
Permuted graph matrices and their applications

Federico Poloni

Abstract A permuted graph matrix is a matrix V ∈ C(m+n)×m such that every row
of the m×m identity matrix Im appears at least once as a row of V . Permuted graph
matrices can be used in some contexts in place of orthogonal matrices, for instance
when giving a basis for a subspace U ⊆ Cm+n, or to normalize matrix pencils in a
suitable sense. In these applications the permuted graph matrix can be chosen with
bounded entries, which is useful for stability reasons; several algorithms can be
formulated with numerical advantage with permuted graph matrices. We present the
basic theory and review some applications from optimization or in control theory.

1 Introduction

A graph matrix is a matrix of the form

G (X) :=
[

Im
X

]
, X ∈ Cn×m,

where Im is the m×m identity matrix. The name comes from the set-theoretical
definition of graph of a function f as the set of pairs (x, f (x)). The image imG (X)
of a graph matrix is sometimes called graph subspace; however, this is improper,
since “graph-ness” is a property of the basis matrix G (X), not of the subspace.
Indeed, almost every subspace is a graph subspace: let

U =

[
E
A

]
, E ∈ Cm×m, A ∈ Cn×m (1)
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be any matrix with full column rank; whenever E is invertible, we have U =
G (AE−1)E, and hence imU = imG (AE−1), because post-multiplying by E−1 does
not change the column space.

It will be useful to introduce a notation that avoids the dependence on the change
of basis matrix E. Given U,V ∈ C(m+n)×m with full column rank, we write U ∼ V
to mean that there exists an invertible S ∈ Cm×m such that U =V S. In other words,
this is the equivalence relation “U has the same column space as V ”.

Note that, in the above setting, given a generic matrix U , computing X = AE−1 is
not a good idea numerically, since its top m×m block E could be ill-conditioned or
even singular. A modification of this approach is the following: instead of requiring
an identity submatrix in the top block, we can ask for a subset of the rows that,
when taken in some order, forms an identity matrix. More formally, we call a matrix
V ∈ C(m+n)×m a permuted graph matrix if there exist X ∈ Cn×m and a permutation
matrix P ∈ R(m+n)×(m+n) such that V = PG (X). This is equivalent to requiring that
every row of Im occurs at least once as a row of V .

It is easy to prove that every subspace is spanned by the columns of a permuted
graph matrix. Indeed, let the columns of U ∈ C(m+n)×m form a basis for a given
subspace; U must then have full column rank, that is, it must contain an invertible
submatrix E ∈ Cm×m. We can choose a permutation matrix P such that U = P

[
E
A

]
,

with A ∈ Cn×m. Then, U ∼ PG (X) with X = AE−1. We call PG (X) a permuted
graph representation of U , or of its column space.

A more interesting result is the following, which shows that we can always find
a basis matrix in the form PG (X) with the additional property that X is bounded in
a suitable sense.

Theorem 1 ([22, 31]). Let U ∈ C(m+n)×m be a matrix with full column rank. Then,
there exist X ∈ Cn×m and a permutation matrix P ∈ R(m+n)×(m+n) such that U ∼
PG (X) and ‖X‖max ≤ 1.

We have used the notation ‖X‖max := maxi, j|xi j|, where xi j are the entries of the
matrix X ; essentially, the theorem states that all the entries of X are bounded in
modulus by 1.

In this chapter, we focus on Theorem 1, its extension to Lagrangian subspaces,
and the applications of these two results. There are several contexts in numerical
linear algebra and in control theory in which it is useful to work with the pair (P,X)
as a representation of the subspace imU ; we review briefly these applications and
the underlying theory.

The chapter is organized as follows. We describe an efficient algorithm for the
computation of a permuted graph matrix PG (X) ∼ U in Section 2; in Section 3,
we present a result regarding their conditioning and introduce two different applica-
tions of these matrices in optimization. Another application, skeleton approximation
of large-scale matrices, is discussed in Section 4. A structured version of this tech-
nique is presented in Section 5; in Section 6 we show how permuted graph repre-
sentations can be used to work with matrix pencils. In section 7 we introduce briefly
numerical methods for a standard problem in control theory, constant-coefficient
linear-quadratic control, and in Section 8 and 9 we show how two of these algo-
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rithms can be improved with the use of permuted graph matrices. Lastly, Section 10
discusses open issues and research problems.

2 Computing permuted graph bases

We start our review by discussing the computation of permuted graph bases in prac-
tice. The idea of the proof of Theorem 1 is the following. Choose as E the m×m sub-
matrix of U that maximizes |detE| (maximum-volume submatrix). Using Cramer’s
rule on the linear system XE = A, one can write |xi j|= |detE ′|

|detE| , for a suitable m×m
submatrix E ′ of U (depending on i, j), hence the result follows.

Unfortunately, finding an E with this maximizing property is an NP-hard prob-
lem [13], so this construction is not useful computationally. We can use instead an
iterative algorithm that resembles a lot the so-called “canonical tableaux” imple-
mentation of the simplex algorithm [14], in that we update at each step an active set
of rows containing an identity submatrix. This procedure is described in [22, 31, 35];
we present it as Algorithm 1. The method produces a permuted graph representation
in which each entry of X is bounded in magnitude by a parameter τ . It is advised to
choose τ > 1 (for instance τ = 2), to avoid numerical troubles with entries that are
exactly 1 and to get faster convergence.

Input: U ∈ C(m+n)×m with full column rank; a threshold value τ ≥ 1; an initial permutation
P0 such that the top m rows of PT

0 U form an invertible matrix
Output: A permutation matrix P ∈ C(m+n)×(m+n) and X ∈ Cn×m such that U ∼ PG (X) and

‖X‖max ≤ τ

Let P = P0,
[

E
A

]
= PTU , and X = AE−1;

while ‖X‖max > τ do
take a pair (i, j) such that |xi j|> τ;
let P′ = PΠ , where Π ∈ C(m+n)×(m+n) is the permutation that exchanges j and m+ i;
find X ′ ∈ Cn×m such that PG (X)∼ P′G (X ′);
replace (X ,P) with (X ′,P′) and continue;

end
Algorithm 1: Obtaining a permuted graph representation with ‖X‖max ≤ τ [22,
31, 35]

In practice, the permutation P can be stored as a sequence of m+n integers, and
all the needed operations on it can be performed on a computer in O(m+ n) time
and space.

