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A Subspace Shift Technique for
Nonsymmetric Algebraic Riccati Equations

Bruno Iannazzo∗ Federico Poloni†

December 7, 2011

The worst situation in computing the minimal nonnegative solution of a
nonsymmetric algebraic Riccati equation associated with an M-matrix occurs
when the corresponding linearizing matrix has two very small eigenvalues,
one with positive and one with negative real part. When both these eigen-
values are exactly zero, the problem is called critical or null recurrent. While
in this case the problem is ill-conditioned and the convergence of the algo-
rithms based on matrix iterations is slow, there exist some techniques to
remove the singularity and transform the problem to a well-behaved one. Ill-
conditioning and slow convergence appear also in close-to-critical problems,
but when none of the eigenvalues is exactly zero the techniques used for the
critical case cannot be applied.

In this paper, we introduce a new method to accelerate the convergence
properties of the iterations also in close-to-critical cases, by working on the
invariant subspace associated with the problematic eigenvalues as a whole.
We present a theoretical analysis and several numerical experiments which
confirm the efficiency of the new method.

1 Introduction

We consider the nonsymmetric algebraic Riccati equation (or NARE)

XCX −AX −XD +B = 0, (1)

where X,B ∈ Cm×n, A ∈ Cm×m, C ∈ Cn×m, D ∈ Cn×n. We write equation (1) briefly
as R(X) = 0 where R(X) = XCX −AX −XD +B.
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In certain applications in queueing models [20] and in the numerical solution of trans-
port equations [18], the coefficients of (1) are such that

M =

[
D −C
−B A

]

is an M-matrix, either nonsingular or singular irreducible. In this case, we give Equation
(1) the acronym M-NARE. We recall that M ∈ Cn×n is an M-matrix if it can be written
in the form M = sIn −N , where In is the identity matrix of size n (denoted also by I if
there is no ambiguity), N is a matrix whose elements are nonnegative, for which we use
the notation N > 0, and s > ρ(N), where ρ(·) is the spectral radius of a square matrix.
The M-matrix M is singular if s = ρ(N) and nonsingular if s > ρ(N). It can be proved
that the eigenvalues of an M-matrix have nonnegative real part [1].

The solutions of the NARE (1) can be put in correspondence with certain n-dimensional
invariant subspaces of the matrix

H =

[
D −C
B −A

]
. (2)

More precisely, a matrix X ∈ Cm×n is a solution of (1) if and only if the columns of[
In
X

]
span an invariant subspace of H. In particular, it holds that

H

[
In
X

]
=

[
In
X

]
(D − CX), (3)

and the eigenvalues of D − CX are a subset of the eigenvalues of H.
We say that the NARE (1) is associated with the matrix H of (2) or that H is the

linearizingmatrix of the NARE. Observe that any 2×2 block matrix with square diagonal
blocks yields a NARE associated with it.

In the case of an M-NARE it can be proved that the eigenvalues of H can be ordered
by non increasing real part such that

ℜλ1 > · · · > ℜλn−1 > λn > 0 > λn+1 > · · · > ℜλm+n, (4)

that is, n eigenvalues belong to the closed right half complex plane and the other eigen-
values to the closed left half plane, and the eigenvalues λn and λn+1 are real. If moreover
M is irreducible, then ℜλn−1 > λn > 0 > λn+1 > ℜλn+2. If λn = 0 = λn+1, then the
eigenvalue zero is associated to a size-2 Jordan block (see [4] and the references therein).

All these spectral properties implies that the matrix H associated with an M-NARE
has a unique n-dimensional invariant subspace corresponding to the n rightmost eigen-
values, namely λ1, . . . , λn, which we call the n-dimensional antistable invariant subspace
of H (the term comes from the theory of the symmetric algebraic Riccati equations in
dynamical systems [19]). On the other hand, the matrix H has a unique m-dimensional
invariant subspace corresponding to the m leftmost eigenvalues, namely λn+1, . . . , λn+m,
which we call stable invariant subspace.
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In the applications, the required solution of the M-NARE is the one for which the

columns of

[
In
X

]
span the n-dimensional antistable invariant subspace of H, or, equiv-

alently, such that the eigenvalues of D − CX are the n rightmost eigenvalues of H.
This solution has been proved to exist and it turns out to be the minimal element-wise
nonnegative solution of (1) (see [10]).

Equation (1) is usually solved either by some matrix iteration, e.g., the Cyclic Reduc-
tion (CR) [2] or the Structured Doubling Algorithm (SDA) [8, 13], whose limits yield
the required solution or using the ordered Schur form of H [11].

Both the conditioning of the equation and the convergence speed of most iterations are
strictly related to some property of good separation between the stable and anti-stable
subspace; for this purpose, several different measures of “nearness” are used in literature;
in Section 2 we introduce and discuss them. Nevertheless, all approaches identify two
important cases:

1. λn = λn+1 = 0; in this case, the minimal nonnegative solution of (1) is ill-
conditioned [12] and the convergence of most iterations degrades from quadratic
to linear [7]. This case is known as critical case. Most of this problems can be
circumvented by using the so-called shift technique [13, 17]. It consists in making a
special rank-one correction of H, obtaining a new Riccati equation with the same
minimal solution. The new equation has better conditioning and the convergence
of iterations is quadratic again. The shift technique works not only in the critical
case, but also when only one of λn and λn+1 is zero, yielding minor benefits in this
case.

2. equations that are (in some sense) “close” to having λn = λn+1 = 0, while neither
of the two eigenvalues is exactly zero. This case is known as close to critical. It
is effectively the worst-case scenario, since the same difficulties as in the critical
case appear (ill-conditioning, slow convergence of the numerical methods based
on matrix iterations), but the shift technique cannot be applied as it requires an
eigenvalue to be exactly zero.

