2

whenever di > 0, we have 0 < gi < 1 if we choose the minus sign and gi > 1 if we choose

the plus sign. Hence we choose the minus sign to obtain invertibility of the resulting

system (3).
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Putting back together the matrices, we get

Θ = P
1

2

(
D + 2I − (D2 + 4D)1/2

)
P−1 =

1

2

(
Q+ 2I − (Q2 + 4Q)1/2

)
.

The matrix square root is well defined since Q2 + 4Q has positive eigenvalues d2
i + 4di,

i = 1, 2, . . . , N .

Finally, the second equation in (6) follows from the second one in (5), since we have

already observed that gi < 0 and thus Θ is nonsingular.

Remark 2. The results as in (6) are the multivariate extension of the univariate results

(see for example [Muth, 1960] and [Harvey, 1991, p. 68]) with Q representing a “signal to

noise” matrix ratio. In general, Q is not a symmetric matrix and therefore neither Θ is.

The expression for Θ in (6) is useful for forecasting the system (4). Indeed, using the

lag operator L (such that Lyt = yt−1) we can write the optimal linear forecasting for (4)

as

yFt+1 = (I −Θ)(I −ΘL)−1yt = (I −Θ)
∞∑
j=0

Θjyt−j . (10)

Corollary 3. The reduced form parameters can be expressed in terms of the autocorrela-

tions of zt as

Θ = −1

2

(
Γ0Γ−1

1 +
(
Γ0Γ−1

1 Γ0Γ−1
1 − 4I

) 1
2

)
,

Σu = 2

(
Γ0Γ−1

1 +
(
Γ0Γ−1

1 Γ0Γ−1
1 − 4I

) 1
2

)−1

Γ1.

(11)

Therefore, Γ0, Γ1 is the only information needed to obtain Θ and Σu. The reader

might be tempted to use this result as an estimator, computing sample covariances Γ̂0 =
1
T

∑T
t=1 ztz

T
t , Γ̂1 = 1

T

∑T−1
t=1 ztz

T
t−1 and substituting them into (11). In empirical analysis,

however, these sample covariances might not be accurate enough. To solve this issue, in

the next section we provide a method to derive these moments more accurately.

4 Moment estimation through aggregation (META)

Consider a generic multivariate MA(1) process

zt = ut −Θut−1, E
[
utu

T
t

]
= Σu, (12)

and define its autocovariance matrices Γk := E
[
ztz

T
t−k
]
; due to the structure of the process,

Γk = 0 for |k| > 1, and Γ0 = ΓT0 .

We are interested in aggregate processes, that is, scalar processes of the form xt :=

wT zt, for some vector w ∈ Rn. This form includes in particular the components (zt)1, (zt)2, . . . , (zt)N
of the vector process zt, which are obtained by setting w = ei, for j = 1, 2, . . . , N , where

ei is the i-th vector of the canonical basis, that is, the i-th column of IN .

It turns out that if Γ1 = ΓT1 (as is the case in our EWMA setting, due to (5)), then

we can recover these covariances by knowing those of some special aggregate processes.
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Lemma 4. Let zt be a VMA(1) process (12), and suppose that Γ1 = ΓT1 . Given a vector

w ∈ RN , w 6= 0, define the aggregate x
(w)
t := wT zt, and let γ

(w)
k be its covariances. Then,

the entries of Γk are given by

(Γk)i,j =

{
γ

(ei)
k i = j,

1
2

(
γ

(ei+ej)
k − γ(ei)

k − γ(ej)
k

)
i 6= j.

(13)

In particular, they are uniquely determined given the covariances of the N(N+1)
2 scalar

processes constructed with vectors w ∈ W,

W := {ei : 1 ≤ i ≤ N} ∪ {ei + ej : 1 ≤ i < j ≤ N}.

Proof. Note that γ
(w)
k = E

[
wT ztz

T
t−kw

]
= wTΓkw. Hence, γ

(ei)
k = (Γk)ii, and γ

(ei+ej)
k =

(Γk)ii + (Γk)ij + (Γk)ji + (Γk)jj = (Γk)ii + 2(Γk)ij + (Γk)jj .