The computation of X ′ in Algorithm 1 can be performed efficiently as well. Here
and in the following we use the notation XIJ to denote the submatrix of X ∈ Cn×m

containing the rows with indices I and columns with indicesJ , where I (resp.J ) is
a tuple of distinct indices in {1,2, . . . ,n} (resp. {1,2, . . . ,m}). Moreover, we denote
by Ic a tuple composed of all the row (or column) indices that do not belong to I,
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and with a colon ‘ : ’ (as in many computer languages) the whole set of admissible
row/column indices.

Lemma 1 ([35, Lemma 4.1]). Let a permutation matrix P ∈C(m+n)×(m+n) and X ∈
Cn×m be given. Let I = (i1, i2, . . . , i`) be distinct elements of {1,2, . . . ,n} and J =
( j1, j2, . . . , j`) be distinct elements of {1,2, . . . ,m}. Let P′ = PΠ , where Π is the
permutation that swaps jk with m+ ik, for each k = 1,2, . . . , `, and leaves everything
else unchanged. A matrix X ′ ∈ Cn×m such that PG (X)∼ P′G (X ′) exists if and only
if XIJ is invertible, and in that case it is given by

X ′ =
[

X ′IJ X ′IJ c

X ′IcJ X ′IcJ c

]
=

[
(XIJ )−1 −(XIJ )−1XIJ c

XIcJ (XIJ )−1 XIcJ c −XIcJ (XIJ )−1XIJ c

]
.

Lemma 1 shows how to update a permuted graph representation PG (X) when we
change the set of rows where the identity submatrix is located. The operation needed
in Algorithm 1 corresponds to the case in which I = {i} and J = { j} have one
element.

The map X 7→ X ′ appears in other applications as well and is known as principal
pivot transform [47].

As an initial permutation, in absence of better guesses, one can take the per-
mutation P produced by a rank-revealing QR factorization UH = QRP [21, Sec-
tion 5.4.1]. With this choice, one can prove (when τ > 1) that the algorithm ter-
minates in O(n logτ n) steps, with a total cost of O(n3 logτ n) floating point opera-
tions, and converges to a local maximizer of |detE| (that is, a submatrix E such that
|detE| ≥ |detE ′| for each other submatrix E ′ differing from E only by a single row).
Moreover, the determinant of the top m×m submatrix of PTU increases by a factor
greater than τ at each step. In practice, the number of steps is often much lower
than the bound, and in many small-scale cases the P coming from rank-revealing
QR already gives an X with ‖X‖max ≤ 1. Indeed, finding the submatrix E with max-
imum volume |detE| is a problem that can be explicitly related to the computation
of rank-revealing factorizations [42].

Another area of mathematics where these submatrix determinants appear is alge-
braic geometry: given U ∈ C(m+n)×n with full column rank, the determinants of all
possible

(m+n
m

)
subset of rows (each subset ordered, for instance, in increasing or-

der) are called Plücker (projective) coordinates of the subspace imU . Indeed, if we
have two matrices spanning the same subspace, U and V =UE ∼U , their Plücker
coordinates differ only by a common factor detE, and one can show that the con-
verse holds, that is, matrices with the same Plücker coordinates up to a common
multiple are equivalent according to ∼ and span the same subspace.

3 Conditioning of subspaces and applications in optimization

Given a matrix U , its condition number κ(U) := σmax(U)
σmin(U) (where σmin(U) and

σmax(U) are its minimum and maximum singular value, respectively) measures the
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sensitivity of its column space imU with respect to perturbations [46, Page 154].
Hence, if we wish to perform computations involving a subspace, a natural way to
operate on it is through an orthogonal basis UO, for which κ(UO) = 1. Suppose that
we decide instead to use a basis UG = PG (X) which is a permuted graph matrix.
How well does it fare with respect to this measure? The answer is given by the
following result.

Theorem 2 ([35]). Let UG =PG (X)∈C(m+n)×m, where the elements xi j of X satisfy
the inequality |xi j| ≤ τ for a certain τ ≥ 1. Then, κ(UG)≤

√
1+mnτ2.

Proof. Because of the identity submatrix, ‖UGv‖2 ≥ ‖v‖2 for each v ∈ Cm, hence
σmin(UG)≥ 1. On the other hand,

σmax(PG (X)) = ‖PG (X)‖2 = ‖G (X)‖2 ≤
√
‖Im‖2

2 +‖X‖
2
2 ≤

√
1+mnτ2. ut

(2)

The condition number κ(UG) is not as small as the perfect κ(UO) = 1 of an orthogo-
nal basis, but still it can be explicitly bounded by a linear function of the dimensions
and of the chosen threshold τ . A permuted graph basis can hence be used to repre-
sent a subspace in a stable way and to operate on it.

Are there contexts in which there is an advantage in using a permuted graph basis
UG rather than an orthogonal one UO? We sketch two applications here, taken from
[48] and [3], respectively. More examples will appear in the next sections.

A problem encountered in optimization is the maximization (or minimization)
of functions on the Grassmann manifold [1, 48], i.e., the set of m-dimensional sub-
spaces of Cm+n. In practice, this means maximizing a given function f :C(m+n)×m 7→
R such that f (U) = f (V ) whenever U ∼ V . Working with orthogonal bases may
lead to some difficulties. First, the parametrization of the Grassmann manifold via
orthogonal matrices is ambiguous, since the relation between an orthogonal matrix
U ∈ C(m+n)×m and its spanned subspace is not one-to-one. As a consequence, the
gradient ∇ f is always zero in some directions, and the optimization problem in this
formulation is never strictly convex. Moreover, in most iterative algorithms, it is
difficult to enforce orthogonality of the next iterate explicitly, so a typical algorithm
will make an update in a general direction in C(m+n)×m and then restore orthogonal-
ity at a later time via projection.

Neither of these problems is unsolvable, and there are now mature algorithms
for optimization on matrix manifolds [1]. Nevertheless, using permuted graph bases
rather than orthogonal bases allows for a simplification of the problem. The maps
gP(X) := X 7→ PG (X) are one-to-one local charts and together constitute an atlas
of the Grassmann manifold, so they can be used to reduce the problem to a standard
multivariate optimization problem on the space Cnm. In practice, one defines for
each permutation matrix the auxiliary map fP : Cn×m→ R as fP(X) := f (PG (X)),
and uses a traditional multivariate optimization algorithm on it. We sketch a method,
originally from [48], in Algorithm 2: at each step, we check if the entries of the cur-
rent iterate X have magnitude greater than τ , and if so, we update the permutation.
Changing the permutation P with Algorithm 1 is needed in few iterations only, and
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the previous value of P is a good initial guess, so its cost is typically much less than
the generic O(n3 logτ n).