The difficulties in the latter case are the main motivation for this work. We present a new
technique, which we call subspace shift, that aims to extend the shift technique to this
case. A necessary assumption is that we can identify a small subset of the eigenvalues
which are “responsible” for the ill-conditioning of the equation and well separated from
the rest of the spectrum; we define this property more precisely in the following. We
call the associated subspace central subspace. The dimension k of this subspace may be
known a priori from the theoretical properties of the problem (as for instance in [18]),
or determined at run-time, which is a more difficult task.

The technique consists in building a rank-k modification of the matrix that alters
the eigenvalues associated with the central subspace, but does not modify the invariant
subspaces and the minimal solution. In this way, we reduce the problem to a “far from
critical” one, for which the solution can be computed with a faster and stabler iterative
method.
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The paper is organized as follows. In Section 2, we describe and compare the different
notions of distance from criticality which exist in literature and how they affect the
conditioning of the problem and the convergence speed of the numerical algorithms.
In Section 3 we introduce the subspace shift technique and outline some results that
give an insight of its behavior in terms of the different criticality metrics. In Section 4
we describe its implementation in more detail and discuss the computational aspects.
Section 5 contains some experimental results that show the effectiveness of this technique.
Finally, Section 6 draws the conclusions.

In the following, σ(M) stands for the set of the eigenvalues of M ∈ Cn×n, and ‖·‖F
denotes the Frobenius norm. We define the Cayley transform of parameter γ ∈ R \ {0}
as the map

Cγ : z 7→
z − γ

z + γ
.

Notice that, for γ > 0, Cγ maps the open (closed) right half-plane onto the open (closed)
unit circle, and the open (closed) left half-plane onto the exterior of the open (closed)
unit circle.

2 Measures of criticality: gap and sep

2.1 The gap between eigenvalues

The simplest measure of criticality, adopted in most works on the shift [17, 13] is the
so-called gap, i.e., the distance between the two eigenvalues closer to the imaginary
axis gap(H) := |λn − λn+1| . In the critical case gap(H) = 0, and a problem is called
close-to-critical when gap(H) is small with respect to ‖H‖. A strictly related quantity,
which appears explicitly in the expressions for the convergence speeds of SDA and Cyclic
Reduction [4], is its Cayley-transformed version

gapCγ (H) :=
maxi=1,...,n |Cγ(λi)|

minj=1,...,m |Cγ(λn+j)|
, (5)

where γ is chosen according to

γ > γ∗ = max

{
max
16i6m

aii, max
16i6n

dii

}
. (6)

We have gapCγ (H) 6 1, with equality in the critical case. Since the Cayley transform
alters the position of the eigenvalues, it is not apparent that the minimum and maximum
in (5) are attained in λn and λn+1; we give here a proof of this result. Let us first assess
the following technical lemma.

Lemma 1 Let Γ be a closed disc in the complex plane with center C ∈ R and radius r.
The point in Γ with maximal modulus is one among C + r and C − r.

Proof. Let C+p ∈ C, |p| 6 r, be a generic point in the disc. By the triangle inequality,
|C + p| 6 |C| + |p| 6 |C| + r, with equality if and only if |p| = r and p has the same
argument as C, i.e., either real positive or negative. �
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Theorem 2 Let H be associated with an M-NARE, and γ be chosen according to (6).
The minimum and the maximum in (5) are attained by i = n and j = 1, i.e., we may
replace (5) with

gapCγ (H) :=
|Cγ(λn)|

|Cγ(λn+1)|
.

Proof. From (6) we have γI −D > 0 and thus P = γI −D+CX∗ > 0. Hence we may
write D − CX∗ = γI − P ; from the Perron–Frobenius theory of M-matrices, it follows
that all the eigenvalues of D − CX∗ are contained in the closed disc with center γ and
radius r = γ−λn; and in particular, the eigenvalue λn lies on its boundary. We call this
disc Γ, and proceed to prove that Cγ(λn) has the maximal modulus among all points in
in Cγ(Γ). The image of Γ under the Cayley transform is a closed disc Γ′, which must be
contained in the unit disc and symmetric with respect to the real axis. This means that
its center (which is not in general Cγ(γ)) is real. This disc Γ′ intersects the real axis in
the two points Cγ(λn) and Cγ(2γ − λn). By the lemma, the point of maximal modulus
in Γ′ is one among them; direct computation (using λn 6 γ) shows that it is the former.

A similar reasoning starting fromA−X∗C yields that minj=1,...,m |Cγ(λn+j)| is achieved
by j = 1; we need some extra care with the signs, as λn+1 6 0, and with the fact that
this time the image of the enclosing disc under the Cayley transform is the outside of a
suitable disc. �

Therefore an explicit relation among the two concepts of gap can be established.
Observe that while the gap changes by scaling the matrix H by a real parameter α 6= 0,
the Cayley-transformed gap of αH is the same as the one of H, if the same value of γ
is chosen according to (6). Thus, the Cayley transformed gap can be seen as a relative
inverse gap.

2.2 The subspace separation

A third, more accurate notion of nearness is given by the subspace separation [9, 21].
We first define the separation between the two square matrices M and N as

sep(M,N) := min
X 6=0

‖MX −XN‖

‖X‖
, (7)

where ‖·‖ is a suitable matrix norm (for instance we denote by sepF and sep2 the
separation in the Frobenius and spectral norm, respectively), and recall the bound

sep(M,N) 6 min
µ∈σ(M),ν∈σ(N)

|µ− ν| . (8)

Given an invariant subspace W for a matrix A ∈ C(n+m)×(n+m), let Q be an unitary
matrix such that

Q∗AQ =

[
A11 A12

0 A22

]
, A11 ∈C

n×n, A22 ∈C
m×m, (9)
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and the first n columns ofQ spanW. We define sep(W) := sep(A11, A22) and relsep(W) :=
sep(W)
‖A‖ .