Each aggregate process can be reparametrized as a scalar MA(1) itself (see [Lütkepohl,

1987]); hence, one can write

x
(w)
t = v

(w)
t − ψ(w)v

(w)
t−1, E

[
(v

(w)
t )2

]
= σ(w), (14)

for suitable white noise sequences v
(w)
t . Note that, although each v

(w)
t is a white noise

sequence on its own, two generic entries v
(w1)
t1

and v
(w2)
t2

, for given t1, t2 and w1 6= w2,

might be correlated.

One can use this representation to express the autocovariances as a function of these

parameters:

γ
(w)
0 = (1 + (ψ(w))2)σ(w),

γ
(w)
1 = −ψ(w)σ(w).

(15)

This approach suggests an estimation procedure as follows. Given T observations of

the process (12):

1. For each of theN(N+1)/2 vectors w ∈ W, construct the aggregate data x
(w)
t = wT zt,

and estimate the MA(1) model (14), obtaining ψ̂(w) and σ̂(w).

2. For each w, construct γ̂
(w)
0 and γ̂

(w)
1 using the formulas (15).

3. Recover estimates Γ̂0 and Γ̂1 using (13).

4. Recover estimates Θ̂ and Σ̂u using (11).

The advantage of steps 1–3 of this procedure with respect to an estimator based on the

sample moments 1
T

∑T
t=1 ztz

T
t−k is that a maximum likelihood estimator as above yields

more accurate values for the asymptotic moments.
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For the sake of simplicity, in order to provide intuition to the reader, we give an

example using a bivariate model. Consider the following system with two variables

x1t = u1t + φ11u1t−1 + φ12u2t−1,

x2t = u2t + φ21u1t−1 + φ22u2t−1.

The previous model can be reparametrized equation-by-equation as

x1t = υ1t + ψ1υ1t−1,

x2t = υ2t + ψ2υ2t−1

with E
[
υ2
it

]
= σi. Finally consider the MA(1) process derived from the simple aggregation

of the two components

xt = x1t + x2t = at + αa1t−1

with E
[
a2
t

]
= σa. Using the results above, we can now rewrite Γ0 and Γ1 as function of

the parameters of the aggregate models as follows

Γ0 =

[
(1 + ψ2

1)σ1
1
2 [(1 + α2)σa − (1 + ψ2

1)σ1 − (1 + ψ2
2)σ2]

1
2 [(1 + α2)σa − (1 + ψ2

1)σ1 − (1 + ψ2
2)σ2] (1 + ψ2

2)σ2

]
,

Γ1 =

 ψ1σ1
1
2 [ασa − ψ1σ1 − ψ2σ2]

1
2 [ασa − ψ1σ1 − ψ2σ2] ψ2σ2

 .
5 Asymptotic properties

As a first result, we prove that the aggregate MA processes that we estimate are well-

behaved.

Lemma 5. Suppose that the process (12) is invertible. Then, for each w ∈ RN with w 6= 0,

the process (14) is invertible, and σ(w) > 0.

Proof. Invertibility of (12) means that its autocovariance generating function [Brockwell

and Davis, 2006, §3.5] Γ(z) is nonsingular for each z on the unit circle, i.e.,

Γ(z) > 0 if |z| = 1.

The autocovariance generating function of (14) is

(1− zψ(w))σ(w)(1− z−1ψ(w)) = γ(w)(z) = wTΓ(z)w.

Since Γ(z) is a positive-definite matrix for |z| = 1, we also have that wTΓ(z)w > 0. Hence

(1 − zψ(w))σ(w)(1 − z−1ψ(w)) > 0 whenever |z| = 1, and this implies that σ(w) > 0 and

that there is an invertible representation with |ψ(w)| < 1 for (14).
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Therefore in the following we assume without further mention that |ψ(w)| < 1.

