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Abstract

The delay Lyapunov equation is an important matrix boundary-value problem
which arises as an analogue of the Lyapunov equation in the study of time-delay
systems ẋ(t) = A0x(t) +A1x(t− τ) +B0u(t). We propose a new algorithm for
the solution of the delay Lyapunov equation. Our method is based on the
fact that the delay Lyapunov equation can be expressed as a linear system of
equations, whose unknown is the value U(τ/2) ∈ Rn×n, i.e., the delay Lyapunov
matrix at time τ/2. This linear matrix equation with n2 unknowns is solved by
adapting a preconditioned iterative method such as GMRES. The action of the
n2 × n2 matrix associated to this linear system can be computed by solving a
coupled matrix initial-value problem. A preconditioner for the iterative method
is proposed based on solving a T-Sylvester equation MX+XTN = C, for which
there are methods available in the literature. We prove that the preconditioner is
effective under certain assumptions. The efficiency of the approach is illustrated
by applying it to a time-delay system stemming from the discretization of a
partial differential equation with delay. Approximate solutions to this problem
can be obtained for problems of size up to n ≈ 1000, i.e., a linear system with
n2 ≈ 106 unknowns, a dimension which is outside of the capabilities of the other
existing methods for the delay Lyapunov equation.

Keywords: Matrix equations, iterative methods, Krylov methods, time-delay
systems, Sylvester equations, ordinary differential equations

1. Introduction

Consider the linear single-delay time-delay system defined by the equations

ẋ(t) = A0x(t) +A1x(t− τ) +B0u(t)(1a)

y(t) = C0x(t),(1b)

where A0, A1 ∈ Rn×n, B0 ∈ Rn×m, CT
0 ∈ Rn×p. The general equation (1)

appears in many different fields. It is considered a very important topic in the
field of systems and control, mostly due to the fact that most feedback systems
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are non-instantaneous in the sense that there is a delay between the observation
(of for instance the state) and the action of the feedback. See monographs [1, 2]
and survey paper [3] for literature on time-delay systems.

The delay Lyapunov equations associated with (1) corresponds to the prob-
lem of finding U ∈ C0([−τ, τ ],Cn×n) such that

U ′(t) = U(t)A0 + U(t− τ)A1, t > 0,(2a)

U(−t) = U(t)T,(2b)

−W = U(0)A0 +AT
0 U(0) + U(τ)TA1 +AT

1 U(τ),(2c)

hold for a given a cost matrix W = WT ∈ Rn×n (in some applications, for
instance, W = CT0 C0).

Equation (2a) is a matrix delay-differential equation and (2c) is an algebraic
condition involving U(0), U(τ) and U(−τ) = U(τ)T such that (2) can be inter-
preted as a matrix boundary value problem. In this paper we propose a new
procedure to solve (2), with the goal to have good performance for large n.

The delay Lyapunov equation generalizes the standard Lyapunov equation,
since e.g., if we set τ = 0 the equation reduces to the standard Lyapunov
equation. Moreover, as established by the last decades of research, the delay
Lyapunov equation is in many ways playing the same important role for time-
delay systems as the standard Lyapunov equation plays for standard (delay free)
linear time-invariant dynamical systems. More precisely, the delay Lyapunov
equation has been studied in the following ways. It has been extensively used to
characterize stability of delay differential equations, as one can explicitly con-
struct a Lyapunov functional from U(t), where the solution is sometimes referred
to as delay Lyapunov matrices. Sufficient conditions for stability are given in
[4] [5], [6] and for neutral systems in [7], and conditions for instability in [8, 9].
It has been used to provide bounds on the transient phase of delay-differential
equations in the PhD thesis [10] and [11, 12]. Existence and uniqueness of the
solutions are well characterized, e.g., in [4]. See also the monograph [2]. Re-
cently, it has been shown that in complete analogy to the standard Lyapunov
equation the solution to the delay Lyapunov equation explicitly gives the H2-
norm [13]. The delay Lyapunov equation can also be used to carry out a model
order reduction which generalizes balanced truncation [14].