When A = H and W is the anti-stable space, relsep(W) gives a third measure of the
distance of H from the critical case. The conditioning of the Riccati equation depends
essentially on this separation measure, as shown by the following results. Let the distance
between two subspaces be defined as dist(U ,V) := ‖PU − PV‖, with PW the orthogonal
projection on the image of W.

Theorem 3 ([21]) Let W be an invariant subspace of a matrix H and W̃ be an invari-
ant subspace of H̃ = H + E, where ‖E‖ 6 ε ‖H‖. Then, for all sufficiently small ε we
have

dist(W, W̃) 6 C
ε

relsepW
, (10)

for a suitable constant C of moderate size.

The result is stated in a stronger form in [21], using the norms of E12 and H12 in two
suitable block partitions of the involved matrices, but here we favor this form for the
sake of simplicity.

A bound on the subspace distance can be transformed into a bound on the solutions
of the associated Riccati equations.

Lemma 4 Let W = span

[
In
X

]
, W̃ = span

[
In
X̃

]
. Then, for both spectral and Frobenius

norm, we have
∥∥∥X − X̃

∥∥∥ 6

(
‖In‖

2 + ‖X‖2
)1/2

(
‖In‖

2 +
∥∥∥X̃

∥∥∥
2
)1/2

dist(W, W̃).

Proof. We use the characterization of dist given in [9, Theorem 2.6.1]; the proof there
refers to the spectral norm, but it can be adapted to the Frobenius norm. We apply the
result to the orthonormal matrices

W2 =

[
−X∗

I

]
(I +XX∗)−1/2, Z1 =

[
I

X̃

]
(I + X̃∗X̃)−1/2,

then use norm submultiplicativity

∥∥∥X − X̃
∥∥∥6

∥∥∥(I +X∗X)1/2
∥∥∥
∥∥∥∥(I +X∗X)−1/2[−X I]

[
I

X̃

]
(I + X̃∗X̃)−1/2

∥∥∥∥
∥∥∥(I + X̃∗X̃)1/2

∥∥∥ .

Finally, the terms
∥∥(I +X∗X)−1/2

∥∥ and
∥∥∥(I + X̃∗X̃)−1/2

∥∥∥ can be transformed into the

desired form by taking an SVD of X and X̃ , respectively. �

A tighter bound, which still behaves essentially as O((relsepW)−1), can be found in
[15].
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2.3 Relations between gap and sep

If the Frobenius norm is used, the gap(H) and the sep(W) are the smallest eigenvalue
and the smallest singular value of the matrix (I ⊗A11 −AT

22 ⊗ I), respectively (compare
(7) and (9)). It is well known that the two numbers coincide for normal matrices [21,
Exercise 5.2.1], but may differ significantly in the nonnormal case [21, Example 5.2.4].
The same happens for any norm, and in view of (8) we obtain that sep(W) 6 gap(H).

For nonnormal matrices the subspace separation is a better tool to gauge the distance
from criticality, especially when conditioning properties are in exam. However, as far as
we know, all the literature regarding shift methods deals only with the gap as a measure
of criticality. The geometrical intuition is clearer in the gap setting and the proofs are
easier to carry on. On the other hand, the whole point of shifting strategies is getting
rid of the two real eigenvalues λn and λn+1 close to the origin, and it is less clear how
we should define the gap in when the two eigenvalues have been moved. In view of (8),
we extend the definition of gap in the following way. Let W be an invariant subspace of
a matrix A, and A11, A22 as in (9). We set

gap(W) := min
λ∈σ(A11),µ∈σ(A22)

|λ− µ| .

Similarly, we define the gap between two invariant subspaces of A as

gap(U ,V) := min
λ associated to U , µ associated to V

|λ− µ| .

In the following, we define our subspace shift technique in terms of the gap metric,
because only by resorting to eigenvalue location criteria we can select suitable subspaces
for its application. When discussing conditioning, moving to the sep setting (and having
good separation properties in this setting) is necessary. However, as far as we know,
even a complete theory of the basic shift technique in terms of sep does not exist at
present; the intuitive assertion that “things get better when we move the eigenvalues
more far apart” is difficult to formalize in terms of the sep metric. We are not able to
give full proof for many of the conditioning-related assertions, but we provide at least
partial ones that show our claims when the separation bounds behave as suggested by
the gap metric analogy. This in particular includes the case in which H is normal or
departs only slightly from normality.

3 Theoretical bases

3.1 The shift technique

The shift technique has been applied in [13] to the M-NARE (1) where M is a singular
irreducible M-matrix, that is, when at least one between λn and λn+1 is 0. Without loss
of generality one can assume that λn = 0: the case λn > 0 = λn+1 can be reduced to
the case λn = 0 by a simple trick [13, Lemma 5.1].

The shift technique is rooted in the following results.
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Lemma 5 (Brauer’s theorem [6]) Let (λ, v) be an eigenpair for the matrix T . Let u
be a vector with u∗v = 1 and s be a scalar. The eigenvalues of the matrix T̂ := T + svu∗

are the same as those of T , except for one occurrence of λ which is replaced by λ+ s.

Theorem 6 ([13]) Let H be the as in (2) associated with the M-NARE (1) with λn = 0,
and let vn be an eigenvector relative to λn; consider the matrix

Ĥ := H + svnu
∗,

with u∗vn = 1 and s > 0. Then, the minimal solution X∗ of the M-NARE associated
with H is a solution of the NARE associated with Ĥ. Moreover, m eigenvalues of Ĥ
lie in the closed left half plane and n in the open right half plane, whose corresponding

invariant subspace is spanned by the the columns of

[
I
X∗

]
.