Input: A function f : C(m+n)×m→ R such that f (U) = f (V ) whenever U ∼V ; an initial
value U ∈ C(m+n)×m; a threshold τ > 1

Output: A (possibly local) minimum of f
Find a permuted graph representation U ∼ PG (X) (with threshold τ);
while X is not a local minimum of fP do

apply one step of a multivariate optimization algorithm (gradient descent, Newton,
BFGS. . . ) to fP, starting from X , obtaining a new point X ′;
if ‖X ′‖max > τ then

Use Algorithm 1 to find a permuted graph representation P′′G (X ′′) of PG (X ′),
with threshold τ;
replace (X ,P) with (X ′′,P′′) and continue;

else
replace X with X ′ and continue;

end
end

Algorithm 2: Optimization on the Grassmann manifold [48]

A different context in optimization in which suitable permutations and graph
forms have appeared recently is the preconditioning and solution of large-scale
saddle-point problems [3, 15, 16]. We present here the preconditioner for least-
squares problems appearing in [3]. A least-squares problem minx∈Cm‖Ux− b‖, for
U ∈ C(m+n)×m, can be reformulated as the augmented system[

Im+n U
UH 0

][
r
x

]
=

[
b
0

]
.

Let us take a permuted graph basis U = P
[

E
A

]
∼ PG (X), with X = AE−1; permuting

the first m+n entries and partitioning Pr =
[

rE
rA

]
and Pb =

[
bE
bA

]
conformably with[

E
A

]
, we get the equivalent system Im 0 E

0 In A
EH AH 0

rE
rA
x

=

bE
bA
0

 .
Finally, eliminating the variables rE from this system and multiplying by Q =[

In 0
0 E−H

]
and QH on the two sides, one gets the equivalent reduced system[

In X
XH −Im

][
rA
Ex

]
=

[
bA
−bE

]
.

The condition number of this linear system equals κ(PG (X)) (see [3, p. 4]), and thus
it can be bounded using Theorem 2. In practice, the matrix Q above is applied as
a preconditioner; hence, to get faster convergence of preconditioned iterative meth-
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ods, it is useful to choose a permuted graph basis with a small κ(PG (X)). The
authors in [3] suggest useful heuristic methods to find one for a large and sparse U .

4 Skeleton approximation

In this section, we consider the problem of finding or approximating ‖M‖max for a
large-scale matrix M, not necessarily sparse.

Let M ∈ Cn×m, and I,J be two tuples of ` pairwise distinct row and column
indices respectively. If MIJ is invertible, the matrix

MS = M:J M−1
IJ MI: (3)

is called skeleton approximation of M along (I,J ) [23], and has the same entries
as M on the rows belonging to I and the columns belonging to J . Moreover, when-
ever rankM ≤ ` we have MS = M. If I and J are chosen so that |detMIJ | is the
maximum over all `× ` submatrices, then one can prove specific approximation
properties for the extremal values of M.

Theorem 3 ([22, 23]). Let M ∈ Cn×m and ` ≤ min(m,n) be given; let I,J be `-
tuples of pairwise distinct indices chosen so that |detMIJ | is maximal and MS be
the skeleton approximation (3). Then,

1. ‖M−MS‖max ≤ (`+1)σ`+1, where σ`+1 is the (`+1)st singular value of M;
2. ‖MIJ ‖max ≥ ‖M‖max/(2`2 + `).

As stated above, finding a maximum-volume submatrix is an NP-complete problem
already in the case ` = m, so in practice one must resort to heuristics and approxi-
mations. A possible implementation, using alternating optimization on I and J , is
given in Algorithm 3. As in Algorithm 1, termination is ensured by the fact that

Input: A matrix M ∈ Cn×m, possibly sparse or given implicitly as a procedure that returns
single entries, rows of columns; an initial guess J ; a threshold τ ≥ 1

Output: `-tuples of row and column indices I,J such that ‖M:J (MIJ )−1‖max ≤ τ and
‖(MIJ )−1MI:‖max ≤ τ

repeat
apply Algorithm 1 to M: J , producing a new index set I that maximizes |detMIJ |;
apply Algorithm 1 to MH

I : , producing a new index set J ′ that maximizes |detMIJ ′ |;
replace J with J ′ and continue;

until I and J stop changing;
Algorithm 3: Alternating optimization algorithm for skeleton approximation.

|detMIJ | increases monotonically by a factor larger than τ . As initial guess, one
can take for instance a random J , or start with a permuted graph representation of
MV for a suitably chosen random full-rank V ∈ Cm×`.
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Note that the procedure works on few rows and columns of M at a time, and
in fact typically it will not even access many of its entries. Nevertheless, in prac-
tice ‖MIJ ‖max is a good approximation of ‖M‖max in many real-world cases where
the singular values of M decay sufficiently fast [22]. This method has been used
in cases in which the entries of M can be efficiently generated one-by-one, or one
row/column at a time; for instance, they might be the values of a bivariate func-
tion f (x,y) on a huge grid. Generalizations to problems in more than two variables
and tensor approximations can be devised using the same ideas; see, e.g., [41, 45].
This method, in combination with efficient tensor storage techniques, allows for the
treatment of massively large maximization/minimization problems, with applica-
tions to many computationally challenging problems in quantum physics, computa-
tional chemistry and biology.

5 Permuted graph bases for Lagrangian subspaces

An n-dimensional subspace U of C2n is called Lagrangian if uHJ2nv = 0 for every
u,v ∈U , where J2n :=

[
0 In
−In 0

]
. Lagrangian subspaces appear naturally in systems

and control theory, as we discuss later in Section 7.
Given U ∈C2n×n of full column rank, imU is Lagrangian if and only if UHJ2nU =

0. When U = G (X) is a graph basis, this expands to X = XH , that is, imG (X) is
Lagrangian if and only if X is Hermitian. The same property does not hold for per-
muted graph bases, though; to recover it, we have to alter the definition to adapt it
to this structured case. For i = 1,2, . . . ,n, let

Si =


Ii−1 0i−1

0 −1
In−i 0n−i

0i−1 Ii−1
1 0

0n−i In−i

 ,

where 0k denotes the zero matrix of size k× k; that is, Si is the 2n×2n matrix that
acts as −J2 on the i-th and n + i-th component of a vector (swapping them and
changing sign to one of them) and as the identity matrix on all other components.
Clearly the Si all commute. Let us consider the set of all 2n possible products that
we can build by taking a (possibly empty) subset of them,

S2n := {Si1Si2 · · ·Si` | 1≤ i1 < i2 < .. . < i` ≤ n}, ` ∈ {0,1, . . . ,n}.