This paper concerns computational aspects of the delay Lyapunov equation.
Some computational aspects are treated in the literature, e.g., the matrix expo-
nential formula in [10], the polynomial approximation approach in [15], spectral
(Chebyshev-based) discretization approaches in [13, 16] and an ODE-approach
in the PhD thesis [17, Chapter 3].

In complete contrast to the delay Lyapunov equation, the computational
aspects of the standard Lyapunov equation have received considerable atten-
tion, mostly in the numerical linear algebra community. Most importantly, the
Bartels-Stewart method [18], ADI methods [19], Krylov methods [20, 21], and
rational Krylov methods [22], including preconditioning techniques [23], have
turned to be effective in various situations. For a more thorough review, see
the survey [24]. To our knowledge, there exist no natural generalization of the
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Z1(0) Z1(τ/2)Z2(0)Z2(τ/2)symmetry

U(−τ) U(τ)U(τ/2)U(0)

Figure 1: Graphical representation of the relation between U(t), Z1(t) and Z2(t).

Bartels-Stewart algorithm and there are no Krylov methods for delay Lyapunov
equation.

The method we propose is tailored to medium-scale equations; it combines
the use of a Krylov-type method and a direct algorithm similar to the Bartels-
Stewart one. More precisely, our approach is based on a characterization of the
solution to the delay Lyapunov equation as a linear system of equations with
n2 unknowns. This characterization is derived in Section 2. Since the linear
system derived in Section 2 is large and only given implicitly as a matrix vector
product, we propose to adapt iterative methods which are based on matrix vec-
tor products only, e.g., GMRES [25] or BiCGStab [26], to this problem. It turns
out to be natural to use a preconditioner involving a matrix equation called the
T-Sylvester equation, for which there are efficient O(n3) methods for the dense
case [27]. We quantify the quality of the preconditioner by deriving a bound
on the convergence factor of the iterative method. The iterative method and
the preconditioner are given in Section 3. The performance of the approach is
illustrated with simulations in Section 4. We apply the method to a problem
stemming from the discretization of a two-dimensional partial delay-differential
equation (PDDE). The number of iterations appears to be essentially indepen-
dent of the grid, which suggests that the preconditioner is a sensible choice for
this PDDE.

We use notation which is standard for analysis of matrix equations. The
vectorization operation is denoted vec(B), i.e., if B =

[
b1 . . . bm

]
∈ Rn×m,

vec(B)T =
[
bT1 . . . bTm

]
. The Kronecker product is denoted ⊗. Unless other-

wise stated, ‖ · ‖ denotes the Euclidean norm for vectors and the spectral norm
for matrices. We denote the Frobenius norm by ‖ · ‖F .

2. Reformulation of the delay Lyapunov equations

Our method is based on a reformulation of the delay Lyapunov equation
where we define for each t ∈ [0, τ/2]

Z1(t) := U(τ/2 + t), Z2(t) := U(τ/2− t).(3)

The two matrix-valued functions Z1(t) and Z2(t) coincide with U(t) up to a
change of the time coordinate which is represented visually in Figure 1. Es-
sentially, they represent two different branches of U(t) “taking off” from τ/2
in opposite directions. Note that the left half of the function, U([−τ, 0]), is
determined uniquely by the right half U([0, τ ]) by the transposition symmetry
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condition (2b). The only nontrivial condition implied by (2b) is that U(0) must
be symmetric.

Note that

Z1(t− τ) = U(t− τ + τ/2) = U(t− τ/2) = U(τ/2− t)T = Z2(t)T(4a)

Z2(t− τ) = U(τ/2− t− τ) = U(−t− τ/2) = U(t+ τ/2)T = ZT1 (t)(4b)

Hence, the delay differential equation (2a) becomes an ordinary differential equa-
tion

Z ′1(t) = Z1(t)A0 + Z2(t)TA1,(5a)

Z ′2(t) = −Z1(t)TA1 − Z2(t)A0.(5b)

This is a constant-coefficient homogeneous linear system of ODEs which can be
solved explicitly if the common (unknown) initial value Z1(0) = Z2(0) = U(τ/2)
is provided. Using vectorization, we can give an explicit formula

(6)

[
vecZ1(t)
vecZ2(t)T

]
= exp(tA)

[
vecU(τ/2)
vecU(τ/2)T

]
,

where

(7) A :=

[
AT0 ⊗ In AT1 ⊗ In
−In ⊗AT1 −In ⊗AT0

]
.