The shift technique consists in computing one eigenvector vn corresponding to the eigen-
value λn = 0, and using it to construct the NARE associated with Ĥ, which we call the
shifted NARE. The matrix Ĥ has eigenvalues λ1, . . . , λn−1, λ̂n, λn+1, . . . , λn+m where
λ̂n = s (the eigenvalue λn has been “shifted” from 0 to s, this justifies the name of
the technique). Observe that gap(Ĥ) > gap(H); thus, better conditioning and faster
convergence are expected, once the Cayley parameter γ is fixed. It has been proved in
[13] that SDA applied to the shifted equation, using the same Cayley parameter as the
nonshifted case, but with the initial values as in (14), constructed from Ĥ, converges
quadratically with a better rate of convergence than the nonshifted case. Numerical
experiments [13, 3] show that this technique reduces dramatically the number of steps
of iterations like SDA and CR. In the critical case, the convergence from linear becomes
quadratic.

It can happen that the Riccati equation associated with Ĥ is not an M-NARE; that
is, M̂ =

[
I 0
0 −I

]
Ĥ need not be an M-matrix. Hence, there is no guarantee that the SDA

can be carried out without breakdown, even if in practice this method works well and
the applicability of SDA is usually assumed [13].

Since λn = 0, the vector vn can be computed easily as kerM. In principle, the shift
technique could be used also for nonsingular M-matrices, i.e., the hypothesis λn = 0 is
not actually needed in Theorem 6. In this case there is no simple relation among the
eigenvectors of M and H, and different techniques are needed for the computation of
λn and vn; for instance, the power method. However, in the close-to-critical case the
eigenvector vn is ill-conditioned and therefore it cannot be computed with good accuracy.

To solve this problem, we present in Section 3.3 a new technique which shifts a whole
invariant subspace containing λn and λn+1, without attempting to separate the eigen-
vectors. To this purpose we use an invariant subspace whose associated eigenvalues are
well separated from the rest of the spectrum.

3.2 Results on separation

We first provide a couple of simple lemmas that will be used in the following.
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Lemma 7 Let the spectrum of M ∈ Cn×n be the union of two disjoint sets, say Λ1

and Λ2. Let the columns of U and V (with full column rank) span the left and right
invariant subspaces of M corresponding to the eigenvalues in Λ1, respectively. Then
U∗V is nonsingular.

Moreover, let the columns of W (with full column rank) span a right invariant subspace
of M whose corresponding eigenvalues belong all to Λ2, then U∗W = 0.

Proof. Let L−1ML = J be the Jordan canonical form of M where the Jordan blocks
are ordered such that the k eigenvalues in Λ1 come first, then, a basis of the right
invariant subspace of M corresponding to Λ1 is made by the first k columns of L, say
L1. Thus V = L1P for some nonsingular P ∈ Ck×k. Similarly, U∗ = QR∗

1 where R∗
1

are the first k rows of L−1 and Q ∈ Ck×k is nonsingular, thus U∗V = QR∗
1L1P = QP

is nonsingular. By a similar argument, it can be proved that left and right invariant
subspaces corresponding to different eigenvalues are orthogonal. �

Lemma 8 Let

A =

[
A11 A12

0 A22

]
,

where σ(A11) ∩ σ(A22) = ∅.

1. There is a matrix

Ze =

[
I Z
0 I

]

with ‖Z‖ 6
‖A12‖

sep(A11,A22)
such that ZeAZ

−1
e = diag(A11, A22)

2. For each B, sep(A11, B) > sep(A,B) and sep(A22, B) > sep(A,B).

3. sep(M,N) 6 sep(T1MT−1
1 , T2NT−1

2 )κ(T1)κ(T2).

4. If M = diag(M1,M2) and N = diag(N1, N2), then sep(M,N) = mini,j=1,2 sep(Mi, Nj).

Items 1, 3 and 4 are in [21]. Item 2 follows from the definition of sep, by noting that the
minimum of AX −XB increases if we restrict to matrices X, partitioned conformably
with A as X =

[
X1 X2

]∗
, where one of the two blocks is zero.

3.3 The subspace shift technique

Let V and V̄ be two complementary invariant subspaces of H satisfying the following
conditions:

1. V has small dimension k.

2. V is well separated from V̄, i.e., gap(V, V̄) > δ1, for a δ1 > 0 not excessively small.

3. V̄ does not contain eigenvalues close to the imaginary axis, i.e., gap(V̄s, V̄u) > δ2,
for a δ2 > 0 not excessively small, where V̄s and V̄u are the invariant subspaces
associated with the stable and anti-stable part of V̄.

9



Let V,U ∈ C(n+m)×k be matrices whose orthonormal columns span respectively V and
the left invariant subspace U associated with the same eigenvalues as V. Notice that
U is well defined, since the subset of σ(H) associated to V and V̄ are disjoint because
gap(V, V̄) > 0. By Lemma 7, U∗V is nonsingular.

We consider the matrix

Ĥ = H(I + sV (U∗V )−1U∗), (11)

which is a rank k modification of H. Its spectral properties are summarized by the
following result.

Theorem 9 Let the spectrum of H ∈ C(n+m)×(n+m) be the union of two disjoint sets,
say Λ1 = {ξ1, . . . , ξk} and Λ2 = {ξk+1, . . . , ξn+m}. Let V,U ∈ C(n+m)×k be matrices
whose orthonormal columns span the right and left invariant subspaces associated with
the eigenvalues of Λ1, respectively. The matrix Ĥ in (11) has the same right invariant
subspaces as H and eigenvalues {(1 + s)ξ1, . . . , (1 + s)ξk, ξk+1, . . . , ξn+m}.