The (quasi)-maximum likelihood estimator on the representation (14), using zero initial

values for simplicity, is given by (dropping the ·(w) superscript for ease of notation)

(ψ̂, σ̂) := arg min
(ψ̃,σ̃)

T∑
t=1

`t(ψ̃, σ̃),

with the unconditional negative log-likelihood function `t given for each pair of reals ψ̃, σ̃

by

`t(ψ̃, σ̃) :=
1

2
log σ̃ +

ṽ2
t

2σ̃
, ṽt :=

t−1∑
k=0

ψ̃kxt−k. (16)

The ṽt satisfy the linear recurrence ṽ1 = x1, ṽt = xt + ψ̃ṽt−1, and are a function of ψ̃ and

of the observations. We set for brevity ṽ′t := ∂
∂ψ̃
ṽt. Notice that ṽ′t is a linear function of

ṽ1, . . . , ṽt−1, as can be proved by induction using the relation

ṽ′t = ṽt−1 + ψ̃ṽ′t−1.

Moreover, when ψ̃ = ψ (the correct value), then ṽt = vt. We first evaluate the Hessian of

the likelihood at the exact system parameters (ψ, σ): by ergodicity,

1

T

∑
∇2`t(ψ, σ)→ E

[[
∂2

∂ψ̃2
`t(ψ, σ) ∂2

∂ψ̃∂σ̃
`t(ψ, σ)

∂2

∂ψ̃∂σ̃
`t(ψ, σ) ∂2

∂σ̃2 `t(ψ, σ)

]]

=

E [ 1
σ

(
v′t

2 + ∂2vt
∂ψ2 vt

)]
E
[
− 1
σ2 v
′
tvt
]

E
[
− 1
σ2 v
′
tvt
]

E
[

1
2σ2

(
2v2t
σ − 1

)] =

[ 1
1−ψ2 0

0 1
2σ2

]
. (17)

In evaluating these expected values, we have used the following facts:

• E
[
v2
t

]
= σ.

• v′t and ∂2vt
∂ψ̃2

are uncorrelated from vt, since they are linear functions of v1, v2, . . . , vt−1.

• E
[
v′t

2
]

= σ
1−ψ2 . The simplest way to prove this relation is through

E
[
v′t

2
]

= E
[(
vt−1 + ψv′t−1

)2]
= E

[
v2
t−1 + 2vt−1ψv

′
t−1 + ψ2v′t−1

2
]

= σ + 0 + ψ2E
[
v′t−1

2
]
,

and by stationarity E
[
v′t

2
]

= E
[
v′t−1

2
]
.

We continue by proving that the estimates of the scalar parameters ψ̂(w), σ̂(w) are

consistent and asymptotically normal. The consistency part is easier, since we can consider

each aggregated process independently.
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Lemma 6. Let the model (12) be stationary and ergodic, with Σu > 0. Then, the maxi-

mum likelihood estimators ψ̂(w), σ̂(w) are asymptotically consistent.

Proof. Let us consider the generic combination xt = wT zt, t = 1, 2, . . . , T ; as stated above,

this is a MA(1) process with weak (uncorrelated but not independent) white noise vt.

We make use the general results on ML consistency in [Ling and McAleer, 2010, The-

orem 1(a)]. Since the Hessian (17) is asymptotically nonsingular, the maximizing point is

isolated. We have

ṽt =
∑
i≥0

ψ̃ixt−i =
∑
i≥0

ψ̃i(vt−i − ψvt−i−1) = vt +
∑
i≥0

ψ̃i(ψ̃ − ψ)vt−i,

hence

E
[
ṽ2
t

]
= σ

1 +
∑
i≥0

ψ̃2i(ψ̃ − ψ)2

 .

If we restrict the parameter set to a compact set with ψ̃ < 1, the sum converges and

thus supψ̃ E
[
ṽ2
t

]
< ∞. Hence the hypotheses in Ling and McAleer [2010] hold and each

aggregated process is asymptotically consistent.