In terms of Z1(t) and Z2(t), the algebraic condition (2c) and the symmetry
condition (2b) for t = 0 reduce to

0 = W + Z2(τ/2)TA0 +AT0 Z2(τ/2) + Z1(τ/2)TA1 +AT1 Z1(τ/2),(8a)

0 = Z2(τ/2)− Z2(τ/2)T .(8b)

Notice that the right-hand side of (8a) is symmetric and that of (8b) is anti-
symmetric. A linear combination of them gives

(9) 0 = W+Z2(τ/2)T (A0−cI)+(AT0 +cI)Z2(τ/2)+Z1(τ/2)TA1+AT1 Z1(τ/2)

for each c ∈ R, which forms the basis of our matrix operator.

Definition 1. Let Lc : Rn×n → Rn×n be defined by

(10) Lc(X) :=

Z2(τ/2)T (A0 − cI) + (AT0 + cI)Z2(τ/2) + Z1(τ/2)TA1 +AT1 Z1(τ/2)

where Zi : [0, τ/2]→ Rn×n, i = 1, 2 are the unique solutions to the initial value
problem (5) with Z1(0) = Z2(0) = X.

We shall need the following easy linear algebra result.

Lemma 2. Let M = MT ∈ Rn×n and N = −NT ∈ Rn×n be two matrices, one
symmetric and one antisymmetric. Then, M+N = 0 if and only if M = N = 0.
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Proof. The ‘if’ part is trivial; let us prove the ‘only if’. Suppose M + N = 0;
then, transposing, we have also 0 = MT + NT = M − N . Summing and
subtracting the two relations we have 2M = 2N = 0.

A time-delay system is called exponentially stable if ‖x(t)‖ ≤ M exp(−βt)
for some constants M > 0, β > 0. If this condition holds, then the solution U(t)
to (2) is unique [12, Theorem 4]. In this case, we can formulate the equivalence
between the delay Lyapunov equation and a linear system with operator Lc.

Theorem 3 (Equivalence). Suppose A0 and A1 and τ are such that (1) is
exponentially stable and let W ∈ Rn×n be any symmetric matrix. Let U be the
solution to the delay Lyapunov matrices (2) and let Lc be defined by (10). Then,
for any c 6= 0, X = U(τ/2) is the unique solution of the linear system

(11) Lc(X) = −W.

Proof. Equation (9) already shows that if X = U(τ/2) then Lc(X) = −W . It
remains to prove the reverse implication. Suppose that X satisfies Lc(X)+W =
0; then, by Lemma 2 applied to

M = Z2(τ/2)TA0 +AT0 Z2(τ/2) + Z1(τ/2)TA1 +AT1 Z1(τ/2)−W,
N = c(Z2(τ/2)− Z2(τ/2)T ),

the conditions (8) hold. Define

Û(t) =


Z2(τ/2− t) 0 ≤ t < τ/2,

Z1(t− τ/2) τ/2 ≤ t ≤ τ,
U(−t)T −τ ≤ t < 0.

The function Û(t) is continuous in 0 by (8b), and in ±τ/2 by the choice of initial
conditions, hence it is globally continuous on [−τ, τ ]. Moreover, the differential
equation (2a) holds for all t 6= 0, τ/2. By continuity, it must also hold for these
values. Hence Û(t) solves (2). As we assume exponential stability, the solution
is unique and hence Û(t) = U(t).

Since the linear system Lc(X) = −W has a unique solution for each sym-
metric W ∈ Rn×n, we have the following result.

Corollary 4. Suppose (1) is exponentially stable. Then, the linear operator Lc
is nonsingular for each c 6= 0.