Proof. As above, let V be the right invariant subspace of H corresponding to the
eigenvalues in Λ1 and let V̄ be the right invariant subspace complementary to V, corre-
sponding to the remaining eigenvalues {ξk+1, . . . , ξm+n}. Let W1 ⊂ V be a right invariant
subspace of H spanned by the column of the matrix W1 ∈ C(n+m)×ℓ1 , then W1 = V Q
for some matrix Q ∈ Ck×ℓ1, thus

ĤW1 = H(W1 + sV (U∗V )−1U∗V Q) = H(W1 + sV Q) = HW1(1 + s),

and thus {(1 + s)ξ1, . . . , (1 + s)ξk} are eigenvalues of Ĥ.
Let W2 ⊂ V̄ be a right invariant subspace of H spanned by the column of the matrix

W2 ∈ C(n+m)×ℓ2 , then by Lemma 7 we have U∗W2 = 0 and hence ĤW2 = HW2. Thus,
{ξk+1, . . . , ξm+n} are eigenvalues of Ĥ. Since any right invariant subspace of H can be
written as the sum of two invariant subspaces contained in V and V̄, respectively, the
proof is completed. �

Theorem 9 can be applied to the linearizing matrix H of a close-to-critical M-NARE
(1), where V is chosen to be a subspace containing both λn and λn+1. Then the anti-
stable invariant subspace W and thus the Riccati solution X∗ of the NARE associated
to Ĥ are the same as the ones for (1).

From the point of view of the eigenvalue location and of the gap metric, the behavior of
the subspace shift technique is clear: the eigenvalues closer to the imaginary axis, which
are responsible for the slow convergence and ill-conditioning, are multiplied by a factor
1+s, which takes them farther from the imaginary axis and thus improve the gap. If the
factor 1+s is not too large then the Cayley gap is reduced and the numerical algorithms
based on matrix iterations converge faster. In order to give a complete treatment of the
stability properties of the technique, we have to resort to the separation metric.
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3.4 Conditioning of U∗
V

For the subspace shift technique, we need to form (U∗V )−1; therefore, it is crucial that
the condition of this matrix is not worse than the conditioning of the problem we are
solving. Similarly to what happens in the original problem, we can relate its conditioning
to the separation between V and V̄.

Theorem 10 Let U and V be orthonormal bases for U and V as defined above. Then,
we have ∥∥(U∗V )−1

∥∥ 6 C relsep(V)−1 +D

for moderate constants C,D > 0.

Proof. Perform an orthonormal change of basis so that V =

[
I
0

]
and partition

H =

[
A11 A12

0 A22

]
.

Let Z as in item 1 of Theorem 8; in particular we have ‖Z‖ 6 relsep(V)−1. Notice
that (I + ZZ∗)−1/2

[
I −Z

]
is another orthonormal basis of U , thus U∗ = Q(I +

ZZ∗)−1/2
[
I −Z

]
for a suitable unitary Q. We have then

∥∥(U∗V )−1
∥∥ =

∥∥∥(I + ZZ∗)1/2
∥∥∥ = (‖I‖2 + ‖Z‖2)1/2,

where the last equality can be established as in the proof of Lemma 4. �

3.5 Conditioning of the shifted problem

While not a formal proof, the following argument can be used to gauge the conditioning
of the shifted problem. Apply an orthogonal change of basis to bring H in the form




Va Ga ∗ ∗
V̄a ∗ ∗

Vs Gs

V̄s


 ,

where σ(Vs) and σ(Va) contain respectively the stable and antistable eigenvalues associ-
ated with V, and σ(V̄s), σ(V̄a) the stable and antistable eigenvalues associated with V̄.
We may find a matrix Ra such that

Ra

[
Va Ga

0 V̄a

]
R−1

a = diag(Va, V̄a),

and κ(Ra) = O
(

‖Ga‖
2

sep(Va,V̄a)2

)
. If gap(Va, V̄a) is a good approximation of the corresponding

sep, or if V and V̄ are well separated also in the sep sense, we expect this condition
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numbers to be moderate. We argue similarly for the blocks indexed by s, and construct
a matrix Rs which annihilates Gs. We let R := diag(Ra, Rs).

Using the special block structure of RHR−1, we may construct the matrices U and V
needed for the shift technique as

V =R−1




I ∗
0 ∗
0 I
0 0


 , U =R




I 0
0 0
∗ I
∗ 0


 ,

with U∗V = I. Therefore Ĥ takes the form

Ĥ = R−1




(s + 1)Va 0 ∗ ∗
0 V̄a ∗ ∗
0 0 (s+ 1)Vs 0
0 0 0 V̄s


R,

where the entries marked with an asterisk might be affine functions of s. Thanks to
Lemma 8, the separation of the anti-stable subspace in Ĥ is

ŝepW >
min

(
sep((s+ 1)Va, (s + 1)Vs), sep((s + 1)Va, V̄s), sep(V̄a, (s+ 1)Vs), sep(V̄a, V̄s)

)

κ(Ra)κ(Rs)
.

(12)
If s is moderate and good separation properties hold among V and V̄, and between the
stable and unstable part of V, then we may expect, in analogy with the gap setting,
that this minimum is attained by the first element, i.e., ŝepW > (s+1) 1

κ(Ra)κ(Rs)
sepW.

This means that, up to factors that depends on the separation of the central subspace
sepV, the conditioning of the shifted problem is improved by a factor s+ 1.

