
An algorithm for solving systems of
quadratic equations in branching processes

Federico Poloni∗

This document contains a short survey of the talk presented by the author
during the XIX Conference of the Italian Mathematical Union in 2011; it
summarizes and recalls the results described there.

1 Introduction — Markovian binary trees and classical
algorithms

We are interested in studying Markovian binary trees [1, 4, 3, 6, 9], i.e., a family
of branching processes characterized by the following laws.

1. At each time instant, a finite number of entities, called “individuals”, exist.

2. Each individual can be in any one of N different states (these model, for
instance, age classes or difference features in a population).

3. Each individual evolves independently from the others. Depending on its
state i, it has a fixed probability bijk of being replaced by two new individ-
uals (“children”) in states j and k respectively, and a fixed probability ai
of dying without producing any offspring.

The characteristics of the population are determined therefore by the vector
a ∈ RN

+ and the 3-way tensor B ∈ RN×N×N
+ , where we denote by R+ the set of

nonnegative reals. Instead of B, it is useful to think in terms of the bilinear map
b : RN

+ × RN
+ → RN

+ given by

[b(u, v)]i :=

N∑
j,k=1

bijkujvk.

We denote by e the vector, of dimensions that are clear by the context, all of
whose components are 1. With this notation, a necessary compatibility condition
for our model is that e = a+b(e, e), that is, for each i we require the probabilities
of all the possible events that can happen to an individual in state i to sum to 1.

Markovian binary trees are used not only for population dynamics, but also
for instance for modelling computer and networking systems [5]. A natural

∗Università di Pisa, Dipartimento di Informatica; Largo Pontecorvo, 3; 56128 Pisa (Italy).
fpoloni@di.unipi.it

1



1 Introduction — Markovian binary trees and classical algorithms 2

question is computing the extinction probabilities, i.e., the vector x ∈ RN
+ such

that a colony starting from a single individual in state i becomes extinct in a
finite time with probability xi. One can prove [1, 3] that x is the minimal (in
the componentwise order) nonnegative solution x∗ of the equation

x = a+ b(x, x).

As noted above, x = e is a solution for this equation, although not necessarily
the minimal one. In fact, one can define two different families of processes:

• subcritical processes, in which x∗ = e is the minimal solution, and thus the
colony becomes extinct with probability 1. This corresponds, in a suitable
sense, to the case in which the average number of children per individual
is less than 1.

• supercritical processes, in which x∗ ≤ e and equality does not hold for all
components. In this case, there is a nonzero probability that the number
of individuals grows indefinitely; this corresponds to the case in which the
average number of children pre individual is more than 1.

There is of course an intermediate case, in which the average number of children
is exactly 1. In this case, the colony becomes extinct with probability 1 but
requires on average an infinite time to do that.

There are several algorithms for computing the extinction probabilities x for
supercritical processes. Several fixed-point iterations have been studied in [1, 4,
3], e.g.,

xk+1 = a+ b(xk, xk) (1)

or
xk+1 = a+ b(xk+1, xk). (2)

The latter iteration can be computed explicitly since the map b(·, xk) is a linear
map from RN to itself and thus is associated to a matrix, and the stochasticity
properties ensure that

I − b(·, xk)

is a nonsingular M -matrix.
With this notation, the Newton method takes a similar form, namely

xk+1 =
(
I − b(·, xk)− b(xk, ·)

)−1
a. (3)

A similar strategy has been suggested in [6], i.e., applying Newton’s method to
a slightly different fixed-point equation.

These fixed-point iterations share several properties, the most interesting
one being that they converge monotonically to the minimal solution x∗ when
started from x0 = 0, i.e.,

0 = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xk ≤ . . . ,

and xk → x∗.



2 Perron vector-based algorithms 3

All of them have probabilitistic explanations, in that xk can be seen as the
probability of the colony becoming extinct under additional restrictions depending
on k. The probabilistic interpretations are of great interest to the applied queuing
theory community, as they provide better insight on the properties of the method.

The Newton method (3) has quadratic convergence for supercritical processes,
but this convergence degrades to linear in the critical case; similarly, (1) and (2)
converge linearly, but the convergence speed degrades to sublinear for critical
processes. This makes sense intuitively in view of the probabilistic interpretation,
since we need to “simulate” many more iterations to determine the asymptotical
behavior of a critical process. In particular, it is a common feature of all these
algorithms that the convergence is slower for critical or close-to-critical processes.

2 Perron vector-based algorithms

We wish to propose here an algorithm with a completely different origin and
numerical behavior [7, 2, 8]. First of all, for ease of explanation, we make a
change of variable by setting y = e − x. In this way, yi is the complement of
the extinction probability, i.e., the survival probability starting from a single
individual. The equation becomes

y = b(e− y, y) + b(y, e), (4)

or, setting Py := b(e− y, ·) + b(·, e) ∈ RN×N ,

y = Pyy. (5)

Since this is a linear change of variable, there are little changes if we apply
the traditional fixed point iterations to this reformulation. However, (5) can
be interpreted as saying that y is the Perron vector of a nonnegative matrix
depending on y itself. This suggests setting up the following fixed-point iteration:

yk+1 = Perron vector of Pyk
. (6)

Perron vectors are determined up to a multiplicative constant; therefore, we
have the additional issue of choosing a normalization for yk+1. We make here
the choice of imposing that the residual

yk+1 − Pk+1yk+1

be orthogonal to a fixed nonnegative vector w. In principle, any w > 0 could
work. However, the following result shows that there is a clear best candidate
for w.