A delay-free formulation of the delay Lyapunov equations has also been
derived in [4, Equation (13)]. That formulation cannot be described with a
linear operator in a way that can be adapted to an iterative method in the same
way that we show in the following section.
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3. Algorithm

We now know from the previous section that the matrix equation (11) is
equivalent to the delay Lyapunov equation. By vectorizing (11), we obtain the
linear system on standard form

(12) vecLc(vec−1 x) = − vecW,

where the inverse function vec−1(x) maps vecX ∈ Rn2

to X ∈ Rn×n. Let

A ∈ Rn2×n2

the matrix associated to it. We know that A is nonsingular by
Corollary 4.

Our approach is based on specializing an iterative method for linear systems
to (12). In order to specialize an iterative method for large-scale linear systems,
we need two ingredients. We need an efficient procedure to compute the action
corresponding to the left-hand side of (12); and we need a preconditioner. These
two ingredients are described in the following two subsections.

3.1. Action of Lc

The action of the operator Lc is defined by (5) and (10). As a consequence,
the recipe to compute Lc(X) for a given matrix X is simple:

1. Compute the solutions Z1(τ/2), Z2(τ/2) of the linear, constant-coefficient
initial-value problem (5) with initial values Z1(0) = Z2(0) = X.

2. Compute Lc(X) using the expression (10).

In practice, a detail is crucial in the choice of the numerical algorithm for the
first step. We distinguish two possible scenarios:

• We use a method with a fixed step-size and no adaptivity: for instance,
the (explicit or implicit) Euler method, or a non-adaptive Runge-Kutta
method. In this case, we are effectively substituting Lc with a different
operator L̂c, which replaces the differential operator in Step 1 with a finite
discretization. This operator (for most classical methods) is still linear, so
the theory of Krylov subspace methods can be applied without changes:
we are applying a Krylov method to get an approximate solution of a
nearby linear problem L̂c.

• We use an adaptive method, which can change step size along the algo-
rithm, possibly in different ways for different initial valuesX. For instance,
the Runge-Kutta-Fehlberg method (Matlab’s ode45). While apparently
the two cases are similar, the addition of adaptivity has an important
consequence: the computed operator L̂c, this time, is no longer a linear
operator, because in general L̂c(X1 +X2) 6= L̂c(X1)+ L̂c(X2). Indeed, for
different values of the input X the initial-value problems could be solved
using different grids, and hence different discrete approximations of the
propagation operator. Thus we are in the realm of inexact Krylov meth-
ods [28]. The theory in this case is more involved, as more care is required
with the error thresholds.
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It turns out in the simulations (in Section 4) that it is advantageous to try to
keep the number of iterations as low as possible. In this paper we therefore
focus on the first approach, since an inexact Krylov method can require more
iterations.

3.2. Preconditioning

In order to make iterative methods effective, it is common to carry out a
transformation which preconditions the problem. This can often be interpreted
as transforming the problem with an approximation of the inverse of the ma-
trix/operator. We focus on a particular preconditioner obtained by solving the
problem exactly when A1 is replaced with the zero matrix. Then (10) becomes

(13) L̃c(X) := Z2(τ/2)T (A0 − cI) + (AT0 + cI)Z2(τ/2),

and (5b) decouples from Z1 such that Z ′2 = −Z2(t)A0, which we can solve
explicitly to get Z2(τ/2) = X exp(−τA0/2).

Let T be the operator

T (Y ) = (AT0 + cI)Y + Y T (A0 − cI).

The operator Lc is invertible if and only T−1 exists, and in this case we have

(14) L̃−1c (Z) = T−1(Z) exp(τA0/2).

Inverting the operator T correspond to solving the so-called (real) T-Sylvester
equation MY +Y TN = C. The paper [27] discusses the solvability of this equa-
tion and presents a direct O(n3) Bartels–Stewart-like algorithm for its solution.
In particular, the following result holds.

Theorem 5 ([29, Lemma 8],[27]). Let M,N,C ∈ Rn×n. The equation MX +
XTN = C has a unique solution X for each right-hand side C if and only if
µiµ̄j 6= 1 for each pair µi, µj of eigenvalues of the pencil M − λNT .

In our case, M = AT0 + cI, N = A0 − cI, so after a quick computation the
solvability condition reduces to the following condition, which is independent of
c.