Unfortunately, a full proof of the fact that the minimum in (12) is attained by the
critical subspaces seems elusive. As far as we know, there are no results in literature
concerning the behavior of the separation when a scaling is applied to one of the two
matrices in a way that takes the eigenvalues “more far apart” (in some suitable setting).
The analogy with the gap setting and the experimental results in Section 5 seem to back
up our claim.

3.6 Stability under perturbations of the computed central subspace

With a similar reasoning, we may try to estimate the impact of errors in the computed
bases for the left and right central subspaces on the accuracy of the solution. We choose
a basis as in Theorem 10. If we use perturbed versions of U∗ and V as

V =

[
I + E1

E2

]
U∗ =

[
I + F1 −Z + F2

]
,

we obtain instead of Ĥ

H̃ =
[
(s+1)H11+s(E1H11+H11F1+E1H11F1) H12−sH11Z+s(−E1H11Z+H11F2+E1H11F2)

sE2H11(I+F1) H22+sE2H11(−Z+F2)

]
.

12



If ‖Ei‖ , ‖Fi‖ 6 ε, then
∥∥∥Ĥ − H̃

∥∥∥ = Ksε ‖Z‖ ‖H‖ for a moderate constant K. From the

reasoning in the previous section, we expect ̂relsepW
−1

6
κ(Ra)κ(Rs)

s+1 relsepW−1, thus

by (10) the computed subspace W̃ satisfies

dist(W, W̃) 6 C
Ksε ‖Z‖

̂relsepW
=

s

s+ 1

CKκ(Ra)κ(Rs) ‖Z‖ ε

relsepW
.

The factor s
s+1 is bounded by 1, and this bounds differs from the perturbation bound

(10) for the nonshifted problem only by factors depending on relsepV.

4 The SuShi (Subspace Shift) algorithm

We assume that the space V corresponding to the smallest in modulus eigenvalues of
H verifies the assumptions stated at the begin of Section 3.3. We call V the central
subspace of H.

In this case, the subspace shift technique of Section 3.3 can be easily translated into a
numerical algorithm for solving close-to-critical M-NARE (1). We call it SuShi (Subspace
Shift) algorithm.

Algorithm 1 SuShi algorithm for the solution of a close-to-critical M-NARE

1: choose k
2: compute two matrices U, V with orthogonal columns which span the left and right

invariant subspaces of H corresponding to its k smallest in modulus eigenvalues,
ξ1, . . . , ξk, respectively

3: choose s > 0 and compute Ĥ = H(I + sV (U∗V )−1U∗)
4: solve the NARE R̂(X) = 0 associated with Ĥ, to get the minimal nonnegative

solution X∗ of the original M-NARE R(X) = 0

Algorithm 1 is very simple. Nevertheless, in order to get a decent implementation, the
details need to be tackled with some care. One could ask how to dynamically determine
the value of k, how to compute U and V , how to determine the value of s and how to
efficiently solve the “shifted” NARE R̂(X) = 0. This is the topic of the next sections.

4.1 Computation of the central invariant subspaces

The central left and right invariant subspaces are the ones corresponding to the smallest
in modulus eigenvalues of H, then the inverse orthogonal iteration of [9, Section 9.3.2]
applied to H and H∗, respectively, converges to these subspaces. Notice that we assume
that H is nonsingular so that the customary shift technique cannot be used.

The luckiest situation arises when k = 2 and the eigenvalues λn and λn+1 of H are
the smallest in modulus and well separated from the others, as in the problem of [18].

In the general case, setting k = 2 may not yield the desired results since we could
have close-to-critical settings such that λn and λn−1 are very close to each other and
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to zero, and λn+1 slightly larger in modulus than both of them. Moreover, even if we
shift away λn and λn+1, the remaining eigenvalues of H (e.g., λn−1 in a setting similar
to the case above) could be very close to them, and thus the convergence speed of the
Riccati solvers based on matrix iterations is almost unchanged; therefore, the subspace
shift with k = 2 can still be applied but is not much useful.

For these reasons, we would like to handle cases where k may be larger than two,
this means that there is some eigenvalue different from λn and λn+1 near to the origin.
Our minimal assumption is that there exists a value of k > 2 such that the k smallest
eigenvalues of H are near to each other (close-to-critical case) and well separated from
the (2n− k) largest eigenvalues (compare the assumptions of Section 3.3).

If the value of k is not known in advance it can be determined using the following
strategy: start the inverse orthogonal iteration with k = 2, estimate its convergence
speed after some steps. If the iteration shows itself too slow, enlarge k until the conver-
gence becomes (possibly) fast. This approach yields together V and k. The matrix U
can be obtained applying a subspace iteration to H∗.

4.2 Magnitude of the shift parameter

Another issue which appears in the practical implementation is the selection of the shift
parameter s in Algorithm 1, which should be automatic to deal with different problems.

A major concern is that if the chosen value of s is too small, then the two central
eigenvalues do not move significantly and the gap remains small; on the other hand, if

the shift parameter is excessively large then
∥∥∥Ĥ

∥∥∥
F

grows, and the conditioning of the

shifted Riccati equation degrades, according to the results of 2.
Let ξ1, . . . , ξm+n be the eigenvalues of H ordered by nondecreasing modulus. When

the main objective is the acceleration of matrix iterations, like the SDA, the value of s
should be chosen such that the eigenvalues corresponding to the central subspaces, say
ξ1, . . . , ξk, which are responsible of the slow convergence, gets far from the imaginary
axis.