Establishing asymptotic normality is more involved: since the v
(w)
t are neither inde-

pendent nor uncorrelated from each other, we cannot rely on the classical central limit

results. We use instead a central limit result for weakly dependent sequences from Peligrad

and Utev [2006], which we summarize and report as follows.

Theorem 7. For an i.i.d. sequence of random variables (Yi)i∈Z, denote by Fba the σ-field

generated by Yt with a ≤ t ≤ b and define ξt = f(Yt, Yt−1, . . . ), t ∈ Z. Assume that

E [ξ0] = 0, E
[
ξ2

0

]
<∞, and

∞∑
t=1

1√
t
‖ξ0 − E

[
ξ0 | F0

−t
]
‖2 <∞. (18)

Then,

1√
T

T∑
t=1

ξt → N(0,E
[
ξ2

0

]
). (19)

Indeed, Peligrad and Utev [2006] contains a stronger result on triangular sequences

(Corollary 5); our statement (19) is a special case that can be obtained by setting

ai =

{
1 i = 0

0 otherwise

in the thesis of their Theorem 1, so that bn =
√
n.

In the process (3), the i.i.d. variables are Yt =

[
εt
ηt

]
, and we aim to prove that each of

the ∇`t(ψ, σ) can be chosen as a ξt that satisfies the above condition (18). We start with

a couple of lemmas.

10



Lemma 8. Consider the process (3), with i.i.d. variables Yt =

[
εt
ηt

]
. For a fixed w ∈ RN ,

w 6= 0, define v
(w)
t and ψ(w) as above. Then, there are vectors gk, hk ∈ R2N such that

v
(w)
t =

∞∑
k=0

gkYt−k, (20)

v′
(w)
t =

∞∑
k=0

hkYt−k, (21)

with ‖gk‖ = O((ψ(w))k) and ‖hk‖ = O(k(ψ(w))k) for k →∞.

Proof. Let us drop the superscript (w) for clarity. Using the lag operator L, one has

xt = wT zt = wT (ηt + (I − L)εt) =
[
wT wT

]
Yt − L

[
0 wT

]
Yt.

Hence

vt = (1− ψL)−1xt =
∑
k≥0

ψkLkxt =
∑
k≥0

ψkLk
[
wT wT

]
Yt −

∑
k≥0

ψkLk+1
[
0 wT

]
Yt

=
[
wT wT

]
Y0 +

∑
k≥0

ψkLk+1
[
ψwT (ψ − 1)wT

]
Y T .

Similarly, starting from

v′t =
∑
k≥1

kψk−1Lkxt,

one gets the other result.

Lemma 9. Consider the process (3), with i.i.d. variables Yt =

[
εt
ηt

]
with finite fourth

moment. For a fixed w ∈ RN , w 6= 0, define v
(w)
t and ψ(w) as above. Then, condition (18)

holds for both ξt = v′
(w)
t v

(w)
t and ξt = (v

(w)
t )2 − σ(w).

Proof. We may write

v0 =
t∑

k=0

gkYt−k︸ ︷︷ ︸
:=pt

+
∑
k>t

gkYt−k︸ ︷︷ ︸
:=qt

, (22)

where pt is a function in the σ-field F0
−t and qt is independent from it, and similarly

v′0 =

t∑
k=0

hkYt−k︸ ︷︷ ︸
:=rt

+
∑
k>t

hkYt−k︸ ︷︷ ︸
:=st

. (23)
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One has

E
[
v′0v0 | F0

−t
]

= E
[
(pt + qt)(rt + st) | F0

−t
]

= ptrt + E
[
qt | F0

−t
]︸ ︷︷ ︸

=0

rt + pt E
[
st | F0

−t
]︸ ︷︷ ︸

=0

+E
[
qtst | F0

−t
]

= ptrt + E
[
qtst | F0

−t
]
,

thus∥∥v′0v0 − E
[
v′0v0 | F0

−t
]∥∥

2
= ‖qtrt + ptst + qtst + E

[
qtst | F0

−t
]
‖2

≤ ‖qt‖2‖rt‖2 + ‖pt‖2‖st‖2 + 2‖qt‖2‖st‖2.