Definition 6 (Hamiltonian eigenpairing). We say that the matrix A0 ∈ Rn×n
has no Hamiltonian eigenpairing, if for each pair of eigenvalues λi, λj of the
matrix A0, we have

λi + λ̄j 6= 0.

A matrix has no Hamiltonian eigenpairing, for instance, if <λ < 0 for each
eigenvalue λ of A0, i.e., if the delay-free system obtained by setting A1 = 0 is
stable.

In order to characterize the convergence and quality of the preconditioner
we use a fundamental min-max bound. Suppose we carry out GMRES on the
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matrix A ∈ RN×N with eigenvalues λ1, . . . , λN . From [25, Proposition 4] we
have the bound of the residual

‖rm+1‖ ≤ κ(X)ε(m)‖r0‖
and

ε(m) = min
p∈Pm

max
i
|p(λi)|

where Pm = {p : polynomial of degree m such that p(0) = 1}. We now apply
the standard Zarantonello bound [30, Lemma 6.26], where we assume that the
eigenvalues are contained in a disk of radius r centered at c = 1, correspond-

ing to selecting p(z) = (c−z)m
cm such that ε(m) ≤ rm/cm = rm ≤ ‖A − I‖m.

Since preconditioned GMRES with preconditioner Ã−1 is essentially equivalent
to GMRES applied to the matrix Ã−1A, a bound on ‖Ã−1A − I‖ provides a
characterization of the convergence factor of preconditioned GMRES. Because
of the vectorization included in our setting, bounding ‖Ã−1A− I‖ corresponds
to giving an estimate for the quantity

‖L̃−1c (Lc(X))−X‖F
‖X‖F

.

Our preconditioner is constructed by setting A1 = 0. Therefore, we expect that
the preconditioner works well if ‖A1‖ is small. This reasoning is formalized in
the following result.

Theorem 7 (Quality of preconditioner). Suppose the system (1) is exponen-
tially stable and suppose that A0 has no Hamiltonian eigenpairing. Let Lc and
L̃c be defined by (10) and (13) respectively. Then,

(15)
‖L̃−1c (Lc(X))−X‖F

‖X‖F
= O(‖A1‖2),

where the constant hidden in the O(·) notation depends only on ‖A0‖, τ and c.

Proof. We invoke Lemma 9 to bound the left-hand side of (15)

(16)

∥∥∥L̃−1c (Lc(X))−X
∥∥∥
F

‖X‖F
=

∥∥∥L̃−1c (
Lc(X)− L̃c(X)

)∥∥∥
F

‖X‖F
≤

K exp(τ‖A0‖/2)

∥∥∥Lc(X)− L̃c(X)
∥∥∥
F

‖X‖F
.

In order to bound Lc(X) − L̃c(X) we let Z1 and Z2 correspond to Lc(X),
i.e., they satisfy the equations (5) with initial value Z1(0) = Z2(0) = X. Let Z̃1

and Z̃2 be the corresponding quantities for L̃c(X). Moreover, let ∆2 := Z2−Z̃2.
We have

(17) L̃c(X)− Lc(X) =

∆2(τ/2)T (A0 − cI) + (AT0 + cI)∆2(τ/2) + Z1(τ/2)TA1 +AT1 Z1(τ/2),
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for which ∆2(τ/2) and Z1(τ/2) can be bounded as follows. Lemma 8 tells us
that

(18) ‖Z1(τ/2)‖F ≤ 2 exp(τ(‖A0‖2 + ‖A1‖2))‖X‖F .
By definition, ∆2 satisfies the ODE

(19) ∆′2(t) = −∆2(t)A0 + g(t), ∆2(0) = 0,

where g(t) := −Z1(t)TA1. The variation-of-constants formula applied to (19)
results in the explicit expression

∆2(t) = −
∫ t

0

Z1(s)TA1 exp((s− t)A0) ds.