The identity matrix I2n and −J2n are contained in the set, corresponding to the triv-
ial subsets. All the matrices in S2n are orthogonal and symplectic (i.e., they satisfy
SHJ2nS = J2n), and they are up to sign changes a subgroup of the permutation ma-
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trices (the one generated by the transpositions (i,n + i)). We call these matrices
symplectic swaps.

A symplectic swap can be stored as the subset {i1, i2, . . . , i`}, memorized for
instance as a length-n binary vector; all the operations that we need can be easily
performed on a computer in O(n) space and time.

Using these matrices in place of the permutations, we can build an analogue of
the theory of permuted graph bases for symplectic subspaces. Given U ∈C2n×n and
a symplectic swap S ∈S2n, whenever the top n× n submatrix E of STU =

[
E
A

]
is

nonsingular, we can form X = AE−1 so that U ∼ SG (X). Using the symplecticity
of S, it is easy to check that imU is Lagrangian if and only if X = XH ; hence, if
X = XH for some choice of S ∈S2n, then the same property holds for all possible
choices.

Since there are only 2n symplectic swaps, less than the number of essentially
different n×n submatrices of U , it is already nontrivial to see that for any U ∈C2n×n

with full column rank there exists at least one choice of S that gives an invertible E,
let alone one with bounded X . Nevertheless, the following result holds.

Theorem 4 ([17, 35]). Let U ∈C2n×n have full column rank and satisfy UHJ2nU = 0
(i.e., imU is Lagrangian). Then,

1. There exists S ∈S2n so that the top n×n submatrix E of STU =
[

E
A

]
is nonsin-

gular, and hence U ∼ SG (X) with X = XH = AE−1.
2. There exists S ∈S2n so that the above property holds, and ‖X‖max ≤

√
2.

Item 1 appeared in [17], and Item 2 in [35]; indeed, one can find X with |xi j| ≤ 1
when i = j and |xi j| ≤

√
2 otherwise, which is a slightly stronger condition.

The proof of Item 2 is similar to the one for unstructured case: one looks for the
symplectic swap S that maximizes |detE|, where STU =

[
E
A

]
. Similarly, for each τ ≥√

2 there is an iterative optimization algorithm with complexity O(n3 log(τ2−1)1/2 n)
flops which produces a permuted Lagrangian graph representation U ∼ SG (X) with
‖X‖max = τ . As a starting permutation, one can take the S originating from a variant
of the rank-revealing QR factorization in which the third term is a symplectic swap
rather than a permutation. The proof and the algorithm use ideas similar to the ones
in the unstructured case; we refer the reader to [35] for more detail. Here we report
only the analogue of Lemma 1, which gives an interesting symmetric variant of the
principal pivot transform.

Lemma 2. Let S ∈ S2n be a symplectic swap and X = XH ∈ Cn×n. Let I =
(i1, i2, . . . , i`) be given, where the ik are distinct elements of {1,2, . . . ,n}. De-
fine S′ = SSi1Si2 · · ·Si` . Then there exists a matrix X ′ = (X ′)H ∈ Cn×n such that
SG (X)∼ S′G (X ′) if and only if XII is invertible, and in that case it is given by

X ′ =
[

X ′II X ′IIc

X ′IcI X ′IcIc

]
=

[
−(XII)

−1 (XII)
−1XIIc

XIcI(XII)
−1 XIcIc −XIcI(XII)

−1XIIc

]
.

Some additional sign book-keeping is needed in addition to the above formula if
we wish to get a representation with a symplectic swap as in Theorem 4: indeed, if
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for a k ∈ {1,2, . . . , `} the symplectic swap S already contains the factor Sik , then the
product S′ includes S2

ik , which acts as−I2 on the ikth and (n+ ik)th entry of a vector.
Hence S′ /∈ S2n; to get back a symplectic swap we need to correct some signs in
S′ and X ′. This is just a technical issue; a MATLAB function that deals with it and
produces S′ ∈S2n is in [43, file private/updateSymBasis.m].

The statement and proof of Theorem 2 hold for permuted Lagrangian graph
bases as well, by simply changing P to S. Hence, permuted Lagrangian graph bases
U ∼ SG (X) provide a reasonably well-conditioned way to represent a Lagrangian
subspace on a computer and perform computational work with it. This time, we have
a distinct advantage with respect to orthogonal bases: the fact that the subspace is
Lagrangian is equivalent to X = XH , a property which is easy to enforce and deal
with computationally. On the other hand, when working with orthogonal bases, it is
well possible that a subspace “drifts away” from the manifold of Lagrangian sub-
spaces due to the accumulation of numerical errors. Structure preservation in per-
muted Lagrangian graph bases will be crucial in Section 9.

6 Representation of pencils

A matrix pencil is a degree-1 matrix polynomial, i.e., an expression of the form
L(z) = L1z+L0, with L0,L1 ∈ Cn×m and z an indeterminate. We call a pencil row-
reduced if

[
L1 L0

]
has full row rank, i.e., if there exists no nonzero v ∈Cn such that

vH(L1λ +L0) = 0 for all λ ∈C. We call a pencil regular if m = n and detL(z) is not
the zero polynomial. For a regular L(z), the roots of detL(z) are called eigenvalues,
and a vector v 6= 0 such that L(λ )v = 0 is called (right) eigenvector relative to the
eigenvalue λ . We say that ∞ is an eigenvalue of L(z) (with eigenvector v) whenever
0 is an eigenvalue of L0z+L1 (with eigenvector v). A full theory of eigenvalues and
eigenvectors of (non necessarily regular) matrix pencils, including an extension of
the Jordan canonical form, can be found in the classical book [19].

In this section and the next ones, we focus on eigenvalue and eigenvector
problems for pencils; therefore, we are free to replace a pencil with another one
having the same eigenvalues and eigenvectors. We say that two matrix pencils
L(z),M(z) ∈ C[z]n×n are left equivalent (and we write L(z) ∼ M(z)) if there is an
invertible matrix N ∈ Cn×n (not depending on z) such that L(z) = NM(z). When
this property holds and L(z) and M(z) are regular, clearly they have the same eigen-
values and right eigenvectors. The symbol ∼ is the same that we have used for
matrices spanning the same subspace, and indeed these two equivalence relations
are intimately connected: given L(z) = L1z+ L0 and M(z) = M1z+M0, we have
L(z)∼M(z) if and only if

[
L1 L0

]H ∼ [M1 M0
]H .