Since the decompositions (20), (21), (22), (23) are into independent (orthogonal) compo-

nents, one can estimate

‖pt‖2 ≤ ‖v0‖2, ‖qt‖2 = O

(∑
k>t

‖gk‖

)
= O(ψt),

‖rt‖2 ≤
∥∥∥∥( ∂

∂ψ
v0

)∥∥∥∥, ‖st‖2 = O

(∑
k>t

‖hk‖

)
= O(tψt).

When estimating the two sums, we used the fact that
∑

t≥0 ψ
t = (1 − ψ)−1 < ∞ and∑

t≥0 tψ
t = ψ(1− ψ)−2 <∞. Putting everything together, we have proved that∥∥v′0v0 − E

[
v′0v0 | F0

−t
]∥∥

2
= O(tψt) for t→∞.

Hence the sum in (18) converges (indeed, even without the 1√
t

term), and the condition

is verified.

A similar reasoning works for v2
t − σ: we have∥∥v2

t − σ − E
[
v2
t − σ | F0

−t
]∥∥

2
= ‖2ptqt + E

[
q2
t | F0

−t
]
‖ = O(ψt).

The fourth moment finiteness is needed in order to have E
[
ξ2

0

]
<∞.

We have now all the tools to prove the asymptotic normality of the aggregated system

parameters.

Theorem 10. Consider the process (3), with i.i.d variables Yt =

[
εt
ηt

]
with finite fourth

moment. Suppose that the process is stationary and ergodic, and that Σε > 0, Ση > 0.

Then, the maximum likelihood estimators ψ̂(w), σ̂(w), for all w ∈ W, are jointly asymptot-

ically normal.

Proof. The first-order optimality conditions for the ML estimates state that 0 = 1
T

∑
∇`t(ψ̂, σ̂),

where ∇ denotes taking a gradient with respect to the pair of parameters (ψ̃, σ̃). Using a

multivariate Taylor expansion around (ψ, σ), we get

0 =
1

T

∑
∇`t(ψ, σ) +

(
1

T

∑
∇2`t(ψ̃, σ̃)

)([
ψ̂
σ̂

]
−
[
ψ
σ

])
, (24)
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for a suitable pair (ψ̃, σ̃) lying in the segment that joins (ψ̂, σ̂) and (ψ, σ). If (ψ̂, σ̂) are

close enough to the exact values, then by continuity the Hessian matrix is invertible and

bounded, thus we can rewrite (24) as[
ψ̂
σ̂

]
−
[
ψ
σ

]
= −

(
1

T

∑
∇2`t(ψ̃, σ̃)

)−1( 1

T

∑
∇`t(ψ, σ)

)
. (25)

This expansion (25) is valid for every w ∈ W that we use as the aggregation weights.

Let β be the vector obtained by stacking the vectors

[
ψ(wi)

σ(wi)

]
for each wi ∈ W, one above

the other, and β̂ be similarly defined with their ML estimators. Stacking the Taylor

expansions (25) one above the other and multiplying by
√
T we get

√
T (β̂ − β) = −M(β̃)−1 1√

T

T∑
t=1



∂
∂ψ(w1)

`
(w1)
t

∂
∂σ(w1)

`
(w1)
t

∂
∂ψ(w2)

`
(w2)
t

∂
∂σ(w2)

`
(w2)
t

...
∂

∂σ
(wN(N+1)/2)

`
(wN(N+1)/2)
t


, (26)

with M(β̃) the block diagonal matrix containing 1
T

∑
∇2`

(wi)
t ( ˜ψ(wi), ˜σ(wi)) in its diagonal

blocks. We know from the proof of Lemma 6 and the consistency that M(β̃) converges

almost surely to a diagonal matrix; if we prove that a central limit result holds for the

vector sum in (26), then the thesis follows by Slutsky’s theorem. Theorem 7 and Lemma 9

together give only a weaker result, i.e., that each component of the vector sum is asymptot-

ically normal when considered alone. To prove joint normality, we need a modification of

the above proof. We shall prove that each linear combination of its entries is asymptotically

normal, and use the Cramer-Wold device [Brockwell and Davis, 2006, Proposition 6.3.1].