Hence,

‖∆2(τ/2)‖F ≤
∫ τ/2

0

‖Z1(s)TA1 exp((s− τ/2)A0)‖F ds(20a)

≤
∫ τ/2

0

‖Z1(s)‖F ‖A1‖2‖exp((s− τ/2)A0)‖2 ds(20b)

≤ τ exp(τ(‖A0‖2 + ‖A1‖2))‖A1‖2 exp(τ‖A0‖2/2)‖X‖F .(20c)

We now evaluate the Frobenius norm of (17) and apply the triangle inequality
and the bounds (18) and (20), which shows that

(21)
‖L̃c(X)− Lc(X)‖F

‖X‖F
= O(‖A1‖2).

The hidden constant in (21) depends only on ‖A0‖2, c, and τ . The conclusion
(15) follows by combining (16) and (21).

4. Simulations

4.1. A small example

In order to illustrate the preconditioner and properties of our approach we
first consider a small example with randomly generated A0 matrix. We specify
the matrices for reproducibility

A0 =


−26 22 −1 −4

2 −24 −4 1
7 11 −24 −22
−13 15 −1 −9

 , A1 = α diag(−1,−0.5, 0, 0.5), W = I

and τ = 1. We carry out simulations for different α = ‖A1‖. The time-delay
system is stable for all α ∈ [0, 10]. The corresponding delay Lyapunov equation
satisfies

U(τ/2) ≈ 1

100
·


0.2302 −0.0156 0.0101 −0.3729
−0.0885 0.0044 −0.0038 0.1380
0.1466 −0.0057 0.0056 −0.2263
−0.5485 0.0331 −0.0238 0.8755


9



for α = 1.
We combine our approach with two different generic iterative methods for

linear systems of equations, GMRES [25] and BiCGStab [26] and select c = 1.
To illustrate the properties of the performance of the iterative method, we solve
the ODE defining Lc to full precision with the matrix exponential. The absolute
error as a function of iteration is given in Figure 2. Both methods successfully
solve the problem before the break-down at iteration n2 except for ‖A1‖ = 10.
No substantial difference between the two iterative methods can be observed
in the error as a function of iteration, i.e., nothing can be concluded regarding
which of the two variants is better for this problem. The convergence of the two
methods is faster for small ‖A1‖. This is due to the fact that the preconditioner
is more effective when ‖A1‖ is small, which is consistent with Theorem 7 and
Figure 3, where we clearly see that the norm of the preconditioned system X 7→
L̃−1c (Lc(X)) has a linear dependence on ‖A1‖. The same conclusion is supported
by the localization of the eigenvalues of the linear map X 7→ L̃−1c (Lc(X)) in
Figure 3b.
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Figure 2: Convergence for different preconditioned iterative methods applied to the small
example in Section 4.1

4.2. A large-scale example

In relation to other methods for delay Lyapunov equations, our iterative ap-
proach is likely to have better relative performance for large problems. We illus-
trate this with the following time-delay system stemming from the discretization
of a partial differential equation with delay1. More precisely, we consider on the

1The MATLAB-code for the example and the simulation is publicly available on http:

//www.math.kth.se/~eliasj/src/dlyap_precond
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Figure 3: Illustration of the quality of the preconditioner.

domain (x, y) ∈ [0, 1]× [0, 1] the PDDE

v̈(x, y, t) = ∆v(x, y, t) + v̇(x, y, t) + f(x, z)
∂v

∂x
(x, y, t− τ) + u(t)(22a)

w(t) = v(1/2, 1/2)(22b)

where f(x, y) = f0 cos(xy) sin(πx) with homogeneous Dirichlet boundary condi-
tions, and f0 = 5. The PDDE (22) can be interpreted as waves propagating on
a square, with damping and delayed feedback control. PDDEs are for instance
studied in [31]. In order to reach a problem of the form (1) we rephrase (22) as a
system of PDDEs which is first-order in time. We carry out a semi-discretization
with finite differences in space with nx+1 intervals in the x-direction and ny+1
intervals in the y-direction, i.e., hx = 1/(nx + 1), xk = khx, k = 1, . . . , nx and
hy = 1/(ny + 1), yk = khy, k = 1, . . . , ny. The corresponding discretized
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time-delay system is of the form (1) with coefficient matrices given by

A0 =

[
0 I

I ⊗Dxx +Dyy ⊗ I −I

]
(23a)

A1 =

[
0 0

diag(F )(I ⊗Dx) 0

]
(23b)

B0 =
[
1 · · · 1 0 · · · 0

]T
(23c)

C0 =
[
eT(ny+1)/2 ⊗ eT(nx+1)/2 0 · · · 0

]
(23d)

where

Dxx =
1

h2x


−2 1

1
. . .