In the previous sections, we have focused our efforts on finding P and a bounded
X so that U ∼ PG (X), for a given matrix U . In view of the above connection, this
translates immediately to a result on pencils.
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Theorem 5 ([35]). Let L(z) = L1z + L0 ∈ C[z]n×n be a row-reduced matrix pen-
cil. Then, there exists another matrix pencil M(z) = M1z+M0 ∈ C[z]n×n such that
L(z)∼M(z) and

[
M1 M0

]H
=PG (X), for a suitable permutation matrix P∈R2n×2n

and X ∈ Cn×n with ‖X‖max ≤ 1.

In other words, each column of In appears at least once among the columns of M1
and M0, and all the entries of these two matrices are bounded by 1.

Similarly, the results of Section 5 can be used to obtain pencils that are left
equivalent to some with special structures. A row-reduced pencil L(z) = L1z+L0 ∈
C2n×2n is called Hamiltonian if L1J2nLH

0 +L0J2nLH
1 = 0; see [32, 40]. Simple ma-

nipulations show that this holds if and only if U =
[
L1 J2nL0

]H ∈ C4n×2n satisfies
UHJ2nU = 0, i.e., imU is Lagrangian. Hence we can reduce to the setting of Theo-
rem 4, obtaining the following result.

Theorem 6 ([35]). Let L(z) = L1z+L0 ∈ C[z]2n×2n be a row-reduced Hamiltonian
pencil. Then, there exist S ∈S4n and X = XH ∈ C2n×2n with ‖X‖max ≤

√
2 so that

L(z)∼M(z), with M(z) defined by
[
M1 M0J2n

]H
= SG (X).

Notice the structure of M(z): for each i = 1,2, . . . ,2n, either the ith column of M1 or
the n± ith column of M0 is (modulo signs) equal to the ith column of the identity
matrix I2n.

It is common in the literature to represent a Hamiltonian pencil with no infinite
eigenvalues as L(z) ∼ I2nz−H, where H is a Hamiltonian matrix, i.e., a matrix
such that HJ2n is Hermitian: this corresponds to the case S = I4n of Theorem 6.
Introducing column swaps in the picture allows us to find a representation that has
bounded entries and works without constraints on the eigenvalues.

Another structure that we can deal with is the following. A row-reduced pencil
L(z) = L1z + L0 ∈ C[z]2n×2n is called symplectic if L1J2nLH

1 − L0J2nLH
0 = 0; see

[32, 40]. If one partitions L1 =
[
L10 L11

]
, L0 =

[
L00 L01

]
, with all blocks 2n× n,

this is equivalent to U =
[
L10 L01 L11 L00

]H spanning a Lagrangian subspace. Note
that symplectic swaps act separately on the two blocks composing L1 and on the two
composing L0. Keeping track of this, one can decompose S ∈S4n into two smaller
symplectic swaps, and obtain a simpler statement for the analogue of Theorem 6 for
symplectic pencils.

Theorem 7 ([35]). Let L(z) = L1z+ L0 ∈ C[z]2n×2n be a row-reduced symplectic
pencil. Then, there exist two symplectic swaps S1,S2 ∈S2n and X = XH ∈ C2n×2n

with ‖X‖max ≤
√

2 so that L(z)∼M(z), with M(z) defined by

M(z) =
[

In X11
0 XH

12

]
S1z−

[
X12 0
X22 In

]
S2, X =

[
X11 X12
XH

12 X22

]
.

Again, the representation with S1 = S2 = I2n is widely used [11, 18, 34].
The main advantage of these forms is that we can represent on a computer pencils

that are symplectic or Lagrangian, not up to numerical errors but exactly, and at the
same time we do not have to deal with the numerical troubles of unduly large entries.
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Lemma 1 bounds the quantity κ(
[
M1 M0

]H
) for these “permuted graph pencils”.

Using standard properties of the singular values, one can see that the inverse of
this quantity is the relative distance (in the Euclidean norm) to the closest non-row-
reduced pencil, i.e.,

κ(
[
M1 M0

]
)−1 =

minM̃1,M̃0

∥∥[M̃1 M̃0
]
−
[
M1 M0

]∥∥
2∥∥[M1 M0

]∥∥
2

,

where the minimum is taken over all the pencils M̃1z+M̃0 that are not row-reduced.
While having a small κ(

[
M1 M0

]
) seems desirable, because it means that M(z) is

far away from a variety of ill-posed problems, it is not clear what exactly this quan-
tity represents in terms of perturbation theory. It is not a condition number for the
eigenvalues, nor the distance from the closest singular (i.e., non-regular) pencil. In-
deed, all non-row-reduced pencils are singular, but the converse does not hold (see
for instance (7) in the following for a counterexample).

Hence, from the point of view of perturbation theory and numerical stability,
the effectiveness of these special forms can currently only be justified by heuristic
reasons.

7 Numerical methods for linear-quadratic optimal control

Systems and control theory is a branch of engineering and mathematics that leads to
an abundance of linear algebra applications. Here we focus on a simple version of
the linear-quadratic optimal control problem [34]. The reader will find several chap-
ters in this book dedicated to control theory, but we give a quick introduction to the
numerical methods directly here to keep this chapter self-contained and introduce a
notation consistent with our exposition.

Given matrices A ∈ Rn×n, B,S ∈ Rn×m, Q = QT ∈ Rn×n, R = RT ∈ Rm×m, one
looks for vector-valued functions x,µ : R+→ Rn, u : R+→ Rm such that 0 In 0
−In 0 0

0 0 0

 d
dt

µ(t)
x(t)
u(t)

=

 0 A B
AT Q S
BT ST R

µ(t)
x(t)
u(t)

 , x(0) = x0, lim
t→∞

µ(t)
x(t)
u(t)

= 0. (4)

The textbook solution to this problem goes as follows. First, assuming R > 0, one
eliminates u(t) and swaps the two remaining equations, obtaining

d
dt

[
x(t)
µ(t)

]
= H

[
x(t)
µ(t)

]
, H =−J2nM, M =

[
Q AT

A 0

]
−
[

S
B

]
R−1 [ST BT ] . (5)