Let us take a generic linear combination

Ct :=

N(N+1)/2∑
i=1

ai
∂

∂ψ(wi)
`
(wi)
t +

N(N+1)/2∑
i=1

bi
∂

∂σ(wi)
`
(wi)
t .

By the linearity of expectation and subadditivity of norms,

∥∥C0 − E
[
C0 | F0

−t
]∥∥

2
≤

N(N+1)/2∑
i=1

|ai|
∥∥∥∥ ∂

∂ψ(wi)
`
(wi)
t − E

[
∂

∂ψ(wi)
`
(wi)
t | F0

−t

]∥∥∥∥
2

+

N(N+1)/2∑
i=1

|bi|
∥∥∥∥ ∂

∂σ(wi)
`
(wi)
t − E

[
∂

∂σ(wi)
`
(wi)
t | F0

−t

]∥∥∥∥
2

,

13



and we know from the proof of Lemma 9 that each term in the right-hand side isO(t(ψ(wi))t).

Setting ψmax := maxw∈W |ψ(w)|, we have therefore∥∥C0 − E
[
C0 | F0

−t
]∥∥

2
= O(tψtmax),

hence our generic linear combination Ct satisfies the bound of Theorem 19 and thus is

asymptotically normal. So, putting all together, in (26) M(β̃)−1 converges a.s. to a con-

stant matrix and the scaled sum converges in probability to a normal vector, thus by

Slutsky’s theorem
√
T (β̂ − β) is asymptotically normal.

Hence we have the following asymptotic result for Θ̂ and Σ̂u.

Theorem 11. Consider the EWMA process (3); suppose that the noises ηt and εt are

i.i.d. processes with variances 0 < Ση,Σε < ∞, and that the resulting EWMA process

is stationary and ergodic. Then, the META estimator Θ̂, Σ̂u described in Section 4 is

asymptotically consistent. If, in addition, the fourth moments of εt and ηt are finite, then

the estimator is asymptotically normal.

Proof. The estimated values Θ̂ and Σ̂u are an a function of ψ(w) and σ(w) for w ∈ W as in-

troduced above; the specific function, obtained by composing (13) and (??), is continuous

and differentiable. Since it is continuous and these values are consistent by Lemma 6, the

estimator is consistent. Under the additional hypothesis on the fourth moment, these val-

ues are also asymptotically normal by Theorem 10, thus by the delta method [Lütkepohl,

2005, Appendix C.5] asymptotic normality holds.

6 META vs. Maximum Likelihood: some numerical exper-
iments

In this section we provide some numerical experiments to compare the estimates obtained

with the META method vis-a-vis a maximum likelihood estimator on the VMA(1) repre-

sentation (3). We generated simulated data for a model of the form (1), using Gaussian

noise with four different sets of covariance matrices, two bivariate and two trivariate ones,

resulting in signal-to-noise ratios of different magnitude:

Model 1 Ση =

[
1 −0.5
−0.5 1.5

]
, Σε =

[
1.5 −0.15
−0.15 1

]
,

Model 2 Ση =

[
1 −0.5
−0.5 1.5

]
, Σε =

[
30 −3
−3 20

]
,

Model 3 Ση =

 1 −0.5 0.3
−0.5 1.5 −0.2
0.3 −0.2 1

, Σε =

 1.5 −0.15 −0.1
−0.15 1 0.3
−0.1 0.3 1.5

,

Model 4 Ση =

 1 −0.5 0.3
−0.5 1.5 −0.2
0.3 −0.2 1

, Σε =

30 −3 −2
−3 20 6
−2 6 30

.
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The aim here is generating two different types of models; Model 1 and Model 3 have roots

of the matrix Θ being about half of those of Model 2 and Model 4 respectively. Moreover,

in Model 1 and Model 3 Σu is much smaller than that of Model 2 and Model 4 respectively.