. . .
. . .

. . . 1
1 −2

 ∈ Rnx×nx , Dyy =
1

h2y


−2 1

1
. . .

. . .
. . .

. . . 1
1 −2

 ∈ Rny×ny ,

Dx =
1

2hx


0 1

−1
. . .

. . .
. . .

. . . 1
−1 0

 ∈ Rnx×nx , F = vec([f(xi, yj)]
nx,ny

i,j=1 ).

In the setting of H2-norm computation (as in [13]) we need to solve the delay
Lyapunov equation with W = CT0 C0.

We carried out simulations of this system using a computer with an Intel i7
quad-core processor with 2.1GHz and 16 GB of RAM. For the finest discretiza-
tion that we could treat with our approach, we have nx = ny = 23, n = 1058,
‖A0‖2 ≈ 5000 and ‖A1‖ ≈ 100. We again select c = 1.

In order to solve the ODE (5) we used a fixed fourth order Runge-Kutta
method with N = 500 grid points. The iteration history of the two variants
is visualized in Figure 4 for n = 1058. We observe linear convergence and no
substantial difference in convergence rate. The execution time of our approach,
in relation to some other approaches in the literature are reported in Table 1.
We observe better relative computation time for larger problems. Moreover, we
observe that other approaches fail due to requirement on memory resources.

Note also in Table 1 that the number of iterations required to reach a
specified tolerance appears not to grow substantially with the size of problem.
Hence, the method appears to have essentially grid-independent convergence
rate, which is considered a very important feature of a preconditioner.

In a detailed profiling of our approach, we identify that two components are
dominating, solving the ODE, i.e., computing the action, and solving the T-
Sylvester equation. For the finest discretization, solving one T-Sylvester equa-
tion took approximately 320 seconds and carrying out one step of the ODE
required 30 seconds. Since the main computational effort lies on the solution of
the T-Sylvester equation and not in the computation of the action of Lc, it is
for this problem no advantage to use adaptivity (as discussed in Section 3.1). In
fact, the number of iterations can even increase when inexact Krylov methods
are used.

12



We note that the implementation that we have used to solve T-Sylvester
equations is not particularly optimized; it is a vectorized version of the algorithm
in [27] that we have implemented in MATLAB for use in these experiments. The
complexity in flops of the required computations is only slightly larger than what
is required for solving a standard Sylvester equation with the Bartels-Stewart
algorithm, a task which requires less than 8 seconds on our machine. Hence, we
expect a major reduction in the timings if a carefully optimized solver for the
T-Sylvester is used instead.

To our knowledge, the largest delay Lyapunov equation previously solved is
with n = 110 in [14].
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Figure 4: Convergence of the iterative methods with T -Sylvester preconditioning corre-
sponding to the time-delay system stemming from the discretization of the PDDE (22) with
n = 2nxny = 1058 for the example in Section 4.2.

Matrix exp. [10] Discr. first Proposed method
Wall time Wall time Wall time iterations

n = 28 0.5 s 0.06 s 3.9 s 19
n = 50 296.4 s 0.6 s 12.2 s 21
n = 242 MEMERR 30.9 s 232.8 s 25
n = 722 MEMERR MEMERR 4629.3 s 27
n = 1058 MEMERR MEMERR 3.1 hours 27

Table 1: Performance in relation to other methods. MEMERR represents runs which could
not solve the problem to reasonable accuracy. Our approach was run with GMRES, RK4 (with
N = 500) and termination tolerance 10−12. Discr. first represents the approach discussed in
[16] and used in [14] with N = 10 grid points, which resulted in a solution of accuracy in U(0)
in general larger than 10−7.
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5. Concluding remarks and outlook

We have in this paper proposed a procedure to solve delay Lyapunov equa-
tions based on iterative methods for linear systems combined with a direct
method for T-Sylvester equations. Although the method performs well in prac-
tice, there appears to be possibilities to improve it further, which we consider
beyond the scope of the paper.