One can prove under mild assumptions that H has n eigenvalues with negative real
part and n with positive real part (counted with multiplicities); hence there exists
a unique n-dimensional subspace U such that HU ⊆ U , and the restriction of H
to U has only eigenvalues with negative real part. A stable solution to the system
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of ordinary differential equations (5) is obtained if and only if
[

x(0)
µ(0)

]
∈ U , and

if this happens then
[

x(t)
µ(t)

]
∈ U for all t > 0. How does one determine U ? The

traditional approach is looking for a graph basis U = G (X), with X ∈ Rn×n, which
exists under additional assumptions on the problem (typically satisfied). Then the
condition HU ⊆ U becomes HU = UT , for some matrix T ∈ Cn×n with all its
eigenvalues in the left half-plane; expanding out the products gives{

M11 +M12X +XM21 +XM22X = 0,
T = M21 +M22X ,

with M =

[
M11 M12
M21 M22

]
. (6)

The first equation in X alone is called algebraic Riccati equation; several solution
methods exist. Once X is determined, thanks to the previous observation, we have
µ(t) = Xx(t) for each t, and hence some manipulations give u(t) = Kx(t) with K =
−R−1(BT X +ST ), and x(t) = exp((A+BK)t)x0.

Although one can prove that U admits a graph basis, this does not mean that
it is a good idea to compute it numerically. The corresponding X might have very
large elements. An alternative strategy is computing an orthogonal basis instead.
Given any basis U =

[
E
A

]
for U , we can reduce the problem to solving an initial-

value ODE problem for w(t) : R+ → Rn such that
[

x(t)
µ(t)

]
= Uw(t). A necessary

step is computing w(0) = w0, which might still be troublesome numerically if E is
ill-conditioned, but all the other steps, notably the eigenvalue computation, benefit
from the additional stability associated with working with orthogonal matrices. If
needed, the solution X of the Riccati equation can be obtained as well as AE−1.

One can apply this approach of computing an invariant subspace directly to (4)
as well. Let us call E and A the two block-3× 3 matrices appearing in the left-
and right-hand side of the leftmost equation in (4), respectively. This time, E is
singular, but one can generalize the concept of invariant subspaces to matrix pencils.
Given a regular pencil Ez−A ∈ C[z]k×k, we say that the image of a U ∈ Ck×`

with full column rank is a deflating subspace if there are V ∈ Ck×`, E,A ∈ C`×`

such that (Ez−A)U =V (Ez−A). The eigenvalues of Ez−A are a subset of those
of Ez−A, and are called associated with the deflating subspace imU . Under the
same assumptions that we have made above, Ez−A has m eigenvalues equal to
∞, n with positive real part and n with negative real part; the finite eigenvalues
coincide with those of H. One can solve a generalized eigenvalue problem [21,
Section 7.7] to determine the invariant subspace associated with the last ones, and
proceed similarly.

Several more general settings exist, most notably finite-horizon problems in
which the boundary condition at ∞ in (4) is replaced by one at a time t f > 0, or
problems in which R is not invertible and the assumptions that we made on the loca-
tion of eigenvalues are not respected. Large-scale problems with pencils exhibiting
the same structure appear for instance in model reduction.

In the numerical solution of linear-quadratic control problems, matrix structures
play a crucial role. The pencil J2nz−M is Hamiltonian, as well as the matrix H, and
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the pencil Ez−A is even, i.e., E = −EH and A =AH . These pencils and matrices
have a distinguishing pairing of eigenvalues; namely, for each eigenvalue λ , one
has that −λ̄ is an eigenvalue as well. For Hamiltonian problems, moreover, U is
Lagrangian, and hence X = XT . For even problems in general this latter property
does not hold (although a similar property does hold for the pencil Ez−A defined
in (4)).

Numerical methods that exploit these structures are preferable, not only for
speed, but especially for accuracy: in an ill-conditioned problem, for instance, an
unstructured eigensolver might detect numerically n+ 1 eigenvalues with negative
real part and n−1 with positive real part, a situation which is impossible under the
structural constraints, and hence fail to identify correctly the unique n-dimensional
invariant subspace. Even when this does not happen, it is a sounder theoretical guar-
antee to have a low structured backward error, that is, to be able to guarantee that
the computed solution is the exact solution of a nearby problem respecting the same
structure.

There has been extensive numerical research on how to accurately solve Hamilto-
nian and even eigenvalue problems; countless methods have been suggested [9, 34]:
for instance, focusing only on the small-case dense case, there are the Newton
method for algebraic Riccati equations [5, 24, 30], QR-type algorithms based on
reduction to Hamiltonian or symplectic and Schur forms [10, 18], and structure-
preserving versions of matrix iterations [2, 11, 20]. In the next sections, we describe
two improvements that can be obtained by using permuted graph bases.

8 Permuted graph bases for the deflation of control problems

A first area where we can see an improvement by judiciously using permuted graph
bases is transforming (4) into the form (5). Indeed, consider the following formula-
tion of this deflation process. We premultiply Ez−A by a suitable matrix to obtain
an identity submatrix I2n+m in the first 2n columns of E and the last m columns of
A, that is,

Ez−A∼

 0 In B
−In 0 S

0 0 R

−1

(Ez−A) =

In 0 0
0 In 0
0 0 0

z−

 H22 H21 0
H11 H12 0

R−1BT R−1ST I

 ,
where one can see that the Hii are exactly the blocks of H defined in (5), albeit
swapped. The rightmost pencil is block-triangular with a leading diagonal block
of size 2n× 2n and a trailing one of size m×m; its eigenvalues are given by the
union of the eigenvalues of these two diagonal blocks. The trailing m×m block
contains the m infinite eigenvalues, and the leading 2n× 2n block contains the 2n
finite eigenvalues that coincide with the eigenvalues of H. The eigenvectors and
deflating subspaces can be related as well; we do not go through the details. This
construction shows that the process of reducing (4) to (5) can be interpreted as per-
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forming an equivalence transformation of Ez−A that enforces an identity submatrix
and then deflating the resulting block-triangular pencil. In view of our previous dis-
cussion, it looks natural to try to enforce an identity submatrix in a different choice
of columns. A special choice of swap matrices is needed to ensure that the deflated
pencil is Hamiltonian. The following result can be obtained extending the previous
theory to this particular problem.