For each model, we generated time series of three different sample sizes T = 200, 400

and 1000, and estimated them using both the ML and META methods. Each experiment

has been repeated 500 times, with different data, produced each time using new computer-

generated random numbers. All simulations were carried out using Mathematica 8 by

Wolfram and its TimeSeries 1.4.1 package1. The source files for the simulation are

available upon request.

Since the parameter matrices for these simulated models are explicitly available (see

Proposition 1), we can check how close the estimated Θ and Σu are to the real ones. As

error measure, we used the relative error in the Frobenius norm (root mean squared error

of the matrix entries)

RMSE =

∥∥∥X̂ −X∥∥∥
F

‖X‖F
, (27)

where X is the matrix of true parameters and X̂ is the estimated one, and ‖·‖F is the

Frobenius norm: for a m×n matrix X, ‖X‖F :=
(∑m

i=1

∑n
j=1X

2
ij

)1/2
. The average errors

on the set of 500 repeated experiments under this error metric are reported in Table 1.

The central columns contain the RMSE (27) multiplied by 1000. The last two columns

report the average time (in seconds) taken by each estimation procedure.

Notice that the error is considerably lower in Models 2 and 4, which have a lower signal-

to-noise ratio Q and thus Θ with eigenvalues closer to the unit circle. This behaviour

is expected in view of the properties of the maximum likelihood estimator for ARMA

processes (cfr. [Lütkepohl, 2005, Section 7.2.3], and [Brockwell and Davis, 2006, §8.5]

for a discussion of asymptotic efficiency in the scalar case). These empirical results show

that META, whose derivation contains elements from both moment estimators and ML

estimators, does not degrade in quality like the former when the eigenvalues are closer to

the unit circle, but seems to maintain the higher asymptotic efficiency of the latter.

Overall, the results are clearly in favor of the META estimator. Indeed, not only the

META estimator is extremely faster than the multivariate ML estimator, but it seems

to outperform the rival estimator in terms of accuracy nearly all the times. There are

only two cases where ML slightly outperforms META with respect to Σu (i.e., Model

1 and Model 3 with T = 400). On the contrary, regarding Θ, META is always more

accurate than the ML approach. The last column of Table 1 shows the computational

difficulties of the standard ML approach. On a normal computer, it took us about one

week of computation time to obtain the ML results for Models 3 and 4 with T = 1000. In

contrast, the same experiments with the META estimator took one hour and a half. These

results clearly suggest the adoption of the suggested estimator, being not only extremely

faster to compute, but also having very good small sample properties.

1Further information can be found in the Wolfram website: see
http://media.wolfram.com/documents/TimeSeriesDocumentation.pdf
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Table 1: Mean relative (normalized) RMSE of the estimates of the reduced parameters
Sample size T Θ META Θ ML Σu META Σu ML Time META Time ML

200 202.52 236.77 108.28 109.11 1.55 59.99
Model 1 400 121.41 138.13 83.31 82.93 3.13 107.28

1000 80.83 101.53 48.65 48.96 8.34 226.64

200 69.51 78.26 97.50 98.31 1.36 46.53
Model 2 400 48.26 56.48 80.91 81.52 3.74 113.36

1000 28.01 34.07 47.60 48.02 7.63 210.06

200 205.07 254.49 135.26 136.41 2.65 201.41
Model 3 400 162.95 187.40 93.48 93.21 5.77 316.74

1000 93.85 108.92 60.08 61.13 12.62 523.67

200 86.66 107.22 123.86 124.19 2.81 202.95
Model 4 400 57.03 67.25 95.13 96.75 5.66 295.93

1000 29.91 37.04 61.78 62.13 13.12 541.36
The cells relative to Θ and Σu reports the average relative root mean squared error (27) of the estimated parameters,

multiplied by 1000. The last two columns report the average number of seconds required for a single run of the

estimation procedure. Lower is better.