Theorem 1 ([7]). Ley bt, t ≤ 1 define a smoothly varying family of supercritical
Markovian binary trees that converge to a critical problem for t→ 1; Let vt, yt
be the left and right Perron eigenvectors of

Rt := bt(e, ·) + bt(·, e), (7)



3 Numerical experiments 4

which we suppose to be irreducible for t sufficiently close to 1. Then, the Jacobian
Jt of the iteration map is such that

lim
t→1

ρ(Jt) =

∣∣∣∣1− vT1 b1(y1, y1) · wT y1
wT b1(y1, y1) · vT1 y1

∣∣∣∣
In particular, choosing w = v1 the right-hand side vanishes and thus we have
superlinear convergence in the limit t→ 1.

The work [2] suggests a deflation algorithm to deal with cases in which R1 is
not irreducible; essentially, we can split the problem into two smaller ones which
can be solved one after the other. It is proved in the same paper that, when the
algorithm converges, it always converges to the minimal solution rather than
spurious ones.

Moreover, it is possible to construct a Newton-type algorithm based on the
same fixed-point equation (6).

The previous result works whenever Rt as in (7) is irreducible in a neighbour-
hood of t = 1 (or, equivalently, for t = 1). Problems with a reducible matrix
R = b(e, ·) + b(·, e) can be dealt with by reducing to two smaller problems, with
a strategy which is analogue to (block) back-substitution for block triangular
systems.

3 Numerical experiments

Numerical experiments reveal that, unlike the previous algorithm, the conver-
gence is not in general monotone; indeed, for problems which are very far from
the critical case (and thus “easy to solve” in the framework of the classical algo-
rithms), this new method can fail to converge. Nevertheless, in close-to-critical
problems, convergence is surprisingly fast. We report numerical experiments for
two parameter-dependent problems in Figures 1 and 2. The upward spikes in
the classical Newton algorithm (red line) correspond to values of λ for which the
problem is critical; in these cases, the algorithm is slower as expected. However,
the Perron-based algorithms (the fixed-point iteration (6) and its Newton-based
variant) show the opposite behavior and become faster instead when the problem
is close-to-critical.

Overall, the proposed algorithm is faster than the classical algorithms for
close-to-critical problems, and is thus the recommended choice in these cases.

References

[1] Nigel G. Bean, Nectarios Kontoleon, and Peter G. Taylor. “Markovian trees:
properties and algorithms”. In: Ann. Oper. Res. 160 (2008), pp. 31–50. issn:
0254-5330.

[2] Dario A. Bini, Beatrice Meini, and Federico Poloni. “On the solution of a
quadratic vector equation arising in Markovian binary trees”. In: Numer.
Linear Algebra Appl. 18.6 (2011), pp. 981–991. issn: 1070-5325. doi: 10.
1002/nla.809.

http://dx.doi.org/10.1002/nla.809
http://dx.doi.org/10.1002/nla.809


REFERENCES 5

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

1.5

2

2.5

3

3.5

·10−3

parameter λ

C
P

U
ti

m
e

(s
)

Classical Newton
Perron-based
Perron-based Newton

Fig. 1: Computational times vs. parameter for a parameter-dependent problem
[4, Example 1]

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

2

3

4

·10−3

parameter λ

C
P

U
ti

m
e

(s
)

Classical Newton
Perron-based
Perron-based Newton

Fig. 2: Computational times vs. parameter for a parameter-dependent problem
[4, Example 1]



REFERENCES 6

[3] Sophie Hautphenne, Guy Latouche, and Marie-Ange Remiche. “Algorith-
mic Approach to the Extinction Probability of Branching Processes”. In:
Methodology and Computing in Applied Probability (2010).

[4] Sophie Hautphenne, Guy Latouche, and Marie-Ange Remiche. “Newton’s
iteration for the extinction probability of a Markovian binary tree”. In:
Linear Algebra Appl. 428.11-12 (2008), pp. 2791–2804. issn: 0024-3795.

[5] Sophie Hautphenne, Kenji Leibnitz, and Marie-Ange Remiche. “Modeling
of P2P file sharing with a level-dependent QBD process”. In: Advances
in queueing theory and network applications. New York: Springer, 2009,
pp. 247–263. doi: 10.1007/978-0-387-09703-9_14.

[6] Sophie Hautphenne and Benny Van Houdt. “On the link between Marko-
vian trees and tree-structured Markov chains”. In: European Journal of
Operational Research 201.3 (2010), pp. 791 –798. issn: 0377-2217. doi:
10.1016/j.ejor.2009.03.052.

[7] Beatrice Meini and Federico Poloni. “A Perron iteration for the solution
of a quadratic vector equation arising in Markovian binary trees”. In:
SIAM J. Matrix Anal. Appl. 32.1 (2011), pp. 248–261. issn: 0895-4798. doi:
10.1137/100796765.

[8] Federico Poloni. Algorithms for quadratic matrix and vector equations.
Vol. 16. Tesi. Scuola Normale Superiore di Pisa (Nuova Series) [Theses
of Scuola Normale Superiore di Pisa (New Series)]. Dissertation, Scuola Nor-
male Superiore, Pisa, 2011. Edizioni della Normale, Pisa, 2011, pp. xvi+239.
isbn: 978-88-7642-383-3. doi: 10.1007/978-88-7642-384-0.

[9] Federico Poloni. “Quadratic vector equations”. In: Linear Algebra and its
Applications (2011). to appear in press. issn: 0024-3795. doi: 10.1016/j.
laa.2011.05.036.

http://dx.doi.org/10.1007/978-0-387-09703-9_14
http://dx.doi.org/10.1016/j.ejor.2009.03.052
http://dx.doi.org/10.1137/100796765
http://dx.doi.org/10.1007/978-88-7642-384-0
http://dx.doi.org/10.1016/j.laa.2011.05.036
http://dx.doi.org/10.1016/j.laa.2011.05.036

	Introduction — Markovian binary trees and classical algorithms
	Perron vector-based algorithms
	Numerical experiments