Theorem 8 ([36]). Let Ez−A be a row-reduced pencil with E , A the two matrices
in (4). There exist matrices Mi j such that

Ez−A∼

M11 M12 0
M12 M22 0
M31 M32 0

z+

M13 M14 0
M23 M24 0
M33 M34 Im

 ,
where 0 In A 0

−In 0 Q −AT

0 0 ST −BT

H

∼

M11 M12 −M14 M13
M21 M22 −M24 M23
M31 M32 −M34 M33

H

= S

In 0 X11 X12
0 In X21 X22
0 0 X31 X32

H

,

for some S ∈S2n, and X =
[

X11 X12
X21 X22

]
symmetric and such that ‖X‖max ≤ 1.

An explicit algorithm to obtain X with ‖X‖max ≤ τ for each τ ≥ 1 and an initial
permutation heuristic inspired by the rank-revealing QRP factorization are provided
in [36].

If one performs deflation in this form,
[

M11 M12
M21 M22

]
z−
[

M13 M14
M23 M24

]
is a Hamiltonian

pencil left equivalent to I2nz−H, already in the format given by Theorem 6.
We report an example with a pencil that is particularly troublesome for most

numerical methods. Let m = n = 1, and

Ez−A=

 0 1 0
−1 0 0
0 0 0

z−

0 0 1
0 0 0
1 0 ε

 . (7)

Then,

Ez−A∼

 0 0 −1
−1 0 0
0 −1 −ε

−1

(Ez−A) =

1 0 0
0 ε 0
0 −1 0

z+

0 0 0
1 0 0
0 0 1

 .
The deflated pencil is

[
1 0
0 ε

]
z+
[

0 0
1 0

]
, which is in the form of Theorem 6 with S = S2

and X =
[

0 0
0 −ε

]
. Note that the procedure can be performed without trouble even if ε

is very small or zero. Several methods for the deflation of an even problem (4) to a
Hamiltonian one have appeared in literature [27, 28, 34, 44, 49]; in most of them, it
is required either that R is nonsingular, or that the kernel of R (and possibly further
kernels) are determined accurately. Rank decisions on R have often been considered
a crucial part of the deflation procedure; the method outlined here shows instead
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that it is not the case, and that a Hamiltonian problem can be produced in a stable
way without worrying about its singularity (or closeness to singularity).

If ε = 0, then the pencil (7) is singular, although both Ez−A and its transpose are
row-reduced; correspondingly, the deflated Hamiltonian pencil is singular, too. So,
from a computational point of view, we did not eliminate the problem of singularity,
but simply push it to a later stage. Numerical methods for Hamiltonian eigenprob-
lems that do not break down for singular (and close-to-singular) pencils are then
required; as far as we know they have not yet appeared in the literature.

9 Hamiltonian pencils and the doubling algorithm

A second application of permuted graph bases comes from solving Hamiltonian
invariant subspace problems. The starting point for our algorithm is the following
result.

Theorem 9 ([6]). Let L(z)=L1z+L0 ∈C[z]n×n be a regular pencil, and let M0,M1 ∈

Cn×n be such that
[
−M0 M1

]
has full row rank and

[
−M0 M1

][L1
L0

]
= 0. If v ∈ Cn

is an eigenvector of L(z) with eigenvalue λ , then it is also an eigenvector of the
pencil

N(z) = N1z+N0 = M0L1z+
1
2
(M1L1 +M0L0) (8)

with eigenvalue f (λ ), where f (z) = 1
2 (z+ z−1).

If we denote by f (k) the composition of f with itself k times and by ℜz the real part
of z, we have

lim
k→∞

f (k)(z) =

{
1 if ℜz > 0,
−1 if ℜz < 0

(the iteration in this form breaks down if ℜz = 0, but as we see in the following this
will not be a concern). Hence, if we start from a pencil L(z) with no eigenvalues
on the imaginary axis, repeating the transformation L(z) 7→ N(z), we converge (in a
suitable sense) to a pencil L∞(z) with eigenvalues 1 and −1 only, from which one
can recover the invariant subspace associated with the eigenvalues having negative
real part. This iteration is essentially a pencil version of the matrix sign iteration [26,
Chapter 5].

Note that one can replace M(z) = M1z+M0 with any pencil M′(z) ∼M(z), ob-
taining then a different N′(z) ∼ N(z); so there is some arbitrariness in how to per-
form the iteration. Some form of normalization needs to be enforced, otherwise N1
and N0 could both converge to zero, or diverge, or (even worse) converge to matri-
ces with the same left kernel, giving a non-row-reduced L∞(z). Hence one can see a
role for permuted graph representations in this setting. A second point in which this
technique helps is in computing the kernel

[
−M0 M1

]
. Indeed, the following result

is easy to verify.
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Lemma 3. Let U ∼ PG (X) be the permuted graph representation of a matrix

U ∈ C(m+n)×m with full column rank. Then, W = P
[
−XH

In

]
∈ C(m+n)×n is such that

W HU = 0. Moreover, the matrix W has full column rank and spans the kernel of
UH .

Hence, given a permuted graph basis for a subspace, we can determine a permuted
graph basis for its left kernel with basically no computational effort.

Another important observation is that in Theorem 9 whenever L(z) is Hamilto-
nian, then N(z) is Hamiltonian, too, so we can compute at each step a permuted
Lagrangian graph representation as normalization. Putting everything together, we
get Algorithm 4. The bulk of the computational cost consists in computing per-

Input: A Hamiltonian pencil L(z) = L1z+L0 ∈ C[z]2n×2n without eigenvalues on the
imaginary axis; a threshold τ >

√
2

Output: A basis for the invariant subspace U of L(z) associated with the eigenvalues in the
left half-plane

repeat
compute a permutation matrix P ∈C4n×4n and X ∈C2n×2n such that PG (X)∼

[
L1
L0

]
and

‖X‖max ≤ τ , using Algorithm 1;
let
[
−M0 M1

]
=
[
−X I

]
PH ;

compute N(z) as in (8);

compute S ∈S4n,Y = Y H ∈ C2n×2n such that
[
N1 N0J2n

]H ∼ SG (Y ) and ‖Y‖max ≤ τ ,
using the symplectic analogue of Algorithm 1 (see Theorem 6 and Section 5);
replace L(z) with N(z) and continue;

until Y converges;
Find the kernel of L1 +L0, which is U ;
Algorithm 4: Inverse-free sign algorithm with permuted graph bases [36]

muted graph bases for
[

L1
L0

]
and permuted Lagrangian graph bases for

[
N1 N0J2n

]H ,
alternately, together with the matrix products that appear in (8). At each step after
the first, P and S from the previous steps typically work well as initial guesses; re-
computing X and Y from the permutation at the end of Algorithm 1 might be needed
for better accuracy.