We need to estimate how small they are with respect to the other eigenvalues. We may
get an estimate using the convergence speed of the inverse orthogonal iteration. Notice
that, with our assumptions on the eigenvalues, the convergence rate is determined by

t =
|ξk|

|ξk+1|
,

hence a rough estimate for t is given by comparing successive iterates of the subspace
iteration. The value ξk (or ξ1), for small k, can be easily computed, since it is the
largest in modulus eigenvalue of the k × k matrix V ∗HV , an alternative approach is to
approximate it using power methods or some steps of the Arnoldi iteration.

Once an approximation of t has been computed, if we choose s such that (1 + s)ξ1 >
ξk+1, then all the eigenvalues (1 + s)ξ1, . . . (1 + s)ξk become larger in modulus than δ.
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4.3 Solution of the shifted equation

A popular algorithm for computing the minimal solution of an M-NARE is the Structured
Doubling Algorithm (SDA), which, in the formulation of [16], is a system of rational
matrix iterations defined as

Ek+1 =Ek(I −GkHk)
−1Ek,

Fk+1 =Fk(I −HkGk)
−1Fk,

Gk+1 =Gk + Ek(I −GkHk)
−1GkFk,

Hk+1 =Hk + Fk(I −HkGk)
−1HkEk,

(13)

with suitable initial values E0 ∈ Cn×n, F0 ∈ Cm×m, G0 ∈ Cn×m, H0 ∈ Cm×n. We
say that the SDA is applicable (for a set of initial values E0, F0, G0,H0) if the matrix
I − GkHk (or equivalently I − HkGk) is nonsingular for each k otherwise we say that
the SDA has a breakdown.

In the case of the M-NARE, choosing the initial values of the SDA as

E0 =I − 2γV −1
γ , F0 =I − 2γW−1

γ ,

G0 =2γD−1
γ CW−1

γ , H0 =2γW−1
γ BD−1

γ ,

Aγ =A+ γI, Dγ =D + γI,

Wγ =Aγ −BD−1
γ C, Vγ =Dγ − CA−1

γ B,

(14)

for γ > γ∗, defined in (6), yields well defined sequences such that Gk → X∗ and Hk → Y∗

where X∗ is the minimal nonnegative solution of the M-NARE, while Y∗ is the minimal
nonnegative solution of the dual M-NARE: Y BY − Y A −DY + C = 0. In the critical
cases the convergence is linear, while in the other cases is quadratic with rate

ν = gapCγ (H) =
|Cγ(λn)|

|Cγ(λn+1)|
. (15)

Moreover, the value of γ > γ∗ that yields faster convergence is γ = γ∗ (see [4] and the
references therein).

The SDA can be applied with minor modifications to the equation associated with the
subspace shifted matrix

Ĥ =:

[
D̂ −Ĉ

B̂ −Â

]
.

It is enough to start the SDA with E0, F0, G0,H0 obtained using formulae (14) with the
new coefficients Â, B̂, Ĉ, D̂ instead of A,B,C,D and with the same γ.

The new matrix Ĥ might not be an M-matrix so that the applicability should be
assumed, in this case one can prove that the method converges to the same limit matrices
with a rate which is

ν̂ =
maxi=1,...,n |Cγ(λ̂i)|

minj=1,...,m |Cγ(λ̂n+j)|
, (16)
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where λ̂1, . . . , λ̂n+m are the eigenvalues of Ĥ. The proof of convergence may be obtained
with similar manipulations as the ones of [16, 13], so we decided to omit it.

Using the same parameter γ for both standard SDA and SDA applied to the shifted
equation gives different convergence rates according to (15) and (16). An acceleration is
obtained in the shifted case if ν̂ < ν. On the assumption that the central eigenvalues are
near to the origin, there exists smax such that ν̂ < ν for any value of the shift parameter
0 < s < smax.

5 Numerical experiments

We present some numerical examples showing the effectiveness of the subspace shift
technique, through the algorithms presented in Section 4, in solving close-to-critical
nonsingular M-NARE, when the assumptions of Section 3.3 are fulfilled; that is, when
the k eigenvalues corresponding to the central subspaces are nonzero and well separated
from the other eigenvalues of H. We recall that these assumptions can be identified
dynamically by the algorithm.

We compare the SDA applied to the original equation and to the shifted one. We
report the number of steps required by the SDA to converge and the number of steps of
the inverse orthogonal iteration in the subspace shift algorithm. All steps of the SDA
and the first step of the inverse orthogonal iteration are the most expensive part of the
algorithms, since their asymptotic cost is cubic with respect to the size of the matrices;
for instance, for m = n, the cost of a step of the SDA is O(n3) elementary arithmetic
operations.

We estimate the accuracy of the computed solution X̃∗ by means of the relative error

err =

∥∥∥X̃∗ −X∗

∥∥∥
F

‖X∗‖F
,

where X∗, if available, is the exact solution or an approximation of it obtained using a
higher precision. Otherwise, we use the relative residual

res =

∥∥∥R(X̃∗)
∥∥∥
F∥∥∥X̃∗CX̃∗ +B

∥∥∥
F
+

∥∥∥AX̃∗ + X̃∗D
∥∥∥
F

.

In our experiments the Frobenius norm is used. In the tests we use the value 10−15 as
stopping tolerance, a lower tolerance has been used sometimes to monitor the error.