As a second performance test, for Models 1 and 2 and T = 200, we compared the

forecasting accuracy of the estimated parameters. In detail, we generated T = 200 obser-

vations of each model, estimated the parameters using the first 199 observations only, and

used them to generate a prediction yF200 of the last value y200 of the time series according

to (10). Each of these experiments has been repeated R = 200 times, each time with a

different randomly-generated time series of length 200. We report in Figures 2 and 3 the

boxplot of the forecast error y200−yF200 for Model 1 and 2 respectively. Each figure contains

box plots for the two components (yF200 − y200)1 and (yF200 − y200)2; for example, META1

and META2 refer respectively to the forecast error of the first and second component of

the multivariate time series when META is employed. As a term of comparison, we report

the prediction error obtained with the true system matrix Θ, which is available explicitly

in our simulation.
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As expected, the forecast errors relative to Model 2 are much more dispersed than

those for Model 1. Moreover, the prediction accuracy is almost identical in all three cases

for each equation relative to both Model 1 and 2, showing that the META forecasts are

essentially as good as the ML ones (and almost as good as the real system matrices).
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7 Conclusions

Simple exponential smoothing has been shown to be a valid candidate in forecasting de-

mand (see Dekker et al. [2004] and Moon et al. [2012]). This paper provides exact results

linking reduced form parameters and autocovariances for the simple exponential smooth-

ing in the multivariate framework. The results are used to provide a fast and efficient

estimator, which seems to outperform the multivariate maximum likelihood on the under-

lying VMA representation in both time and accuracy. The technique used in the estimator

allows one to reduce the problem from one N -dimensional maximum likelihood estimation

to N(N + 1)/2 scalar ML problems. This is especially convenient, since ML estimators

for high-dimensional problems are slower to converge and more prone to numerical fail-

ures. The ML estimator has an expected complexity of O(N3T ) per step, hence, under

the reasonable assumption that the number of steps stays the same or decreases for the

aggregate problems, passing to univariate problems rates to be even more effective when

N is larger. An additional benefit is that the scalar estimation problems are separate and

can be solved in parallel.

A key feature of the VMA models resulting from our exponential smoothing model is

that the autocovariance Γ1 is a symmetric matrix. This property is used in both Propo-

sition 1 and Lemma 4. Our estimation procedure requires only this hypothesis, so it

works without changes for any MA(1) model with Γ1 = ΓT1 . We are currently working on

removing the assumption Γ1 = ΓT1 . This more general model arises, for instance, when

the noises εt and ηt characterizing the system (1) are correlated; we leave this for future

research. Another open problem is deriving the exact asymptotic covariance of the estima-

tor, with the aim of comparing it to maximum likelihood in terms of asymptotic efficiency

(cfr. [Brockwell and Davis, 2006, §8.5]). This task looks challenging, even in the case

of Gaussian noise, since the noises v(w) of the aggregate processes are correlated and the

computation would have to keep track of all these correlations.

A limitation of this work is that the suggested estimator is valid for the single expo-

nential smoothing, but not for the whole family of exponential smoothing models. For

example, our estimator cannot be used for models that take into account for the pres-

ence of a stochastic trend, such as the local linear trend model or the cubic smoothing

spline models (see Harvey [1991] and Hyndman et al. [2005]). This is because the lack of

closed-form results for more complex models.

This manuscript has practical implications for practitioners involved in forecasting a

multivariate production planning framework. Consider, for example, the case of a retail

company providing a broad range of products to its customers. In order to reduce costs

and to manage efficiently the production planning process, the company has to rely on

accurate forecasts for the demand of each good/service as well as for the aggregate demand.

Aggregated models, such as the top-down and bottom-up approaches, are often used

because it is difficult and computationally intensive to handle a multivariate approach

with full dependence between the variables. Instead, thanks to the algorithm suggested

in this paper, estimation and forecasting can now be implemented with a multivariate

exponential smoothing model without facing heavy computational issues.
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