The algorithm converges quadratically; one can relax the assumptions, allowing
for eigenvalues on the imaginary axis; in this case, the algorithm can be proved to
converge in every problem for which there exists a Lagrangian deflating subspace
[35, 36], but the convergence rate turns to linear. (Actually, Theorem 9 and our
analysis above are slightly incomplete even in the case with no eigenvalues on the
imaginary axis, because we do not consider what happens to multiple eigenvalues;
we refer the reader to [35, 36] for full detail.)

There are essentially two versions of this algorithm; one is as described above;
the other one works by first converting L1z+L0 to a symplectic pencil via the trans-
formation L(z) 7→ (L1 + L0)z+ (L0− L1) (known as Cayley transform), and then
applying a transformation analogous to (8), that is,
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N(z) = M1L1z−M0L0, (9)

which transforms the eigenvalues according to g(z) = z2, and for which

lim
k→∞

g(k)(z) =

{
∞ if |z|> 1,
0 if |z|< 1.

In this second case, the last line of Algorithm 4 changes to computing the kernel of
L0. The work [6] contains a general theory of operations with matrix pencils that
describes how to produce “matrix pencil versions” of rational functions, such as (8)
and (9) for f (z) and g(z).

This modified version is called doubling algorithm; it was introduced (with a
different derivation) for unstructured invariant subspace problems without the use
of permuted graph bases in [4, 33], and for symplectic problems with the special
choice S = I (graph basis without permutation) in [2, 11, 12, 29], and then gen-
eralized to make full use of permuted graph bases in [35]. The algorithm that we
described first is known as inverse-free sign method; it appeared without the use
of permuted graph bases in [6], then with S = I in [20], and with permuted graph
bases in [36]. Permuted graph bases are important here because they ensure that the
iterative procedure produces an exactly Hamiltonian (or symplectic) pencil at each
step and steers clear of numerically singular pencils.

A basic implementation in the MATLAB language of Algorithm 4 and its dou-
bling variant is available on [43]; the library also includes Algorithm 1 and several
functions to compute permuted graph representations of subspaces and pencils, both
in the unstructured and the Lagrangian case.

How well do these algorithms fare in practice, compared to their many competi-
tors and variants that do not make use of permuted graph bases? The work [35]
reports computational results on a set of 33 small-scale problems (the same test
problems used in [10]) obtained from the benchmark set [7]. This is a benchmark
set containing examples of linear-quadratic control problems; it contains both ex-
amples from real-life applications and challenging problems created ad-hoc to be
difficult to solve. As far as we know, the algorithm in [35] (Algorithm 4 in the vari-
ant with transformation (9)) is the first numerical algorithm to obtain completely
satisfying results in all 33 problems on both these grounds:

• small subspace residual, that is, ‖(I−UUT )HU‖
‖H‖ of the order of machine precision

for the computed subspace U ;
• exact preservation of the Lagrangian structure, that is, UT J2nU either zero or of

the order of machine precision.

Algorithm 4 in the variant presented here was tested on another challenging ap-
plication (H∞ control, an optimization procedure which requires solving one after
another a set of close-to-unsolvable Riccati equations) in [36]; the results suggest
that the variant (8) is more stable than (9), because it avoids the initial Cayley trans-
form. This is why we chose to highlight (8) in this presentation.



Permuted graph matrices and their applications 19

Explicit theoretical results proving stability of the algorithm are still an open
issue, though. For methods based on orthogonal transformations and reduction to
Schur form, the standard technique is a Wilkinson-style backward stability proof
([50, Chapter 3] and [25, Section 19.3]); however, a counterexample in [35, p. 798]
shows that the simplest version of a backward stability proof using this technique
would not work for doubling-type algorithms. As far as we know, the only stabil-
ity proof for an algorithm of this family is given in [4], for a doubling algorithm
for unstructured pencils based on orthogonal bases. It can be adapted to the other
variants; however, it is not completely satisfying as the error growth coefficient is
bounded by 1/d2, where d is the distance to the closest ill-posed problem, instead
of the more natural 1/d which constitutes the condition number of the problem.
We are not aware of an example in which this larger factor shows up in practice.
Another related result is the work in [38, 39], which shows that for Hermitian ma-
trices a carefully chosen variant of doubling achieves a mixed variant of backward
and forward stability. Nevertheless, for nonsymmetric problems, proving the stabil-
ity of doubling-type algorithms is still an open problem, both in the structured and
non-structured case.

10 Research directions

There are many possible improvements and open problems related to these topics;
some of them have already been presented in our exposition, and we collect here a
few more.

An interesting issue is the significance of κ(
[

L1
L0

]
) for a pencil L1z+ L0: what

is its role in the stability and perturbation theory of the stable invariant subspace
problem?

Another research direction is extending the methods presented in Sections 8
and 9 to deal with so-called descriptor systems, a common variant of the control
theory setting described above. The matrix pencils appearing in such problems are
similar to the one in (4), but the leading submatrix J2n of E is replaced by

[
0 E
−ET 0

]
,

for a matrix E ∈ Cn×n that may be singular. With this modification, only part of
the structure is preserved: the resulting pencil Ez−A is still even, but the deflated
problem is not Hamiltonian and its stable deflating subspace U is not Lagrangian.
The algorithms that we have presented rely in an essential way on these structures,
so modifying them to work with descriptor systems will probably require major
changes.

A first attempt to use permuted graph bases in large-scale control problems is
in the recent preprint [37]; the underlying algorithm is not a doubling algorithm
but low-rank ADI [8], and inverse-free techniques and permuted graph bases are
used to adapt it to an invariant subspace formulation. One of the most interesting
observations in that work is that Lemma 3, which we have used here only in the
case m = n, is noteworthy also when m� n, since it allows one to compute an
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explicit basis for a large n-dimensional subspace of Cm+n defined as a kernel with
basically no effort.

Overall, in control theory there are many possibilities for further applications;
many problems can be reduced to the computation of some Lagrangian invariant
subspace, and permuted graph bases are a natural choice for this task.

11 Conclusions

In this chapter we have presented the basic theory of permuted graph matrices and
bases, and shown how techniques based on them are useful in a variety of applica-
tions. We believe that they are an interesting alternative, in selected problems, to the
ubiquitous orthogonal matrices. They have led to the construction of several effi-
cient algorithms for various tasks, and, as always in research, there is plenty of open
problems and possibilities for improvement.

Acknowledgements The author is grateful to C. Mehl, B. Meini and N. Strabič for their useful
comments on an early version of this chapter.
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