Test 1 As a first test, we consider the close-to-critical cases of the transport problem
treated in [14, 18, 5]. It is an M-NARE with square coefficients of size n depending on
two parameters 0 6 α < 1 and 0 < c 6 1 (for the complete definition and the meaning
of the parameters see [18]). The problem is critical for (α, c) = (0, 1), and it is close-to-
critical if α and c approach simultaneously 0 and 1, respectively. In this problem k = 2
and the two eigenvalues λn and λn+1 are well separated from the others.
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β gap(H) rsep(W) gapCγ (H) rsep(U) gap(Ĥ) rsep(Ŵ) gapCγ (Ĥ)

10−3 0.11 4.5 · 10−3 0.98 2.9 · 10−2 2.5 2.3 · 10−2 0.69
10−6 3.5 · 10−3 1.4 · 10−4 0.9995 2.9 · 10−2 2.5 7.1 · 10−4 0.69
10−12 3.5 · 10−6 1.4 · 10−7 ≈ 1 2.9 · 10−2 2.5 7.1 · 10−7 0.69

Table 1: Several separation measures for the transport problem with n = 4

For n = 4 and certain values of β such that (α, c) = (β, 1−β), we compute the absolute
gap of H (gap(H) = |λn − λn+1|), the relative sep of its stable subspace (rsep(W),
defined in Section 2.2), the Cayley-transformed gap (gapCγ (H), defined in (5)) and the

same quantities for the shifted matrix Ĥ, where we have chosen γ = γ∗ of (6) in both
cases and s = ξ3/ξ1 − 1, where ξi are the eigenvalues of H ordered by nondecreasing
modulus. We have computed moreover the relative sep of the central subspace, indicated
by rsep(U). The results are reported in Table 1.

Since the conditioning of an invariant subspace is proportional to the reciprocal of the
relative sep, we observe that the central invariant subspace is much better conditioned
than the stable subspace and that the conditioning of the shifted problem is not worse
than the one of the original problem.

Recall that gapCγ (H) and gapCγ (Ĥ) are the parameters of quadratic convergence of
the SDA in the nonshifted and the shifted case, respectively. If gapCγ (·) is near to 1,
we expect a large number of steps of SDA to obtain the desired accuracy. This suggest
that the SDA applied to the shifted equation converge much faster, as shown in the next
tests.

Test 2 We consider the transport problem of Test 1, to which the subspace shift algo-
rithm is applied, where the Riccati equations are solved with the SDA.

In Table 2 we give the number of SDA iterations needed to get the best relative
residual for different matrix sizes n and choices of the parameters β (in a stand-alone
implementation the number of iterations may be slightly larger due to a non optimal
stopping criterion). We provide in parentheses the number of orthogonal iterations
needed to approximate the central invariant subspace in the shifted case, where the shift
parameter is chosen with the approximation strategy of Section 4.2.

As β approaches zero, the problem becomes close-to-critical; in fact β is strictly related
to the relative gap. The table reports also gap(H) and the minimum distance δ from
the two eigenvalues λn and λn+1 to the other eigenvalues of H.

As one can see the problem is well suited to be solved by our algorithms since the
central eigenvalues are well separated from the others and δ is always large enough while
the gap goes to zero; this shows that this example fits adequately the assumptions of
Section 3.3.

Test 3 The second example is taken from [10]. The matrix M is a random M-matrix
of size n and depending on a parameter α. As α tends to 0, the matrix M tends to

17



n β gap(H) δ SDA its SDA res Alg 1 its Alg 1 res

32 10−3 0.11 0.96 15 8.8 · 10−15 11 (12) 4.2 · 10−16

32 10−6 3.5 · 10−3 1.0 20 1.0 · 10−14 11 (6) 1.1 · 10−16

32 10−12 3.5 · 10−6 1.0 27 8.1 · 10−15 11 (3) 1.1 · 10−16

128 10−3 0.11 0.95 17 1.2 · 10−13 13 (12) 7.7 · 10−15

128 10−6 3.5 · 10−3 1.0 21 8.0 · 10−13 13 (6) 3.6 · 10−16

128 10−12 3.5 · 10−6 1.0 30 1.5 · 10−13 12 (4) 2.7 · 10−16

Table 2: Number of iterations for Algorithm 1 vs. SDA on the transport problem

n α gap(H) δ SDA its SDA res Alg 1 its Alg 1 res

50 10−3 0.43 43 12 3.9 · 10−16 4 (7) 1.1 · 10−16

100 10−3 0.61 90 13 6.1 · 10−16 4 (7) 1.9 · 10−16

32 10−12 1.1 185 13 8.6 · 10−16 4 (7) 3.3 · 10−16

Table 3: Number of iterations for Algorithm 1 vs. SDA on the problem of Test 3

a singular matrix. The problem is not close-to-critical, however, there are two central
eigenvalues well separated from the others, so the subspace shift algorithm works fine.

In Table 3 we report the results for this problem. The effectiveness of the subspace
shift algorithm suggests the possibility to use it in particular problems where a fistful of
small eigenvalues are well separated from the others.

Test 4 The residual is not always a good measure of the accuracy of the solution of a
matrix equation. To test the accuracy of the subspace shift algorithm we consider the
problems of Test 1 and Test 3 and compute the solution with double precision to get a
solution X∗ exact up to 8 significant digits. Then we run the customary SDA and the
SuShi algorithm with precision 10−8 (single precision).

The relative error is essentially the same in both cases. For instance, for Test 1 with
n = 4 and α = 10−3 we get for both errors 1.8 · 10−7, for Test 3 with n = 100 and
α = 10−3 we get for both errors 1.4 · 10−7.

6 Conclusions

We have provided a generalization of the shift technique which is aimed to handle close-
to-critical nonsymmetric algebraic Riccati equations. The technique consists in comput-
ing explicitly the (hopefully moderate-sized) invariant subspace relative to the smallest
eigenvalues, which are responsible for the slow convergence of the solution algorithms,
and modifying the problem in order to remove them. A theoretical analysis is outlined,
not only in terms of eigenvalue location, but also using the more powerful separation
metric, which is the one related to the conditioning of the problem; numerical experi-
ments are presented and prove that the application of the shift technique is effective on
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the analyzed problems.
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