As observed in the simulations, the dominating ingredient of the approach
is the solution to the T-Sylvester equation. Hence, in order to solve even larger
problems we need new methods for T -Sylvester equations. Improvements are
possible, e.g., by lower level implementations, or by developing methods which
can take the sparsity of the matrices into account, e.g., similar to the Krylov
methods and rational Krylov methods for Lyapunov equations [20] or approaches
based on Riemannian optimization [32].

The preconditioner in general plays an important role in iterative methods
for linear systems and the effectiveness of the preconditioner is typically very
problem-dependent. This is also the case in our approach. Although the sim-
ulations often worked well, during some experiments, in particular situations
where A0 have some eigenvalues which are very negative, the preconditioner did
not appear very effective, even if ‖A1‖ was quite small. This can be due to the
fact that the hidden constant in the expression (15) may be large.

Since the action of Lc is based on solving an initial value problem, there
are very natural options to carry out action of Lc in an inexact way, with
a predefined tolerance, thereby saving computation cost. There exists theory
for inexact Krylov methods, in e.g., [28], which could be applied in such an
approach. However, in our setting, where computing the action of the precon-
ditioner is a dominating cost, an approach with inexact matrix vector product
would require more iterations, i.e., more preconditioned actions, and does not
appear advantageous in this setting.

The delay Lyapunov equation has been generalized in several ways, e.g., to
multiple delays and neutral systems. Our approach might be generalizable to
some of these cases. The simplest situations appears to be if the delays are
integer multiplies of each other, also known as commensurate delays. For the
commensurate case there are procedures which resemble our reformulation (5)
with Sylvester resultant matrices [10, Problem 6.72]. However, this increases
the size of the problem. An attractive feature of our approach is that we work
only with matrices of size n, which would not be the case in the direct adaption
to multiple commensurate delays using [10, Problem 6.72].
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Appendix A. Technical bounds

The following results are needed in the proof of Theorem 7.

Lemma 8. Suppose Z1 and Z2 satisfy (5) with initial condition Z1(0) = Z2(0) =
X. For i = 1, 2,

‖Zi(t)‖F ≤ 2 exp(2t(‖A0‖+ ‖A1‖))‖X‖F .

Proof. We rely on the vectorized form (6) of the ODE defining Zi(t); we have

‖Zi(t)‖F ≤
∥∥∥∥[vecZ1(t)

vecZ2(t)T

]∥∥∥∥ ≤ ‖exp(tA)‖
∥∥∥∥[vecX

vecXT

]∥∥∥∥ ≤ 2 exp(t‖A‖)‖X‖F .

To complete the proof, we have to estimate the norm of the matrix A in (7):
we have

‖A‖ ≤ ‖AT0 ⊗ In‖+ ‖AT1 ⊗ In‖+ ‖In ⊗AT1 ‖+ ‖In ⊗AT0 ‖ =

2(‖A0‖+ ‖A1‖),

where we have used the fact that ‖M ⊗N‖ = ‖M‖‖N‖.

Lemma 9. Suppose that A0 has no Hamiltonian eigenpairing. Then, there
exists a constant K depending only on A0 and c such that

‖L̃−1c (Z)‖F ≤ K exp(τ‖A0‖/2)‖Z‖F .
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Proof. Under the stated hypotheses, T is invertible. Let K be the operator
norm of T−1, i.e., the smallest constant such that ‖T−1(Z)‖F ≤ K‖Z‖F . Then

(A.1) ‖L̃−1c (Z)‖F = ‖T−1(Z) exp(τA0/2)‖F ≤
‖T−1(Z)‖F ‖ exp(τA0/2)‖ ≤ K‖Z‖F exp(τ‖A0‖/2),

where we have used the mixed matrix norm inequality ‖MN‖F ≤ ‖M‖F ‖N‖
[33, Page 50-5, Fact 10].
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